1
|
Adams WP, Raisch TB, Zhao Y, Davalos R, Barrett S, King DR, Bain CB, Colucci-Chang K, Blair GA, Hanlon A, Lozano A, Veeraraghavan R, Wan X, Deschenes I, Smyth JW, Hoeker GS, Gourdie RG, Poelzing S. Extracellular Perinexal Separation Is a Principal Determinant of Cardiac Conduction. Circ Res 2023; 133:658-673. [PMID: 37681314 PMCID: PMC10561697 DOI: 10.1161/circresaha.123.322567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Cardiac conduction is understood to occur through gap junctions. Recent evidence supports ephaptic coupling as another mechanism of electrical communication in the heart. Conduction via gap junctions predicts a direct relationship between conduction velocity (CV) and bulk extracellular resistance. By contrast, ephaptic theory is premised on the existence of a biphasic relationship between CV and the volume of specialized extracellular clefts within intercalated discs such as the perinexus. Our objective was to determine the relationship between ventricular CV and structural changes to micro- and nanoscale extracellular spaces. METHODS Conduction and Cx43 (connexin43) protein expression were quantified from optically mapped guinea pig whole-heart preparations perfused with the osmotic agents albumin, mannitol, dextran 70 kDa, or dextran 2 MDa. Peak sodium current was quantified in isolated guinea pig ventricular myocytes. Extracellular resistance was quantified by impedance spectroscopy. Intercellular communication was assessed in a heterologous expression system with fluorescence recovery after photobleaching. Perinexal width was quantified from transmission electron micrographs. RESULTS CV primarily in the transverse direction of propagation was significantly reduced by mannitol and increased by albumin and both dextrans. The combination of albumin and dextran 70 kDa decreased CV relative to albumin alone. Extracellular resistance was reduced by mannitol, unchanged by albumin, and increased by both dextrans. Cx43 expression and conductance and peak sodium currents were not significantly altered by the osmotic agents. In response to osmotic agents, perinexal width, in order of narrowest to widest, was albumin with dextran 70 kDa; albumin or dextran 2 MDa; dextran 70 kDa or no osmotic agent, and mannitol. When compared in the same order, CV was biphasically related to perinexal width. CONCLUSIONS Cardiac conduction does not correlate with extracellular resistance but is biphasically related to perinexal separation, providing evidence that the relationship between CV and extracellular volume is determined by ephaptic mechanisms under conditions of normal gap junctional coupling.
Collapse
Affiliation(s)
- William P. Adams
- Center for Vascular and Heart Research at Fralin Biomedical Research Institute at VTC
- Translational Biology, Medicine and Health Program at Virginia Tech
| | - Tristan B. Raisch
- Center for Vascular and Heart Research at Fralin Biomedical Research Institute at VTC
- Translational Biology, Medicine and Health Program at Virginia Tech
| | - Yajun Zhao
- School of Biomedical Engineering and Sciences, Virginia Tech
| | - Rafael Davalos
- School of Biomedical Engineering and Sciences, Virginia Tech
| | | | - D. Ryan King
- Center for Vascular and Heart Research at Fralin Biomedical Research Institute at VTC
- Translational Biology, Medicine and Health Program at Virginia Tech
| | - Chandra B. Bain
- Center for Vascular and Heart Research at Fralin Biomedical Research Institute at VTC
| | - Katrina Colucci-Chang
- Center for Vascular and Heart Research at Fralin Biomedical Research Institute at VTC
- School of Biomedical Engineering and Sciences, Virginia Tech
| | - Grace A. Blair
- Center for Vascular and Heart Research at Fralin Biomedical Research Institute at VTC
- Translational Biology, Medicine and Health Program at Virginia Tech
| | - Alexandra Hanlon
- Virginia Tech Center for Biostatistics and Health Data Science, Roanoke, Virginia
| | - Alicia Lozano
- Virginia Tech Center for Biostatistics and Health Data Science, Roanoke, Virginia
| | - Rengasayee Veeraraghavan
- Department of Biomedical Engineering, College of Engineering, The Ohio State University
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center
| | - Xiaoping Wan
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center
| | - Isabelle Deschenes
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center
| | - James W. Smyth
- Center for Vascular and Heart Research at Fralin Biomedical Research Institute at VTC
- Department of Biological Sciences, College of Science, Virginia Tech
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, Virginia
| | - Gregory S. Hoeker
- Center for Vascular and Heart Research at Fralin Biomedical Research Institute at VTC
| | - Robert G. Gourdie
- Center for Vascular and Heart Research at Fralin Biomedical Research Institute at VTC
- School of Biomedical Engineering and Sciences, Virginia Tech
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, Virginia
| | - Steven Poelzing
- Center for Vascular and Heart Research at Fralin Biomedical Research Institute at VTC
- Translational Biology, Medicine and Health Program at Virginia Tech
- School of Biomedical Engineering and Sciences, Virginia Tech
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, Virginia
| |
Collapse
|
2
|
Weinberg SH. Sodium channel subpopulations with distinct biophysical properties and subcellular localization enhance cardiac conduction. J Gen Physiol 2023; 155:e202313382. [PMID: 37285024 PMCID: PMC10250552 DOI: 10.1085/jgp.202313382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/02/2023] [Accepted: 05/24/2023] [Indexed: 06/08/2023] Open
Abstract
Sodium (Na+) current is responsible for the rapid depolarization of cardiac myocytes that triggers the cardiac action potential upstroke. Recent studies have illustrated the presence of multiple pools of Na+ channels with distinct biophysical properties and subcellular localization, including clustering of channels at the intercalated disk and along the lateral membrane. Computational studies predict that Na+ channel clusters at the intercalated disk can regulate cardiac conduction via modulation of the narrow intercellular cleft between electrically coupled myocytes. However, these studies have primarily focused on the redistribution of Na+ channels between intercalated disk and lateral membranes and have not considered the distinct biophysical properties of the Na+ channel subpopulations. In this study, we use computational modeling to simulate computational models of single cardiac cells and one-dimensional cardiac tissues and predict the function of distinct Na+ channel subpopulations. Single-cell simulations predict that a subpopulation of Na+ channels with shifted steady-state activation and inactivation voltage dependency promotes an earlier action potential upstroke. In cardiac tissues that account for distinct subcellular spatial localization, simulations predict that shifted Na+ channels contribute to faster and more robust conduction in response to changes in tissue structure (i.e., cleft width), gap junctional coupling, and rapid pacing rates. Simulations predict that the intercalated disk-localized shifted Na+ channels contribute proportionally more to total Na+ charge than lateral membrane-localized Na+ channels. Importantly, our work supports the hypothesis that Na+ channel redistribution may be a critical mechanism by which cells can respond to perturbations to support fast and robust conduction.
Collapse
Affiliation(s)
- Seth H. Weinberg
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
3
|
Ly C, Weinberg SH. Automaticity in ventricular myocyte cell pairs with ephaptic and gap junction coupling. CHAOS (WOODBURY, N.Y.) 2022; 32:033123. [PMID: 35364829 PMCID: PMC8934194 DOI: 10.1063/5.0085291] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Spontaneous electrical activity, or automaticity, in the heart is required for normal physiological function. However, irregular automaticity, in particular, originating from the ventricles, can trigger life-threatening cardiac arrhythmias. Thus, understanding mechanisms of automaticity and synchronization is critical. Recent work has proposed that excitable cells coupled via a shared narrow extracellular cleft can mediate coupling, i.e., ephaptic coupling, that promotes automaticity in cell pairs. However, the dynamics of these coupled cells incorporating both ephaptic and gap junction coupling has not been explored. Here, we show that automaticity and synchronization robustly emerges via a Hopf bifurcation from either (i) increasing the fraction of inward rectifying potassium channels (carrying the IK1 current) at the junctional membrane or (ii) by decreasing the cleft volume. Furthermore, we explore how heterogeneity in the fraction of potassium channels between coupled cells can produce automaticity of both cells or neither cell, or more rarely in only one cell (i.e., automaticity without synchronization). Interestingly, gap junction coupling generally has minor effects, with only slight changes in regions of parameter space of automaticity. This work provides insight into potentially new mechanisms that promote spontaneous activity and, thus, triggers for arrhythmias in ventricular tissue.
Collapse
Affiliation(s)
- Cheng Ly
- Department of Statistical Sciences and Operations Research, Virginia Commonwealth University, 1015 Floyd Avenue, Richmond, Virginia 23284, USA
| | - Seth H. Weinberg
- Department of Biomedical Engineering, Ohio State University, 333 W 10th Avenue, Columbus, Ohio 43210, USA
| |
Collapse
|
4
|
Poelzing S, Weinberg SH, Keener JP. Initiation and entrainment of multicellular automaticity via diffusion limited extracellular domains. Biophys J 2021; 120:5279-5294. [PMID: 34757078 DOI: 10.1016/j.bpj.2021.10.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 09/12/2021] [Accepted: 10/26/2021] [Indexed: 01/07/2023] Open
Abstract
Electrically excitable cells often spontaneously and synchronously depolarize in vitro and in vivo preparations. It remains unclear how cells entrain and autorhythmically activate above the intrinsic mean activation frequency of isolated cells with or without pacemaking mechanisms. Recent studies suggest that cyclic ion accumulation and depletion in diffusion-limited extracellular volumes modulate electrophysiology by ephaptic mechanisms (nongap junction or synaptic coupling). This report explores how potassium accumulation and depletion in a restricted extracellular domain induces spontaneous action potentials in two different computational models of excitable cells without gap junctional coupling: Hodgkin-Huxley and Luo-Rudy. Importantly, neither model will spontaneously activate on its own without external stimuli. Simulations demonstrate that cells sharing a diffusion-limited extracellular compartment can become autorhythmic and entrained despite intercellular electrical heterogeneity. Autorhythmic frequency is modulated by the cleft volume and potassium fluxes through the cleft. Additionally, inexcitable cells can suppress or induce autorhythmic activity in an excitable cell via a shared cleft. Diffusion-limited shared clefts can also entrain repolarization. Critically, this model predicts a mechanism by which diffusion-limited shared clefts can initiate, entrain, and modulate multicellular automaticity in the absence of gap junctions.
Collapse
Affiliation(s)
- Steven Poelzing
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Heart and Reparative Medicine, and the Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Roanoke, Virginia.
| | - Seth H Weinberg
- Department of Biomedical Engineering, Davis Heart and Lung Research Institute, and the Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - James P Keener
- Department of Mathematics, University of Utah, Salt Lake City, Utah
| |
Collapse
|
5
|
Yu H, Liu Y, Chu M, Si Y, Ye Y, Ge T, Zhao H, Zhang H. Structural Relationships Between Interstitial Cells of Cajal and Smooth Muscle Cells/Nerve Fibers in the Gastric Muscularis Mucosae of Chinese Giant Salamander. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 27:227-235. [PMID: 33353579 DOI: 10.1017/s1431927620024861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Interstitial cells of Cajal (ICC) play an essential role in the motility of the gastrointestinal tract, and they have been identified in many laboratory animals and in humans. However, the information of ICC in lower animals is still very limited. In the present study, ICC were identified in the gastric muscularis mucosae of an amphibian—the Chinese giant salamander, by c-Kit immunohistochemistry and transmission electron microscopy. ICC showed c-Kit immunoreactivity and had spindle-shaped cell bodies and 1–2 long processes. ICC were located between smooth muscle cells (SMC) in gastric muscularis mucosae. Ultrastructurally, ICC appeared as polygon-, spindle-, and awl-shaped with long cytoplasmic prolongations between SMC. ICC had distinctive characteristics, such as nuclei with peripheral electron-dense heterochromatin, caveolae, and abundant intracytoplasmatic vacuoles, mitochondria, and rough endoplasmic reticula. Moreover, lamellar bodies and two types of condensed granules were observed in the cytoplasm of ICC. Notably, ICC establish close contacts with each other. Moreover, ICC establish gap junctions with SMC. In addition, ICC were frequently observed close to nerve fibers. In summary, the present study demonstrated the presence of ICC in the gastric muscularis mucosae of the Chinese giant salamander.
