1
|
Staeck S, Baumann J, Hönicke P, Wauschkuhn N, Spikermann F, Grötzsch D, Stiel H, Kanngießer B. Investigation of Ti nanostructures via laboratory scanning-free GEXRF. NANOSCALE 2025; 17:3411-3420. [PMID: 39704613 DOI: 10.1039/d4nr02445a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
The ability to characterize periodic nanostructures in the laboratory gains more attention as nanotechnology is widely utilized in a variety of application fields. Scanning-free grazing-emission X-ray fluorescence spectroscopy (GEXRF) is a promising candidate to allow non-destructive, element-sensitive characterization of sample structures down to the nanometer range for process engineering. Adopting a complementary metal-oxide semiconductor (CMOS) detector to work energy-dispersively via single-photon detection, the whole range of emission angles of interest can be recorded at once. In this work, a setup based on a Cr X-ray tube and a CMOS detector is used to investigate two TiO2 nanogratings and a TiO2 layer sample in the tender X-ray range. The measurement results are compared to simulations of sample models based on known sample parameters. The fluorescence emission is simulated using the finite-element method together with a Maxwell-solver. In addition, a reconstruction of the sample model based on the measurement data is conducted to illustrate the feasibility of laboratory scanning-free GEXRF as a technique to non-destructively characterize periodic nanostructures in the tender X-ray range.
Collapse
Affiliation(s)
- Steffen Staeck
- Technical University of Berlin, Hardenbergstraße 36, 10623 Berlin, Germany.
| | - Jonas Baumann
- Technical University of Berlin, Hardenbergstraße 36, 10623 Berlin, Germany.
| | - Philipp Hönicke
- Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany
- Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Nils Wauschkuhn
- Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany
| | | | - Daniel Grötzsch
- Technical University of Berlin, Hardenbergstraße 36, 10623 Berlin, Germany.
| | - Holger Stiel
- Max Born Institute, Max-Born-Straße 2A, 12489 Berlin, Germany
| | - Birgit Kanngießer
- Technical University of Berlin, Hardenbergstraße 36, 10623 Berlin, Germany.
| |
Collapse
|
2
|
Tan P, Liu T, Yang Y, Chen Y, Guan Y, Li Z, Yu S, Yang X, Xiang X, Zhao X, Li Y, Ding H, Wu X, Fink Z, Gao S, Hou X, Jiao X, Zhu J, Fan F, Yang S, Russell TP, Liu X, Hu Q, Long S. Flexible Soft X-Ray Image Sensors based on Metal Halide Perovskites With High Quantum Efficiency. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407244. [PMID: 39363637 DOI: 10.1002/adma.202407244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/02/2024] [Indexed: 10/05/2024]
Abstract
Soft X-ray imaging is a powerful tool to explore the structure of cells, probe material with nanometer resolution, and investigate the energetic phenomena in the universe. Conventional soft X-ray image sensors are by and large Si-based charge coupled devices that suffer from low frame rates, complex fabrication processes, mechanical inflexibility, and required cooling below -60 °C. Here, a soft X-ray photodiode is reported based on low-cost metal halide perovskite with comparable performance to commercial Si-based device. Nanothrough network electrode minimized the optical loss due to the shadowing of insensitive layers, while a multidimensional perovskite heterojunction is generated to reduce the photo-generated carrier loss. This strategy promoted a record quantum efficiency of 8 × 103% without cooling, several orders of magnitude greater than the previously achieved. Flexible and curved soft X-ray imaging arrays are fabricated based on this high-performance device structure, demonstrating stable soft X-ray response and sharp imaging capabilities. This work highlights the low-cost and efficient perovskite photodiode as a strong candidate for the next-generation soft X-ray image sensors.
