1
|
Wu X, Chen J, Sun W, Hart DA, Ackermann PW, Ahmed AS. Network proteomic analysis identifies inter-alpha-trypsin inhibitor heavy chain 4 during early human Achilles tendon healing as a prognostic biomarker of good long-term outcomes. Front Immunol 2023; 14:1191536. [PMID: 37483617 PMCID: PMC10358850 DOI: 10.3389/fimmu.2023.1191536] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
The suboptimal or protracted regeneration of injured connective tissues often results in significant dysfunction, pain, and functional disability. Despite the prevalence of the condition, few studies have been conducted which focused on biomarkers or key molecules involved in processes governing healing outcomes. To gain insight into injured connective tissue repair, and using the Achilles tendon as a model system, we utilized quantitative proteomic and weighted co-expression network analysis of tissues acquired from Achilles tendon rupture (ATR) patients with different outcomes at 1-year postoperatively. Two modules were detected to be associated with prognosis. The initial analysis identified inter-alpha-trypsin inhibitor heavy chain 4 (ITIH4) as a biomarker or hub protein positively associated with better healing outcomes. Additional analysis identified the beneficial role of ITIH4 in inflammation, cell viability, apoptosis, proliferation, wound healing, and for the synthesis of type I collagen in cultured fibroblasts. Functionally, the effects of ITIH4 were found to be mediated by peroxisome proliferator-activated receptor gamma (PPARγ) signaling pathways. Taken together, these findings suggest that ITIH4 plays an important role in processes of connective tissue repair and advocate for the potential of ITIH4 as a therapeutic target for injured connective tissue repair. Trial registration http://clinicaltrials.gov, identifiers NCT02318472, NCT01317160.
Collapse
Affiliation(s)
- Xinjie Wu
- Division of Spine Surgery, Department of Orthopaedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Junyu Chen
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Wei Sun
- Department of Orthopedic Surgery, China-Japan Friendship Hospital, Beijing, China
| | - David A. Hart
- Department of Surgery, Faculty of Kinesiology and the McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB, Canada
| | - Paul W. Ackermann
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Aisha S. Ahmed
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Physiology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Norris SCP, Kawecki NS, Davis AR, Chen KK, Rowat AC. Emulsion-templated microparticles with tunable stiffness and topology: Applications as edible microcarriers for cultured meat. Biomaterials 2022; 287:121669. [PMID: 35853359 PMCID: PMC9834440 DOI: 10.1016/j.biomaterials.2022.121669] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 06/27/2022] [Accepted: 07/02/2022] [Indexed: 01/16/2023]
Abstract
Cultured meat has potential to diversify methods for protein production, but innovations in production efficiency will be required to make cultured meat a feasible protein alternative. Microcarriers provide a strategy to culture sufficient volumes of adherent cells in a bioreactor that are required for meat products. However, cell culture on inedible microcarriers involves extra downstream processing to dissociate cells prior to consumption. Here, we present edible microcarriers that can support the expansion and differentiation of myogenic cells in a single bioreactor system. To fabricate edible microcarriers with a scalable process, we used water-in-oil emulsions as templates for gelatin microparticles. We also developed a novel embossing technique to imprint edible microcarriers with grooved topology in order to test if microcarriers with striated surface texture can promote myoblast proliferation and differentiation in suspension culture. In this proof-of-concept demonstration, we showed that edible microcarriers with both smooth and grooved surface topologies supported the proliferation and differentiation of mouse myogenic C2C12 cells in a suspension culture. The grooved edible microcarriers showed a modest increase in the proliferation and alignment of myogenic cells compared to cells cultured on smooth, spherical microcarriers. During the expansion phase, we also observed the formation of cell-microcarrier aggregates or 'microtissues' for cells cultured on both smooth and grooved microcarriers. Myogenic microtissues cultured with smooth and grooved microcarriers showed similar characteristics in terms of myotube length, myotube volume fraction, and expression of myogenic markers. To establish feasibility of edible microcarriers for cultured meat, we showed that edible microcarriers supported the production of myogenic microtissue from C2C12 or bovine satellite muscle cells, which we harvested by centrifugation into a cookable meat patty that maintained its shape and exhibited browning during cooking. These findings demonstrate the potential of edible microcarriers for the scalable production of cultured meat in a single bioreactor.
