1
|
Roux A, Alsalman Z, Jiang T, Mulatier JC, Pitrat D, Dumont E, Riobé F, Gillet N, Girard E, Maury O. Influence of Chemical Modifications of the Crystallophore on Protein Nucleating Properties and Supramolecular Interactions Network. Chemistry 2024; 30:e202400900. [PMID: 38738452 DOI: 10.1002/chem.202400900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/14/2024]
Abstract
Crystallophores are lanthanide complexes that have demonstrated outstanding induction of crystallization for various proteins. This article explores the effect of tailored modifications of the crystallophore first generation and their impact on the nucleating properties and protein crystal structures. Through high-throughput crystallization experiments and dataset analysis, we evaluated the effectiveness of these variants, in comparison to the first crystallophore generation G1. In particular, the V1 variant, featuring a propanol pendant arm, demonstrated the ability to produce new crystallization conditions for the proteins tested (hen-egg white lysozyme, proteinase K and thaumatin). Structural analysis performed in the case of hen egg-white lysozyme along with Molecular Dynamics simulations, highlights V1's unique behavior, taking advantage of the flexibility of its propanol arm to explore different protein surfaces and form versatile supramolecular interactions.
Collapse
Affiliation(s)
- Amandine Roux
- Univ. Lyon, École Normale Supérieure de Lyon, CNRS UMR 5182, Laboratoire de Chimie, 46 allée d'Italie, 69007, Lyon, France
- Polyvalan SAS, Lyon, France
| | - Zaynab Alsalman
- Univ Grenoble Alpes, CEA, CNRS, IBS, F-38000, Grenoble, France
| | - Tao Jiang
- Univ. Lyon, École Normale Supérieure de Lyon, CNRS UMR 5182, Laboratoire de Chimie, 46 allée d'Italie, 69007, Lyon, France
| | - Jean-Christophe Mulatier
- Univ. Lyon, École Normale Supérieure de Lyon, CNRS UMR 5182, Laboratoire de Chimie, 46 allée d'Italie, 69007, Lyon, France
| | - Delphine Pitrat
- Univ. Lyon, École Normale Supérieure de Lyon, CNRS UMR 5182, Laboratoire de Chimie, 46 allée d'Italie, 69007, Lyon, France
| | - Elise Dumont
- Univ. Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272, 06108, Nice, France
- Institut Universitaire de France, 5 rue Descartes, 75005, Paris, France
| | - François Riobé
- Univ. Lyon, École Normale Supérieure de Lyon, CNRS UMR 5182, Laboratoire de Chimie, 46 allée d'Italie, 69007, Lyon, France
- Univ Bordeaux, Bordeaux INP, CNRS, Institut de Chimie de la Matière Condensée de Bordeaux, 33608, Pessac, France
| | - Natacha Gillet
- Univ. Lyon, École Normale Supérieure de Lyon, CNRS UMR 5182, Laboratoire de Chimie, 46 allée d'Italie, 69007, Lyon, France
| | - Eric Girard
- Univ Grenoble Alpes, CEA, CNRS, IBS, F-38000, Grenoble, France
| | - Olivier Maury
- Univ. Lyon, École Normale Supérieure de Lyon, CNRS UMR 5182, Laboratoire de Chimie, 46 allée d'Italie, 69007, Lyon, France
| |
Collapse
|
2
|
Petit-Hartlein I, Vermot A, Thepaut M, Humm AS, Dupeux F, Dupuy J, Chaptal V, Marquez JA, Smith SME, Fieschi F. X-ray structure and enzymatic study of a bacterial NADPH oxidase highlight the activation mechanism of eukaryotic NOX. eLife 2024; 13:RP93759. [PMID: 38640072 PMCID: PMC11031084 DOI: 10.7554/elife.93759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024] Open
Abstract
NADPH oxidases (NOX) are transmembrane proteins, widely spread in eukaryotes and prokaryotes, that produce reactive oxygen species (ROS). Eukaryotes use the ROS products for innate immune defense and signaling in critical (patho)physiological processes. Despite the recent structures of human NOX isoforms, the activation of electron transfer remains incompletely understood. SpNOX, a homolog from Streptococcus pneumoniae, can serves as a robust model for exploring electron transfers in the NOX family thanks to its constitutive activity. Crystal structures of SpNOX full-length and dehydrogenase (DH) domain constructs are revealed here. The isolated DH domain acts as a flavin reductase, and both constructs use either NADPH or NADH as substrate. Our findings suggest that hydride transfer from NAD(P)H to FAD is the rate-limiting step in electron transfer. We identify significance of F397 in nicotinamide access to flavin isoalloxazine and confirm flavin binding contributions from both DH and Transmembrane (TM) domains. Comparison with related enzymes suggests that distal access to heme may influence the final electron acceptor, while the relative position of DH and TM does not necessarily correlate with activity, contrary to previous suggestions. It rather suggests requirement of an internal rearrangement, within the DH domain, to switch from a resting to an active state. Thus, SpNOX appears to be a good model of active NOX2, which allows us to propose an explanation for NOX2's requirement for activation.
Collapse
Affiliation(s)
| | - Annelise Vermot
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie StructuraleGrenobleFrance
| | - Michel Thepaut
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie StructuraleGrenobleFrance
| | | | - Florine Dupeux
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie StructuraleGrenobleFrance
- European Molecular Biology LaboratoryGrenobleFrance
| | - Jerome Dupuy
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie StructuraleGrenobleFrance
| | | | | | - Susan ME Smith
- Department of Molecular and Cellular Biology, Kennesaw State UniversityKennesawUnited States
| | - Franck Fieschi
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie StructuraleGrenobleFrance
- Institut Universitaire de FranceParisFrance
| |
Collapse
|
3
|
Kotov V, Killer M, Jungnickel KEJ, Lei J, Finocchio G, Steinke J, Bartels K, Strauss J, Dupeux F, Humm AS, Cornaciu I, Márquez JA, Pardon E, Steyaert J, Löw C. Plasticity of the binding pocket in peptide transporters underpins promiscuous substrate recognition. Cell Rep 2023; 42:112831. [PMID: 37467108 DOI: 10.1016/j.celrep.2023.112831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/09/2023] [Accepted: 07/03/2023] [Indexed: 07/21/2023] Open
Abstract
Proton-dependent oligopeptide transporters (POTs) are promiscuous transporters of the major facilitator superfamily that constitute the main route of entry for a wide range of dietary peptides and orally administrated peptidomimetic drugs. Given their clinical and pathophysiological relevance, several POT homologs have been studied extensively at the structural and molecular level. However, the molecular basis of recognition and transport of diverse peptide substrates has remained elusive. We present 14 X-ray structures of the bacterial POT DtpB in complex with chemically diverse di- and tripeptides, providing novel insights into the plasticity of the conserved central binding cavity. We analyzed binding affinities for more than 80 peptides and monitored uptake by a fluorescence-based transport assay. To probe whether all 8400 natural di- and tripeptides can bind to DtpB, we employed state-of-the-art molecular docking and machine learning and conclude that peptides with compact hydrophobic residues are the best DtpB binders.
Collapse
Affiliation(s)
- Vadim Kotov
- Center for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany; European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607 Hamburg, Germany
| | - Maxime Killer
- Center for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany; European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607 Hamburg, Germany; Faculty of Biosciences, Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Hamburg, Germany
| | - Katharina E J Jungnickel
- Center for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany; European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607 Hamburg, Germany
| | - Jian Lei
- Center for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany; European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607 Hamburg, Germany; State Key Laboratory of Biotherapy and Cancer Center, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China
| | - Giada Finocchio
- Center for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany; European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607 Hamburg, Germany
| | - Josi Steinke
- Center for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany; European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607 Hamburg, Germany
| | - Kim Bartels
- Center for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany; European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607 Hamburg, Germany
| | - Jan Strauss
- Center for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany; European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607 Hamburg, Germany
| | - Florine Dupeux
- European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs CS 90181, 38042 Grenoble Cedex 9, France
| | - Anne-Sophie Humm
- European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs CS 90181, 38042 Grenoble Cedex 9, France
| | - Irina Cornaciu
- European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs CS 90181, 38042 Grenoble Cedex 9, France
| | - José A Márquez
- European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs CS 90181, 38042 Grenoble Cedex 9, France
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium; VIB-VUB Center for Structural Biology, VIB, 1050 Brussels, Belgium
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium; VIB-VUB Center for Structural Biology, VIB, 1050 Brussels, Belgium
| | - Christian Löw
- Center for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany; European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607 Hamburg, Germany.
| |
Collapse
|
4
|
Di Micco S, Rahimova R, Sala M, Scala MC, Vivenzio G, Musella S, Andrei G, Remans K, Mammri L, Snoeck R, Bifulco G, Di Matteo F, Vestuto V, Campiglia P, Márquez JA, Fasano A. Rational design of the zonulin inhibitor AT1001 derivatives as potential anti SARS-CoV-2. Eur J Med Chem 2022; 244:114857. [PMID: 36332548 PMCID: PMC9579148 DOI: 10.1016/j.ejmech.2022.114857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/26/2022] [Accepted: 10/14/2022] [Indexed: 11/28/2022]
Abstract
Although vaccines are greatly mitigating the worldwide pandemic diffusion of SARS-Cov-2, therapeutics should provide many distinct advantages as complementary approach to control the viral spreading. Here, we report the development of new tripeptide derivatives of AT1001 against SARS-CoV-2 Mpro. By molecular modeling, a small compound library was rationally designed and filtered for enzymatic inhibition through FRET assay, leading to the identification of compound 4. X-ray crystallography studies provide insights into its binding mode and confirm the formation of a covalent bond with Mpro C145. In vitro antiviral tests indicate the improvement of biological activity of 4 respect to AT1001. In silico and X-ray crystallography analysis led to 58, showing a promising activity against three SARS-CoV-2 variants and a valuable safety in Vero cells and human embryonic lung fibroblasts. The drug tolerance was also confirmed by in vivo studies, along with pharmacokinetics evaluation. In summary, 58 could pave the way to develop a clinical candidate for intranasal administration.
Collapse
Affiliation(s)
- Simone Di Micco
- European Biomedical Research Institute of Salerno (EBRIS), Via Salvatore de Renzi 50, 84125, Salerno, Italy,Corresponding author
| | - Rahila Rahimova
- European Molecular Biology Laboratory, EMBL, 71 Avenue des Martyrs, CS 90181, Grenoble Cedex 9, 38042, France
| | - Marina Sala
- Dipartimento di Farmacia, Università Degli Studi di Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Maria C. Scala
- Dipartimento di Farmacia, Università Degli Studi di Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Giovanni Vivenzio
- Dipartimento di Farmacia, Università Degli Studi di Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Simona Musella
- European Biomedical Research Institute of Salerno (EBRIS), Via Salvatore de Renzi 50, 84125, Salerno, Italy,Dipartimento di Farmacia, Università Degli Studi di Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Graciela Andrei
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Kim Remans
- European Molecular Biology Laboratory, EMBL, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Léa Mammri
- European Molecular Biology Laboratory, EMBL, 71 Avenue des Martyrs, CS 90181, Grenoble Cedex 9, 38042, France
| | - Robert Snoeck
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Giuseppe Bifulco
- Dipartimento di Farmacia, Università Degli Studi di Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Francesca Di Matteo
- Dipartimento di Farmacia, Università Degli Studi di Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Vincenzo Vestuto
- Dipartimento di Farmacia, Università Degli Studi di Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Pietro Campiglia
- European Biomedical Research Institute of Salerno (EBRIS), Via Salvatore de Renzi 50, 84125, Salerno, Italy,Dipartimento di Farmacia, Università Degli Studi di Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - José A. Márquez
- European Molecular Biology Laboratory, EMBL, 71 Avenue des Martyrs, CS 90181, Grenoble Cedex 9, 38042, France,ALPX S.A.S. 71, Avenue des Martyrs, France
| | - Alessio Fasano
- European Biomedical Research Institute of Salerno (EBRIS), Via Salvatore de Renzi 50, 84125, Salerno, Italy,Mucosal Immunology and Biology Research Center, Massachusetts General Hospital–Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
5
|
Janssen A, Marcelot A, Breusegem S, Legrand P, Zinn-Justin S, Larrieu D. The BAF A12T mutation disrupts lamin A/C interaction, impairing robust repair of nuclear envelope ruptures in Nestor-Guillermo progeria syndrome cells. Nucleic Acids Res 2022; 50:9260-9278. [PMID: 36039758 PMCID: PMC9458464 DOI: 10.1093/nar/gkac726] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/02/2022] [Accepted: 08/12/2022] [Indexed: 12/24/2022] Open
Abstract
Nestor-Guillermo progeria syndrome (NGPS) is caused by a homozygous alanine-to-threonine mutation at position 12 (A12T) in barrier-to-autointegration factor (BAF). It is characterized by accelerated aging with severe skeletal abnormalities. BAF is an essential protein binding to DNA and nuclear envelope (NE) proteins, involved in NE rupture repair. Here, we assessed the impact of BAF A12T on NE integrity using NGPS-derived patient fibroblasts. We observed a strong defect in lamin A/C accumulation to NE ruptures in NGPS cells, restored upon homozygous reversion of the pathogenic BAF A12T mutation with CRISPR/Cas9. By combining in vitro and cellular assays, we demonstrated that while the A12T mutation does not affect BAF 3D structure and phosphorylation by VRK1, it specifically decreases the interaction between BAF and lamin A/C. Finally, we revealed that the disrupted interaction does not prevent repair of NE ruptures but instead generates weak points in the NE that lead to a higher frequency of NE re-rupturing in NGPS cells. We propose that this NE fragility could directly contribute to the premature aging phenotype in patients.