Collapse
Affiliation(s)
- Pengju Tan
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Tianyu Liu
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Yuqian Yang
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Yuangan Chen
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Yong Guan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Zidu Li
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Shunjie Yu
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Xunyong Yang
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Xueqiang Xiang
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaolong Zhao
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Yu Li
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Honghe Ding
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Xuefei Wu
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Zachary Fink
- Polymer Science and Engineering Department, University of Massachusetts, Amherst, MA, 01003, USA
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Shuang Gao
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaohu Hou
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Xuechen Jiao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Fengjia Fan
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Shangfeng Yang
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Thomas P Russell
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Polymer Science and Engineering Department, University of Massachusetts, Amherst, MA, 01003, USA
| | - Xiaosong Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Qin Hu
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Shibing Long
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
3
|
Carulla M, Barten R, Baruffaldi F, Bergamaschi A, Borghi G, Boscardin M, Brückner M, Butcher TA, Centis Vignali M, Dinapoli R, Ebner S, Ficorella F, Fröjdh E, Greiffenberg D, Hammad Ali O, Hasanaj S, Heymes J, Hinger V, King T, Kozlowski P, Lopez Cuenca C, Mezza D, Moustakas K, Mozzanica A, Paternoster G, Paton KA, Ronchin S, Ruder C, Schmitt B, Sieberer P, Thattil D, Vogelsang K, Xie X, Zhang J. Quantum Efficiency Measurement and Modeling of Silicon Sensors Optimized for Soft X-ray Detection. SENSORS (BASEL, SWITZERLAND) 2024; 24:942. [PMID: 38339659 PMCID: PMC10856868 DOI: 10.3390/s24030942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
Hybrid pixel detectors have become indispensable at synchrotron and X-ray free-electron laser facilities thanks to their large dynamic range, high frame rate, low noise, and large area. However, at energies below 3 keV, the detector performance is often limited because of the poor quantum efficiency of the sensor and the difficulty in achieving single-photon resolution due to the low signal-to-noise ratio. In this paper, we address the quantum efficiency of silicon sensors by refining the design of the entrance window, mainly by passivating the silicon surface and optimizing the dopant profile of the n+ region. We present the measurement of the quantum efficiency in the soft X-ray energy range for silicon sensors with several process variations in the fabrication of planar sensors with thin entrance windows. The quantum efficiency for 250 eV photons is increased from almost 0.5% for a standard sensor to up to 62% as a consequence of these developments, comparable to the quantum efficiency of backside-illuminated scientific CMOS sensors. Finally, we discuss the influence of the various process parameters on quantum efficiency and present a strategy for further improvement.
Collapse
Affiliation(s)
- Maria Carulla
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Rebecca Barten
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Filippo Baruffaldi
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Anna Bergamaschi
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Giacomo Borghi
- Fondazione Bruno Kessler, Via Sommarive 18, 38126 Povo, Italy; (G.B.); (M.B.); (M.C.V.); (F.F.); (O.H.A.); (G.P.); (S.R.)
| | - Maurizio Boscardin
- Fondazione Bruno Kessler, Via Sommarive 18, 38126 Povo, Italy; (G.B.); (M.B.); (M.C.V.); (F.F.); (O.H.A.); (G.P.); (S.R.)
| | - Martin Brückner
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Tim A. Butcher
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Matteo Centis Vignali
- Fondazione Bruno Kessler, Via Sommarive 18, 38126 Povo, Italy; (G.B.); (M.B.); (M.C.V.); (F.F.); (O.H.A.); (G.P.); (S.R.)
| | - Roberto Dinapoli
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Simon Ebner
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Francesco Ficorella
- Fondazione Bruno Kessler, Via Sommarive 18, 38126 Povo, Italy; (G.B.); (M.B.); (M.C.V.); (F.F.); (O.H.A.); (G.P.); (S.R.)
| | - Erik Fröjdh
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Dominic Greiffenberg
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Omar Hammad Ali
- Fondazione Bruno Kessler, Via Sommarive 18, 38126 Povo, Italy; (G.B.); (M.B.); (M.C.V.); (F.F.); (O.H.A.); (G.P.); (S.R.)
| | - Shqipe Hasanaj
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Julian Heymes
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Viktoria Hinger
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Thomas King
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Pawel Kozlowski
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Carlos Lopez Cuenca
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Davide Mezza
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Konstantinos Moustakas
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Aldo Mozzanica
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Giovanni Paternoster
- Fondazione Bruno Kessler, Via Sommarive 18, 38126 Povo, Italy; (G.B.); (M.B.); (M.C.V.); (F.F.); (O.H.A.); (G.P.); (S.R.)
| | - Kirsty A. Paton
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Sabina Ronchin
- Fondazione Bruno Kessler, Via Sommarive 18, 38126 Povo, Italy; (G.B.); (M.B.); (M.C.V.); (F.F.); (O.H.A.); (G.P.); (S.R.)