Collapse
Affiliation(s)
- Hang Yu
- College of Life Science and Engineering, Foshan University, Foshan528231, China
| | - Yangquan Liu
- College of Life Science and Engineering, Foshan University, Foshan528231, China
| | - Meng Chu
- College of Life Science and Engineering, Foshan University, Foshan528231, China
| | - Yu Si
- College of Life Science and Engineering, Foshan University, Foshan528231, China
| | - Yaqiong Ye
- College of Life Science and Engineering, Foshan University, Foshan528231, China
| | - Tingting Ge
- College of Life Science and Engineering, Foshan University, Foshan528231, China
| | - Haiquan Zhao
- College of Life Science and Engineering, Foshan University, Foshan528231, China
| | - Hui Zhang
- College of Life Science and Engineering, Foshan University, Foshan528231, China
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang330045, China
| |
Collapse
|
6
|
Fang Y, Prominski A, Rotenberg MY, Meng L, Acarón Ledesma H, Lv Y, Yue J, Schaumann E, Jeong J, Yamamoto N, Jiang Y, Elbaz B, Wei W, Tian B. Micelle-enabled self-assembly of porous and monolithic carbon membranes for bioelectronic interfaces. NATURE NANOTECHNOLOGY 2021; 16:206-213. [PMID: 33288948 PMCID: PMC8801202 DOI: 10.1038/s41565-020-00805-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 10/26/2020] [Indexed: 05/08/2023]
Abstract
Real-world bioelectronics applications, including drug delivery systems, biosensing and electrical modulation of tissues and organs, largely require biointerfaces at the macroscopic level. However, traditional macroscale bioelectronic electrodes usually exhibit invasive or power-inefficient architectures, inability to form uniform and subcellular interfaces, or faradaic reactions at electrode surfaces. Here, we develop a micelle-enabled self-assembly approach for a binder-free and carbon-based monolithic device, aimed at large-scale bioelectronic interfaces. The device incorporates a multi-scale porous material architecture, an interdigitated microelectrode layout and a supercapacitor-like performance. In cell training processes, we use the device to modulate the contraction rate of primary cardiomyocytes at the subcellular level to target frequency in vitro. We also achieve capacitive control of the electrophysiology in isolated hearts, retinal tissues and sciatic nerves, as well as bioelectronic cardiac sensing. Our results support the exploration of device platforms already used in energy research to identify new opportunities in bioelectronics.
Collapse
Affiliation(s)
- Yin Fang
- Department of Chemistry, University of Chicago, Chicago, IL, USA.
| | - Aleksander Prominski
- Department of Chemistry, University of Chicago, Chicago, IL, USA
- The James Franck Institute, University of Chicago, Chicago, IL, USA
| | | | - Lingyuan Meng
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Héctor Acarón Ledesma
- The Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL, USA
| | - Yingying Lv
- The James Franck Institute, University of Chicago, Chicago, IL, USA
| | - Jiping Yue
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Erik Schaumann
- Department of Chemistry, University of Chicago, Chicago, IL, USA
- The James Franck Institute, University of Chicago, Chicago, IL, USA
| | - Junyoung Jeong
- Department of Computer Science, University of Chicago, Chicago, IL, USA
| | - Naomi Yamamoto
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Yuanwen Jiang
- Department of Chemistry, University of Chicago, Chicago, IL, USA
- The James Franck Institute, University of Chicago, Chicago, IL, USA
| | - Benayahu Elbaz
- The Division of Multiple Sclerosis and Neuroimmunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Wei Wei
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
| | - Bozhi Tian
- Department of Chemistry, University of Chicago, Chicago, IL, USA.
- The James Franck Institute, University of Chicago, Chicago, IL, USA.
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
7
|
Barrett PQ, Guagliardo NA, Bayliss DA. Ion Channel Function and Electrical Excitability in the Zona Glomerulosa: A Network Perspective on Aldosterone Regulation. Annu Rev Physiol 2020; 83:451-475. [PMID: 33176563 DOI: 10.1146/annurev-physiol-030220-113038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aldosterone excess is a pathogenic factor in many hypertensive disorders. The discovery of numerous somatic and germline mutations in ion channels in primary hyperaldosteronism underscores the importance of plasma membrane conductances in determining the activation state of zona glomerulosa (zG) cells. Electrophysiological recordings describe an electrically quiescent behavior for dispersed zG cells. Yet, emerging data indicate that in native rosette structures in situ, zG cells are electrically excitable, generating slow periodic voltage spikes and coordinated bursts of Ca2+ oscillations. We revisit data to understand how a multitude of conductances may underlie voltage/Ca2+ oscillations, recognizing that zG layer self-renewal and cell heterogeneity may complicate this task. We review recent data to understand rosette architecture and apply maxims derived from computational network modeling to understand rosette function. The challenge going forward is to uncover how the rosette orchestrates the behavior of a functional network of conditional oscillators to control zG layer performance and aldosterone secretion.
Collapse
Affiliation(s)
- Paula Q Barrett
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA; , ,
| | - Nick A Guagliardo
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA; , ,
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA; , ,
| |
Collapse
|
8
|
Jæger KH, Edwards AG, McCulloch A, Tveito A. Properties of cardiac conduction in a cell-based computational model. PLoS Comput Biol 2019; 15:e1007042. [PMID: 31150383 PMCID: PMC6561587 DOI: 10.1371/journal.pcbi.1007042] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 06/12/2019] [Accepted: 04/23/2019] [Indexed: 11/18/2022] Open
Abstract
The conduction of electrical signals through cardiac tissue is essential for maintaining the function of the heart, and conduction abnormalities are known to potentially lead to life-threatening arrhythmias. The properties of cardiac conduction have therefore been the topic of intense study for decades, but a number of questions related to the mechanisms of conduction still remain unresolved. In this paper, we demonstrate how the so-called EMI model may be used to study some of these open questions. In the EMI model, the extracellular space, the cell membrane, the intracellular space and the cell connections are all represented as separate parts of the computational domain, and the model therefore allows for study of local properties that are hard to represent in the classical homogenized bidomain or monodomain models commonly used to study cardiac conduction. We conclude that a non-uniform sodium channel distribution increases the conduction velocity and decreases the time delays over gap junctions of reduced coupling in the EMI model simulations. We also present a theoretical optimal cell length with respect to conduction velocity and consider the possibility of ephaptic coupling (i.e. cell-to-cell coupling through the extracellular potential) acting as an alternative or supporting mechanism to gap junction coupling. We conclude that for a non-uniform distribution of sodium channels and a sufficiently small intercellular distance, ephaptic coupling can influence the dynamics of the sodium channels and potentially provide cell-to-cell coupling when the gap junction connection is absent. The electrochemical wave traversing the heart during every beat is essential for cardiac pumping function and supply of blood to the body. Understanding the stability of this wave is crucial to understanding how lethal arrhythmias are generated. Despite this importance, our knowledge of the physical determinants of wave propagation are still evolving. One particular challenge has been the lack of accurate mathematical models of conduction at the cellular level. Because cardiac muscle is an electrical syncytium, in which direct charge transfer between cells drives wave propagation, classical bidomain and monodomain tissue models employ a homogenized approximation of this process. This approximation is not valid at the length scale of single cells, and prevents any analysis of how cellular structures impact cardiac conduction. Instead, so-called microdomain models must be used for these questions. Here we utilize a recently developed modelling framework that is well suited to represent small collections of cells. By applying this framework, we show that concentration of sodium channels at the longitudinal borders of myocytes accelerates cardiac conduction. We also demonstrate that when juxtaposed cells are sufficiently close, this non-uniform distribution induces large ephaptic currents, which contribute to intercellular coupling.
Collapse
Affiliation(s)
| | | | - Andrew McCulloch
- Department of Bioengineering, University of California, San Diego, California, United States of America
| | - Aslak Tveito
- Simula Research Laboratory, Oslo, Norway
- * E-mail:
| |
Collapse
|
9
|
Radwański PB, Johnson CN, Györke S, Veeraraghavan R. Cardiac Arrhythmias as Manifestations of Nanopathies: An Emerging View. Front Physiol 2018; 9:1228. [PMID: 30233404 PMCID: PMC6131669 DOI: 10.3389/fphys.2018.01228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/14/2018] [Indexed: 12/21/2022] Open
Abstract
A nanodomain is a collection of proteins localized within a specialized, nanoscale structural environment, which can serve as the functional unit of macroscopic physiologic processes. We are beginning to recognize the key roles of cardiomyocyte nanodomains in essential processes of cardiac physiology such as electrical impulse propagation and excitation–contraction coupling (ECC). There is growing appreciation of nanodomain dysfunction, i.e., nanopathy, as a mechanistic driver of life-threatening arrhythmias in a variety of pathologies. Here, we offer an overview of current research on the role of nanodomains in cardiac physiology with particular emphasis on: (1) sodium channel-rich nanodomains within the intercalated disk that participate in cell-to-cell electrical coupling and (2) dyadic nanodomains located along transverse tubules that participate in ECC. The beat to beat function of cardiomyocytes involves three phases: the action potential, the calcium transient, and mechanical contraction/relaxation. In all these phases, cell-wide function results from the aggregation of the stochastic function of individual proteins. While it has long been known that proteins that exist in close proximity influence each other’s function, it is increasingly appreciated that there exist nanoscale structures that act as functional units of cardiac biophysical phenomena. Termed nanodomains, these structures are collections of proteins, localized within specialized nanoscale structural environments. The nano-environments enable the generation of localized electrical and/or chemical gradients, thereby conferring unique functional properties to these units. Thus, the function of a nanodomain is determined by its protein constituents as well as their local structural environment, adding an additional layer of complexity to cardiac biology and biophysics. However, with the emergence of experimental techniques that allow direct investigation of structure and function at the nanoscale, our understanding of cardiac physiology and pathophysiology at these scales is rapidly advancing. Here, we will discuss the structure and functions of multiple cardiomyocyte nanodomains, and novel strategies that target them for the treatment of cardiac arrhythmias.