Collapse
Affiliation(s)
- Sam C P Norris
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - N Stephanie Kawecki
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ashton R Davis
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kathleen K Chen
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Amy C Rowat
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Broad Stem Cell Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
3
|
Rauff A, Timmins LH, Whitaker RT, Weiss JA. A Nonparametric Approach for Estimating Three-Dimensional Fiber Orientation Distribution Functions (ODFs) in Fibrous Materials. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:446-455. [PMID: 34559646 PMCID: PMC9052546 DOI: 10.1109/tmi.2021.3115716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Many biological tissues contain an underlying fibrous microstructure that is optimized to suit a physiological function. The fiber architecture dictates physical characteristics such as stiffness, diffusivity, and electrical conduction. Abnormal deviations of fiber architecture are often associated with disease. Thus, it is useful to characterize fiber network organization from image data in order to better understand pathological mechanisms. We devised a method to quantify distributions of fiber orientations based on the Fourier transform and the Qball algorithm from diffusion MRI. The Fourier transform was used to decompose images into directional components, while the Qball algorithm efficiently converted the directional data from the frequency domain to the orientation domain. The representation in the orientation domain does not require any particular functional representation, and thus the method is nonparametric. The algorithm was verified to demonstrate its reliability and used on datasets from microscopy to show its applicability. This method increases the ability to extract information of microstructural fiber organization from experimental data that will enhance our understanding of structure-function relationships and enable accurate representation of material anisotropy in biological tissues.
Collapse
|
4
|
Membrane curvature and connective fiber alignment in guinea pig round window membrane. Acta Biomater 2021; 136:343-362. [PMID: 34563725 DOI: 10.1016/j.actbio.2021.09.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 11/23/2022]
Abstract
The round window membrane (RWM) covers an opening between the perilymph fluid-filled inner ear space and the air-filled middle ear space. As the only non-osseous barrier between these two spaces, the RWM is an ideal candidate for aspiration of perilymph for diagnostics purposes and delivery of medication for treatment of inner ear disorders. Routine access across the RWM requires the development of new surgical tools whose design can only be optimized with a thorough understanding of the RWM's structure and properties. The RWM possesses a layer of collagen and elastic fibers so characterization of the distribution and orientation of these fibers is essential. Confocal and two-photon microscopy were conducted on intact RWMs in a guinea pig model to characterize the distribution of collagen and elastic fibers. The fibers were imaged via second-harmonic-generation, autofluorescence, and Rhodamine B staining. Quantitative analyses of both fiber orientation and geometrical properties of the RWM uncovered a significant correlation between mean fiber orientations and directions of zero curvature in some portions of the RWM, with an even more significant correlation between the mean fiber orientations and linear distance along the RWM in a direction approximately parallel to the cochlear axis. The measured mean fiber directions and dispersions can be incorporated into a generalized structure tensor for use in the development of continuum anisotropic mechanical constitutive models that in turn will enable optimization of surgical tools to access the cochlea. STATEMENT OF SIGNIFICANCE: The Round Window Membrane (RWM) is the only non-osseous barrier separating the middle and inner ear spaces, and thus is an ideal portal for medical access to the cochlea. An understanding of RWM structure and mechanical response is necessary to optimize the design of surgical tools for this purpose. The RWM geometry and the connective fiber orientation and dispersion are measured via confocal and 2-photon microscopy. A region of the RWM geometry is characterized as a hyperbolic paraboloid and another region as a tapered parabolic cylinder. Predominant fiber directions correlate well with directions of zero curvature in the hyperbolic paraboloid region. Overall fiber directions correlate well with position along a line approximately parallel to the central axis of the cochlea's spiral.