| | - Christian Ruder
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Bernd Schmitt
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Patrick Sieberer
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Dhanya Thattil
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Konrad Vogelsang
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Xiangyu Xie
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Jiaguo Zhang
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| |
Collapse
|
4
|
Maffessanti S, Hansen K, Aschauer S, Castoldi A, Erdinger F, Fiorini C, Fischer P, Kalavakuru P, Klär H, Manghisoni M, Reckleben C, Strüder L, Porro M. A 64k pixel CMOS-DEPFET module for the soft X-rays DSSC imager operating at MHz-frame rates. Sci Rep 2023; 13:11799. [PMID: 37479713 PMCID: PMC10362030 DOI: 10.1038/s41598-023-38508-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 07/11/2023] [Indexed: 07/23/2023] Open
Abstract
The 64k pixel DEPFET module is the key sensitive component of the DEPFET Sensor with Signal Compression (DSSC), a large area 2D hybrid detector for capturing and measuring soft X-rays at the European XFEL. The final 1-megapixel camera has to detect photons with energies between [Formula: see text] and [Formula: see text], and must provide a peak frame rate of [Formula: see text] to cope with the unique bunch structure of the European XFEL. This work summarizes the functionalities and properties of the first modules assembled with full-format CMOS-DEPFET arrays, featuring [Formula: see text] hexagonally-shaped pixels with a side length of 136 μm. The pixel sensors utilize the DEPFET technology to realize an extremely low input capacitance for excellent energy resolution and, at the same time, an intrinsic capability of signal compression without any gain switching. Each pixel of the readout ASIC includes a DEPFET-bias current cancellation circuitry, a trapezoidal-shaping filter, a 9-bit ADC and a 800-word long digital memory. The trimming, calibration and final characterization were performed in a laboratory test-bench at DESY. All detector features are assessed at [Formula: see text]. An outstanding equivalent noise charge of [Formula: see text]e-rms is achieved at 1.1-MHz frame rate and gain of 26.8 Analog-to-Digital Unit per keV ([Formula: see text]). At [Formula: see text] and [Formula: see text], a noise of [Formula: see text] e-rms and a dynamic range of [Formula: see text] are obtained. The highest dynamic range of [Formula: see text] is reached at [Formula: see text] and [Formula: see text]. These values can fulfill the specification of the DSSC project.
Collapse
Affiliation(s)
- Stefano Maffessanti
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany.
| | - Karsten Hansen
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | | | - Andrea Castoldi
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133, Milan, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Milano, 20133, Milan, Italy
| | | | - Carlo Fiorini
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133, Milan, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Milano, 20133, Milan, Italy
| | - Peter Fischer
- Institute for Computer Engineering (ZITI), Heidelberg University, 69120, Heidelberg, Germany
| | - Pradeep Kalavakuru
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Helmut Klär
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Massimo Manghisoni
- Dipartimento di Ingegneria e Scienze Applicate, Università di Bergamo, 24044, Dalmine, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, 27100, Pavia, Italy
| | - Christian Reckleben
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Lothar Strüder
- PNSensor GmbH, 81739, Munich, Germany
- University of Siegen, 51228, Siegen, Germany
| | - Matteo Porro
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, 30172, Venezia, Italy
| |
Collapse
|
5
|
Vijayakumar J, Yuan H, Mille N, Stanescu S, Swaraj S, Favre-Nicolin V, Najafi E, Hitchcock AP, Belkhou R. Soft X-ray spectro-ptychography of boron nitride nanobamboos, carbon nanotubes and permalloy nanorods. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:746-757. [PMID: 37145139 PMCID: PMC10325009 DOI: 10.1107/s1600577523003399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 04/13/2023] [Indexed: 05/06/2023]
Abstract
Spectro-ptychography offers improved spatial resolution and additional phase spectral information relative to that provided by scanning transmission X-ray microscopes. However, carrying out ptychography at the lower range of soft X-ray energies (e.g. below 200 eV to 600 eV) on samples with weakly scattering signals can be challenging. Here, results of soft X-ray spectro-ptychography at energies as low as 180 eV are presented, and its capabilities are illustrated with results from permalloy nanorods (Fe 2p), carbon nanotubes (C 1s) and boron nitride bamboo nanostructures (B 1s, N 1s). The optimization of low-energy X-ray spectro-ptychography is described and important challenges associated with measurement approaches, reconstruction algorithms and their effects on the reconstructed images are discussed. A method for evaluating the increase in radiation dose when using overlapping sampling is presented.