Collapse
Affiliation(s)
- Anne Janssen
- Department of Clinical Biochemistry, Cambridge Biomedical Campus, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Agathe Marcelot
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex 91190, France
| | - Sophia Breusegem
- Department of Clinical Biochemistry, Cambridge Biomedical Campus, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Pierre Legrand
- Synchrotron SOLEIL, HelioBio group, L’Orme des Merisiers, Gif sur-Yvette 91190, France
| | - Sophie Zinn-Justin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex 91190, France
| | - Delphine Larrieu
- Department of Clinical Biochemistry, Cambridge Biomedical Campus, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| |
Collapse
|
6
|
Johnen P, Zimmermann S, Betz M, Hendriks J, Zimmermann A, Marnet M, De I, Zimmermann G, Kibat C, Cornaciu I, Mariaule V, Pica A, Clavel D, Márquez JA, Witschel M. Inhibition of acyl-ACP thioesterase as site of action of the commercial herbicides cumyluron, oxaziclomefone, bromobutide, methyldymron and tebutam. PEST MANAGEMENT SCIENCE 2022; 78:3620-3629. [PMID: 35604014 DOI: 10.1002/ps.7004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Understanding the mode and site of action of a herbicide is key for its efficient development, the evaluation of its toxicological risk, efficient weed control and resistance management. Recently, the mode of action (MoA) of the herbicide cinmethylin was identified in lipid biosynthesis with acyl-ACP thioesterase (FAT) as the site of action (SoA). Cinmethylin was registered for selective use in cereal crops for the control of grass weeds in 2020. RESULTS Here, we present a high-resolution co-crystal structure of FAT in complex with cumyluron identified by a high throughput crystallization screen. We show binding to and inhibition of FAT by cumyluron. Furthermore, in an array of experiments consisting of FAT binding assays, FAT inhibition assays, physiological and metabolic profiling, we tested compounds that are structurally related to cumyluron and identified the commercial herbicides oxaziclomefone, methyldymron, tebutam and bromobutide, with so far unknown sites of action, as FAT inhibitors. Additionally, we show that the previously described FAT inhibitors cinmethylin and methiozolin bind to FAT in a nanomolar range, inhibit FAT enzymatic activity and lead to similar metabolic changes. CONCLUSION Based on presented data, we corroborate cinmethylin and methiozolin as potent FAT inhibitors and identify FAT as the SoA of the herbicides cumyluron, oxaziclomefone, bromobutide, methyldymron and tebutam. © 2022 Society of Chemical Industry.
Collapse
|
7
|
Banneville AS, Bouthier de la Tour C, De Bonis S, Hognon C, Colletier JP, Teulon JM, Le Roy A, Pellequer JL, Monari A, Dehez F, Confalonieri F, Servant P, Timmins J. Structural and functional characterization of DdrC, a novel DNA damage-induced nucleoid associated protein involved in DNA compaction. Nucleic Acids Res 2022; 50:7680-7696. [PMID: 35801857 PMCID: PMC9303277 DOI: 10.1093/nar/gkac563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/18/2022] [Accepted: 06/17/2022] [Indexed: 01/19/2023] Open
Abstract
Deinococcus radiodurans is a spherical bacterium well-known for its outstanding resistance to DNA-damaging agents. Exposure to such agents leads to drastic changes in the transcriptome of D. radiodurans. In particular, four Deinococcus-specific genes, known as DNA Damage Response genes, are strongly up-regulated and have been shown to contribute to the resistance phenotype of D. radiodurans. One of these, DdrC, is expressed shortly after exposure to γ-radiation and is rapidly recruited to the nucleoid. In vitro, DdrC has been shown to compact circular DNA, circularize linear DNA, anneal complementary DNA strands and protect DNA from nucleases. To shed light on the possible functions of DdrC in D. radiodurans, we determined the crystal structure of the domain-swapped DdrC dimer at a resolution of 2.5 Å and further characterized its DNA binding and compaction properties. Notably, we show that DdrC bears two asymmetric DNA binding sites located on either side of the dimer and can modulate the topology and level of compaction of circular DNA. These findings suggest that DdrC may be a DNA damage-induced nucleoid-associated protein that enhances nucleoid compaction to limit the dispersion of the fragmented genome and facilitate DNA repair after exposure to severe DNA damaging conditions.
Collapse
Affiliation(s)
| | - Claire Bouthier de la Tour
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | | | - Cécilia Hognon
- LPCT, UMR 7019, Université de Lorraine, CNRS, Vandœuvre-lès-Nancy, France
| | | | | | - Aline Le Roy
- Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| | | | - Antonio Monari
- LPCT, UMR 7019, Université de Lorraine, CNRS, Vandœuvre-lès-Nancy, France,Université Paris Cité, CNRS, Itodys, F-75006 Paris, France
| | - François Dehez
- LPCT, UMR 7019, Université de Lorraine, CNRS, Vandœuvre-lès-Nancy, France
| | - Fabrice Confalonieri
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Pascale Servant
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Joanna Timmins
- To whom correspondence should be addressed. Tel: +33 4 57 42 86 78;
| |
Collapse
|
8
|
Healey RD, Basu S, Humm AS, Leyrat C, Cong X, Golebiowski J, Dupeux F, Pica A, Granier S, Márquez JA. An automated platform for structural analysis of membrane proteins through serial crystallography. CELL REPORTS METHODS 2021; 1:None. [PMID: 34723237 PMCID: PMC8545655 DOI: 10.1016/j.crmeth.2021.100102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/07/2021] [Accepted: 09/22/2021] [Indexed: 11/01/2022]
Abstract
Membrane proteins are central to many pathophysiological processes, yet remain very difficult to analyze structurally. Moreover, high-throughput structure-based drug discovery has not yet been exploited for membrane proteins because of lack of automation. Here, we present a facile and versatile platform for in meso membrane protein crystallization, enabling rapid atomic structure determination at both cryogenic and room temperatures. We apply this approach to human integral membrane proteins, which allowed us to identify different conformational states of intramembrane enzyme-product complexes and analyze by molecular dynamics simulations the structural dynamics of the ADIPOR2 integral membrane protein. Finally, we demonstrate an automated pipeline combining high-throughput microcrystal soaking, automated laser-based harvesting, and serial crystallography, enabling screening of small-molecule libraries with membrane protein crystals grown in meso. This approach brings needed automation to this important class of drug targets and enables high-throughput structure-based ligand discovery with membrane proteins.
Collapse
Affiliation(s)
- Robert D. Healey
- IGF, University of Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Shibom Basu
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Anne-Sophie Humm
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Cedric Leyrat
- IGF, University of Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Xiaojing Cong
- IGF, University of Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Jérôme Golebiowski
- Institute of Chemistry of Nice UMR7272, Université Côte d’Azur, CNRS, 28 Avenue Valrose, 06108 Nice, France
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Technology, 711-873 Daegu, South Korea
| | - Florine Dupeux
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38000 Grenoble, France
- Institut de Biologie Structurale, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Andrea Pica
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38000 Grenoble, France
- ALPX S.A.S. 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Sébastien Granier
- IGF, University of Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - José Antonio Márquez
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38000 Grenoble, France
- ALPX S.A.S. 71 Avenue des Martyrs, 38000 Grenoble, France
| |
Collapse
|
9
|
Wehbie M, Bouchemal I, Deletraz A, Pebay-Peyroula E, Breyton C, Ebel C, Durand G. Glucose-Based Fluorinated Surfactants as Additives for the Crystallization of Membrane Proteins: Synthesis and Preliminary Physical-Chemical and Biochemical Characterization. ACS OMEGA 2021; 6:24397-24406. [PMID: 34604622 PMCID: PMC8482409 DOI: 10.1021/acsomega.1c02581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
We report herein the synthesis of a series of fluorinated surfactants with a glucose moiety as a polar head group and whose alkyl chain was varied in length and in fluorine/hydrogen ratio. They were synthesized in two or four steps in 20 to 50% overall yields allowing gram-scale synthesis. Their solubility in water is between 0.2 and 13.8 g/L, which indicates low water solubility. Two derivatives of the series were found to form micelles in water at ∼11 mM. Their hydrophilic-lipophilic balance was determined both by Griffin's and Davies' methods; they may exhibit a "harsh" character toward membrane proteins. This, combined with their low water solubility, suggest that they could advantageously be used in detergent mixtures containing a "mild" detergent. Finally, the potency of one of the derivatives, F3H5-β-Glu, to act as an additive for the crystallization of AcrB was evaluated in detergent mixtures with n-dodecyl-β-d-maltopyranoside (DDM). Among the six crystallization conditions investigated, adding F3H5-β-Glu improved the crystallization for three of them, as compared to control drops without additives. Moreover, preliminary tests with other compounds of the series showed that none of them hampered crystallization and suggested improvement for three of them. These novel glucose-based fluorinated detergents should be regarded as potential additives that could be included in screening kits used in crystallization.
Collapse
Affiliation(s)
- Moheddine Wehbie
- Institut
des Biomolécules Max Mousseron (UMR 5247 UM-CNRS-ENSCM) &
Avignon University, Equipe Chimie Bioorganique et Systèmes
amphiphiles, 301 rue
Baruch de Spinoza, 84916 Avignon Cedex 9, France
| | - Ilham Bouchemal
- Univ.
Grenoble Alpes, CNRS, CEA, IBS, 71 avenue des Martyrs, F-38000 Grenoble, France
| | - Anaïs Deletraz
- Institut
des Biomolécules Max Mousseron (UMR 5247 UM-CNRS-ENSCM) &
Avignon University, Equipe Chimie Bioorganique et Systèmes
amphiphiles, 301 rue
Baruch de Spinoza, 84916 Avignon Cedex 9, France
| | - Eva Pebay-Peyroula
- Univ.
Grenoble Alpes, CNRS, CEA, IBS, 71 avenue des Martyrs, F-38000 Grenoble, France
| | - Cécile Breyton
- Univ.
Grenoble Alpes, CNRS, CEA, IBS, 71 avenue des Martyrs, F-38000 Grenoble, France
| | - Christine Ebel
- Univ.
Grenoble Alpes, CNRS, CEA, IBS, 71 avenue des Martyrs, F-38000 Grenoble, France
| | - Grégory Durand
- Institut
des Biomolécules Max Mousseron (UMR 5247 UM-CNRS-ENSCM) &
Avignon University, Equipe Chimie Bioorganique et Systèmes
amphiphiles, 301 rue
Baruch de Spinoza, 84916 Avignon Cedex 9, France
| |
Collapse
|
10
|
Ghouil R, Miron S, Koornneef L, Veerman J, Paul MW, Le Du MH, Sleddens-Linkels E, van Rossum-Fikkert SE, van Loon Y, Felipe-Medina N, Pendas AM, Maas A, Essers J, Legrand P, Baarends WM, Kanaar R, Zinn-Justin S, Zelensky AN. BRCA2 binding through a cryptic repeated motif to HSF2BP oligomers does not impact meiotic recombination. Nat Commun 2021; 12:4605. [PMID: 34326328 PMCID: PMC8322138 DOI: 10.1038/s41467-021-24871-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 07/12/2021] [Indexed: 11/09/2022] Open
Abstract
BRCA2 and its interactors are required for meiotic homologous recombination (HR) and fertility. Loss of HSF2BP, a BRCA2 interactor, disrupts HR during spermatogenesis. We test the model postulating that HSF2BP localizes BRCA2 to meiotic HR sites, by solving the crystal structure of the BRCA2 fragment in complex with dimeric armadillo domain (ARM) of HSF2BP and disrupting this interaction in a mouse model. This reveals a repeated 23 amino acid motif in BRCA2, each binding the same conserved surface of one ARM domain. In the complex, two BRCA2 fragments hold together two ARM dimers, through a large interface responsible for the nanomolar affinity - the strongest interaction involving BRCA2 measured so far. Deleting exon 12, encoding the first repeat, from mBrca2 disrupts BRCA2 binding to HSF2BP, but does not phenocopy HSF2BP loss. Thus, results herein suggest that the high-affinity oligomerization-inducing BRCA2-HSF2BP interaction is not required for RAD51 and DMC1 recombinase localization in meiotic HR.