Collapse
|
5
|
Marcotti S, de Freitas DB, Troughton LD, Kenny FN, Shaw TJ, Stramer BM, Oakes PW. A workflow for rapid unbiased quantification of fibrillar feature alignment in biological images. FRONTIERS IN COMPUTER SCIENCE 2021; 3:745831. [PMID: 34888522 PMCID: PMC8654057 DOI: 10.3389/fcomp.2021.745831] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Measuring the organisation of the cellular cytoskeleton and the surrounding extracellular matrix (ECM) is currently of wide interest as changes in both local and global alignment can highlight alterations in cellular functions and material properties of the extracellular environment. Different approaches have been developed to quantify these structures, typically based on fibre segmentation or on matrix representation and transformation of the image, each with its own advantages and disadvantages. Here we present AFT-Alignment by Fourier Transform, a workflow to quantify the alignment of fibrillar features in microscopy images exploiting 2D Fast Fourier Transforms (FFT). Using pre-existing datasets of cell and ECM images, we demonstrate our approach and compare and contrast this workflow with two other well-known ImageJ algorithms to quantify image feature alignment. These comparisons reveal that AFT has a number of advantages due to its grid-based FFT approach. 1) Flexibility in defining the window and neighbourhood sizes allows for performing a parameter search to determine an optimal length scale to carry out alignment metrics. This approach can thus easily accommodate different image resolutions and biological systems. 2) The length scale of decay in alignment can be extracted by comparing neighbourhood sizes, revealing the overall distance that features remain anisotropic. 3) The approach is ambivalent to the signal source, thus making it applicable for a wide range of imaging modalities and is dependent on fewer input parameters than segmentation methods. 4) Finally, compared to segmentation methods, this algorithm is computationally inexpensive, as high-resolution images can be evaluated in less than a second on a standard desktop computer. This makes it feasible to screen numerous experimental perturbations or examine large images over long length scales. Implementation is made available in both MATLAB and Python for wider accessibility, with example datasets for single images and batch processing. Additionally, we include an approach to automatically search parameters for optimum window and neighbourhood sizes, as well as to measure the decay in alignment over progressively increasing length scales.
Collapse
Affiliation(s)
- Stefania Marcotti
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, UK
| | | | - Lee D Troughton
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, US
| | - Fiona N Kenny
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, UK
| | - Tanya J Shaw
- Centre for Inflammation Biology & Cancer Immunology, King’s College London, London, UK
| | - Brian M Stramer
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, UK
| | - Patrick W Oakes
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, US
| |
Collapse
|
6
|
Norris SCP, Soto J, Kasko AM, Li S. Photodegradable Polyacrylamide Gels for Dynamic Control of Cell Functions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:5929-5944. [PMID: 33502154 DOI: 10.1021/acsami.0c19627] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cross-linked polyacrylamide hydrogels are commonly used in biotechnology and cell culture applications due to advantageous properties, such as the precise control of material stiffness and the attachment of cell adhesive ligands. However, the chemical and physical properties of polyacrylamide gels cannot be altered once fabricated. Here, we develop a photodegradable polyacrylamide gel system that allows for a dynamic control of polyacrylamide gel stiffness with exposure to light. Photodegradable polyacrylamide hydrogel networks are produced by copolymerizing acrylamide and a photocleavable ortho-nitrobenzyl (o-NB) bis-acrylate cross-linker. When the hydrogels are exposed to light, the o-NB cross-links cleave and the stiffness of the photodegradable polyacrylamide gels decreases. Further examination of the effect of dynamic stiffness changes on cell behavior reveals that in situ softening of the culture substrate leads to changes in cell behavior that are not observed when cells are cultured on presoftened gels, indicating that both dynamic and static mechanical environments influence cell fate. Notably, we observe significant changes in nuclear localization of YAP and cytoskeletal organization after in situ softening; these changes further depend on the type and concentration of cell adhesive proteins attached to the gel surface. By incorporating the simplicity and well-established protocols of standard polyacrylamide gel fabrication with the dynamic control of photodegradable systems, we can enhance the capability of polyacrylamide gels, thereby enabling cell biologists and engineers to study more complex cellular behaviors that were previously inaccessible using regular polyacrylamide gels.