Collapse
Affiliation(s)
- Jaianth Vijayakumar
- Synchrotron SOLEIL, L’Orme des Merisiers, BP 48, Saint-Aubin, 91192 Gif-sur-Yvette Cedex, France
| | - Hao Yuan
- Department of Electrical and Computer Engineering, University of Victoria, Victoria, BC, Canada V8W 2Y2
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Canada L8S 4M1
| | - Nicolas Mille
- Synchrotron SOLEIL, L’Orme des Merisiers, BP 48, Saint-Aubin, 91192 Gif-sur-Yvette Cedex, France
| | - Stefan Stanescu
- Synchrotron SOLEIL, L’Orme des Merisiers, BP 48, Saint-Aubin, 91192 Gif-sur-Yvette Cedex, France
| | - Sufal Swaraj
- Synchrotron SOLEIL, L’Orme des Merisiers, BP 48, Saint-Aubin, 91192 Gif-sur-Yvette Cedex, France
| | - Vincent Favre-Nicolin
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
- Université Grenoble Alpes, Grenoble, France
| | | | - Adam P. Hitchcock
- Department of Electrical and Computer Engineering, University of Victoria, Victoria, BC, Canada V8W 2Y2
| | - Rachid Belkhou
- Synchrotron SOLEIL, L’Orme des Merisiers, BP 48, Saint-Aubin, 91192 Gif-sur-Yvette Cedex, France
| |
Collapse
|
6
|
Eschen W, Liu C, Penagos Molina DS, Klas R, Limpert J, Rothhardt J. High-speed and wide-field nanoscale table-top ptychographic EUV imaging and beam characterization with a sCMOS detector. OPTICS EXPRESS 2023; 31:14212-14224. [PMID: 37157290 DOI: 10.1364/oe.485779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We present high-speed and wide-field EUV ptychography at 13.5 nm wavelength using a table-top high-order harmonic source. Compared to previous measurements, the total measurement time is significantly reduced by up to a factor of five by employing a scientific complementary metal oxide semiconductor (sCMOS) detector that is combined with an optimized multilayer mirror configuration. The fast frame rate of the sCMOS detector enables wide-field imaging with a field of view of 100 µm × 100 µm with an imaging speed of 4.6 Mpix/h. Furthermore, fast EUV wavefront characterization is employed using a combination of the sCMOS detector with orthogonal probe relaxation.
Collapse
|
7
|
Bonanni V, Gianoncelli A. Soft X-ray Fluorescence and Near-Edge Absorption Microscopy for Investigating Metabolic Features in Biological Systems: A Review. Int J Mol Sci 2023; 24:ijms24043220. [PMID: 36834632 PMCID: PMC9960606 DOI: 10.3390/ijms24043220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/13/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Scanning transmission X-ray microscopy (STXM) provides the imaging of biological specimens allowing the parallel collection of localized spectroscopic information by X-ray fluorescence (XRF) and/or X-ray Absorption Near Edge Spectroscopy (XANES). The complex metabolic mechanisms which can take place in biological systems can be explored by these techniques by tracing even small quantities of the chemical elements involved in the metabolic pathways. Here, we present a review of the most recent publications in the synchrotrons' scenario where soft X-ray spectro-microscopy has been employed in life science as well as in environmental research.