Collapse
Affiliation(s)
- Rania Ghouil
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Uni Paris-Sud, Uni Paris-Saclay, Gif-sur-Yvette, France
| | - Simona Miron
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Uni Paris-Sud, Uni Paris-Saclay, Gif-sur-Yvette, France
| | - Lieke Koornneef
- Department of Developmental Biology, Oncode Institute, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Jasper Veerman
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Maarten W Paul
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Marie-Hélène Le Du
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Uni Paris-Sud, Uni Paris-Saclay, Gif-sur-Yvette, France
| | - Esther Sleddens-Linkels
- Department of Developmental Biology, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Sari E van Rossum-Fikkert
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands.,Department of Radiation Oncology, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Yvette van Loon
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Natalia Felipe-Medina
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - Alberto M Pendas
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - Alex Maas
- Department of Cell Biology, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Jeroen Essers
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands.,Department of Radiation Oncology, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands.,Department of Vascular Surgery, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Pierre Legrand
- Synchrotron SOLEIL, L'Orme des Merisiers, Gif-sur-Yvette, France
| | - Willy M Baarends
- Department of Developmental Biology, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Roland Kanaar
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands.
| | - Sophie Zinn-Justin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Uni Paris-Sud, Uni Paris-Saclay, Gif-sur-Yvette, France.
| | - Alex N Zelensky
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands.
| |
Collapse
|
11
|
Marcelot A, Petitalot A, Ropars V, Le Du MH, Samson C, Dubois S, Hoffmann G, Miron S, Cuniasse P, Marquez JA, Thai R, Theillet FX, Zinn-Justin S. Di-phosphorylated BAF shows altered structural dynamics and binding to DNA, but interacts with its nuclear envelope partners. Nucleic Acids Res 2021; 49:3841-3855. [PMID: 33744941 PMCID: PMC8053085 DOI: 10.1093/nar/gkab184] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 02/05/2021] [Accepted: 03/06/2021] [Indexed: 02/07/2023] Open
Abstract
Barrier-to-autointegration factor (BAF), encoded by the BANF1 gene, is an abundant and ubiquitously expressed metazoan protein that has multiple functions during the cell cycle. Through its ability to cross-bridge two double-stranded DNA (dsDNA), it favours chromosome compaction, participates in post-mitotic nuclear envelope reassembly and is essential for the repair of large nuclear ruptures. BAF forms a ternary complex with the nuclear envelope proteins lamin A/C and emerin, and its interaction with lamin A/C is defective in patients with recessive accelerated aging syndromes. Phosphorylation of BAF by the vaccinia-related kinase 1 (VRK1) is a key regulator of BAF localization and function. Here, we demonstrate that VRK1 successively phosphorylates BAF on Ser4 and Thr3. The crystal structures of BAF before and after phosphorylation are extremely similar. However, in solution, the extensive flexibility of the N-terminal helix α1 and loop α1α2 in BAF is strongly reduced in di-phosphorylated BAF, due to interactions between the phosphorylated residues and the positively charged C-terminal helix α6. These regions are involved in DNA and lamin A/C binding. Consistently, phosphorylation causes a 5000-fold loss of affinity for dsDNA. However, it does not impair binding to lamin A/C Igfold domain and emerin nucleoplasmic region, which leaves open the question of the regulation of these interactions.
Collapse
Affiliation(s)
- Agathe Marcelot
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Ambre Petitalot
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Virginie Ropars
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Marie-Hélène Le Du
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Camille Samson
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| | | | - Guillaume Hoffmann
- High Throughput Crystallization Lab, EMBL Grenoble Outstation, Grenoble Cedex, France
| | - Simona Miron
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Philippe Cuniasse
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Jose Antonio Marquez
- High Throughput Crystallization Lab, EMBL Grenoble Outstation, Grenoble Cedex, France
| | | | - François-Xavier Theillet
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Sophie Zinn-Justin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| |
Collapse
|
12
|
Nikolaivits E, Valmas A, Dedes G, Topakas E, Dimarogona M. Considerations Regarding Activity Determinants of Fungal Polyphenol Oxidases Based on Mutational and Structural Studies. Appl Environ Microbiol 2021; 87:e00396-21. [PMID: 33741634 PMCID: PMC8208164 DOI: 10.1128/aem.00396-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/16/2021] [Indexed: 11/20/2022] Open
Abstract
Polyphenol oxidases (PPOs) are an industrially relevant family of enzymes, being involved in the postharvest browning of fruits and vegetables, as well as in human melanogenesis. Their involvement lies in their ability to oxidize phenolic or polyphenolic compounds, which subsequently form pigments. The PPO family includes tyrosinases and catechol oxidases, which, in spite of their high structural similarity, exhibit different catalytic activities. Long-standing research efforts have not yet managed to decipher the structural determinants responsible for this differentiation, as every new theory is disproved by a more recent study. In the present work, we combined biochemical along with structural data in order to better understand the function of a previously characterized PPO from Thermothelomyces thermophila (TtPPO). The crystal structure of a TtPPO variant, determined at 1.55 Å resolution, represents the second known structure of an ascomycete PPO. Kinetic data for structure-guided mutants prove the implication of "gate" residue L306, residue HB1+1 (G292), and HB2+1 (Y296) in TtPPO function against various substrates. Our findings demonstrate the role of L306 in the accommodation of bulky substrates and show that residue HB1+1 is unlikely to determine monophenolase activity, as was suggested from previous studies.IMPORTANCE PPOs are enzymes of biotechnological interest. They have been extensively studied both biochemically and structurally, with a special focus on the plant-derived counterparts. Even so, explicit description of the molecular determinants of their substrate specificity is still pending. For ascomycete PPOs, only one crystal structure has been determined so far, thus limiting our knowledge on this tree branch of the family. In the present study, we report the second crystal structure of an ascomycete PPO. Combined with site-directed mutagenesis and biochemical studies, we depict the amino acids in the vicinity of the active site that affect enzyme activity and perform a detailed analysis on a variety of substrates. Our findings improve current understanding of structure-function relations of microbial PPOs, which is a prerequisite for the engineering of biocatalysts of desired properties.
Collapse
Affiliation(s)
- Efstratios Nikolaivits
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | | | - Grigorios Dedes
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Evangelos Topakas
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Maria Dimarogona
- Laboratory of Structural Biology and Biotechnology, Department of Chemical Engineering, University of Patras, Patras, Greece
| |
Collapse
|
13
|
Gajdos L, Blakeley MP, Kumar A, Wimmerová M, Haertlein M, Forsyth VT, Imberty A, Devos JM. Visualization of hydrogen atoms in a perdeuterated lectin-fucose complex reveals key details of protein-carbohydrate interactions. Structure 2021; 29:1003-1013.e4. [PMID: 33765407 DOI: 10.1016/j.str.2021.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/01/2021] [Accepted: 03/03/2021] [Indexed: 11/30/2022]
Abstract
Carbohydrate-binding proteins from pathogenic bacteria and fungi have been shown to be implicated in various pathological processes, where they interact with glycans present on the surface of the host cells. These interactions are part of the initial processes of infection of the host and are very important to study at the atomic level. Here, we report the room temperature neutron structures of PLL lectin from Photorhabdus laumondii in its apo form and in complex with deuterated L-fucose, which is, to our knowledge, the first neutron structure of a carbohydrate-binding protein in complex with a fully deuterated carbohydrate ligand. A detailed structural analysis of the lectin-carbohydrate interactions provides information on the hydrogen bond network, the role of water molecules, and the extent of the CH-π stacking interactions between fucose and the aromatic amino acids in the binding site.
Collapse
Affiliation(s)
- Lukas Gajdos
- Life Sciences Group, Institut Laue-Langevin, 38000 Grenoble, France; Partnership for Structural Biology (PSB), 38000 Grenoble, France; Université Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | - Matthew P Blakeley
- Large Scale Structures Group, Institut Laue-Langevin, 38000 Grenoble, France
| | - Atul Kumar
- CEITEC, Masaryk University, 625 00 Brno, Czech Republic; NCBR, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Michaela Wimmerová
- CEITEC, Masaryk University, 625 00 Brno, Czech Republic; NCBR, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Michael Haertlein
- Life Sciences Group, Institut Laue-Langevin, 38000 Grenoble, France; Partnership for Structural Biology (PSB), 38000 Grenoble, France
| | - V Trevor Forsyth
- Life Sciences Group, Institut Laue-Langevin, 38000 Grenoble, France; Partnership for Structural Biology (PSB), 38000 Grenoble, France; Faculty of Natural Sciences, Keele University, ST5 5BG Staffordshire, UK
| | - Anne Imberty
- Université Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France.
| | - Juliette M Devos
- Life Sciences Group, Institut Laue-Langevin, 38000 Grenoble, France; Partnership for Structural Biology (PSB), 38000 Grenoble, France.
| |
Collapse
|
14
|
Orozco-Navarrete B, Kaczmarska Z, Dupeux F, Garrido-Arandia M, Pott D, Perales AD, Casañal A, Márquez JA, Valpuesta V, Merchante C. Structural Bases for the Allergenicity of Fra a 1.02 in Strawberry Fruits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10951-10961. [PMID: 31774998 PMCID: PMC7644122 DOI: 10.1021/acs.jafc.9b05714] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Although strawberries are highly appreciated fruits, their intake can induce allergic reactions in atopic patients. These reactions can be due to the patient's previous sensitization to the major birch pollen allergen Bet v 1, by which IgE generated in response to Bet v 1 cross-reacts with the structurally related strawberry Fra a 1 protein family. Fra a 1.02 is the most expressed paralog in ripe strawberries and is highly allergenic. To better understand the molecular mechanisms regulating this allergic response, we have determined the three-dimensional structure of Fra a 1.02 and four site-directed mutants that were designed based on their positions in potential epitopes. Fra a 1.02 and mutants conform to the START fold. We show that the cross-reactivity of all the mutant variants to IgE from patients allergic to Bet v 1 was significantly reduced without altering the conserved structural fold, so that they could potentially be used as hypoallergenic Fra a 1 variants for the generation of vaccines against strawberry allergy in atopic patients.
Collapse
Affiliation(s)
- Begoña Orozco-Navarrete
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga-CSIC, 29016 Málaga, Spain
| | - Zuzanna Kaczmarska
- European Molecular Biology Laboratory, 38042 Grenoble, France
- International Institute of Molecular and Cell Biology, 12-109 Warsaw, Poland
| | - Florine Dupeux
- European Molecular Biology Laboratory, 38042 Grenoble, France
- Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - María Garrido-Arandia
- Departamento de Biotecnología-Biología Vegetal, Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Delphine Pott
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga-CSIC, 29016 Málaga, Spain
| | - Araceli Díaz Perales
- Departamento de Biotecnología-Biología Vegetal, Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Ana Casañal
- Cambridge Biomedical Campus, Francis Crick Avenue, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, England
| | - José A Márquez
- European Molecular Biology Laboratory, 38042 Grenoble, France
| | - Victoriano Valpuesta
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga-CSIC, 29016 Málaga, Spain
| | - Catharina Merchante
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga-CSIC, 29016 Málaga, Spain
| |
Collapse
|
15
|
Swale C, Bougdour A, Gnahoui-David A, Tottey J, Georgeault S, Laurent F, Palencia A, Hakimi MA. Metal-captured inhibition of pre-mRNA processing activity by CPSF3 controls Cryptosporidium infection. Sci Transl Med 2020; 11:11/517/eaax7161. [PMID: 31694928 DOI: 10.1126/scitranslmed.aax7161] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 10/18/2019] [Indexed: 12/11/2022]
Abstract
Cryptosporidium is an intestinal pathogen that causes severe but self-limiting diarrhea in healthy humans, yet it can turn into a life-threatening, unrelenting infection in immunocompromised patients and young children. Severe diarrhea is recognized as the leading cause of mortality for children below 5 years of age in developing countries. The only approved treatment against cryptosporidiosis, nitazoxanide, has limited efficacy in the most vulnerable patient populations, including malnourished children, and is ineffective in immunocompromised individuals. Here, we investigate inhibition of the parasitic cleavage and polyadenylation specificity factor 3 (CPSF3) as a strategy to control Cryptosporidium infection. We show that the oxaborole AN3661 selectively blocked Cryptosporidium growth in human HCT-8 cells, and oral treatment with AN3661 reduced intestinal parasite burden in both immunocompromised and neonatal mouse models of infection with greater efficacy than nitazoxanide. Furthermore, we present crystal structures of recombinantly produced Cryptosporidium CPSF3, revealing a mechanism of action whereby the mRNA processing activity of this enzyme is efficiently blocked by the binding of the oxaborole group at the metal-dependent catalytic center. Our data provide insights that may help accelerate the development of next-generation anti-Cryptosporidium therapeutics.
Collapse
Affiliation(s)
- Christopher Swale
- Institute for Advanced Biosciences (IAB), Host-Pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS UMR 5309, University Grenoble Alpes, 38000 Grenoble, France
| | - Alexandre Bougdour
- Institute for Advanced Biosciences (IAB), Host-Pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS UMR 5309, University Grenoble Alpes, 38000 Grenoble, France
| | - Audrey Gnahoui-David
- INRA, Université François Rabelais de Tours, Centre Val de Loire, UMR1282 ISP, Laboratoire Apicomplexes et Immunité Mucosale, 37380 Nouzilly, France
| | - Julie Tottey
- INRA, Université François Rabelais de Tours, Centre Val de Loire, UMR1282 ISP, Laboratoire Apicomplexes et Immunité Mucosale, 37380 Nouzilly, France
| | - Sonia Georgeault
- Plateforme des Microscopies, Université et CHRU de Tours, 37000 Tours, France
| | - Fabrice Laurent
- INRA, Université François Rabelais de Tours, Centre Val de Loire, UMR1282 ISP, Laboratoire Apicomplexes et Immunité Mucosale, 37380 Nouzilly, France.
| | - Andrés Palencia
- Institute for Advanced Biosciences (IAB), Host-Pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS UMR 5309, University Grenoble Alpes, 38000 Grenoble, France. .,Institute for Advanced Biosciences (IAB), Structural Biology of Novel Drug Targets in Human Diseases, INSERM U1209, CNRS UMR 5309, University Grenoble Alpes, 38000 Grenoble, France
| | - Mohamed-Ali Hakimi
- Institute for Advanced Biosciences (IAB), Host-Pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS UMR 5309, University Grenoble Alpes, 38000 Grenoble, France.
| |
Collapse
|
16
|
Moulin M, Mossou E, Signor L, Kieffer-Jaquinod S, Kwaambwa H, Nermark F, Gutfreund P, Mitchell E, Haertlein M, Forsyth V, Rennie A. Towards a molecular understanding of the water purification properties of Moringa seed proteins. J Colloid Interface Sci 2019; 554:296-304. [DOI: 10.1016/j.jcis.2019.06.071] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 10/26/2022]
|
17
|
Van Laer B, Kapp U, Soler-Lopez M, Moczulska K, Pääbo S, Leonard G, Mueller-Dieckmann C. Molecular comparison of Neanderthal and Modern Human adenylosuccinate lyase. Sci Rep 2018; 8:18008. [PMID: 30573755 PMCID: PMC6301967 DOI: 10.1038/s41598-018-36195-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/16/2018] [Indexed: 12/04/2022] Open
Abstract
The availability of genomic data from extinct homini such as Neanderthals has caused a revolution in palaeontology allowing the identification of modern human-specific protein substitutions. Currently, little is known as to how these substitutions alter the proteins on a molecular level. Here, we investigate adenylosuccinate lyase, a conserved enzyme involved in purine metabolism for which several substitutions in the modern human protein (hADSL) have been described to affect intelligence and behaviour. During evolution, modern humans acquired a specific substitution (Ala429Val) in ADSL distinguishing it from the ancestral variant present in Neanderthals (nADSL). We show here that despite this conservative substitution being solvent exposed and located distant from the active site, there is a difference in thermal stability, but not enzymology or ligand binding between nADSL and hADSL. Substitutions near residue 429 which do not profoundly affect enzymology were previously reported to cause neurological symptoms in humans. This study also reveals that ADSL undergoes conformational changes during catalysis which, together with the crystal structure of a hitherto undetermined product bound conformation, explains the molecular origin of disease for several modern human ADSL mutants.