Collapse
Affiliation(s)
- Przemysław B Radwański
- Bob and Corinne Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States.,Division of Pharmacy Practice and Science, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Christopher N Johnson
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Vanderbilt Center for Arrhythmia Research and Therapeutics, Nashville, TN, United States
| | - Sándor Györke
- Bob and Corinne Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Rengasayee Veeraraghavan
- Bob and Corinne Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States.,Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
10
|
Appukuttan S, Brain KL, Manchanda R. Modeling extracellular fields for a three-dimensional network of cells using NEURON. J Neurosci Methods 2017; 290:27-38. [DOI: 10.1016/j.jneumeth.2017.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 07/07/2017] [Accepted: 07/09/2017] [Indexed: 10/19/2022]
|
11
|
Veeraraghavan R, Lin J, Keener JP, Gourdie R, Poelzing S. Potassium channels in the Cx43 gap junction perinexus modulate ephaptic coupling: an experimental and modeling study. Pflugers Arch 2016; 468:1651-61. [PMID: 27510622 DOI: 10.1007/s00424-016-1861-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/27/2016] [Accepted: 07/25/2016] [Indexed: 12/01/2022]
Abstract
It was recently demonstrated that cardiac sodium channels (Nav1.5) localized at the perinexus, an intercalated disc (ID) nanodomain associated with gap junctions (GJ), may contribute to electrical coupling between cardiac myocytes via an ephaptic mechanism. Impairment of ephaptic coupling by acute interstitial edema (AIE)-induced swelling of the perinexus was associated with arrhythmogenic, anisotropic conduction slowing. Given that Kir2.1 has also recently been reported to localize at intercalated discs, we hypothesized that Kir2.1 channels may reside within the perinexus and that inhibiting them may mitigate arrhythmogenic conduction slowing observed during AIE. Using gated stimulated emission depletion (gSTED) and stochastic optical reconstruction microscopy (STORM) super-resolution microscopy, we indeed find that a significant proportion of Kir2.1 channels resides within the perinexus. Moreover, whereas Nav1.5 inhibition during AIE exacerbated arrhythmogenic conduction slowing, inhibiting Kir2.1 channels during AIE preferentially increased transverse conduction velocity-decreasing anisotropy and ameliorating arrhythmia risk compared to AIE alone. Comparison of our results with a nanodomain computer model identified enrichment of both Nav1.5 and Kir2.1 at intercalated discs as key factors underlying the experimental observations. We demonstrate that Kir2.1 channels are localized within the perinexus alongside Nav1.5 channels. Further, targeting Kir2.1 modulates intercellular coupling between cardiac myocytes, anisotropy of conduction, and arrhythmia propensity in a manner consistent with a role for ephaptic coupling in cardiac conduction. For over half a century, electrical excitation in the heart has been thought to occur exclusively via gap junction-mediated ionic current flow between cells. Further, excitation was thought to depend almost exclusively on sodium channels with potassium channels being involved mainly in returning the cell to rest. Here, we demonstrate that sodium and potassium channels co-reside within nanoscale domains at cell-to-cell contact sites. Experimental and computer modeling results suggest a role for these channels in electrical coupling between cardiac muscle cells via an ephaptic mechanism working in tandem with gap junctions. This new insight into the mechanism of cardiac electrical excitation could pave the way for novel therapies against cardiac rhythm disturbances.
Collapse
Affiliation(s)
- Rengasayee Veeraraghavan
- Virginia Tech Carilion Research Institute, and Center for Heart and Regenerative Medicine, Virginia Polytechnic University, 2 Riverside Circle, Roanoke, VA, 24016, USA.
| | - Joyce Lin
- Department of Mathematics, California Polytechnic State University, San Luis Obispo, CA, USA
| | - James P Keener
- Department of Mathematics, University of Utah, 155 South 1400 East, Salt Lake City, UT, 84112, USA
| | - Robert Gourdie
- Virginia Tech Carilion Research Institute, and Center for Heart and Regenerative Medicine, Virginia Polytechnic University, 2 Riverside Circle, Roanoke, VA, 24016, USA.
- School of Biomedical Engineering and Sciences, Virginia Polytechnic University, Blacksburg, VA, USA.
| | - Steven Poelzing
- Virginia Tech Carilion Research Institute, and Center for Heart and Regenerative Medicine, Virginia Polytechnic University, 2 Riverside Circle, Roanoke, VA, 24016, USA.
- School of Biomedical Engineering and Sciences, Virginia Polytechnic University, Blacksburg, VA, USA.
| |
Collapse
|
12
|
Tse G, Lai ETH, Yeo JM, Tse V, Wong SH. Mechanisms of Electrical Activation and Conduction in the Gastrointestinal System: Lessons from Cardiac Electrophysiology. Front Physiol 2016; 7:182. [PMID: 27303305 PMCID: PMC4885840 DOI: 10.3389/fphys.2016.00182] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/06/2016] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal (GI) tract is an electrically excitable organ system containing multiple cell types, which coordinate electrical activity propagating through this tract. Disruption in its normal electrophysiology is observed in a number of GI motility disorders. However, this is not well characterized and the field of GI electrophysiology is much less developed compared to the cardiac field. The aim of this article is to use the established knowledge of cardiac electrophysiology to shed light on the mechanisms of electrical activation and propagation along the GI tract, and how abnormalities in these processes lead to motility disorders and suggest better treatment options based on this improved understanding. In the first part of the article, the ionic contributions to the generation of GI slow wave and the cardiac action potential (AP) are reviewed. Propagation of these electrical signals can be described by the core conductor theory in both systems. However, specifically for the GI tract, the following unique properties are observed: changes in slow wave frequency along its length, periods of quiescence, synchronization in short distances and desynchronization over long distances. These are best described by a coupled oscillator theory. Other differences include the diminished role of gap junctions in mediating this conduction in the GI tract compared to the heart. The electrophysiology of conditions such as gastroesophageal reflux disease and gastroparesis, and functional problems such as irritable bowel syndrome are discussed in detail, with reference to ion channel abnormalities and potential therapeutic targets. A deeper understanding of the molecular basis and physiological mechanisms underlying GI motility disorders will enable the development of better diagnostic and therapeutic tools and the advancement of this field.
Collapse
Affiliation(s)
- Gary Tse
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, University of Hong KongHong Kong, China
| | - Eric Tsz Him Lai
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, University of Hong KongHong Kong, China
| | - Jie Ming Yeo
- School of Medicine, Imperial College LondonLondon, UK
| | - Vivian Tse
- Department of Physiology, McGill UniversityMontreal, QC, Canada
| | - Sunny Hei Wong
- Department of Medicine and Therapeutics, Institute of Digestive Disease, LKS Institute of Health Sciences, Chinese University of Hong KongHong Kong, China
| |
Collapse
|
13
|
Wei N, Mori Y, Tolkacheva EG. The dual effect of ephaptic coupling on cardiac conduction with heterogeneous expression of connexin 43. J Theor Biol 2016; 397:103-14. [PMID: 26968493 DOI: 10.1016/j.jtbi.2016.02.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/25/2016] [Accepted: 02/19/2016] [Indexed: 11/30/2022]
Abstract
Decreased and heterogeneous expression of connexin 43 (Cx43) are common features in animal heart failure models. Ephpatic coupling, which relies on the presence of junctional cleft space between the ends of adjacent cells, has been suggested to play a more active role in mediating intercellular electrical communication when gap junctions are reduced. To better understand the interplay of Cx43 expression and ephaptic coupling on cardiac conduction during heart failure, we performed numerical simulations on our model when Cx43 expression is reduced and heterogeneous. Under severely reduced Cx43 expression, we identified three new phenomena in the presence of ephaptic coupling: alternating conduction, in which ephaptic and gap junction-mediated mechanisms alternate; instability of planar fronts; and small amplitude action potential (SAP), which has a smaller potential amplitude than the normal action potential. In the presence of heterogeneous Cx43 expression, ephaptic coupling can either prevent or promote conduction block (CB) depending on the Cx43 knockout (Cx43KO) content. When Cx43KO content is relatively high, ephaptic coupling reduces the probabilities of CB. However, ephaptic coupling promotes CB when Cx43KO and wild type cells are mixed in roughly equal proportion, which can be attributed to an increase in current-to-load mismatch.
Collapse
Affiliation(s)
- Ning Wei
- School of Mathematics, University of Minnesota, 206 Church St. SE, Minneapolis, MN 55455, United States
| | - Yoichiro Mori
- School of Mathematics, University of Minnesota, 206 Church St. SE, Minneapolis, MN 55455, United States
| | - Elena G Tolkacheva
- Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE, 6-128 Nils Hasselmo Hall, Minneapolis, MN 55455, United States.
| |
Collapse
|
14
|
Entz M, George SA, Zeitz MJ, Raisch T, Smyth JW, Poelzing S. Heart Rate and Extracellular Sodium and Potassium Modulation of Gap Junction Mediated Conduction in Guinea Pigs. Front Physiol 2016; 7:16. [PMID: 26869934 PMCID: PMC4735342 DOI: 10.3389/fphys.2016.00016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/12/2016] [Indexed: 11/29/2022] Open
Abstract
Background: Recent studies suggested that cardiac conduction in murine hearts with narrow perinexi and 50% reduced connexin43 (Cx43) expression is more sensitive to relatively physiological changes of extracellular potassium ([K+]o) and sodium ([Na+]o). Purpose: Determine whether similar [K+]o and [Na+]o changes alter conduction velocity (CV) sensitivity to pharmacologic gap junction (GJ) uncoupling in guinea pigs. Methods: [K+]o and [Na+]o were varied in Langendorff perfused guinea pig ventricles (Solution A: [K+]o = 4.56 and [Na+]o = 153.3 mM. Solution B: [K+]o = 6.95 and [Na+]o = 145.5 mM). Gap junctions were inhibited with carbenoxolone (CBX) (15 and 30 μM). Epicardial CV was quantified by optical mapping. Perinexal width was measured with transmission electron microscopy. Total and phosphorylated Cx43 were evaluated by western blotting. Results: Solution composition did not alter CV under control conditions or with 15μM CBX. Decreasing the basic cycle length (BCL) of pacing from 300 to 160 ms decreased CV uniformly with both solutions. At 30 μM CBX, a change in solution did not alter CV either longitudinally or transversely at BCL = 300 ms. However, reducing BCL to 160 ms caused CV to decrease more in hearts perfused with Solution B than A. Solution composition did not alter perinexal width, nor did it change total or phosphorylated serine 368 Cx43 expression. These data suggest that the solution dependent CV changes were independent of altered perinexal width or GJ coupling. Action potential duration was always shorter in hearts perfused with Solution B than A, independent of pacing rate and/or CBX concentration. Conclusions: Increased heart rate and GJ uncoupling can unmask small CV differences caused by changing [K+]o and [Na+]o. These data suggest that modulating extracellular ionic composition may be a novel anti-arrhythmic target in diseases with abnormal GJ coupling, particularly when heart rate cannot be controlled.