Collapse
|
8
|
Staeck S, Andrle A, Hönicke P, Baumann J, Grötzsch D, Weser J, Goetzke G, Jonas A, Kayser Y, Förste F, Mantouvalou I, Viefhaus J, Soltwisch V, Stiel H, Beckhoff B, Kanngießer B. Scan-Free GEXRF in the Soft X-ray Range for the Investigation of Structured Nanosamples. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3766. [PMID: 36364540 PMCID: PMC9658930 DOI: 10.3390/nano12213766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Scan-free grazing-emission X-ray fluorescence spectroscopy (GEXRF) is an established technique for the investigation of the elemental depth-profiles of various samples. Recently it has been applied to investigating structured nanosamples in the tender X-ray range. However, lighter elements such as oxygen, nitrogen or carbon cannot be efficiently investigated in this energy range, because of the ineffective excitation. Moreover, common CCD detectors are not able to discriminate between fluorescence lines below 1 keV. Oxygen and nitrogen are important components of insulation and passivation layers, for example, in silicon oxide or silicon nitride. In this work, scan-free GEXRF is applied in proof-of-concept measurements for the investigation of lateral ordered 2D nanostructures in the soft X-ray range. The sample investigated is a Si3N4 lamellar grating, which represents 2D periodic nanostructures as used in the semiconductor industry. The emerging two-dimensional fluorescence patterns are recorded with a CMOS detector. To this end, energy-dispersive spectra are obtained via single-photon event evaluation. In this way, spatial and therefore angular information is obtained, while discrimination between different photon energies is enabled. The results are compared to calculations of the sample model performed by a Maxwell solver based on the finite-elements method. A first measurement is carried out at the UE56-2 PGM-2 beamline at the BESSY II synchrotron radiation facility to demonstrate the feasibility of the method in the soft X-ray range. Furthermore, a laser-produced plasma source (LPP) is utilized to investigate the feasibility of this technique in the laboratory. The results from the BESSY II measurements are in good agreement with the simulations and prove the applicability of scan-free GEXRF in the soft X-ray range for quality control and process engineering of 2D nanostructures. The LPP results illustrate the chances and challenges concerning a transfer of the methodology to the laboratory.
Collapse
Affiliation(s)
- Steffen Staeck
- TU Berlin, Analytical X-ray Physics, 10623 Berlin, Germany
| | - Anna Andrle
- Physikalisch-Technische Bundesanstalt, 10587 Berlin, Germany
| | - Philipp Hönicke
- TU Berlin, Analytical X-ray Physics, 10623 Berlin, Germany
- Physikalisch-Technische Bundesanstalt, 10587 Berlin, Germany
| | - Jonas Baumann
- TU Berlin, Analytical X-ray Physics, 10623 Berlin, Germany
| | | | - Jan Weser
- Physikalisch-Technische Bundesanstalt, 10587 Berlin, Germany
| | - Gesa Goetzke
- TU Berlin, Analytical X-ray Physics, 10623 Berlin, Germany
| | - Adrian Jonas
- TU Berlin, Analytical X-ray Physics, 10623 Berlin, Germany
| | - Yves Kayser
- Physikalisch-Technische Bundesanstalt, 10587 Berlin, Germany
| | - Frank Förste
- TU Berlin, Analytical X-ray Physics, 10623 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
9
|
Juge R, Sisodia N, Larrañaga JU, Zhang Q, Pham VT, Rana KG, Sarpi B, Mille N, Stanescu S, Belkhou R, Mawass MA, Novakovic-Marinkovic N, Kronast F, Weigand M, Gräfe J, Wintz S, Finizio S, Raabe J, Aballe L, Foerster M, Belmeguenai M, Buda-Prejbeanu LD, Pelloux-Prayer J, Shaw JM, Nembach HT, Ranno L, Gaudin G, Boulle O. Skyrmions in synthetic antiferromagnets and their nucleation via electrical current and ultra-fast laser illumination. Nat Commun 2022; 13:4807. [PMID: 35974009 PMCID: PMC9381802 DOI: 10.1038/s41467-022-32525-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 08/03/2022] [Indexed: 11/09/2022] Open
Abstract
Magnetic skyrmions are topological spin textures that hold great promise as nanoscale information carriers in non-volatile memory and logic devices. While room-temperature magnetic skyrmions and their current-induced motion were recently demonstrated, the stray field resulting from their finite magnetisation and their topological charge limit their minimum size and reliable motion. Antiferromagnetic skyrmions allow to lift these limitations owing to their vanishing magnetisation and net zero topological charge, promising ultra-small and ultra-fast skyrmions. Here, we report on the observation of isolated skyrmions in compensated synthetic antiferromagnets at zero field and room temperature using X-ray magnetic microscopy. Micromagnetic simulations and an analytical model confirm the chiral antiferromagnetic nature of these skyrmions and allow the identification of the physical mechanisms controlling their size and stability. Finally, we demonstrate the nucleation of synthetic antiferromagnetic skyrmions via local current injection and ultra-fast laser excitation.