Collapse
Affiliation(s)
- Sam C P Norris
- Department of Bioengineering, University of California Los Angeles, 410 Westwood Plaza, 5121 Engineering V, Los Angeles, California 90095, United States
| | - Jennifer Soto
- Department of Bioengineering, University of California Los Angeles, 410 Westwood Plaza, 5121 Engineering V, Los Angeles, California 90095, United States
| | - Andrea M Kasko
- Department of Bioengineering, University of California Los Angeles, 410 Westwood Plaza, 5121 Engineering V, Los Angeles, California 90095, United States
| | - Song Li
- Department of Bioengineering, University of California Los Angeles, 410 Westwood Plaza, 5121 Engineering V, Los Angeles, California 90095, United States
| |
Collapse
|
7
|
Ouellette JN, Drifka CR, Pointer KB, Liu Y, Lieberthal TJ, Kao WJ, Kuo JS, Loeffler AG, Eliceiri KW. Navigating the Collagen Jungle: The Biomedical Potential of Fiber Organization in Cancer. Bioengineering (Basel) 2021; 8:17. [PMID: 33494220 PMCID: PMC7909776 DOI: 10.3390/bioengineering8020017] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/10/2021] [Accepted: 01/13/2021] [Indexed: 02/07/2023] Open
Abstract
Recent research has highlighted the importance of key tumor microenvironment features, notably the collagen-rich extracellular matrix (ECM) in characterizing tumor invasion and progression. This led to great interest from both basic researchers and clinicians, including pathologists, to include collagen fiber evaluation as part of the investigation of cancer development and progression. Fibrillar collagen is the most abundant in the normal extracellular matrix, and was revealed to be upregulated in many cancers. Recent studies suggested an emerging theme across multiple cancer types in which specific collagen fiber organization patterns differ between benign and malignant tissue and also appear to be associated with disease stage, prognosis, treatment response, and other clinical features. There is great potential for developing image-based collagen fiber biomarkers for clinical applications, but its adoption in standard clinical practice is dependent on further translational and clinical evaluations. Here, we offer a comprehensive review of the current literature of fibrillar collagen structure and organization as a candidate cancer biomarker, and new perspectives on the challenges and next steps for researchers and clinicians seeking to exploit this information in biomedical research and clinical workflows.
Collapse
Affiliation(s)
- Jonathan N. Ouellette
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (J.N.O.); (C.R.D.); (T.J.L.); (W.J.K.)
- Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA; (K.B.P.); (Y.L.)
| | - Cole R. Drifka
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (J.N.O.); (C.R.D.); (T.J.L.); (W.J.K.)
- Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA; (K.B.P.); (Y.L.)
| | - Kelli B. Pointer
- Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA; (K.B.P.); (Y.L.)
| | - Yuming Liu
- Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA; (K.B.P.); (Y.L.)
| | - Tyler J Lieberthal
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (J.N.O.); (C.R.D.); (T.J.L.); (W.J.K.)
| | - W John Kao
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (J.N.O.); (C.R.D.); (T.J.L.); (W.J.K.)
- Department of Industrial and Manufacturing Systems Engineering, Faculty of Engineering, University of Hong Kong, Pokfulam, Hong Kong
| | - John S. Kuo
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA;
| | - Agnes G. Loeffler
- Department of Pathology, MetroHealth Medical Center, Cleveland, OH 44109, USA;
| | - Kevin W. Eliceiri
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (J.N.O.); (C.R.D.); (T.J.L.); (W.J.K.)
- Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA; (K.B.P.); (Y.L.)