Collapse
Affiliation(s)
- Michael Entz
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA; Virginia Tech Carilion Research Institute and Center for Heart and Regenerative Medicine, Virginia Polytechnic Institute and State UniversityRoanoke, VA, USA
| | - Sharon A George
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA; Virginia Tech Carilion Research Institute and Center for Heart and Regenerative Medicine, Virginia Polytechnic Institute and State UniversityRoanoke, VA, USA
| | - Michael J Zeitz
- Virginia Tech Carilion Research Institute and Center for Heart and Regenerative Medicine, Virginia Polytechnic Institute and State University Roanoke, VA, USA
| | - Tristan Raisch
- Virginia Tech Carilion Research Institute and Center for Heart and Regenerative Medicine, Virginia Polytechnic Institute and State UniversityRoanoke, VA, USA; Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA
| | - James W Smyth
- Virginia Tech Carilion Research Institute and Center for Heart and Regenerative Medicine, Virginia Polytechnic Institute and State UniversityRoanoke, VA, USA; Department of Biological Sciences, College of Science, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA
| | - Steven Poelzing
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA; Virginia Tech Carilion Research Institute and Center for Heart and Regenerative Medicine, Virginia Polytechnic Institute and State UniversityRoanoke, VA, USA; Department of Biological Sciences, College of Science, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA
| |
Collapse
|
15
|
Veeraraghavan R, Lin J, Hoeker GS, Keener JP, Gourdie RG, Poelzing S. Sodium channels in the Cx43 gap junction perinexus may constitute a cardiac ephapse: an experimental and modeling study. Pflugers Arch 2015; 467:2093-105. [PMID: 25578859 PMCID: PMC4500747 DOI: 10.1007/s00424-014-1675-z] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/26/2014] [Accepted: 12/15/2014] [Indexed: 11/30/2022]
Abstract
It has long been held that electrical excitation spreads from cell-to-cell in the heart via low resistance gap junctions (GJ). However, it has also been proposed that myocytes could interact by non-GJ-mediated “ephaptic” mechanisms, facilitating propagation of action potentials in tandem with direct GJ-mediated coupling. We sought evidence that such mechanisms contribute to cardiac conduction. Using super-resolution microscopy, we demonstrate that Nav1.5 is localized within 200 nm of the GJ plaque (a region termed the perinexus). Electron microscopy revealed close apposition of adjacent cell membranes within perinexi suggesting that perinexal sodium channels could function as an ephapse, enabling ephaptic cell-to-cell transfer of electrical excitation. Acute interstitial edema (AIE) increased intermembrane distance at the perinexus and was associated with preferential transverse conduction slowing and increased spontaneous arrhythmia incidence. Inhibiting sodium channels with 0.5 μM flecainide uniformly slowed conduction, but sodium channel inhibition during AIE slowed conduction anisotropically and increased arrhythmia incidence more than AIE alone. Sodium channel inhibition during GJ uncoupling with 25 μM carbenoxolone slowed conduction anisotropically and was also highly proarrhythmic. A computational model of discretized extracellular microdomains (including ephaptic coupling) revealed that conduction trends associated with altered perinexal width, sodium channel conductance, and GJ coupling can be predicted when sodium channel density in the intercalated disk is relatively high. We provide evidence that cardiac conduction depends on a mathematically predicted ephaptic mode of coupling as well as GJ coupling. These data suggest opportunities for novel anti-arrhythmic therapies targeting noncanonical conduction pathways in the heart.
Collapse
Affiliation(s)
- Rengasayee Veeraraghavan
- Virginia Tech Carilion Research Institute, and Center for Heart and Regenerative Medicine, Virginia Polytechnic University, Roanoke, VA, 24016, USA
| | - Joyce Lin
- Department of Mathematics, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Gregory S Hoeker
- Virginia Tech Carilion Research Institute, and Center for Heart and Regenerative Medicine, Virginia Polytechnic University, Roanoke, VA, 24016, USA
| | - James P Keener
- Department of Mathematics, University of Utah, 155 South 1400 East, Salt Lake City, UT, 84112, USA.
| | - Robert G Gourdie
- Virginia Tech Carilion Research Institute, and Center for Heart and Regenerative Medicine, Virginia Polytechnic University, Roanoke, VA, 24016, USA. .,School of Biomedical Engineering and Sciences, Virginia Polytechnic University, Blacksburg, VA, USA.
| | - Steven Poelzing
- Virginia Tech Carilion Research Institute, and Center for Heart and Regenerative Medicine, Virginia Polytechnic University, Roanoke, VA, 24016, USA. .,School of Biomedical Engineering and Sciences, Virginia Polytechnic University, Blacksburg, VA, USA.
| |
Collapse
|
16
|
Bueno-Orovio A, Kay D, Grau V, Rodriguez B, Burrage K. Fractional diffusion models of cardiac electrical propagation: role of structural heterogeneity in dispersion of repolarization. J R Soc Interface 2015; 11:20140352. [PMID: 24920109 PMCID: PMC4208367 DOI: 10.1098/rsif.2014.0352] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Impulse propagation in biological tissues is known to be modulated by structural heterogeneity. In cardiac muscle, improved understanding on how this heterogeneity influences electrical spread is key to advancing our interpretation of dispersion of repolarization. We propose fractional diffusion models as a novel mathematical description of structurally heterogeneous excitable media, as a means of representing the modulation of the total electric field by the secondary electrical sources associated with tissue inhomogeneities. Our results, analysed against in vivo human recordings and experimental data of different animal species, indicate that structural heterogeneity underlies relevant characteristics of cardiac electrical propagation at tissue level. These include conduction effects on action potential (AP) morphology, the shortening of AP duration along the activation pathway and the progressive modulation by premature beats of spatial patterns of dispersion of repolarization. The proposed approach may also have important implications in other research fields involving excitable complex media.
Collapse
Affiliation(s)
- Alfonso Bueno-Orovio
- Oxford Centre for Collaborative Applied Mathematics, University of Oxford, Oxford OX1 3LB, UK Department of Computer Science, University of Oxford, Oxford OX1 3QD, UK
| | - David Kay
- Department of Computer Science, University of Oxford, Oxford OX1 3QD, UK
| | - Vicente Grau
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7DQ, UK
| | - Blanca Rodriguez
- Department of Computer Science, University of Oxford, Oxford OX1 3QD, UK
| | - Kevin Burrage
- Department of Computer Science, University of Oxford, Oxford OX1 3QD, UK School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| |
Collapse
|
17
|
Microdomain effects on transverse cardiac propagation. Biophys J 2014; 106:925-31. [PMID: 24559995 DOI: 10.1016/j.bpj.2013.11.1117] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 10/04/2013] [Accepted: 11/15/2013] [Indexed: 11/23/2022] Open
Abstract
The effect of gap junctional coupling, sodium ion channel distribution, and extracellular conductivity on transverse conduction in cardiac tissue is explored using a microdomain model that incorporates aspects of the inhomogeneous cellular structure. The propagation velocities found in our model are compared to those in the classic bidomain model and indicate a strong ephaptic microdomain contribution to conduction depending on the parameter regime. We show that ephaptic effects can be quite significant in the junctional spaces between cells, and that the cell activation sequence is modified substantially by these effects. Further, we find that transverse propagation can be maintained by ephaptic effects, even in the absence of gap junctional coupling. The mechanism by which this occurs is found to be cablelike in that the junctional regions act like inverted cables. Our results provide insight into several recent experimental studies that indirectly indicate a mode of action potential propagation that does not rely exclusively on gap junctions.
Collapse
|
18
|
Veeraraghavan R, Poelzing S, Gourdie RG. Novel ligands for zipping and unzipping the intercalated disk: today's experimental tools, tomorrow's therapies? Cardiovasc Res 2014; 104:229-30. [PMID: 25280893 DOI: 10.1093/cvr/cvu216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Rengasayee Veeraraghavan
- Virginia Tech Carilion Research Institute, Center for Heart and Regenerative Medicine, Virginia Polytechnic University, Roanoke, VA, USA
| | - Steven Poelzing
- Virginia Tech Carilion Research Institute, Center for Heart and Regenerative Medicine, Virginia Polytechnic University, Roanoke, VA, USA School of Biomedical Engineering and Sciences, Virginia Polytechnic University, Blacksburg, VA, USA
| | - Robert G Gourdie
- Virginia Tech Carilion Research Institute, Center for Heart and Regenerative Medicine, Virginia Polytechnic University, Roanoke, VA, USA School of Biomedical Engineering and Sciences, Virginia Polytechnic University, Blacksburg, VA, USA Department of Emergency Medicine, Carilion Clinic. Roanoke, VA, USA
| |
Collapse
|
19
|
Blair PJ, Rhee PL, Sanders KM, Ward SM. The significance of interstitial cells in neurogastroenterology. J Neurogastroenterol Motil 2014; 20:294-317. [PMID: 24948131 PMCID: PMC4102150 DOI: 10.5056/jnm14060] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 06/06/2014] [Accepted: 06/07/2014] [Indexed: 12/21/2022] Open
Abstract
Smooth muscle layers of the gastrointestinal tract consist of a heterogeneous population of cells that include enteric neurons, several classes of interstitial cells of mesenchymal origin, a variety of immune cells and smooth muscle cells (SMCs). Over the last number of years the complexity of the interactions between these cell types has begun to emerge. For example, interstitial cells, consisting of both interstitial cells of Cajal (ICC) and platelet-derived growth factor receptor alpha-positive (PDGFRα(+)) cells generate pacemaker activity throughout the gastrointestinal (GI) tract and also transduce enteric motor nerve signals and mechanosensitivity to adjacent SMCs. ICC and PDGFRα(+) cells are electrically coupled to SMCs possibly via gap junctions forming a multicellular functional syncytium termed the SIP syncytium. Cells that make up the SIP syncytium are highly specialized containing unique receptors, ion channels and intracellular signaling pathways that regulate the excitability of GI muscles. The unique role of these cells in coordinating GI motility is evident by the altered motility patterns in animal models where interstitial cell networks are disrupted. Although considerable advances have been made in recent years on our understanding of the roles of these cells within the SIP syncytium, the full physiological functions of these cells and the consequences of their disruption in GI muscles have not been clearly defined. This review gives a synopsis of the history of interstitial cell discovery and highlights recent advances in structural, molecular expression and functional roles of these cells in the GI tract.
Collapse
Affiliation(s)
- Peter J Blair
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA; and
| | - Poong-Lyul Rhee
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA; and
| | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA; and
| |
Collapse
|
20
|
Blair PJ, Rhee PL, Sanders KM, Ward SM. The significance of interstitial cells in neurogastroenterology. J Neurogastroenterol Motil 2014. [PMID: 24948131 DOI: 10.5056/jnm140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Smooth muscle layers of the gastrointestinal tract consist of a heterogeneous population of cells that include enteric neurons, several classes of interstitial cells of mesenchymal origin, a variety of immune cells and smooth muscle cells (SMCs). Over the last number of years the complexity of the interactions between these cell types has begun to emerge. For example, interstitial cells, consisting of both interstitial cells of Cajal (ICC) and platelet-derived growth factor receptor alpha-positive (PDGFRα(+)) cells generate pacemaker activity throughout the gastrointestinal (GI) tract and also transduce enteric motor nerve signals and mechanosensitivity to adjacent SMCs. ICC and PDGFRα(+) cells are electrically coupled to SMCs possibly via gap junctions forming a multicellular functional syncytium termed the SIP syncytium. Cells that make up the SIP syncytium are highly specialized containing unique receptors, ion channels and intracellular signaling pathways that regulate the excitability of GI muscles. The unique role of these cells in coordinating GI motility is evident by the altered motility patterns in animal models where interstitial cell networks are disrupted. Although considerable advances have been made in recent years on our understanding of the roles of these cells within the SIP syncytium, the full physiological functions of these cells and the consequences of their disruption in GI muscles have not been clearly defined. This review gives a synopsis of the history of interstitial cell discovery and highlights recent advances in structural, molecular expression and functional roles of these cells in the GI tract.
Collapse
Affiliation(s)
- Peter J Blair
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Poong-Lyul Rhee
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| |
Collapse
|
21
|
Veeraraghavan R, Poelzing S, Gourdie RG. Intercellular electrical communication in the heart: a new, active role for the intercalated disk. ACTA ACUST UNITED AC 2014; 21:161-7. [PMID: 24735129 DOI: 10.3109/15419061.2014.905932] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cardiac conduction is the propagation of electrical excitation through the heart and is responsible for triggering individual myocytes to contract in synchrony. Canonically, this process has been thought to occur electrotonically, by means of direct flow of ions from cell to cell. The intercalated disk (ID), the site of contact between adjacent myocytes, has been viewed as a structure composed of mechanical junctions that stabilize the apposition of cell membranes and gap junctions which constitute low resistance pathways between cells. However, emerging evidence suggests a more active role for structures within the ID in mediating intercellular electrical communication by means of non-canonical ephaptic mechanisms. This review will discuss the role of the ID in the context of the canonical, electrotonic view of conduction and highlight new, emerging possibilities of its playing a more active role in ephaptic coupling between cardiac myocytes.