Collapse
Affiliation(s)
- Roméo Juge
- Univ. Grenoble Alpes, CNRS, CEA, SPINTEC, 38000, Grenoble, France
| | - Naveen Sisodia
- Univ. Grenoble Alpes, CNRS, CEA, SPINTEC, 38000, Grenoble, France
| | | | - Qiang Zhang
- Univ. Grenoble Alpes, CNRS, CEA, SPINTEC, 38000, Grenoble, France
| | - Van Tuong Pham
- Univ. Grenoble Alpes, CNRS, CEA, SPINTEC, 38000, Grenoble, France
| | | | - Brice Sarpi
- Synchrotron SOLEIL, L'Orme des Merisiers, 91190, Saint-Aubin, France
| | - Nicolas Mille
- Synchrotron SOLEIL, L'Orme des Merisiers, 91190, Saint-Aubin, France
| | - Stefan Stanescu
- Synchrotron SOLEIL, L'Orme des Merisiers, 91190, Saint-Aubin, France
| | - Rachid Belkhou
- Synchrotron SOLEIL, L'Orme des Merisiers, 91190, Saint-Aubin, France
| | - Mohamad-Assaad Mawass
- Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489, Berlin, Germany
| | - Nina Novakovic-Marinkovic
- Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489, Berlin, Germany
| | - Florian Kronast
- Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489, Berlin, Germany
| | - Markus Weigand
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109, Berlin, Germany
| | - Joachim Gräfe
- Max Planck Institute for Intelligent Systems, Heisenbergstraße 3, 70569, Stuttgart, Germany
| | - Sebastian Wintz
- Max Planck Institute for Intelligent Systems, Heisenbergstraße 3, 70569, Stuttgart, Germany
| | - Simone Finizio
- Swiss Light Source, Paul Scherrer Institut, 5232, Villigen, Switzerland
| | - Jörg Raabe
- Swiss Light Source, Paul Scherrer Institut, 5232, Villigen, Switzerland
| | - Lucia Aballe
- ALBA Synchrotron Light Facility, 08290, Cerdanyola del Vallès, Barcelona, Spain
| | - Michael Foerster
- ALBA Synchrotron Light Facility, 08290, Cerdanyola del Vallès, Barcelona, Spain
| | - Mohamed Belmeguenai
- Laboratoire des Sciences des Procedés et des Matériaux, CNRS, Univ. Paris 13, 93430, Villetaneuse, France
| | | | | | - Justin M Shaw
- Quantum Electromagnetics Division, National Institute of Standards and Technology, Boulder, CO, 80309, USA
| | - Hans T Nembach
- Quantum Electromagnetics Division, National Institute of Standards and Technology, Boulder, CO, 80309, USA.,Department of Physics, University of Colorado, Boulder, CO, 80309, USA
| | - Laurent Ranno
- Univ. Grenoble Alpes, CNRS, Institut Néel, 38042, Grenoble, France
| | - Gilles Gaudin
- Univ. Grenoble Alpes, CNRS, CEA, SPINTEC, 38000, Grenoble, France
| | - Olivier Boulle
- Univ. Grenoble Alpes, CNRS, CEA, SPINTEC, 38000, Grenoble, France.
| |
Collapse
|
10
|
Pancaldi M, Strüber C, Friedrich B, Pedersoli E, De Angelis D, Nikolov IP, Manfredda M, Foglia L, Yulin S, Spezzani C, Sacchi M, Eisebitt S, von Korff Schmising C, Capotondi F. The COMIX polarimeter: a compact device for XUV polarization analysis. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:969-977. [PMID: 35787562 PMCID: PMC9255573 DOI: 10.1107/s1600577522004027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
We report on the characterization of a novel extreme-ultraviolet polarimeter based on conical mirrors to simultaneously detect all the components of the electric field vector for extreme-ultraviolet radiation in the 45-90 eV energy range. The device has been characterized using a variable polarization source at the Elettra synchrotron, showing good performance in the ability to determine the radiation polarization. Furthermore, as a possible application of the device, Faraday spectroscopy and time-resolved experiments have been performed at the Fe M2,3-edge on an FeGd ferrimagnetic thin film using the FERMI free-electron laser source. The instrument is shown to be able to detect the small angular variation induced by an optical external stimulus on the polarization state of the light after interaction with magnetic thin film, making the device an appealing tool for magnetization dynamics research.