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA
- Morgridge Institute for Research, Madison, WI 53715, USA
| |
Collapse
|
8
|
Liu Y, Keikhosravi A, Pehlke CA, Bredfeldt JS, Dutson M, Liu H, Mehta GS, Claus R, Patel AJ, Conklin MW, Inman DR, Provenzano PP, Sifakis E, Patel JM, Eliceiri KW. Fibrillar Collagen Quantification With Curvelet Transform Based Computational Methods. Front Bioeng Biotechnol 2020; 8:198. [PMID: 32373594 PMCID: PMC7186312 DOI: 10.3389/fbioe.2020.00198] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 02/28/2020] [Indexed: 12/20/2022] Open
Abstract
Quantification of fibrillar collagen organization has given new insight into the possible role of collagen topology in many diseases and has also identified candidate image-based bio-markers in breast cancer and pancreatic cancer. We have been developing collagen quantification tools based on the curvelet transform (CT) algorithm and have demonstrated this to be a powerful multiscale image representation method due to its unique features in collagen image denoising and fiber edge enhancement. In this paper, we present our CT-based collagen quantification software platform with a focus on new features and also giving a detailed description of curvelet-based fiber representation. These new features include C++-based code optimization for fast individual fiber tracking, Java-based synthetic fiber generator module for method validation, automatic tumor boundary generation for fiber relative quantification, parallel computing for large-scale batch mode processing, region-of-interest analysis for user-specified quantification, and pre- and post-processing modules for individual fiber visualization. We present a validation of the tracking of individual fibers and fiber orientations by using synthesized fibers generated by the synthetic fiber generator. In addition, we provide a comparison of the fiber orientation calculation on pancreatic tissue images between our tool and three other quantitative approaches. Lastly, we demonstrate the use of our software tool for the automatic tumor boundary creation and the relative alignment quantification of collagen fibers in human breast cancer pathology images, as well as the alignment quantification of in vivo mouse xenograft breast cancer images.
Collapse
Affiliation(s)
- Yuming Liu
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin–Madison, Madison, WI, United States
| | - Adib Keikhosravi
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin–Madison, Madison, WI, United States
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI, United States
| | - Carolyn A. Pehlke
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin–Madison, Madison, WI, United States
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI, United States
| | - Jeremy S. Bredfeldt
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin–Madison, Madison, WI, United States
- Department of Medical Physics, University of Wisconsin–Madison, Madison, WI, United States
| | - Matthew Dutson
- Department of Computer Sciences, University of Wisconsin–Madison, Madison, WI, United States
| | - Haixiang Liu
- Department of Computer Sciences, University of Wisconsin–Madison, Madison, WI, United States
| | - Guneet S. Mehta
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin–Madison, Madison, WI, United States
| | - Robert Claus
- Department of Computer Sciences, University of Wisconsin–Madison, Madison, WI, United States
| | - Akhil J. Patel
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin–Madison, Madison, WI, United States
| | - Matthew W. Conklin
- Department of Cell and Regenerative Biology, University of Wisconsin–Madison, Madison, WI, United States
| | - David R. Inman
- Department of Cell and Regenerative Biology, University of Wisconsin–Madison, Madison, WI, United States
| | - Paolo P. Provenzano
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Eftychios Sifakis
- Department of Computer Sciences, University of Wisconsin–Madison, Madison, WI, United States
| | - Jignesh M. Patel
- Department of Computer Sciences, University of Wisconsin–Madison, Madison, WI, United States
| | - Kevin W. Eliceiri
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin–Madison, Madison, WI, United States
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI, United States
- Department of Medical Physics, University of Wisconsin–Madison, Madison, WI, United States
- Morgridge Institute for Research, Madison, WI, United States
| |
Collapse
|
9
|
Massett MP, Bywaters BC, Gibbs HC, Trzeciakowski JP, Padgham S, Chen J, Rivera G, Yeh AT, Milewicz DM, Trache A. Loss of smooth muscle α-actin effects on mechanosensing and cell-matrix adhesions. Exp Biol Med (Maywood) 2020; 245:374-384. [PMID: 32064918 PMCID: PMC7370591 DOI: 10.1177/1535370220903012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/08/2020] [Indexed: 12/20/2022] Open
Abstract