Collapse
Affiliation(s)
- Bart Van Laer
- Structural Biology Group, European Synchrotron Radiation Facility, CS 40220, F-38043, Grenoble, France
| | - Ulrike Kapp
- Structural Biology Group, European Synchrotron Radiation Facility, CS 40220, F-38043, Grenoble, France
| | - Montserrat Soler-Lopez
- Structural Biology Group, European Synchrotron Radiation Facility, CS 40220, F-38043, Grenoble, France
| | - Kaja Moczulska
- Max Planck Institute for Evolutionary Anthropology, D-04103, Leipzig, Germany.,The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Svante Pääbo
- Max Planck Institute for Evolutionary Anthropology, D-04103, Leipzig, Germany
| | - Gordon Leonard
- Structural Biology Group, European Synchrotron Radiation Facility, CS 40220, F-38043, Grenoble, France
| | | |
Collapse
|
18
|
Jones SE, Olsen L, Gajhede M. Structural Basis of Histone Demethylase KDM6B Histone 3 Lysine 27 Specificity. Biochemistry 2017; 57:585-592. [PMID: 29220567 DOI: 10.1021/acs.biochem.7b01152] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
KDM subfamily 6 enzymes KDM6A and KDM6B specifically catalyze demethylation of di- and trimethylated lysine on histone 3 lysine 27 (H3K27me3/2) and play an important role in repression of developmental genes. Despite identical amino acid sequence in the immediate surroundings of H3K9me3/2 (ARKS), the enzymes do not catalyze demethylation of this general marker of repression. To address this question for KDM6B, we used computational methods to identify H3(17-33)-derived peptides with improved binding affinity that would allow co-crystallization with the catalytic core of human KDM6B (ccKDM6B). A total of five peptides were identified, and their IC50 values were determined in a matrix-assisted laser desorption ionization time-of-flight-based assay. Despite none of the peptides showing affinity significantly higher than that of the H3(17-33) peptide, it was possible to co-crystallize ccKDM6B with a H3(17-33)A21M peptide. This structure reveals the interactions between the KDM6B zinc binding domain and the H3(17-23) region. Although KDM6A and KDM6B differ in primary sequence, particularly in the H3L20 binding pocket of the zinc binding domains, where two histidines in KDM6A have been replaced by a glutamate and a tyrosine, they bind H3(17-23) in a very similar fashion. This structure shows that KDM6B, in analogy with KDM6A, also uses the zinc binding domain to achieve H3K27me3/me2 specificity. The histidine to glutamine substitution at amino acid position 1564 in the KDM6B zinc binding domain can further explain why KDM6B binds substrates with an affinity higher than that of KDM6A.
Collapse
Affiliation(s)
- Sarah E Jones
- Biostructural Research, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen , Jagtvej 162, 2100 Copenhagen, Denmark
| | - Lars Olsen
- Biostructural Research, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen , Jagtvej 162, 2100 Copenhagen, Denmark
| | - Michael Gajhede
- Biostructural Research, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen , Jagtvej 162, 2100 Copenhagen, Denmark
| |
Collapse
|
19
|
Bacterial protease uses distinct thermodynamic signatures for substrate recognition. Sci Rep 2017; 7:2848. [PMID: 28588213 PMCID: PMC5460201 DOI: 10.1038/s41598-017-03220-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 05/02/2017] [Indexed: 12/30/2022] Open
Abstract
Porphyromonas gingivalis and Porphyromonas endodontalis are important bacteria related to periodontitis, the most common chronic inflammatory disease in humans worldwide. Its comorbidity with systemic diseases, such as type 2 diabetes, oral cancers and cardiovascular diseases, continues to generate considerable interest. Surprisingly, these two microorganisms do not ferment carbohydrates; rather they use proteinaceous substrates as carbon and energy sources. However, the underlying biochemical mechanisms of their energy metabolism remain unknown. Here, we show that dipeptidyl peptidase 11 (DPP11), a central metabolic enzyme in these bacteria, undergoes a conformational change upon peptide binding to distinguish substrates from end products. It binds substrates through an entropy-driven process and end products in an enthalpy-driven fashion. We show that increase in protein conformational entropy is the main-driving force for substrate binding via the unfolding of specific regions of the enzyme (“entropy reservoirs”). The relationship between our structural and thermodynamics data yields a distinct model for protein-protein interactions where protein conformational entropy modulates the binding free-energy. Further, our findings provide a framework for the structure-based design of specific DPP11 inhibitors.
Collapse
|
20
|
Fernández I, Cornaciu I, Carrica MDC, Uchikawa E, Hoffmann G, Sieira R, Márquez JA, Goldbaum FA. Three-Dimensional Structure of Full-Length NtrX, an Unusual Member of the NtrC Family of Response Regulators. J Mol Biol 2017; 429:1192-1212. [PMID: 28088479 DOI: 10.1016/j.jmb.2016.12.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/21/2016] [Accepted: 12/29/2016] [Indexed: 12/15/2022]
Abstract
Bacteria sense and adapt to environmental changes using two-component systems. These signaling pathways are formed by a histidine kinase that phosphorylates a response regulator (RR), which finally modulates the transcription of target genes. The bacterium Brucella abortus codes for a two-component system formed by the histidine kinase NtrY and the RR NtrX that participates in sensing low oxygen tension and generating an adaptive response. NtrX is a modular protein with REC, AAA+, and DNA-binding domains, an architecture that classifies it among the NtrC subfamily of RRs. However, it lacks the signature GAFTGA motif that is essential for activating transcription by the mechanism proposed for canonical members of this subfamily. In this article, we present the first crystal structure of full-length NtrX, which is also the first structure of a full-length NtrC-like RR with all the domains solved, showing that the protein is structurally similar to other members of the subfamily. We also report that NtrX binds nucleotides and the structures of the protein bound to ATP and ADP. Despite binding ATP, NtrX does not have ATPase activity and does not form oligomers in response to phosphorylation or nucleotide binding. We also identify a nucleotide sequence recognized by NtrX that allows it to bind to a promoter region that regulates its own transcription and to establish a negative feedback mechanism to modulate its expression. Overall, this article provides a detailed description of the NtrX RR and supports that it functions by a mechanism different to classical NtrC-like RRs.
Collapse
Affiliation(s)
- Ignacio Fernández
- Fundación Instituto Leloir, IIBBA-CONICET, Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
| | - Irina Cornaciu
- European Molecular Biology Laboratory (EMBL), Grenoble Outstation, 71 Avenue des Martyrs, 38042 Grenoble, France
| | | | - Emiko Uchikawa
- European Molecular Biology Laboratory (EMBL), Grenoble Outstation, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Guillaume Hoffmann
- European Molecular Biology Laboratory (EMBL), Grenoble Outstation, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Rodrigo Sieira
- Fundación Instituto Leloir, IIBBA-CONICET, Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
| | - José Antonio Márquez
- European Molecular Biology Laboratory (EMBL), Grenoble Outstation, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Fernando A Goldbaum
- Fundación Instituto Leloir, IIBBA-CONICET, Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina.
| |
Collapse
|
21
|
Mayerhofer H, Sautron E, Rolland N, Catty P, Seigneurin-Berny D, Pebay-Peyroula E, Ravaud S. Structural Insights into the Nucleotide-Binding Domains of the P1B-type ATPases HMA6 and HMA8 from Arabidopsis thaliana. PLoS One 2016; 11:e0165666. [PMID: 27802305 PMCID: PMC5089723 DOI: 10.1371/journal.pone.0165666] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 10/14/2016] [Indexed: 01/24/2023] Open
Abstract
Copper is a crucial ion in cells, but needs to be closely controlled due to its toxic potential and ability to catalyse the formation of radicals. In chloroplasts, an important step for the proper functioning of the photosynthetic electron transfer chain is the delivery of copper to plastocyanin in the thylakoid lumen. The main route for copper transport to the thylakoid lumen is driven by two PIB-type ATPases, Heavy Metal ATPase 6 (HMA6) and HMA8, located in the inner membrane of the chloroplast envelope and in the thylakoid membrane, respectively. Here, the crystal structures of the nucleotide binding domain of HMA6 and HMA8 from Arabidopsis thaliana are reported at 1.5Å and 1.75Å resolution, respectively, providing the first structural information on plants Cu+-ATPases. The structures reveal a compact domain, with two short helices on both sides of a twisted beta-sheet. A double mutant, aiding in the crystallization, provides a new crystal contact, but also avoids an internal clash highlighting the benefits of construct modifications. Finally, the histidine in the HP motif of the isolated domains, unable to bind ATP, shows a side chain conformation distinct from nucleotide bound structures.
Collapse
Affiliation(s)
- Hubert Mayerhofer
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Emeline Sautron
- Laboratoire de Physiologie Cellulaire et Végétale (LPCV), Institut de Biosciences et Biotechnologies de Grenoble (BIG), Université Grenoble Alpes, CEA, CNRS, INRA, Grenoble, France
| | - Norbert Rolland
- Laboratoire de Physiologie Cellulaire et Végétale (LPCV), Institut de Biosciences et Biotechnologies de Grenoble (BIG), Université Grenoble Alpes, CEA, CNRS, INRA, Grenoble, France
| | - Patrice Catty
- Laboratoire de Chimie et Biologie des Métaux (LCBM), BIG, Université Grenoble Alpes, CEA, CNRS, INRA, Grenoble, France
| | - Daphné Seigneurin-Berny
- Laboratoire de Physiologie Cellulaire et Végétale (LPCV), Institut de Biosciences et Biotechnologies de Grenoble (BIG), Université Grenoble Alpes, CEA, CNRS, INRA, Grenoble, France
| | - Eva Pebay-Peyroula
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Stéphanie Ravaud
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France
- * E-mail:
| |
Collapse
|
22
|
Reguera J, Gerlach P, Rosenthal M, Gaudon S, Coscia F, Günther S, Cusack S. Comparative Structural and Functional Analysis of Bunyavirus and Arenavirus Cap-Snatching Endonucleases. PLoS Pathog 2016; 12:e1005636. [PMID: 27304209 PMCID: PMC4909276 DOI: 10.1371/journal.ppat.1005636] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/25/2016] [Indexed: 01/15/2023] Open
Abstract
Segmented negative strand RNA viruses of the arena-, bunya- and orthomyxovirus families uniquely carry out viral mRNA transcription by the cap-snatching mechanism. This involves cleavage of host mRNAs close to their capped 5′ end by an endonuclease (EN) domain located in the N-terminal region of the viral polymerase. We present the structure of the cap-snatching EN of Hantaan virus, a bunyavirus belonging to hantavirus genus. Hantaan EN has an active site configuration, including a metal co-ordinating histidine, and nuclease activity similar to the previously reported La Crosse virus and Influenza virus ENs (orthobunyavirus and orthomyxovirus respectively), but is more active in cleaving a double stranded RNA substrate. In contrast, Lassa arenavirus EN has only acidic metal co-ordinating residues. We present three high resolution structures of Lassa virus EN with different bound ion configurations and show in comparative biophysical and biochemical experiments with Hantaan, La Crosse and influenza ENs that the isolated Lassa EN is essentially inactive. The results are discussed in the light of EN activation mechanisms revealed by recent structures of full-length influenza virus polymerase. Segmented negative strand viruses (sNSV) such as Influenza, Lassa or Hantaan viruses are responsible for a large number of severe human infectious diseases. Currently, there are vaccines and antiviral treatments available for influenza but none for the infections caused by other sNSV. All carry out transcription by the cap-snatching mechanism, which requires the action of a metal ion dependent endonuclease (EN), a domain within their large viral polymerases. Here we provide the crystal structure of the Hantaan virus (family Bunyaviridae) and Lassa virus (family Arenaviridae) cap-snatching ENs in complex with manganese and a comparative functional study of their catalytic activity. Despite the high structural homology between the two ENs a few changes in the active site, involving a catalytic histidine, cause a different binding of the metal ions with dramatic consequences for their in vitro activity. Hantaan EN binds the metal ions as Influenza A (family Orthomyxoviridae) and LACV (family Bunyaviridae) ENs and all three are active in vitro. In contrast Lassa virus EN is inactive in the same experimental conditions. We can now classify sNSV into two functionally distinct groups (His+ and His- ENs), providing a broad view of the sNSV cap-snatching ENs properties that will be determinant for the comprehensive development of broad-spectrum antiviral drugs. These results also have implications for the viral transcription regulation in the light of recent studies on full-length sNSV polymerases.