Collapse
Affiliation(s)
- Rengasayee Veeraraghavan
- Center for Cardiovascular and Regenerative Biology, Virginia Tech Carilion Research Institute , Roanoke, VA , USA
| | | | | |
Collapse
|
22
|
Akbari A, Moradi K, Hadaeghi F, Gharibzadeh S, Emkanjoo Z. Is "capacitive coupling" purely excitatory in the cardiac tissue? Front Physiol 2014; 5:77. [PMID: 24723890 PMCID: PMC3971186 DOI: 10.3389/fphys.2014.00077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 02/07/2014] [Indexed: 12/03/2022] Open
Affiliation(s)
- Alireza Akbari
- Department of Cardiac Electrophysiology, Cardiac Electrophysiology Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences Tehran, Iran
| | - Keivan Moradi
- Department of Bioelectricity, Neural and Cognitive Sciences Laboratory, Biomedical Engineering Faculty, Amirkabir University of Technology Tehran, Iran
| | - Fatemeh Hadaeghi
- Department of Bioelectricity, Neural and Cognitive Sciences Laboratory, Biomedical Engineering Faculty, Amirkabir University of Technology Tehran, Iran
| | - Shahriar Gharibzadeh
- Department of Bioelectricity, Neural and Cognitive Sciences Laboratory, Biomedical Engineering Faculty, Amirkabir University of Technology Tehran, Iran
| | - Zahra Emkanjoo
- Department of Cardiac Electrophysiology, Cardiac Electrophysiology Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences Tehran, Iran
| |
Collapse
|
23
|
Veeraraghavan R, Poelzing S, Gourdie RG. Old cogs, new tricks: a scaffolding role for connexin43 and a junctional role for sodium channels? FEBS Lett 2014; 588:1244-8. [PMID: 24486012 DOI: 10.1016/j.febslet.2014.01.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 01/17/2014] [Accepted: 01/20/2014] [Indexed: 01/09/2023]
Abstract
Cardiac conduction is the process by which electrical excitation is communicated from cell to cell within the heart, triggering synchronous contraction of the myocardium. The role of conduction defects in precipitating life-threatening arrhythmias in various disease states has spurred scientific interest in the phenomenon. While the understanding of conduction has evolved greatly over the last century, the process has largely been thought to occur via movement of charge between cells via gap junctions. However, it has long been hypothesized that electrical coupling between cardiac myocytes could also occur ephaptically, without direct transfer of ions between cells. This review will focus on recent insights into cardiac myocyte intercalated disk ultrastructure and their implications for conduction research, particularly the ephaptic coupling hypothesis.
Collapse
Affiliation(s)
- Rengasayee Veeraraghavan
- Center for Cardiovascular and Regenerative Biology, Virginia Tech Carilion Research Institute, 2 Riverside Circle, Roanoke, VA 24016, USA.
| | - Steven Poelzing
- Center for Cardiovascular and Regenerative Biology, Virginia Tech Carilion Research Institute, 2 Riverside Circle, Roanoke, VA 24016, USA
| | - Robert G Gourdie
- Center for Cardiovascular and Regenerative Biology, Virginia Tech Carilion Research Institute, 2 Riverside Circle, Roanoke, VA 24016, USA
| |
Collapse
|
24
|
Veeraraghavan R, Gourdie RG, Poelzing S. Mechanisms of cardiac conduction: a history of revisions. Am J Physiol Heart Circ Physiol 2014; 306:H619-27. [PMID: 24414064 DOI: 10.1152/ajpheart.00760.2013] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac conduction is the process by which electrical excitation spreads through the heart, triggering individual myocytes to contract in synchrony. Defects in conduction disrupt synchronous activation and are associated with life-threatening arrhythmias in many pathologies. Therefore, it is scarcely surprising that this phenomenon continues to be the subject of active scientific inquiry. Here we provide a brief review of how the conceptual understanding of conduction has evolved over the last century and highlight recent, potentially paradigm-shifting developments.
Collapse
Affiliation(s)
- Rengasayee Veeraraghavan
- Virginia Tech Carilion Research Institute, and Center for Heart and Regenerative Medicine, Virginia Polytechnic University, Roanoke, Virginia; and
| | | | | |
Collapse
|
25
|
Abstract
While it is widely believed that conduction in cardiac tissue is regulated by gap junctions, recent experimental evidence suggests that the extracellular space may play a significant role in action potential propagation. Cardiac tissue with low gap junctional coupling still exhibits conduction, with conflicting degrees of slowing that may be due to variations in the extracellular space. Inhomogeneities in the extracellular space caused by the complex cellular structure in cardiac tissue can lead to ephaptic, or field effect, coupling. Here, we present data from simulations of a cylindrical strand of cells in which we see the dramatic effect highly resistant extracellular spaces have on propagation velocity. We find that ephaptic effects occur in all areas of small extracellular spaces and are not restricted to the junctional cleft between cells. This previously unrecognized type of field coupling, which we call lateral coupling, can allow conduction in the absence of gap junctions. We compare our results with the classically used cable theory, demonstrating the quantitative difference in propagation velocity arising from the cellular geometry. Ephaptic effects are shown to be highly dependent upon parameter values, frequently enhancing, but sometimes decreasing propagation speed. Our mathematical analysis incorporates the inhomogeneities in the extracellular microdomains that cannot be directly measured by experimental techniques and will aid in optimizing cardiac treatments that require manipulation of the cellular geometry and understanding heart functionality.
Collapse
Affiliation(s)
- Joyce Lin
- Department of Mathematics, University of Utah, Salt Lake City, UT 84112, USA.
| | | |
Collapse
|
26
|
Smaill BH, Zhao J, Trew ML. Three-dimensional impulse propagation in myocardium: arrhythmogenic mechanisms at the tissue level. Circ Res 2013; 112:834-48. [PMID: 23449546 DOI: 10.1161/circresaha.111.300157] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Impulse propagation in the heart depends on the excitability of individual cardiomyocytes, impulse transmission between adjacent myocytes, and the 3-dimensional arrangement of those cells. Here, we review the role of each of these factors in normal and aberrant cardiac electric activation, with particular emphasis on the effects of 3-dimensional myocyte architecture at the tissue scale. The analysis draws on findings from in vivo and in vitro experiments, as well as biophysically based computer models that have been used to integrate and interpret these experimental data. It indicates that discontinuous arrangement of myocytes and extracellular connective tissue at the tissue scale can give rise to current source-to-sink mismatch, spatiotemporal distribution of refractoriness, and rate-sensitive electric instability, which contribute to the initiation and maintenance of reentrant cardiac arrhythmia. This exacerbates the risk of rhythm disturbance associated with heart disease. We conclude that structure-based, multiscale computer models that incorporate accurate information about local cellular electric activity provide a powerful platform for investigating the basis of reentrant cardiac arrhythmia. However, it is important that these models capture key features of structure and related electric function at the tissue scale.
Collapse
Affiliation(s)
- Bruce H Smaill
- Auckland Bioengineering Institute, University of Auckland, Auckland Mail Centre, Auckland 1142, New Zealand.
| | | | | |
Collapse
|
27
|
The perinexus: sign-post on the path to a new model of cardiac conduction? Trends Cardiovasc Med 2013; 23:222-8. [PMID: 23490883 DOI: 10.1016/j.tcm.2012.12.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 12/19/2012] [Accepted: 12/20/2012] [Indexed: 11/23/2022]
Abstract
The perinexus is a recently identified microdomain surrounding the cardiac gap junction that contains elevated levels of connexin43 and the sodium channel protein, Nav1.5. Ongoing work has established a role for the perinexus in regulating gap junction aggregation. However, recent studies have raised the possibility of a perinexal contribution at the gap junction cleft to intercellular propagation of action potential via non-electrotonic mechanisms. The latter possibility could modify the current theoretical understanding of cardiac conduction, help explain paradoxical experimental findings, and open up entirely new avenues for antiarrhythmic therapy. We review recent structural insights into the perinexus and its potential novel functional role in cardiac-excitation spread, highlighting presently unanswered questions, the evidence for ephaptic conduction in the heart and how structural insights may help complete this picture.
Collapse
|
28
|
Tsumoto K, Ashihara T, Haraguchi R, Nakazawa K, Kurachi Y. Roles of subcellular Na+ channel distributions in the mechanism of cardiac conduction. Biophys J 2011; 100:554-563. [PMID: 21281569 DOI: 10.1016/j.bpj.2010.12.3716] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 12/14/2010] [Accepted: 12/20/2010] [Indexed: 01/08/2023] Open
Abstract
The gap junction and voltage-gated Na(+) channel play an important role in the action potential propagation. The purpose of this study was to elucidate the roles of subcellular Na(+) channel distribution in action potential propagation. To achieve this, we constructed the myocardial strand model, which can calculate the current via intercellular cleft (electric-field mechanism) together with gap-junctional current (gap-junctional mechanism). We conducted simulations of action potential propagation in a myofiber model where cardiomyocytes were electrically coupled with gap junctions alone or with both the gap junctions and the electric field mechanism. Then we found that the action potential propagation was greatly affected by the subcellular distribution of Na(+) channels in the presence of the electric field mechanism. The presence of Na(+) channels in the lateral membrane was important to ensure the stability of propagation under conditions of reduced gap-junctional coupling. In the poorly coupled tissue with sufficient Na(+) channels in the lateral membrane, the slowing of action potential propagation resulted from the periodic and intermittent dysfunction of the electric field mechanism. The changes in the subcellular Na(+) channel distribution might be in part responsible for the homeostatic excitation propagation in the diseased heart.
Collapse
Affiliation(s)
- Kunichika Tsumoto
- The Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka, Japan.
| | - Takashi Ashihara
- Department of Cardiovascular and Respiratory Medicine, Heart Rhythm Center, Shiga University of Medical Science, Shiga, Japan
| | - Ryo Haraguchi
- Laboratory of Biomedical Science and Information Management, Research Institute, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Kazuo Nakazawa
- Laboratory of Biomedical Science and Information Management, Research Institute, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Yoshihisa Kurachi
- Division of Molecular and Cellular Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan; The Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka, Japan.
| |
Collapse
|
29
|
Lin J, Keener JP. Modeling electrical activity of myocardial cells incorporating the effects of ephaptic coupling. Proc Natl Acad Sci U S A 2010; 107:20935-40. [PMID: 21078961 PMCID: PMC3000303 DOI: 10.1073/pnas.1010154107] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Existing models of electrical activity in myocardial tissue are unable to easily capture the effects of ephaptic coupling. Homogenized models do not account for cellular geometry, while detailed spatial models are too complicated to simulate in three dimensions. Here we propose a unique model that accurately captures the geometric effects while being computationally efficient. We use this model to provide an initial study of the effects of changes in extracellular geometry, gap junctional coupling, and sodium ion channel distribution on propagation velocity in a single 1D strand of cells. In agreement with previous studies, we find that ephaptic coupling increases propagation velocity at low gap junctional conductivity while it decreases propagation at higher conductivities. We also find that conduction velocity is relatively insensitive to gap junctional coupling when sodium ion channels are located entirely on the cell ends and cleft space is small. The numerical efficiency of this model, verified by comparison with more detailed simulations, allows a thorough study in parameter variation and shows that cellular structure and geometry has a nontrivial impact on propagation velocity. This model can be relatively easily extended to higher dimensions while maintaining numerical efficiency and incorporating ephaptic effects through modeling of complex, irregular cellular geometry.