Collapse
Affiliation(s)
| | - Christian Strüber
- Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Bertram Friedrich
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany
| | | | | | | | | | - Laura Foglia
- Elettra-Sincrotrone Trieste SCpA, 34149 Basovizza, Italy
| | - Sergiy Yulin
- Fraunhofer Institute for Applied Optics and Precision Engineering IOF, Albert-Einstein-Straße 7, 07745 Jena, Germany
| | - Carlo Spezzani
- Elettra-Sincrotrone Trieste SCpA, 34149 Basovizza, Italy
| | - Maurizio Sacchi
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP, 75005 Paris, France
- Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
| | - Stefan Eisebitt
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Strasse des 17 Juni 135, 10623 Berlin, Germany
| | | | | |
Collapse
|
11
|
Léveillé C, Desjardins K, Popescu H, Vondungbo B, Hennes M, Delaunay R, Jal E, De Angelis D, Pancaldi M, Pedersoli E, Capotondi F, Jaouen N. Single-shot experiments at the soft X-FEL FERMI using a back-side-illuminated scientific CMOS detector. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:103-110. [PMID: 34985427 PMCID: PMC8733974 DOI: 10.1107/s1600577521012303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/20/2021] [Indexed: 06/14/2023]
Abstract
The latest Complementary Metal Oxide Semiconductor (CMOS) 2D sensors now rival the performance of state-of-the-art photon detectors for optical application, combining a high-frame-rate speed with a wide dynamic range. While the advent of high-repetition-rate hard X-ray free-electron lasers (FELs) has boosted the development of complex large-area fast CCD detectors in the extreme ultraviolet (EUV) and soft X-ray domains, scientists lacked such high-performance 2D detectors, principally due to the very poor efficiency limited by the sensor processing. Recently, a new generation of large back-side-illuminated scientific CMOS sensors (CMOS-BSI) has been developed and commercialized. One of these cost-efficient and competitive sensors, the GSENSE400BSI, has been implemented and characterized, and the proof of concept has been carried out at a synchrotron or laser-based X-ray source. In this article, we explore the feasibility of single-shot ultra-fast experiments at FEL sources operating in the EUV/soft X-ray regime with an AXIS-SXR camera equipped with the GSENSE400BSI-TVISB sensor. We illustrate the detector capabilities by performing a soft X-ray magnetic scattering experiment at the DiProi end-station of the FERMI FEL. These measurements show the possibility of integrating this camera for collecting single-shot images at the 50 Hz operation mode of FERMI with a cropped image size of 700 × 700 pixels. The efficiency of the sensor at a working photon energy of 58 eV and the linearity over the large FEL intensity have been verified. Moreover, on-the-fly time-resolved single-shot X-ray resonant magnetic scattering imaging from prototype Co/Pt multilayer films has been carried out with a time collection gain of 30 compared to the classical start-and-stop acquisition method performed with the conventional CCD-BSI detector available at the end-station.
Collapse
Affiliation(s)
- Cyril Léveillé
- Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP48, 91192 Gif-sur-Yvette, France
| | - Kewin Desjardins
- Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP48, 91192 Gif-sur-Yvette, France
| | - Horia Popescu
- Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP48, 91192 Gif-sur-Yvette, France
| | - Boris Vondungbo
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, LCPMR, 75005 Paris, France
| | - Marcel Hennes
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, LCPMR, 75005 Paris, France
| | - Renaud Delaunay
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, LCPMR, 75005 Paris, France
| | - Emmanuelle Jal
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, LCPMR, 75005 Paris, France
| | | | - Matteo Pancaldi
- Elettra-Sincrotrone Trieste, Basovizza, Trieste 34149, Italy
| | | | | | - Nicolas Jaouen
- Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP48, 91192 Gif-sur-Yvette, France
| |
Collapse
|
12
|
Affiliation(s)
- Brian A. Collins
- Physics and Astronomy Washington State University Pullman Washington USA
| | - Eliot Gann
- Material Measurement Laboratory National Institute of Standards and Technology Gaithersburg Maryland USA
| |
Collapse
|