Collapse
Affiliation(s)
- Juan Reguera
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS90181, 38042 Grenoble Cedex 9, France
- Unit of Virus-Host Cell Interactions (UMI 3265), Univ. Grenoble-Alpes-EMBL-CNRS, 71 Avenue des Martyrs, CS90181, 38042 Grenoble Cedex 9, France
- * E-mail: (JR); (SC)
| | - Piotr Gerlach
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS90181, 38042 Grenoble Cedex 9, France
- Unit of Virus-Host Cell Interactions (UMI 3265), Univ. Grenoble-Alpes-EMBL-CNRS, 71 Avenue des Martyrs, CS90181, 38042 Grenoble Cedex 9, France
| | - Maria Rosenthal
- Department of Virology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
| | - Stephanie Gaudon
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS90181, 38042 Grenoble Cedex 9, France
- Unit of Virus-Host Cell Interactions (UMI 3265), Univ. Grenoble-Alpes-EMBL-CNRS, 71 Avenue des Martyrs, CS90181, 38042 Grenoble Cedex 9, France
| | - Francesca Coscia
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS90181, 38042 Grenoble Cedex 9, France
- Unit of Virus-Host Cell Interactions (UMI 3265), Univ. Grenoble-Alpes-EMBL-CNRS, 71 Avenue des Martyrs, CS90181, 38042 Grenoble Cedex 9, France
| | - Stephan Günther
- Department of Virology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
| | - Stephen Cusack
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS90181, 38042 Grenoble Cedex 9, France
- Unit of Virus-Host Cell Interactions (UMI 3265), Univ. Grenoble-Alpes-EMBL-CNRS, 71 Avenue des Martyrs, CS90181, 38042 Grenoble Cedex 9, France
- * E-mail: (JR); (SC)
| |
Collapse
|
23
|
Silva CS, Lai X, Nanao M, Zubieta C. The Myb domain of LUX ARRHYTHMO in complex with DNA: expression, purification and crystallization. Acta Crystallogr F Struct Biol Commun 2016; 72:356-61. [PMID: 27139826 PMCID: PMC4854562 DOI: 10.1107/s2053230x16004684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 03/17/2016] [Indexed: 11/10/2022] Open
Abstract
LUX ARRHYTHMO (LUX) is a Myb-domain transcription factor that plays an important role in regulating the circadian clock. Lux mutations cause severe clock defects and arrhythmia in constant light and dark. In order to examine the molecular mechanisms underlying the function of LUX, the DNA-binding Myb domain was cloned, expressed and purified. The DNA-binding activity of the Myb domain was confirmed using electrophoretic mobility shift assays (EMSAs), demonstrating that the LUX Myb domain is able to bind to DNA with nanomolar affinity. In order to investigate the specificity determinants of protein-DNA interactions, the protein was co-crystallized with a 10-mer cognate DNA. Initial crystallization results for the selenomethionine-derivatized protein and data-set collection statistics are reported. Data collection was performed using the MeshAndCollect workflow available at the ESRF.
Collapse
Affiliation(s)
- Catarina S. Silva
- Laboratoire de Physiologie Cellulaire et Vegetale, Biosciences and Biotechnology Institute of Grenoble, UMR5168, CNRS/CEA/INRA/UGA, 17 Rue des Martyrs, 38054 Grenoble, France
| | - Xuelei Lai
- Structural Biology Group, European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38054 Grenoble, France
| | - Max Nanao
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38054 Grenoble, France
- Unit of Virus Host Cell Interactions, UGA/EMBL/CNRS, UMI3265, 71 Avenue des Martyrs, 38054 Grenoble, France
| | - Chloe Zubieta
- Laboratoire de Physiologie Cellulaire et Vegetale, Biosciences and Biotechnology Institute of Grenoble, UMR5168, CNRS/CEA/INRA/UGA, 17 Rue des Martyrs, 38054 Grenoble, France
| |
Collapse
|
24
|
Colombo M, Girard E, Franzetti B. Tuned by metals: the TET peptidase activity is controlled by 3 metal binding sites. Sci Rep 2016; 6:20876. [PMID: 26853450 PMCID: PMC4745047 DOI: 10.1038/srep20876] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 01/11/2016] [Indexed: 11/09/2022] Open
Abstract
TET aminopeptidases are dodecameric particles shared in the three life domains involved in various biological processes, from carbon source provider in archaea to eye-pressure regulation in humans. Each subunit contains a dinuclear metal site (M1 and M2) responsible for the enzyme catalytic activity. However, the role of each metal ion is still uncharacterized. Noteworthy, while mesophilic TETs are activated by Mn(2+), hyperthermophilic TETs prefers Co(2+). Here, by means of anomalous x-ray crystallography and enzyme kinetics measurements of the TET3 aminopeptidase from the hyperthermophilic organism Pyrococcus furiosus (PfTET3), we show that M2 hosts the catalytic activity of the enzyme, while M1 stabilizes the TET3 quaternary structure and controls the active site flexibility in a temperature dependent manner. A new third metal site (M3) was found in the substrate binding pocket, modulating the PfTET3 substrate preferences. These data show that TET activity is tuned by the molecular interplay among three metal sites.
Collapse
Affiliation(s)
- Matteo Colombo
- CNRS, IBS, F-38027 Grenoble, France.,CEA, DSV, IBS, F-38027 Grenoble, France.,Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France
| | - Eric Girard
- CNRS, IBS, F-38027 Grenoble, France.,CEA, DSV, IBS, F-38027 Grenoble, France.,Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France
| | - Bruno Franzetti
- CNRS, IBS, F-38027 Grenoble, France.,CEA, DSV, IBS, F-38027 Grenoble, France.,Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France
| |
Collapse
|
25
|
Calcium-dependent oligomerization of CAR proteins at cell membrane modulates ABA signaling. Proc Natl Acad Sci U S A 2015; 113:E396-405. [PMID: 26719420 DOI: 10.1073/pnas.1512779113] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Regulation of ion transport in plants is essential for cell function. Abiotic stress unbalances cell ion homeostasis, and plants tend to readjust it, regulating membrane transporters and channels. The plant hormone abscisic acid (ABA) and the second messenger Ca(2+) are central in such processes, as they are involved in the regulation of protein kinases and phosphatases that control ion transport activity in response to environmental stimuli. The identification and characterization of the molecular mechanisms underlying the effect of ABA and Ca(2+) signaling pathways on membrane function are central and could provide opportunities for crop improvement. The C2-domain ABA-related (CAR) family of small proteins is involved in the Ca(2+)-dependent recruitment of the pyrabactin resistance 1/PYR1-like (PYR/PYL) ABA receptors to the membrane. However, to fully understand CAR function, it is necessary to define a molecular mechanism that integrates Ca(2+) sensing, membrane interaction, and the recognition of the PYR/PYL interacting partners. We present structural and biochemical data showing that CARs are peripheral membrane proteins that functionally cluster on the membrane and generate strong positive membrane curvature in a Ca(2+)-dependent manner. These features represent a mechanism for the generation, stabilization, and/or specific recognition of membrane discontinuities. Such structures may act as signaling platforms involved in the recruitment of PYR/PYL receptors and other signaling components involved in cell responses to stress.
Collapse
|
26
|
Burmeister WP, Tarbouriech N, Fender P, Contesto-Richefeu C, Peyrefitte CN, Iseni F. Crystal Structure of the Vaccinia Virus Uracil-DNA Glycosylase in Complex with DNA. J Biol Chem 2015; 290:17923-17934. [PMID: 26045555 DOI: 10.1074/jbc.m115.648352] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Indexed: 11/06/2022] Open
Abstract
Vaccinia virus polymerase holoenzyme is composed of the DNA polymerase catalytic subunit E9 associated with its heterodimeric co-factor A20·D4 required for processive genome synthesis. Although A20 has no known enzymatic activity, D4 is an active uracil-DNA glycosylase (UNG). The presence of a repair enzyme as a component of the viral replication machinery suggests that, for poxviruses, DNA synthesis and base excision repair is coupled. We present the 2.7 Å crystal structure of the complex formed by D4 and the first 50 amino acids of A20 (D4·A201-50) bound to a 10-mer DNA duplex containing an abasic site resulting from the cleavage of a uracil base. Comparison of the viral complex with its human counterpart revealed major divergences in the contacts between protein and DNA and in the enzyme orientation on the DNA. However, the conformation of the dsDNA within both structures is very similar, suggesting a dominant role of the DNA conformation for UNG function. In contrast to human UNG, D4 appears rigid, and we do not observe a conformational change upon DNA binding. We also studied the interaction of D4·A201-50 with different DNA oligomers by surface plasmon resonance. D4 binds weakly to nonspecific DNA and to uracil-containing substrates but binds abasic sites with a Kd of <1.4 μm. This second DNA complex structure of a family I UNG gives new insight into the role of D4 as a co-factor of vaccinia virus DNA polymerase and allows a better understanding of the structural determinants required for UNG action.
Collapse
Affiliation(s)
- Wim P Burmeister
- Université Grenoble Alpes, Unit of Virus Host Cell Interactions (UVHCI), F-38000 Grenoble, France; CNRS, UVHCI, F-38000 Grenoble, France.
| | - Nicolas Tarbouriech
- Université Grenoble Alpes, Unit of Virus Host Cell Interactions (UVHCI), F-38000 Grenoble, France; CNRS, UVHCI, F-38000 Grenoble, France
| | - Pascal Fender
- Université Grenoble Alpes, Unit of Virus Host Cell Interactions (UVHCI), F-38000 Grenoble, France; CNRS, UVHCI, F-38000 Grenoble, France
| | - Céline Contesto-Richefeu
- Unité de Virologie, Institut de Recherche Biomédicale des Armées, F-91223 Brétigny-sur-Orge cedex, France
| | - Christophe N Peyrefitte
- Unité de Virologie, Institut de Recherche Biomédicale des Armées, F-91223 Brétigny-sur-Orge cedex, France; Emerging Pathogens Laboratory, Fondation Mérieux, F-69007 Lyon, France
| | - Frédéric Iseni
- Unité de Virologie, Institut de Recherche Biomédicale des Armées, F-91223 Brétigny-sur-Orge cedex, France.
| |
Collapse
|
27
|
Recombinant expression, purification, and crystallization of the glutaminyl-tRNA synthetase from Toxoplasma gondii. Protein Expr Purif 2015; 110:115-21. [PMID: 25736594 DOI: 10.1016/j.pep.2015.02.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 02/20/2015] [Accepted: 02/23/2015] [Indexed: 11/20/2022]
Abstract
Aminoacyl tRNA synthetases play a critical role in protein synthesis by providing precursor transfer-RNA molecules correctly charged with their cognate amino-acids. The essential nature of these enzymes make them attractive targets for designing new drugs against important pathogenic protozoans like Toxoplasma. Because no structural data currently exists for a protozoan glutaminyl-tRNA synthetase (QRS), an understanding of its potential as a drug target and its function in the assembly of the Toxoplasma multi-aminoacyl tRNA (MARS) complex is therefore lacking. Here we describe the optimization of expression and purification conditions that permitted the recovery and crystallization of both domains of the Toxoplasma QRS enzyme from a heterologous Escherichia coli expression system. Expression of full-length QRS was only achieved after the addition of an N-terminal histidine affinity tag and the isolated protein was active on both cellular and in vitro produced Toxoplasma tRNA. Taking advantage of the proteolytic susceptibility of QRS to cleavage into component domains, N-terminal glutathione S-transferase (GST) motif-containing domain fragments were isolated and crystallization conditions discovered. Isolation of the C-terminal catalytic domain was accomplished after subcloning the domain and optimizing expression conditions. Purified catalytic domain survived cryogenic storage and yielded large diffraction-quality crystals over-night after optimization of screening conditions. This work will form the basis of future structural studies into structural-functional relationships of both domains including potential targeted drug-design studies and investigations into the assembly of the Toxoplasma MARS complex.
Collapse
|
28
|
Stubborn contaminants: influence of detergents on the purity of the multidrug ABC transporter BmrA. PLoS One 2014; 9:e114864. [PMID: 25517996 PMCID: PMC4269414 DOI: 10.1371/journal.pone.0114864] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 11/13/2014] [Indexed: 11/29/2022] Open
Abstract
Despite the growing interest in membrane proteins, their crystallization remains a major challenge. In the course of a crystallographic study on the multidrug ATP-binding cassette transporter BmrA, mass spectral analyses on samples purified with six selected detergents revealed unexpected protein contamination visible for the most part on overloaded SDS-PAGE. A major contamination from the outer membrane protein OmpF was detected in purifications with Foscholine 12 (FC12) but not with Lauryldimethylamine-N-oxide (LDAO) or any of the maltose-based detergents. Consequently, in the FC12 purified BmrA, OmpF easily crystallized over BmrA in a new space group, and whose structure is reported here. We therefore devised an optimized protocol to eliminate OmpF during the FC12 purification of BmrA. On the other hand, an additional band visible at ∼110 kDa was detected in all samples purified with the maltose-based detergents. It contained AcrB that crystallized over BmrA despite its trace amounts. Highly pure BmrA preparations could be obtained using either a ΔacrAB E. coli strain and n-dodecyl-β-D-maltopyranoside, or a classical E. coli strain and lauryl maltose neopentyl glycol for the overexpression and purification, respectively. Overall our results urge to incorporate a proteomics-based purity analysis into quality control checks prior to commencing crystallization assays of membrane proteins that are notoriously arduous to crystallize. Moreover, the strategies developed here to selectively eliminate obstinate contaminants should be applicable to the purification of other membrane proteins overexpressed in E. coli.