Collapse
Affiliation(s)
- Joyce Lin
- Department of Mathematics, University of Utah, Salt Lake City, UT 84112
| | - James P. Keener
- Department of Mathematics, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
30
|
Hand PE, Peskin CS. Homogenization of an electrophysiological model for a strand of cardiac myocytes with gap-junctional and electric-field coupling. Bull Math Biol 2010; 72:1408-24. [PMID: 20049544 DOI: 10.1007/s11538-009-9499-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 12/10/2009] [Indexed: 11/24/2022]
Abstract
We derive a homogenized description of the electrical communication along a single strand of myocytes in the presence of gap-junctional and electric-field coupling. In the model, cells are electrically coupled through narrow clefts that are resistively connected to extracellular space. Cells are also coupled directly through gap junctions. We perform numerical simulations of this full model and its homogenization. We observe that the full and homogenized descriptions agree when gap-junctional coupling is at physiologically normal levels. When gap-junctional coupling is low, the two descriptions disagree. In this case, only the full model captures the behavior that the ephaptic mechanism can speed up action potential propagation. A strength of our homogenized description is that it is a macroscale model that can account for the preferential localization of Na+ channels at the ends of cells.
Collapse
Affiliation(s)
- Paul E Hand
- Courant Institute of Mathematical Sciences, New York University, New York, USA.
| | | |
Collapse
|
31
|
Ephaptic coupling of cardiac cells through the junctional electric potential. J Math Biol 2008; 57:265-84. [PMID: 18265985 DOI: 10.1007/s00285-008-0157-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Revised: 12/14/2007] [Indexed: 10/22/2022]
Abstract
Cardiac cells are electrically coupled through gap junction channels, which allow ionic current to spread intercellularly from one cell to the next. In addition, it is possible that cardiac cells are coupled through the electric potential in the junctional cleft space between neighboring cells. We develop and analyze a mathematical model of two cells coupled through a common junctional cleft potential. Consistent with more detailed models, we find that the coupling mechanism is highly parameter dependent. Analysis of our model reveals that there are two time scales involved, and the dynamics of the slow subsystem provide new mathematical insight into how the coupling mechanism works. We find that there are two distinct types of propagation failure and we are able to characterize parameter space into regions of propagation success and the two different types of propagation failure.
Collapse
|
32
|
Daniel EE, Yazbi AE, Mannarino M, Galante G, Boddy G, Livergant J, Oskouei TE. Do gap junctions play a role in nerve transmissions as well as pacing in mouse intestine? Am J Physiol Gastrointest Liver Physiol 2007; 292:G734-45. [PMID: 17122366 DOI: 10.1152/ajpgi.00428.2006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Varicosities of nitrergic and other nerves end on deep muscular plexus interstitial cells of Cajal or on CD34-positive, c-kit-negative fibroblast-like cells. Both cell types connect to outer circular muscle by gap junctions, which may transmit nerve messages to muscle. We tested the hypotheses that gap junctions transmit pacing messages from interstitial cells of Cajal of the myenteric plexus. Effects of inhibitors of gap junction conductance were studied on paced contractions and nerve transmissions in small segments of circular muscle of mouse intestine. Using electrical field stimulation parameters (50 V/cm, 5 pps, and 0.5 ms) which evoke near maximal responses to nitrergic, cholinergic, and apamin-sensitive nerve stimulation, we isolated inhibitory responses to nitrergic nerves, inhibitory responses to apamin-sensitive nerves and excitatory responses to cholinergic nerves. 18beta-Glycyrrhetinic acid (10, 30, and 100 microM), octanol (0.1, 0.3, and 1 mM) and gap peptides (300 microM of (40)Gap27, (43)Gap26, (37,43)Gap27) all failed to abolish neurotransmission. 18beta-Glycyrrhetinic acid inhibited frequencies of paced contractions, likely owing to inhibition of l-type Ca(2+) channels in smooth muscle, but octanol or gap peptides did not. 18beta-Glycyrrhetinic acid and octanol, but not gap peptides, reduced the amplitudes of spontaneous and nerve-induced contractions. These reductions paralleled reductions in contractions to exogenous carbachol. Additional experiments with gap peptides in both longitudinal and circular muscle segments after N(G)-nitro-l-arginine and TTX revealed no effects on pacing frequencies. We conclude that gap junction coupling may not be necessary for pacing or nerve transmission to the circular muscle of the mouse intestine.
Collapse
Affiliation(s)
- E E Daniel
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada.
| | | | | | | | | | | | | |
Collapse
|
33
|
Mahdavi S, Gharibzadeh S, Towhidkhah F, Rezaei-Tavirani M. The safety role of gap junctions: a new perspective on atrio-ventricular nodal reentry. Med Hypotheses 2006; 67:1253-4. [PMID: 16828982 DOI: 10.1016/j.mehy.2006.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Accepted: 05/11/2006] [Indexed: 11/30/2022]
|
34
|
Mahdavi S, Rezaei-Tavirani M, Gharibzadeh S, Towhidkhah F. Dynamic behavior of gap junctions in each cardiac cycle: a novel view on the electrical coupling of normal cardiocytes. Med Hypotheses 2006; 67:300-3. [PMID: 16563647 DOI: 10.1016/j.mehy.2006.01.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Accepted: 01/19/2006] [Indexed: 11/22/2022]
Abstract
Two main mechanisms have been suggested for the propagation of action potentials in cardiac muscle cells: (1) the free flow of local circuit current through gap junctions and (2) the effect of electrical field. Different evidences confirm each of two mechanisms. We think that gap junctions are not continuously open in a normal heart cycle; instead, they open and close intermittently. In other words, gap junction has a dynamic behavior in each cardiac cycle, managing different routes of propagation in the diverse moments of normal cycle. Gap junctions could be open in phases 0, 1, 3, 4 and close in phase 2 (plateau) of action potential. Whenever gap junction is open, conduction can be fulfilled rapidly by current flow and whenever it is closed, the electrical field will be the main route of propagation. When the prejunctional cell is in the peak of action potential(AP), gap junction is closed and the postjunctional cell should use the electrical field to be stimulated. Then, when the prejunctional cell comes to the end of AP, the gap junction opens and current will potentiate the rising phase of AP in the postjunctional cell. Moreover, this process causes accumulation of calcium in the postjunctional cell near phase 2. We believe that our hypothesis on the mechanism of cardiac action potential propagation may have exciting advantages. This novel view on gap junction dynamic behavior may be useful for better exploitation of drugs or designing new remedies in arrhythmias. We also hypothesize that in conditions as cardiac failure, in which cardiac contractility is diminished and increasing intracellular calcium concentration is needed, gap junction closing drugs may be effective. It is worth noting that future clinical studies are needed to validate these predictions.
Collapse
Affiliation(s)
- Somayeh Mahdavi
- Department of Cellular and Molecular Biology, Khatam University, Ferdous Boulevard, Sazman Barname, Tehran, Iran
| | | | | | | |
Collapse
|
35
|
Ramasamy L, Sperelakis N. Effect of transverse gap-junction channels on transverse propagation in an enlarged PSpice model of cardiac muscle. Theor Biol Med Model 2006; 3:14. [PMID: 16542447 PMCID: PMC1440307 DOI: 10.1186/1742-4682-3-14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Accepted: 03/16/2006] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND In previous PSpice modeling studies of simulated action potentials (APs) in parallel chains of cardiac muscle, it was found that transverse propagation could occur between adjacent chains in the absence of gap-junction (gj) channels, presumably by the electric field (EF) generated in the narrow interstitial space between the chains. Transverse propagation was sometimes erratic, the more distal chains firing out of order. METHODS In the present study, the propagation of complete APs was studied in a 2-dimensional network of 100 cardiac muscle cells (10 x 10 model). Various numbers of gj-channels (assumed to be 100 pS each) were inserted across the junctions between the longitudinal cells of each chain and between adjacent chains (only at the end cells of each chain). The shunt resistance produced by the gj-channels (Rgj) was varied from 100,000 M omega (0 gj-channels) to 1,000 M omega (10 channels), 100 M omega (100 channels) and 10 M omega (1,000 channels). Total propagation time (TPT) was measured as the difference between the times when the AP rising phase of the first cell (cell # A1) and the last cell (in the J chain) crossed 0 mV. When there were no gj-channels, the excitation was transmitted between cells by the EF, i.e., the negative potential generated in the narrow junctional clefts (e.g., 100 angstroms) when the prejunctional membrane fired an AP. For the EF mechanism to work, the prejunctional membrane must fire a fraction of a millisecond before the adjacent surface membrane. When there were many gj-channels (e.g., 100 or 1,000), the excitation was transmitted by local-circuit current flow from one cell to the next through these channels. RESULTS TPT was measured as a function of four different numbers of transverse gj-channels, namely 0, 10, 100 and 1,000, and four different numbers of longitudinal gj-channels, namely 0, 10, 100 and 1,000. Thus, 16 different measurements were made. It was found that increasing the number of transverse channels had no effect on TPT when the number of longitudinal channels was low (i.e., 0 or 10). In contrast, when the number of longitudinal gj-channels was high (e.g., 100 or 1,000), then increasing the number of transverse channels decreased TPT markedly. CONCLUSION Thus, complete APs could propagate along a network of 100 cardiac muscle cells even when no gj-channels were present between the cells. Insertion of transverse gj-channels greatly speeded propagation through the 10 x 10 network when there were also many longitudinal gj-channels.
Collapse
Affiliation(s)
- Lakshminarayanan Ramasamy
- Dept. of Electrical Computer Engineering and Computer Science, University of Cincinnati College of Engineering, Cincinnati, OH 45219, USA
| | - Nicholas Sperelakis
- Dept. of Molecular & Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0576, USA
| |
Collapse
|
36
|
Ramasamy L, Sperelakis N. Action potential repolarization enabled by Ca++ channel deactivation in PSpice simulation of smooth muscle propagation. Biomed Eng Online 2005; 4:71. [PMID: 16384537 PMCID: PMC1343559 DOI: 10.1186/1475-925x-4-71] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Accepted: 12/30/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Previously, only the rising phase of the action potential (AP) in cardiac muscle and smooth muscle could be simulated due to the instability of PSpice upon insertion of a second black box (BB) into the K+ leg of the basic membrane unit. This restriction was acceptable because only the transmission of excitation from one cell to the next was investigated. METHODS In the current work, the repolarization of the AP was accomplished by inserting a second BB into the Ca++ leg of the basic membrane unit. Repolarization of the AP was produced, not through an activation of the K+ channel conductance, but rather through a mimicking of the deactivation of the Ca++ channel conductance. Propagation of complete APs was studied in a chain (strand) of 10 smooth muscle cells, in which various numbers of gap-junction (gj) channels (assumed to be 100 pS each) were inserted across the cell junctions. RESULTS The shunt resistance across the junctions produced by the gj-channels (Rgj) was varied from 100,000 MOmega (0 gj-channels) to 10,000 MOmega (1 gj-channel), to 1,000 MOmega (10 channels), to 100 MOmega (100 channels), to 10 MOmega (1000 channels), and to 1.0 MOmega (10,000 channels). Velocity of propagation (theta, in cm/sec) was calculated from the measured total propagation time (TPT, the time difference between when the AP rising phase of the first cell and the last cell crossed -20 mV), assuming a constant cell length of 200 microm. When there were no gj-channels, or only one, the transmission of excitation between cells was produced by the electric field (EF), i.e., the negative junctional cleft potential, that is generated in the narrow junctional clefts (e.g., 100 A) when the prejunctional membrane fires an AP (a fraction of a millisecond before the adjacent surface membrane). There were significant end-effects at the termination of the strand, such that the last cell (cell #10) failed to fire, or fired after a prolonged delay. This end-effect was abolished when the strand termination resistance (Rbt) was increased from 1.0 KOmega to 600 MOmega. When there were 1000 or 10,000 gj-channels, the transmission of excitation was produced by local-circuit current flow from one cell to the next through the gj-channels. DISCUSSION In summary, it is now possible to simulate complete APs in smooth muscle cells that could propagate along a single chain of 10 cells, even when there were no gj-channels between the cells.