Collapse
|
29
|
Sarre A, Ökvist M, Klar T, Moe E, Timmins J. Expression, purification and crystallization of two endonuclease III enzymes from Deinococcus radiodurans. Acta Crystallogr F Struct Biol Commun 2014; 70:1688-92. [PMID: 25484227 PMCID: PMC4259241 DOI: 10.1107/s2053230x14024935] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/13/2014] [Indexed: 11/10/2022] Open
Abstract
Endonuclease III is a bifunctional DNA glycosylase that removes a wide range of oxidized bases in DNA. Deinococcus radiodurans is an extreme radiation-resistant and desiccation-resistant bacterium and possesses three genes encoding endonuclease III enzymes in its genome: DR2438 (EndoIII-1), DR0289 (EndoIII-2) and DR0982 (EndoIII-3). Here, EndoIII-1 and an N-terminally truncated form of EndoIII-3 (EndoIII-3Δ76) have been expressed, purified and crystallized, and preliminary X-ray crystallographic analyses have been performed to 2.15 and 1.31 Å resolution, respectively. The EndoIII-1 crystals belonged to the monoclinic space group C2, with unit-cell parameters a = 181.38, b = 38.56, c = 37.09 Å, β = 89.34° and one molecule per asymmetric unit. The EndoIII-3Δ76 crystals also belonged to the monoclinic space group C2, but with unit-cell parameters a = 91.47, b = 40.53, c = 72.47 Å, β = 102.53° and one molecule per asymmetric unit. The EndoIII-1 structure was determined by molecular replacement, while the truncated EndoIII-3Δ76 structure was determined by single-wavelength anomalous dispersion phasing. Refinement of the structures is in progress.
Collapse
Affiliation(s)
- Aili Sarre
- Chemistry Department, NorStruct, UiT The Arctic University of Norway, Forskningsparken 3, 9037 Tromsø, Norway
| | - Mats Ökvist
- Structural Biology Group, European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38043 Grenoble, France
| | - Tobias Klar
- Structural Biology Group, European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38043 Grenoble, France
| | - Elin Moe
- Chemistry Department, NorStruct, UiT The Arctic University of Norway, Forskningsparken 3, 9037 Tromsø, Norway
- Instituto de Tecnologia Quimica e Biologica, Universidade Nova de Lisboa, Avenida da Republica (EAN), 2780-157 Oeiras, Portugal
| | - Joanna Timmins
- Structural Biology Group, European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38043 Grenoble, France
- Institut de Biologie Structurale, Université Grenoble Alpes, 38044 Grenoble, France
- Institut de Biologie Structurale, CNRS, 38044 Grenoble, France
- Institut de Biologie Structurale, CEA, 38044 Grenoble, France
| |
Collapse
|
30
|
Structure of a bacterial α2-macroglobulin reveals mimicry of eukaryotic innate immunity. Nat Commun 2014; 5:4917. [DOI: 10.1038/ncomms5917] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 08/05/2014] [Indexed: 12/20/2022] Open
|
31
|
Keller MA, Zander U, Fuchs JE, Kreutz C, Watschinger K, Mueller T, Golderer G, Liedl KR, Ralser M, Kräutler B, Werner ER, Marquez JA. A gatekeeper helix determines the substrate specificity of Sjögren-Larsson Syndrome enzyme fatty aldehyde dehydrogenase. Nat Commun 2014; 5:4439. [PMID: 25047030 PMCID: PMC4109017 DOI: 10.1038/ncomms5439] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 06/17/2014] [Indexed: 11/09/2022] Open
Abstract
Mutations in the gene coding for membrane-bound fatty aldehyde dehydrogenase (FALDH) lead to toxic accumulation of lipid species and development of the Sjögren-Larsson Syndrome (SLS), a rare disorder characterized by skin defects and mental retardation. Here, we present the crystallographic structure of human FALDH, the first model of a membrane-associated aldehyde dehydrogenase. The dimeric FALDH displays a previously unrecognized element in its C-terminal region, a 'gatekeeper' helix, which extends over the adjacent subunit, controlling the access to the substrate cavity and helping orientate both substrate cavities towards the membrane surface for efficient substrate transit between membranes and catalytic site. Activity assays demonstrate that the gatekeeper helix is important for directing the substrate specificity of FALDH towards long-chain fatty aldehydes. The gatekeeper feature is conserved across membrane-associated aldehyde dehydrogenases. Finally, we provide insight into the previously elusive molecular basis of SLS-causing mutations.
Collapse
Affiliation(s)
- Markus A. Keller
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innrain 80-82, 6020 Innsbruck, Austria
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis court Rd, Cambridge CB2 1GA, UK
| | - Ulrich Zander
- European Molecular Biology Laboratory, Grenoble Outstation, 6 rue Jules Horowitz, 38042 Grenoble, France
| | - Julian E. Fuchs
- Institute of General, Inorganic and Theoretical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Katrin Watschinger
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innrain 80-82, 6020 Innsbruck, Austria
| | - Thomas Mueller
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Georg Golderer
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innrain 80-82, 6020 Innsbruck, Austria
| | - Klaus R. Liedl
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Markus Ralser
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis court Rd, Cambridge CB2 1GA, UK
- MRC National Institute for Medical Research, the Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Bernhard Kräutler
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Ernst R. Werner
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innrain 80-82, 6020 Innsbruck, Austria
- These authors contributed equally to this work
| | - Jose A. Marquez
- European Molecular Biology Laboratory, Grenoble Outstation, 6 rue Jules Horowitz, 38042 Grenoble, France
- Unit of Virus Host-Cell Interactions, University of Grenoble Alpes-EMBL-CNRS, 6 rue Jules Horowitz, 38042 Grenoble, France
- These authors contributed equally to this work
| |
Collapse
|
32
|
Contesto-Richefeu C, Tarbouriech N, Brazzolotto X, Betzi S, Morelli X, Burmeister WP, Iseni F. Crystal structure of the vaccinia virus DNA polymerase holoenzyme subunit D4 in complex with the A20 N-terminal domain. PLoS Pathog 2014; 10:e1003978. [PMID: 24603707 PMCID: PMC3946371 DOI: 10.1371/journal.ppat.1003978] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/21/2014] [Indexed: 12/21/2022] Open
Abstract
Vaccinia virus polymerase holoenzyme is composed of the DNA polymerase E9, the uracil-DNA glycosylase D4 and A20, a protein with no known enzymatic activity. The D4/A20 heterodimer is the DNA polymerase co-factor whose function is essential for processive DNA synthesis. Genetic and biochemical data have established that residues located in the N-terminus of A20 are critical for binding to D4. However, no information regarding the residues of D4 involved in A20 binding is yet available. We expressed and purified the complex formed by D4 and the first 50 amino acids of A20 (D4/A20₁₋₅₀). We showed that whereas D4 forms homodimers in solution when expressed alone, D4/A20₁₋₅₀ clearly behaves as a heterodimer. The crystal structure of D4/A20₁₋₅₀ solved at 1.85 Å resolution reveals that the D4/A20 interface (including residues 167 to 180 and 191 to 206 of D4) partially overlaps the previously described D4/D4 dimer interface. A20₁₋₅₀ binding to D4 is mediated by an α-helical domain with important leucine residues located at the very N-terminal end of A20 and a second stretch of residues containing Trp43 involved in stacking interactions with Arg167 and Pro173 of D4. Point mutations of the latter residues disturb D4/A20₁₋₅₀ formation and reduce significantly thermal stability of the complex. Interestingly, small molecule docking with anti-poxvirus inhibitors selected to interfere with D4/A20 binding could reproduce several key features of the D4/A20₁₋₅₀ interaction. Finally, we propose a model of D4/A20₁₋₅₀ in complex with DNA and discuss a number of mutants described in the literature, which affect DNA synthesis. Overall, our data give new insights into the assembly of the poxvirus DNA polymerase cofactor and may be useful for the design and rational improvement of antivirals targeting the D4/A20 interface.
Collapse
Affiliation(s)
| | - Nicolas Tarbouriech
- Université Grenoble Alpes, UVHCI, Grenoble, France
- CNRS, UVHCI, Grenoble, France
- Unit for Virus Host-Cell Interactions, UMI 3265, Université Grenoble Alpes-EMBL-CNRS, Grenoble, France
| | - Xavier Brazzolotto
- Département de Toxicologie et Risque Chimique, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Stéphane Betzi
- Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS UMR 7258, INSERM U 1068, Institut Paoli-Calmettes & Aix-Marseille Universités, Marseille, France
| | - Xavier Morelli
- Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS UMR 7258, INSERM U 1068, Institut Paoli-Calmettes & Aix-Marseille Universités, Marseille, France
| | - Wim P. Burmeister
- Université Grenoble Alpes, UVHCI, Grenoble, France
- CNRS, UVHCI, Grenoble, France
- Unit for Virus Host-Cell Interactions, UMI 3265, Université Grenoble Alpes-EMBL-CNRS, Grenoble, France
| | - Frédéric Iseni
- Unité de Virologie, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
- * E-mail:
| |
Collapse
|
33
|
Casañal A, Zander U, Muñoz C, Dupeux F, Luque I, Botella MA, Schwab W, Valpuesta V, Marquez JA. The strawberry pathogenesis-related 10 (PR-10) Fra a proteins control flavonoid biosynthesis by binding to metabolic intermediates. J Biol Chem 2013; 288:35322-32. [PMID: 24133217 PMCID: PMC3853281 DOI: 10.1074/jbc.m113.501528] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 09/23/2013] [Indexed: 11/18/2022] Open
Abstract
Pathogenesis-related 10 (PR-10) proteins are involved in many aspects of plant biology but their molecular function is still unclear. They are related by sequence and structural homology to mammalian lipid transport and plant abscisic acid receptor proteins and are predicted to have cavities for ligand binding. Recently, three new members of the PR-10 family, the Fra a proteins, have been identified in strawberry, where they are required for the activity of the flavonoid biosynthesis pathway, which is essential for the development of color and flavor in fruits. Here, we show that Fra a proteins bind natural flavonoids with different selectivity and affinities in the low μm range. The structural analysis of Fra a 1 E and a Fra a 3-catechin complex indicates that loops L3, L5, and L7 surrounding the ligand-binding cavity show significant flexibility in the apo forms but close over the ligand in the Fra a 3-catechin complex. Our findings provide mechanistic insight on the function of Fra a proteins and suggest that PR-10 proteins, which are widespread in plants, may play a role in the control of secondary metabolic pathways by binding to metabolic intermediates.
Collapse
Affiliation(s)
- Ana Casañal
- From the Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM-UMA-Consejo Superior de Investigaciones Científicas), Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Málaga, Spain
| | - Ulrich Zander
- the European Molecular Biology Laboratory, Grenoble Outstation, 6 rue Jules Horowitz, 38042 Grenoble, France
- the Unit of Virus Host-Cell Interactions, Université Grenoble Alpes-EMBL-CNRS, 6 rue Jules Horowitz, 38042 Grenoble, France
| | - Cristina Muñoz
- From the Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM-UMA-Consejo Superior de Investigaciones Científicas), Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Málaga, Spain
| | - Florine Dupeux
- the European Molecular Biology Laboratory, Grenoble Outstation, 6 rue Jules Horowitz, 38042 Grenoble, France
- the Unit of Virus Host-Cell Interactions, Université Grenoble Alpes-EMBL-CNRS, 6 rue Jules Horowitz, 38042 Grenoble, France
| | - Irene Luque
- the Department of Physical Chemistry and Institute of Biotechnology, University of Granada, Campus Fuentenueva s/n, 18071 Granada, Spain, and
| | - Miguel Angel Botella
- From the Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM-UMA-Consejo Superior de Investigaciones Científicas), Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Málaga, Spain
| | - Wilfried Schwab
- Biotechnology of Natural Products, Technische Universität München, 85354 Freising, Germany
| | - Victoriano Valpuesta
- From the Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM-UMA-Consejo Superior de Investigaciones Científicas), Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Málaga, Spain
| | - José A. Marquez
- the European Molecular Biology Laboratory, Grenoble Outstation, 6 rue Jules Horowitz, 38042 Grenoble, France
- the Unit of Virus Host-Cell Interactions, Université Grenoble Alpes-EMBL-CNRS, 6 rue Jules Horowitz, 38042 Grenoble, France
| |
Collapse
|
34
|
Acajjaoui S, Zubieta C. Crystallization studies of the keratin-like domain from Arabidopsis thaliana SEPALLATA 3. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:997-1000. [PMID: 23989147 PMCID: PMC3758147 DOI: 10.1107/s174430911302006x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 07/19/2013] [Indexed: 11/10/2022]
Abstract
In higher plants, the MADS-box genes encode a large family of transcription factors (TFs) involved in key developmental processes, most notably plant reproduction, flowering and floral organ development. SEPALLATA 3 (SEP3) is a member of the MADS TF family and plays a role in the development of the floral organs through the formation of multiprotein complexes with other MADS-family TFs. SEP3 is divided into four domains: the M (MADS) domain, involved in DNA binding and dimerization, the I (intervening) domain, a short domain involved in dimerization, the K (keratin-like) domain important for multimeric MADS complex formation and the C (C-terminal) domain, a largely unstructured region putatively important for higher-order complex formation. The entire K domain along with a portion of the I and C domains of SEP3 was crystallized using high-throughput robotic screening followed by optimization. The crystals belonged to space group P2(1)2(1)2, with unit-cell parameters a = 123.44, b = 143.07, c = 49.83 Å, and a complete data set was collected to 2.53 Å resolution.