Collapse
Affiliation(s)
- Lakshminarayanan Ramasamy
- Dept. of Electrical Computer Engineering and Computer Science University of Cincinnati College of Engineering Cincinnati, OH 45219 USA
| | - Nicholas Sperelakis
- Dept. of Molecular & Cellular Physiology University of Cincinnati College of Medicine Cincinnati, OH 45267-0576 USA
- Dept. of Molecular & Cellular Physiology University of Cincinnati College of Medicine Cincinnati, OH 45267-0576 USA
| |
Collapse
|
37
|
Ramasamy L, Sperelakis N. Repolarization of the action potential enabled by Na+ channel deactivation in PSpice simulation of cardiac muscle propagation. Theor Biol Med Model 2005; 2:48. [PMID: 16343352 PMCID: PMC1326226 DOI: 10.1186/1742-4682-2-48] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Accepted: 12/12/2005] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND In previous studies on propagation of simulated action potentials (APs) in cardiac muscle using PSpice modeling, we reported that a second black-box (BB) could not be inserted into the K+ leg of the basic membrane unit because that caused the PSpice program to become very unstable. Therefore, only the rising phase of the APs could be simulated. This restriction was acceptable since only the mechanism of transmission of excitation from one cell to the next was being investigated. METHODS AND RESULTS We have now been able to repolarize the AP by inserting a second BB into the Na+ leg of the basic units. This second BB effectively mimicked deactivation of the Na+ channel conductance. This produced repolarization of the AP, not by activation of K+ conductance, but by deactivation of the Na+ conductance. The propagation of complete APs was studied in a chain (strand) of 10 cardiac muscle cells, in which various numbers of gap-junction (gj) channels (assumed to be 100 pS each) were inserted across the cell junctions. The shunt resistance across the junctions produced by the gj-channels (Rgj) was varied from 100,000 M? (0 gj-channels) to 10,000 M? (1 gj-channel), to 1,000 M? (10 channels), to 100 M? (100 channels), and 10 M? (1000 channels). The velocity of propagation (theta, in cm/s) was calculated from the measured total propagation time (TPT, the time difference between when the AP rising phase of the first cell and the last cell crossed -20 mV, assuming a cell length of 150 microm. When there were no gj-channels, or only a few, the transmission of excitation between cells was produced by the electric field (EF), i.e. the negative junctional cleft potential, that is generated in the narrow junctional clefts (e.g. 100 A) when the prejunctional membrane fires an AP. When there were many gj-channels (e.g. 1000 or 10,000), the transmission of excitation was produced by local-circuit current flow from one cell to the next through the gj-channels. CONCLUSION We have now been able to simulate complete APs in cardiac muscle cells that could propagate along a single chain of 10 cells, even when there were no gj-channels between the cells.
Collapse
Affiliation(s)
- Lakshminarayanan Ramasamy
- Dept. of Electrical Computer Engineering and Computer Science, University of Cincinnati College of Engineering, Cincinnati, OH 45219, USA
| | - Nicholas Sperelakis
- Dept. of Molecular & Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0576, USA
| |
Collapse
|
38
|
Sperelakis N, Kalloor B, Ramasamy L. Boundary effects influence velocity of transverse propagation of simulated cardiac action potentials. Theor Biol Med Model 2005; 2:36. [PMID: 16144554 PMCID: PMC1236963 DOI: 10.1186/1742-4682-2-36] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Accepted: 09/06/2005] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND We previously demonstrated that transverse propagation of excitation (cardiac action potentials simulated with PSpice) could occur in the absence of low-resistance connections (gap--junction channels) between parallel chains of myocardial cells. The transverse transmission of excitation between the chains was strongly dependent on the longitudinal resistance of the interstitial fluid space between the chains: the higher this resistance, the closer the packing of the parallel chains within the bundle. The earlier experiments were carried out with 2-dimensional sheets of cells: 2 x 3, 3 x 4, and 5 x 5 models (where the first number is the number of parallel chains and the second is the number of cells in each chain). The purpose of the present study was to enlarge the model size to 7 x 7, thus enabling the transverse velocities to be compared in models of different sizes (where all circuit parameters are identical in all models). This procedure should enable the significance of the role of edge (boundary) effects in transverse propagation to be determined. RESULTS It was found that transverse velocity increased with increase in model size. This held true whether stimulation was applied to the entire first chain of cells or only to the first cell of the first chain. It also held true for retrograde propagation (stimulation of the last chain). The transverse resistance at the two ends of the bundle had almost no effect on transverse velocity until it was increased to very high values (e.g., 100 or 1,000 megohms). CONCLUSION Because the larger the model size, the smaller the relative edge area, we conclude that the edge effects slow the transverse velocity.
Collapse
Affiliation(s)
- Nicholas Sperelakis
- Dept. of Molecular & Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0576, USA
| | - Bijoy Kalloor
- Dept. of Electrical Computer Engineering and Computer Science, University of Cincinnati, College of Engineering, Cincinnati, OH 45221, USA
| | - Lakshminarayanan Ramasamy
- Dept. of Electrical Computer Engineering and Computer Science, University of Cincinnati, College of Engineering, Cincinnati, OH 45221, USA
| |
Collapse
|
39
|
Yamakawa M, Sunagawa M, Shimabukuro M, Higa N, Takasu N, Kosugi T. Effect of sodium channel blocker, pilsicainide hydrochloride, on net inward current of atrial myocytes in thyroid hormone toxicosis rats. Thyroid 2005; 15:653-9. [PMID: 16053380 DOI: 10.1089/thy.2005.15.653] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
To investigate effect of pilsicainide hydrochloride (pilsicainide) on electrocardiogram (ECG) signals and action potentials (APs) of atrial myocytes, levo-thyroxine (T4, 500 microg/kg body weight) was daily injected into peritoneal cavity of Sprague-Dawley rats for 14 days. T4-treatment significantly shortened RR interval, P wave, and QRS complex durations on ECG. Although pilsicainide did not affect the heart rate, P wave and corrected QT interval (QTc) was increased in T4-treated rats. AP recordings revealed that AP durations at 20%, 50%, and 90% repolarization were significantly shortened and maximal rate of rise (Max dV/dt) was significantly increased in T4-treated rat atrial cells. Pilsicainide significantly decreased AP amplitude (APA) and Max dV/dt in both control and T4-treated rat atrial cells. Concentration-inhibition study demonstrated that pilsicainide significantly inhibited net inward current of T4-treated rats at lower concentration (IC50 of 29.2 microg/mL) than that of control rats (133 microg/mL). In conclusion, pilsicainide could decrease the conduction velocity in T4-treated rat atrium by decreasing the Max dV/dt and net inward current, which could be a possible treatment of thyrotoxicosis-induced arrhythmia.
Collapse
Affiliation(s)
- Munesada Yamakawa
- Department of Endocrinology and Metabolism, University of the Ryukyus, Okinawa, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Trew M, Le Grice I, Smaill B, Pullan A. A Finite Volume Method for Modeling Discontinuous Electrical Activation in Cardiac Tissue. Ann Biomed Eng 2005; 33:590-602. [PMID: 15981860 DOI: 10.1007/s10439-005-1434-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This paper describes a finite volume method for modeling electrical activation in a sample of cardiac tissue using the bidomain equations. Microstructural features to the level of cleavage planes between sheets of myocardial fibers in the tissue are explicitly represented. The key features of this implementation compared to previous modeling are that it represents physical discontinuities without the implicit removal of intracellular volume and it generates linear systems of equations that are computationally efficient to construct and solve. Results obtained using this method highlight how the understanding of discontinuous activation in cardiac tissue can form a basis for better understanding defibrillation processes and experimental recordings.
Collapse
Affiliation(s)
- Mark Trew
- Bioengineering Institute, The University of Auckland, New Zealand.
| | | | | | | |
Collapse
|
41
|
Sperelakis N, Ramasamy L, Kalloor B. Propagated repolarization of simulated action potentials in cardiac muscle and smooth muscle. Theor Biol Med Model 2005; 2:5. [PMID: 15710046 PMCID: PMC550671 DOI: 10.1186/1742-4682-2-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Accepted: 02/14/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Propagation of repolarization is a phenomenon that occurs in cardiac muscle. We wanted to test whether this phenomenon would also occur in our model of simulated action potentials (APs) of cardiac muscle (CM) and smooth muscle (SM) generated with the PSpice program. METHODS A linear chain of 5 cells was used, with intracellular stimulation of cell #1 for the antegrade propagation and of cell #5 for the retrograde propagation. The hyperpolarizing stimulus parameters applied for termination of the AP in cell #5 were varied over a wide range in order to generate strength / duration (S/D) curves. Because it was not possible to insert a second "black box" (voltage-controlled current source) into the basic units representing segments of excitable membrane that would allow the cells to respond to small hyperpolarizing voltages, gap-junction (g.j.) channels had to be inserted between the cells, represented by inserting a resistor (Rgj) across the four cell junctions. RESULTS Application of sufficient hyperpolarizing current to cell #5 to bring its membrane potential (Vm) to within the range of the sigmoidal curve of the Na+ conductance (CM) or Ca++ conductance (SM) terminated the AP in cell #5 in an all-or-none fashion. If there were no g.j. channels (Rgj = infinity), then only cell #5 repolarized to its stable resting potential (RP; -80 mV for CM and -55 mV for SM). The positive junctional cleft potential (VJC) produced only a small hyperpolarization of cell #4. However, if many g.j. channels were inserted, more hyperpolarizing current was required (for a constant duration) to repolarize cell #5, but repolarization then propagated into cells 4, 3, 2, and 1. When duration of the pulses was varied, a typical S/D curve, characteristic of excitable membranes, was produced. The chronaxie measured from the S/D curve was about 1.0 ms, similar to that obtained for muscle membranes. CONCLUSIONS These experiments demonstrate that normal antegrade propagation of excitation can occur in the complete absence of g.j. channels, and therefore no low-resistance pathways between cells, by the electric field (negative VJC) developed in the narrow junctional clefts. Because it was not possible to insert a second black-box into the basic units that would allow the cells to respond to small hyperpolarizing voltages, only cell #5 (the cell injected with hyperpolarizing pulses) repolarized in an all-or-none manner. But addition of many g.j. channels allowed repolarization to propagate in a retrograde direction over all 5 cells.
Collapse
Affiliation(s)
- Nicholas Sperelakis
- Dept. of Molecular & Cellular Physiology University of Cincinnati College of Medicine Cincinnati, OH 45267-0576 USA
| | - Lakshminarayanan Ramasamy
- Dept. of Electrical Computer Engineering and Computer Science University of Cincinnati College of Engineering Cincinnati, OH 45219 USA
| | - Bijoy Kalloor
- Dept. of Electrical Computer Engineering and Computer Science University of Cincinnati College of Engineering Cincinnati, OH 45219 USA
| |
Collapse
|
42
|
Sperelakis N, Ramasamy L. Gap-junction channels inhibit transverse propagation in cardiac muscle. Biomed Eng Online 2005; 4:7. [PMID: 15679888 PMCID: PMC549032 DOI: 10.1186/1475-925x-4-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Accepted: 01/28/2005] [Indexed: 11/17/2022] Open
Abstract
The effect of adding many gap-junctions (g-j) channels between contiguous cells in a linear chain on transverse propagation between parallel chains was examined in a 5 × 5 model (5 parallel chains of 5 cells each) for cardiac muscle. The action potential upstrokes were simulated using the PSpice program for circuit analysis. Either a single cell was stimulated (cell A1) or the entire chain was stimulated simultaneously (A-chain). Transverse velocity was calculated from the total propagation time (TPT) from when the first AP crossed a Vm of -20 mV and the last AP crossed -20 mV. The number of g-j channels per junction was varied from zero to 100, 1,000 and 10,000 (Rgj of ∞, 100 MΩ, 10 MΩ, 1.0 MΩ, respectively). The longitudinal resistance of the interstitial fluid (ISF) space between the parallel chains (Rol2) was varied between 200 KΩ (standard value) and 1.0, 5.0, and 10 MΩ. The higher the Rol2 value, the tighter the packing of the chains. It was found that adding many g-j channels inhibited transverse propagation by blocking activation of all 5 chains, unless Rol2 was greatly increased above the standard value of 200 KΩ. This was true for either method of stimulation. This was explained by, when there is strong longitudinal coupling between all 5 cells of a chain awaiting excitation, there must be more transfer energy (i.e., more current) to simultaneously excite all 5 cells of a chain.
Collapse
Affiliation(s)
- Nicholas Sperelakis
- Dept. of Molecular & Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0576, USA
| | - Lakshminarayanan Ramasamy
- Dept. of Electrical Computer Engineering and Computer Science, University of Cincinnati, College of Engineering Cincinnati, OH 45221, USA
| |
Collapse
|
43
|
Sperelakis N, Kalloor B. Effect of variation in membrane excitability on propagation velocity of simulated action potentials for cardiac muscle and smooth muscle in the electric field model for cell-to-cell transmission of excitation. IEEE Trans Biomed Eng 2004; 51:2216-9. [PMID: 15605874 DOI: 10.1109/tbme.2004.836528] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Nicholas Sperelakis
- Dept. of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0576, USA.
| | | |
Collapse
|
44
|
Kapela A, Bezerianos A. A theoretical model of the high-frequency arrhythmogenic depolarization signal following myocardial infarction. IEEE Trans Biomed Eng 2004; 51:1915-22. [PMID: 15536893 DOI: 10.1109/tbme.2004.834277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Theoretical body-surface potentials were computed from single, branching and tortuous strands of Luo-Rudy dynamic model cells, representing different areas of an infarct scar. When action potential (AP) propagation either in longitudinal or transverse direction was slow (3-12 cm/s), the depolarization signals contained high-frequency (100-300 Hz) oscillations. The frequencies were related to macroscopic propagation velocity and strand architecture by simple formulas. Next, we extended a mathematical model of the QRS-complex presented in our earlier work to simulate unstable activation wavefront. It combines signals from different strands with small timing fluctuations relative to a large repetitive QRS-like waveform and can account for dynamic changes of real arrhythmogenic micropotentials. Variance spectrum of wavelet coefficients calculated from the composite QRS-complex contained the high frequencies of the individual abnormal signals. We conclude that slow AP propagation through fibrotic regions after myocardial infarction is a source of high-frequency arrhythmogenic components that increase beat-to-beat variability of the QRS, and wavelet variance parameters can be used for ventricular tachycardia risk assessment.
Collapse
Affiliation(s)
- Adam Kapela
- Department of Medical Physics, School of Medicine, University of Patras, 26500 Rion-Patras, Greece.
| | | |
Collapse
|
45
|
London B. Staying connected without connexin43: can you hear me now? Circ Res 2004; 95:120-1. [PMID: 15271862 DOI: 10.1161/01.res.0000137795.62043.d8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Abstract
Interstitial cells of Cajal (ICC) pace gastrointestinal muscle by initiating slow waves in both muscle layers and appear to be preferred sites for reception of neurotransmitters. ICC of the myenteric plexus (ICC-MP) pace stomach and small intestine, while intramuscular ICC (ICC-IM) receive nerve messages. Recently, ICC-IM have been found to provide regenerative responses to and amplification of pacing messages from ICC-MP, at least in some systems. This review will examine the assumption that gap junctions provide low-resistance contacts for pacing. Structural and functional evidence will be evaluated. Structural, theoretical and experimental difficulties with the gap junctions hypothesis for pacing will be considered. So far little direct evidence about the role of gap junctions in neurotransmission exists, although a structural basis exists. Alternate possibilities for transmission of ICC pacing and neural messages will be examined and suggestions for future research made.
Collapse
Affiliation(s)
- E E Daniel
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
47
|
Sperelakis N, Kalloor B. Transverse propagation of action potentials between parallel chains of cardiac muscle and smooth muscle cells in PSpice simulations. Biomed Eng Online 2004; 3:5. [PMID: 14998434 PMCID: PMC400751 DOI: 10.1186/1475-925x-3-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2003] [Accepted: 03/03/2004] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND We previously examined transverse propagation of action potentials between 2 and 3 parallel chain of cardiac muscle cells (CMC) simulated using the PSpice program. The present study was done to examine transverse propagation between 5 parallel chains in an expanded model of CMC and smooth muscle cells (SMC). METHODS Excitation was transmitted from cell to cell along a strand of 5 cells not connected by low-resistance tunnels (gap-junction connexons). The entire surface membrane of each cell fired nearly simultaneously, and nearly all the propagation time was spent at the cell junctions, the junctional delay time being about 0.3-0.5 ms (CMC) or 0.8-1.6 ms (SMC). A negative cleft potential (Vjc) develops in the narrow junctional clefts, whose magnitude depends on the radial cleft resistance (Rjc), which depolarizes the postjunctional membrane (post-JM) to threshold. Propagation velocity (theta) increased with amplitude of Vjc. Therefore, one mechanism for the transfer of excitation from one cell to the next is by the electric field (EF) that is generated in the junctional cleft when the pre-JM fires. In the present study, 5 parallel stands of 5 cells each (5 x 5 model) were used. RESULTS With electrical stimulation of the first cell of the first strand (cell A1), propagation rapidly spread down that chain and then jumped to the second strand (B chain), followed by jumping to the third, fourth, and fifth strands (C, D, E chains). The rapidity by which the parallel chains became activated depended on the longitudinal resistance of the narrow extracellular cleft between the parallel strands (Rol2); the higher the Rol2 resistance, the faster the theta. The transverse resistance of the cleft (Ror2) had almost no effect. Increasing Rjc decreases the total propagation time (TPT) over the 25-cell network. When the first cell of the third strand (cell C1) was stimulated, propagation spread down the C chain and jumped to the other two strands (B and D) nearly simultaneously. CONCLUSIONS Transverse propagation of excitation occurred at multiple points along the chain as longitudinal propagation was occurring, causing the APs in the contiguous chains to become bunched up. Transverse propagation was more erratic and labile in SMC compared to CMC. Transverse transmission of excitation did not require low-resistance connections between the chains, but instead depended on the value of Rol2. The tighter the packing of the chains facilitated transverse propagation.
Collapse
Affiliation(s)
- Nicholas Sperelakis
- Dept of Molecular & Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, OH USA 45267-0576
| | - Bijoy Kalloor
- Dept of Electrical Engineering and Computer Sciences, University of Cincinnati College of Engineering, Cincinnati, OH USA 45221-0030
| |
Collapse
|
48
|
Sperelakis N, Daniel EE. Activation of intestinal smooth muscle cells by interstitial cells of Cajal in simulation studies. Am J Physiol Gastrointest Liver Physiol 2004; 286:G234-43. [PMID: 14715518 DOI: 10.1152/ajpgi.00301.2003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Activation of a two-dimensional sheet network (5 parallel chains of 5 cells each) of simulated intestinal smooth muscle cells (SMCs) by one interstitial cell of Cajal (ICC) was modeled by PSpice simulation. The network of 25 cells was not interconnected by gap-junction channels; instead, excitation was transmitted by the electric field that develops in the junctional clefts (JC) when the prejunctional membrane fires an action potential (AP). Transverse propagation between the parallel chains occurs similarly. The ICC cell was connected to cell E5 of the network [5th cell of the 5th (E) chain] via a high-resistance junction. The stimulating current, applied to the ICC cell interior, was made to resemble the endogenous undershooting slow wave (I(SW)). An I(SW) of 2.4 nA (over a rise time of 4 ms) took the ICC cell from a resting potential (RP) of -80 mV to a membrane potential of -41 mV. The slow wave produced a large negative cleft potential in the JC (V(JC); ICC-E5). The V(jc) brought the postjunctional membrane of E5 to threshold, causing this cell to fire an AP. This, in turn, propagated throughout the SMC network. If the ICC cell was given an RP of -55 mV (like SMC) and a slow wave of 40 mV amplitude (I(SW) of 1.8 nA), it still activated the SMC network. This was also true when the ICC cell was made excitable (developing an overshooting, fast-rising AP). In summary, one ICC cell displaying a slow wave was capable of activating a network of SMC in the absence of gap junctions.
Collapse
Affiliation(s)
- Nicholas Sperelakis
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| | | |
Collapse
|
49
|
Yao JA, Gutstein DE, Liu F, Fishman GI, Wit AL. Cell coupling between ventricular myocyte pairs from connexin43-deficient murine hearts. Circ Res 2003; 93:736-43. [PMID: 14500334 DOI: 10.1161/01.res.0000095977.66660.86] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mice with cardiac-restricted inactivation of the connexin43 gene (CKO mice) have moderate slowing of ventricular conduction and lethal arrhythmias. Mechanisms through which propagation is maintained in the absence of Cx43 are unknown. We evaluated gap junctional conductance in CKO ventricular pairs using dual patch clamp methods. Junctional coupling was reduced to 4+/-2 nS (side-to-side) and 11+/-2 nS (end-to-end), including 21% of cell-pairs with no detectable coupling, compared with 588+/-104 nS (side-to-side) and 558+/-92 nS (end-to-end) in control cell-pairs. Voltage dependence of control gap junctions was characteristic of Cx43. CKO conductance showed increased voltage dependence, suggesting low-level expression of other connexin isoforms. From theoretical models, this degree of CKO coupling is not expected to support levels of conduction persisting in vivo, suggesting the possibility that there are additional mechanisms for maintained propagation when gap junctional conductance is severely reduced.
Collapse
Affiliation(s)
- Jian-An Yao
- Department of Pharmacology and Center for Molecular Therapeutics, College of Physicians and Surgeons, Columbia University, 630 W 168th St, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
50
|
|