Collapse
Affiliation(s)
- Samira Acajjaoui
- Structural Biology, European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, 38000 Grenoble, France
| | - Chloe Zubieta
- Structural Biology, European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, 38000 Grenoble, France
| |
Collapse
|
35
|
Maspero E, Valentini E, Mari S, Cecatiello V, Soffientini P, Pasqualato S, Polo S. Structure of a ubiquitin-loaded HECT ligase reveals the molecular basis for catalytic priming. Nat Struct Mol Biol 2013; 20:696-701. [DOI: 10.1038/nsmb.2566] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 03/21/2013] [Indexed: 12/29/2022]
|
36
|
Casañal A, Zander U, Dupeux F, Valpuesta V, Marquez JA. Purification, crystallization and preliminary X-ray analysis of the strawberry allergens Fra a 1E and Fra a 3 in the presence of catechin. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:510-4. [PMID: 23695565 PMCID: PMC3660889 DOI: 10.1107/s1744309113006945] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 03/12/2013] [Indexed: 12/25/2022]
Abstract
The strawberry Fra a proteins belong to the pathogenesis-related PR-10 protein family and share a common fold with the Bet v 1 major pollen allergen and the START/PYR/PYL proteins, which are characterized by the presence of a central cavity and are often involved in the binding of a variety of natural compounds. The Fra a proteins play a key role in the control of flavonoid biosynthesis in strawberries and are essential for pigment formation in fruits. In order to understand Fra a protein function, full-length Fra a 1E and Fra a 3 cDNAs were cloned and expressed in Escherichia coli, and the proteins were purified to homogeneity using metal-affinity chromatography. Diffraction-quality crystals of Fra a 1E and of Fra a 3 in the presence of (+)-catechin were obtained by the sitting-drop vapour-diffusion method. X-ray diffraction data from single crystals of Fra a 1E and Fra a 3 were processed to 2.2 and 3.0 Å resolution in space groups P212121 and P2221, with unit-cell parameters a = 70.02, b = 74.42, c = 84.04 Å and a = 137.91, b = 206.61, c = 174.7 Å for Fra a 1E and Fra a 3, respectively.
Collapse
Affiliation(s)
- Ana Casañal
- Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM–UMA–CSIC), Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Málaga, Spain
| | - Ulrich Zander
- Grenoble Outstation, European Molecular Biology Laboratory and Unit of Virus Host-Cell Interactions, UJF–EMBL–CNRS, 6 Rue Jules Horowitz, BP 181, 38042 Grenoble, France
| | - Florine Dupeux
- Grenoble Outstation, European Molecular Biology Laboratory and Unit of Virus Host-Cell Interactions, UJF–EMBL–CNRS, 6 Rue Jules Horowitz, BP 181, 38042 Grenoble, France
| | - Victoriano Valpuesta
- Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM–UMA–CSIC), Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Málaga, Spain
| | - Jose A. Marquez
- Grenoble Outstation, European Molecular Biology Laboratory and Unit of Virus Host-Cell Interactions, UJF–EMBL–CNRS, 6 Rue Jules Horowitz, BP 181, 38042 Grenoble, France
| |
Collapse
|
37
|
Cipriani F, Röwer M, Landret C, Zander U, Felisaz F, Márquez JA. CrystalDirect: a new method for automated crystal harvesting based on laser-induced photoablation of thin films. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:1393-9. [DOI: 10.1107/s0907444912031459] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 07/10/2012] [Indexed: 11/10/2022]
|
38
|
Brazzolotto X, Wandhammer M, Ronco C, Trovaslet M, Jean L, Lockridge O, Renard PY, Nachon F. Human butyrylcholinesterase produced in insect cells: huprine-based affinity purification and crystal structure. FEBS J 2012; 279:2905-16. [DOI: 10.1111/j.1742-4658.2012.08672.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Pellegrino S, de Sanctis D, McSweeney S, Timmins J. Expression, purification and preliminary structural analysis of the coiled-coil domain of Deinococcus radiodurans RecN. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:218-221. [PMID: 22298004 PMCID: PMC3274408 DOI: 10.1107/s1744309111055187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 12/22/2011] [Indexed: 05/31/2023]
Abstract
Deinococcus radiodurans has developed an efficient mechanism which allows the integrity of its entire genome to be fully restored after exposure to very high doses of ionizing radiation. Homologous recombination plays a crucial role in this process. RecN is a protein that belongs to the SMC-like protein family and is suggested to be involved in DNA repair. RecN is composed of a globular domain and an antiparallel coiled-coil region which connects the N- and C-termini. It has been suggested that dimerization of RecN occurs via the coiled-coil domain, but to date there is no structural or biochemical evidence for this. Here, SAXS studies and preliminary X-ray diffraction data of crystals of the purified coiled-coil domain of RecN are presented. The structure was solved by single-wavelength anomalous dispersion using SeMet derivatives, and preliminary electron-density maps support the rod-like model derived from the SAXS data. Model building and refinement are still ongoing.
Collapse
Affiliation(s)
- Simone Pellegrino
- Structural Biology Group, European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, F-38043 Grenoble, France
| | - Daniele de Sanctis
- Structural Biology Group, European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, F-38043 Grenoble, France
| | - Sean McSweeney
- Structural Biology Group, European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, F-38043 Grenoble, France
| | - Joanna Timmins
- Virus Infection and Cancer Group/DNA Damage and Repair Team, Institut de Biologie Structurale J.-P. Ebel, 41 Rue Jules Horowitz, F-38027 Grenoble, France
| |
Collapse
|
40
|
Garcia-Doval C, van Raaij MJ. Crystallization of the C-terminal domain of the bacteriophage T7 fibre protein gp17. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:166-71. [PMID: 22297990 PMCID: PMC3274394 DOI: 10.1107/s1744309111051049] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 11/28/2011] [Indexed: 05/31/2023]
Abstract
Bacteriophage T7 attaches to its host using the C-terminal domains of its six fibres, which are trimers of the gp17 protein. A C-terminal fragment of gp17 consisting of amino acids 371-553 has been expressed, purified and crystallized. Crystals of two forms were obtained, belonging to space group P2(1)2(1)2(1) (unit-cell parameters a = 61.2, b = 86.0, c = 118.4 Å) and space group C222(1) (unit-cell parameters a = 68.3, b = 145.6, c = 172.1 Å). They diffracted to 1.9 and 2.0 Å resolution, respectively. Both crystals are expected to contain one trimer in the asymmetric unit. Multiwavelength anomalous dispersion phasing with a mercury derivative is in progress.
Collapse
Affiliation(s)
- Carmela Garcia-Doval
- Departamento de Estructuras de Macromoleculas, Centro Nacional de Biotecnologia (CNB–CSIC), Calle Darwin 3, 28049 Madrid, Spain
- Departamento de Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Santiago de Compostela, Campus Vida, 15705 Santiago de Compostela, Spain
| | - Mark J. van Raaij
- Departamento de Estructuras de Macromoleculas, Centro Nacional de Biotecnologia (CNB–CSIC), Calle Darwin 3, 28049 Madrid, Spain
| |
Collapse
|
41
|
Pellegrino S, Radzimanowski J, McSweeney S, Timmins J. Expression, purification and preliminary structural analysis of the head domain of Deinococcus radiodurans RecN. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:81-4. [PMID: 22232179 PMCID: PMC3253842 DOI: 10.1107/s1744309111048743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 11/16/2011] [Indexed: 11/10/2022]
Abstract
Deinococcus radiodurans is well known for its extreme tolerance to harsh conditions and for its extraordinary ability to repair DNA. Double-strand breaks (DSBs) are the most hazardous lesions that can be induced by ionizing radiation, and homologous recombination (HR) is the principal mechanism by which the integrity of the DNA is restored. In D. radiodurans the RecFOR complex is the main actor in HR and the RecN protein is believed to play an important role in DSB recognition. Here, SAXS and preliminary X-ray diffraction studies are presented of the head domain, which is the globular region formed upon interaction of the N- and C-terminal domains of RecN. The crystal structure of this domain was solved using the single-wavelength anomalous dispersion method. Model building and refinement are in progress.
Collapse
Affiliation(s)
- Simone Pellegrino
- Structural Biology Group, European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, 38043 Grenoble CEDEX 9, France
| | - Jens Radzimanowski
- Structural Biology Group, European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, 38043 Grenoble CEDEX 9, France
- Unit of Virus Host–Cell Interactions, UJF–EMBL–CNRS, UMI3265, 38043 Grenoble CEDEX 9, France
| | - Sean McSweeney
- Structural Biology Group, European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, 38043 Grenoble CEDEX 9, France
| | - Joanna Timmins
- Structural Biology Group, European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, 38043 Grenoble CEDEX 9, France
- Institut de Biologie Structurale J.-P. Ebel, 41 Rue Jules Horowitz, 38027 Grenoble CEDEX, France
| |
Collapse
|
42
|
Venskutonytė R, Frydenvang K, Gajhede M, Bunch L, Pickering DS, Kastrup JS. Binding site and interlobe interactions of the ionotropic glutamate receptor GluK3 ligand binding domain revealed by high resolution crystal structure in complex with (S)-glutamate. J Struct Biol 2011; 176:307-14. [PMID: 21907808 DOI: 10.1016/j.jsb.2011.08.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 08/24/2011] [Accepted: 08/25/2011] [Indexed: 11/19/2022]
Abstract
Ionotropic glutamate receptors (iGluRs) are involved in excitatory signal transmission throughout the central nervous system and their malfunction is associated with various health disorders. GluK3 is a subunit of iGluRs, belonging to the subfamily of kainate receptors (GluK1-5). Several crystal structures of GluK1 and GluK2 ligand binding domains have been determined in complex with agonists and antagonists. However, little is known about the molecular mechanisms underlying GluK3 ligand binding properties and no compounds displaying reasonable selectivity towards GluK3 are available today. Here, we present the first X-ray crystal structure of the ligand binding domain of GluK3 in complex with glutamate, determined to 1.6Å resolution. The structure reveals a conserved glutamate binding mode, characteristic for iGluRs, and a water molecule network in the glutamate binding site similar to that seen in GluK1. In GluK3, a slightly lower degree of domain closure around glutamate is observed compared to most other kainate receptor structures with glutamate. The volume of the GluK3 glutamate binding cavity was found to be of intermediate size between those of GluK1 and GluK2. The residues in GluK3 contributing to the subfamily differences in the binding sites are primarily: Thr520, Ala691, Asn722, Leu736 and Thr742. The GluK3 ligand binding domain seems to be less stabilized through interlobe interactions than GluK1 and this may contribute to the faster desensitization kinetics of GluK3.
Collapse
Affiliation(s)
- Raminta Venskutonytė
- Department of Medicinal Chemistry, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
43
|
Dupeux F, Röwer M, Seroul G, Blot D, Márquez JA. A thermal stability assay can help to estimate the crystallization likelihood of biological samples. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2011; 67:915-9. [PMID: 22101817 DOI: 10.1107/s0907444911036225] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 09/05/2011] [Indexed: 11/10/2022]
Abstract
The identification of crystallization conditions for biological molecules largely relies on a trial-and-error process in which a number of parameters are explored in large screening experiments. Currently, construct design and sample formulation are recognized as critical variables in this process and often a number of protein variants are assayed for crystallization either sequentially or in parallel, which adds complexity to the screening process. Significant effort is dedicated to sample characterization and quality-control experiments in order to identify at an early stage and prioritize those samples which would be more likely to crystallize. However, large-scale studies relating crystallization success to sample properties are generally lacking. In this study, the thermal stability of 657 samples was estimated using a simplified Thermofluor assay. These samples were also subjected to automated vapour-diffusion crystallization screening under a constant protocol. Analysis of the data shows that samples with an apparent melting temperature (T(m)) of 318 K or higher crystallized in 49% of cases, while the crystallization success rate decreased rapidly for samples with lower T(m). Only 23% of samples with a T(m) below 316 K produced crystals. Based on this analysis, a simple method for estimation of the crystallization likelihood of biological samples is proposed. This method is easy, rapid and consumes very small amounts of sample. The results of this assay can be used to determine optimal incubation temperatures for crystallization experiments or to prioritize certain constructs. More generally, this work provides an objective test that can contribute to making decisions in both focused and structural genomics crystallography projects.
Collapse
Affiliation(s)
- Florine Dupeux
- European Molecular Biology Laboratory, Grenoble Outstation and Unit of Virus Host-Cell Interactions, UJF-EMBL-CNRS, 6 Rue Jules Horowitz, BP 181, 38042 Grenoble CEDEX 9, France
| | | | | | | | | |
Collapse
|
44
|
Gonçalves AMD, de Sanctis D, McSweeney SM. Structural and functional insights into DR2231 protein, the MazG-like nucleoside triphosphate pyrophosphohydrolase from Deinococcus radiodurans. J Biol Chem 2011; 286:30691-30705. [PMID: 21733847 PMCID: PMC3162430 DOI: 10.1074/jbc.m111.247999] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 06/01/2011] [Indexed: 11/06/2022] Open
Abstract
Deinococcus radiodurans is among the very few bacterial species extremely resistant to ionizing radiation, UV light, oxidizing agents, and cycles of prolonged desiccation. The proteome of D. radiodurans reflects the evolutionary pressure exerted by chronic exposure to (nonradioactive) forms of DNA and protein damage. A clear example of this adaptation is the overrepresentation of protein families involved in the removal of non-canonical nucleoside triphosphates (NTPs) whose incorporation into nascent DNA would promote mutagenesis and DNA damage. The three-dimensional structure of the DR2231 protein has been solved at 1.80 Å resolution. This protein had been classified as an all-α-helical MazG-like protein. The present study confirms that it holds the basic structural module characteristic of the MazG superfamily; two helices form a rigid domain, and two helices form a mobile domain and connecting loops. Contrary to what is known of MazG proteins, DR2231 protein shows a functional affinity with dUTPases. Enzymatic and isothermal calorimetry assays have demonstrated high specificity toward dUTP but an inability to hydrolyze dTTP, a typical feature of dUTPases. Co-crystallization with the product of hydrolysis, dUMP, in the presence of magnesium or manganese cations, suggests similarities with the dUTP/dUDP hydrolysis mechanism reported for dimeric dUTPases. The genome of D. radiodurans encodes for all enzymes required for dTTP synthesis from dCMP, thus bypassing the need of a dUTPase. We postulate that DR2231 protein is not essential to D. radiodurans and rather performs "house-cleaning" functions within the framework of oxidative stress response. We further propose DR2231 protein as an evolutionary precursor of dimeric dUTPases.
Collapse
Affiliation(s)
- Ana Maria D Gonçalves
- Macromolecular Crystallography Group, European Synchrotron Radiation Facility, Rue Jules Horowitz 6, 38043 Grenoble Cedex, France
| | - Daniele de Sanctis
- Macromolecular Crystallography Group, European Synchrotron Radiation Facility, Rue Jules Horowitz 6, 38043 Grenoble Cedex, France.
| | - Sean M McSweeney
- Macromolecular Crystallography Group, European Synchrotron Radiation Facility, Rue Jules Horowitz 6, 38043 Grenoble Cedex, France.
| |
Collapse
|
45
|
Dupeux F, Antoni R, Betz K, Santiago J, Gonzalez-Guzman M, Rodriguez L, Rubio S, Park SY, Cutler SR, Rodriguez PL, Márquez JA. Modulation of abscisic acid signaling in vivo by an engineered receptor-insensitive protein phosphatase type 2C allele. PLANT PHYSIOLOGY 2011; 156:106-16. [PMID: 21357183 PMCID: PMC3091035 DOI: 10.1104/pp.110.170894] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 02/28/2011] [Indexed: 05/20/2023]
Abstract
The plant hormone abscisic acid (ABA) plays a crucial role in the control of the stress response and the regulation of plant growth and development. ABA binding to PYRABACTIN RESISTANCE1 (PYR1)/PYR1-LIKE (PYL)/REGULATORY COMPONENTS OF ABA RECEPTORS intracellular receptors leads to inhibition of key negative regulators of ABA signaling, i.e. clade A protein phosphatases type 2C (PP2Cs) such as ABA-INSENSITIVE1 and HYPERSENSITIVE TO ABA1 (HAB1), causing the activation of the ABA signaling pathway. To gain further understanding on the mechanism of hormone perception, PP2C inhibition, and its implications for ABA signaling, we have performed a structural and functional analysis of the PYR1-ABA-HAB1 complex. Based on structural data, we generated a gain-of-function mutation in a critical residue of the phosphatase, hab1(W385A), which abolished ABA-dependent receptor-mediated PP2C inhibition without impairing basal PP2C activity. As a result, hab1(W385A) caused constitutive inactivation of the protein kinase OST1 even in the presence of ABA and PYR/PYL proteins, in contrast to the receptor-sensitive HAB1, and therefore hab1(W385A) qualifies as a hypermorphic mutation. Expression of hab1(W385A) in Arabidopsis (Arabidopsis thaliana) plants leads to a strong, dominant ABA insensitivity, which demonstrates that this conserved tryptophan residue can be targeted for the generation of dominant clade A PP2C alleles. Moreover, our data highlight the critical role of molecular interactions mediated by tryptophan-385 equivalent residues for clade A PP2C function in vivo and the mechanism of ABA perception and signaling.
Collapse
|
46
|
Artero JB, Teixeira SCM, Mitchell EP, Kron MA, Forsyth VT, Haertlein M. Crystallization and preliminary X-ray diffraction analysis of human cytosolic seryl-tRNA synthetase. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:1521-4. [PMID: 21045311 PMCID: PMC3001664 DOI: 10.1107/s1744309110037346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 09/17/2010] [Indexed: 11/10/2022]
Abstract
Human cytosolic seryl-tRNA synthetase (hsSerRS) is responsible for the covalent attachment of serine to its cognate tRNA(Ser). Significant differences between the amino-acid sequences of eukaryotic, prokaryotic and archaebacterial SerRSs indicate that the domain composition of hsSerRS differs from that of its eubacterial and archaebacterial analogues. As a consequence of an N-terminal insertion and a C-terminal extra-sequence, the binding mode of tRNA(Ser) to hsSerRS is expected to differ from that in prokaryotes. Recombinant hsSerRS protein was purified to homogeneity and crystallized. Diffraction data were collected to 3.13 Å resolution. The structure of hsSerRS has been solved by the molecular-replacement method.
Collapse
Affiliation(s)
- Jean-Baptiste Artero
- EPSAM and ISTM, Keele University, Staffordshire ST5 5BG, England
- Institut Laue–Langevin, 6 Rue Jules Horowitz, 38042 Grenoble, France
- Partnership for Structural Biology, 6 Rue Jules Horowitz, 38042 Grenoble, France
| | - Susana C. M. Teixeira
- EPSAM and ISTM, Keele University, Staffordshire ST5 5BG, England
- Institut Laue–Langevin, 6 Rue Jules Horowitz, 38042 Grenoble, France
- Partnership for Structural Biology, 6 Rue Jules Horowitz, 38042 Grenoble, France
| | - Edward P. Mitchell
- EPSAM and ISTM, Keele University, Staffordshire ST5 5BG, England
- Partnership for Structural Biology, 6 Rue Jules Horowitz, 38042 Grenoble, France
- ESRF, 6 Rue Jules Horowitz, 38042 Grenoble, France
| | - Michael A. Kron
- Department of Medicine, Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - V. Trevor Forsyth
- EPSAM and ISTM, Keele University, Staffordshire ST5 5BG, England
- Institut Laue–Langevin, 6 Rue Jules Horowitz, 38042 Grenoble, France
- Partnership for Structural Biology, 6 Rue Jules Horowitz, 38042 Grenoble, France
| | - Michael Haertlein
- Institut Laue–Langevin, 6 Rue Jules Horowitz, 38042 Grenoble, France
- Partnership for Structural Biology, 6 Rue Jules Horowitz, 38042 Grenoble, France
| |
Collapse
|
47
|
Martínez-Barriocanal A, Comas-Casellas E, Schwartz S, Martín M, Sayós J. CD300 heterocomplexes, a new and family-restricted mechanism for myeloid cell signaling regulation. J Biol Chem 2010; 285:41781-94. [PMID: 20959446 DOI: 10.1074/jbc.m110.140889] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The CD300 family of myeloid immunoglobulin receptors includes activating (CD300b, CD300e) and inhibitory members (CD300a, CD300f), as well as molecules of uncertain function presenting a negative charge within their transmembrane domain (CD300c, CD300d). In this paper, we establish that CD300c is a functional immune receptor able to deliver activating signals upon ligation in RBL-2H3 mast cells. CD300c signaling is partially mediated by a direct association with the immune receptor tyrosine-based activation motif-bearing adaptor FcεRγ. The existence of complementary transmembrane-charged residues in certain CD300 receptors suggested the formation of heterodimers within this family. Indeed, we proved the interaction between CD300b and CD300c in transfected COS-7 cells and demonstrated that it has important functional consequences. Unexpectedly, dimmer formation was dependent on the immunoglobulin domains rather than the charged transmembrane residues. Concordantly, all CD300 members were found to interact with each other, even with themselves, forming both homo- and heterodimers. We found that the combination of CD300 receptors in a complex differentially modulates the signaling outcome, strongly suggesting a new mechanism by which CD300 complexes could regulate the activation of myeloid cells upon interaction with their natural ligands.
Collapse
Affiliation(s)
- Agueda Martínez-Barriocanal
- Immunobiology Group, CIBBIM-Nanomedicine Program, Hospital Universitari Vall d'Hebrón, Institut de Recerca, Universitat Autónoma de Barcelona, Barcelona 08035, Spain.
| | | | | | | | | |
Collapse
|
48
|
Cliff MJ, Bowler MW, Varga A, Marston JP, Szabó J, Hounslow AM, Baxter NJ, Blackburn GM, Vas M, Waltho JP. Transition state analogue structures of human phosphoglycerate kinase establish the importance of charge balance in catalysis. J Am Chem Soc 2010; 132:6507-16. [PMID: 20397725 DOI: 10.1021/ja100974t] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transition state analogue (TSA) complexes formed by phosphoglycerate kinase (PGK) have been used to test the hypothesis that balancing of charge within the transition state dominates enzyme-catalyzed phosphoryl transfer. High-resolution structures of trifluoromagnesate (MgF(3)(-)) and tetrafluoroaluminate (AlF(4)(-)) complexes of PGK have been determined using X-ray crystallography and (19)F-based NMR methods, revealing the nature of the catalytically relevant state of this archetypal metabolic kinase. Importantly, the side chain of K219, which coordinates the alpha-phosphate group in previous ground state structures, is sequestered into coordinating the metal fluoride, thereby creating a charge environment complementary to the transferring phosphoryl group. In line with the dominance of charge balance in transition state organization, the substitution K219A induces a corresponding reduction in charge in the bound aluminum fluoride species, which changes to a trifluoroaluminate (AlF(3)(0)) complex. The AlF(3)(0) moiety retains the octahedral geometry observed within AlF(4)(-) TSA complexes, which endorses the proposal that some of the widely reported trigonal AlF(3)(0) complexes of phosphoryl transfer enzymes may have been misassigned and in reality contain MgF(3)(-).
Collapse
Affiliation(s)
- Matthew J Cliff
- The Krebs Institute & The Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Structure of avian thymic hormone, a high-affinity avian beta-parvalbumin, in the Ca2+-free and Ca2+-bound states. J Mol Biol 2010; 397:991-1002. [PMID: 20156445 DOI: 10.1016/j.jmb.2010.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 01/28/2010] [Accepted: 02/09/2010] [Indexed: 11/23/2022]
Abstract
Originally isolated on the basis of its capacity to stimulate T-cell maturation and proliferation, avian thymic hormone (ATH) is nevertheless a parvalbumin, one of two beta-lineage isoforms expressed in birds. We recently learned that addition of Ca(2+)-free ATH to a solution of 8-anilinonaphthalene-1-sulfonate (ANS) markedly increases ANS emission. This behavior, not observed in the presence of Ca(2+), suggests that apolar surface area buried in the Ca(2+)-bound state becomes solvent accessible upon Ca(2+) removal. In order to elucidate the conformational alterations that accompany Ca(2+) binding, we have obtained the solution structure of the Ca(2+)-free protein using NMR spectroscopy and compared it to the Ca(2+)-loaded protein, solved by X-ray crystallography. Although the metal-ion-binding (CD-EF) domains are largely coincident in the superimposed structures, a major difference is observed in the AB domains. The tight association of helix B with the E and F helices in the Ca(2+)-bound state is lost upon removal of Ca(2+), producing a deep hydrophobic cavity. The B helix also undergoes substantial rotation, exposing the side chains of F24, Y26, F29, and F30 to solvent. Presumably, the increase in ANS emission observed in the presence of unliganded ATH reflects the interaction of these hydrophobic residues with the fluorescent probe. The increased solvent exposure of apolar surface area in the Ca(2+)-free protein is consistent with previously collected scanning calorimetry data, which indicated an unusually low change in heat capacity upon thermal denaturation. The Ca(2+)-free structure also provides added insight into the magnitude of ligation-linked conformational alteration compatible with a high-affinity metal-ion-binding signature. The exposure of substantial apolar surface area suggests the intriguing possibility that ATH could function as a reverse Ca(2+) sensor.
Collapse
|
50
|
Flot D, Mairs T, Giraud T, Guijarro M, Lesourd M, Rey V, van Brussel D, Morawe C, Borel C, Hignette O, Chavanne J, Nurizzo D, McSweeney S, Mitchell E. The ID23-2 structural biology microfocus beamline at the ESRF. JOURNAL OF SYNCHROTRON RADIATION 2010; 17:107-18. [PMID: 20029119 PMCID: PMC3025444 DOI: 10.1107/s0909049509041168] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 10/08/2009] [Indexed: 05/20/2023]
Abstract
The first phase of the ESRF beamline ID23 to be constructed was ID23-1, a tunable MAD-capable beamline which opened to users in early 2004. The second phase of the beamline to be constructed is ID23-2, a monochromatic microfocus beamline dedicated to macromolecular crystallography experiments. Beamline ID23-2 makes use of well characterized optical elements: a single-bounce silicon (111) monochromator and two mirrors in Kirkpatrick-Baez geometry to focus the X-ray beam. A major design goal of the ID23-2 beamline is to provide a reliable, easy-to-use and routine microfocus beam. ID23-2 started operation in November 2005, as the first beamline dedicated to microfocus macromolecular crystallography. The beamline has taken the standard automated ESRF macromolecular crystallography environment (both hardware and software), allowing users of ID23-2 to be rapidly familiar with the microfocus environment. This paper describes the beamline design, the special considerations taken into account given the microfocus beam, and summarizes the results of the first years of the beamline operation.
Collapse
Affiliation(s)
- David Flot
- European Molecular Biology Laboratory, 6 rue Jules Horowitz, BP 181, 38042 Grenoble, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|