Mutations in ACTA2 , encoding smooth muscle α-actin, are a frequent cause of heritable thoracic aortic aneurysm and dissections. These mutations are associated with impaired vascular smooth muscle cell function, which leads to decreased ability of the cell to sense matrix-mediated mechanical stimuli. This study investigates how loss of smooth muscle α-actin affects cytoskeletal tension development and cell adhesion using smooth muscle cells explanted from aorta of mice lacking smooth muscle α-actin. We tested the hypothesis that reduced vascular smooth muscle contractility due to a loss of smooth muscle α-actin decreases cellular mechanosensing by dysregulating cell adhesion to the matrix. Assessment of functional mechanical properties of the aorta by stress relaxation measurements in thoracic aortic rings suggested two functional regimes for Acta2 −/− mice. Lower stress relaxation was recorded in aortic rings from Acta2 −/− mice at tensions below 10 mN compared with wild type, likely driven by cytoskeletal-dependent contractility. However, no differences were recorded between the two groups above the 10 mN threshold, since at higher tension the matrix-dependent contractility may be predominant. In addition, our results showed that at any given level of stretch, transmural pressure is lower in aortic rings from Acta2 −/− mice than wild type mice. In addition, a three-dimensional collagen matrix contractility assay showed that collagen pellets containing Acta2 −/− smooth muscle cells contracted less than the pellets containing the wild type cells. Moreover, second harmonic generation non-linear microscopy revealed that Acta2 −/− cells locally remodeled the collagen matrix fibers to a lesser extent than wild type cells. Quantification of protein fluorescence measurements in cells also showed that in absence of smooth muscle α-actin, there is a compensatory increase in smooth muscle γ-actin. Moreover, specific integrin recruitment at cell–matrix adhesions was reduced in Acta2 −/− cells. Thus, our findings suggest that Acta2 −/− cells are unable to generate external forces to remodel the matrix due to reduced contractility and interaction with the matrix.
Collapse
Affiliation(s)
- MP Massett
- Department of Health and Kinesiology, Texas A&M University, College Station, TX 77843, USA
| | - BC Bywaters
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA
| | - HC Gibbs
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - JP Trzeciakowski
- Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - S Padgham
- Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - J Chen
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA
| | - G Rivera
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA
| | - AT Yeh
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - DM Milewicz
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA
| | - A Trache
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| |
Collapse
|
10
|
Lee SL, He MY, Chen YF, Dong CY. Quantification of collagen structural changes during chick corneal development. JOURNAL OF BIOPHOTONICS 2020; 13:e201900144. [PMID: 31465146 DOI: 10.1002/jbio.201900144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 06/10/2023]
Abstract
As the most abundant structural mammalian protein, collagen has been implicated in the pathogenesis of numerous diseases such as osteogenesis imperfecta, and cancer. In the case of cornea, abnormal cornea development can lead to conditions such as agenesis, megalocornea, microcornea, and cornea plana. Therefore, understanding the mechanisms of collagen assembly during development may contribute to the prevention or treatment of corneal diseases. In this study, we applied fast Fourier transform second harmonic generation microscopy to quantify parameters of corneal structures during chick development. Our results show that both the rotational pitch and overall rotational angle of corneal stroma modulate between E9 and E19. In addition, we found that corneal structures between left and right corneas are highly correlated during development.
Collapse
Affiliation(s)
- Sheng-Lin Lee
- Department of Physics, National Taiwan University, Taipei, Taiwan, ROC
| | - Ming-Ye He
- Department of Physics, National Taiwan University, Taipei, Taiwan, ROC
| | - Yang-Fang Chen
- Department of Physics, National Taiwan University, Taipei, Taiwan, ROC
| | - Chen-Yuan Dong
- Department of Physics, National Taiwan University, Taipei, Taiwan, ROC
| |
Collapse
|
11
|
Brooks FJ, Gunsten SP, Vasireddi SK, Brody SL, Anastasio MA. Quantification of image texture in X-ray phase-contrast-enhanced projection images of in vivo mouse lungs observed at varied inflation pressures. Physiol Rep 2019; 7:e14208. [PMID: 31444862 PMCID: PMC6708057 DOI: 10.14814/phy2.14208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/25/2019] [Accepted: 07/27/2019] [Indexed: 12/13/2022] Open
Abstract
To date, there are very limited noninvasive, regional assays of in vivo lung microstructure near the alveolar level. It has been suggested that x-ray phase-contrast enhanced imaging reveals information about the air volume of the lung; however, the image texture information in these images remains underutilized. Projection images of in vivo mouse lungs were acquired via a tabletop, propagation-based, X-ray phase-contrast imaging system. Anesthetized mice were mechanically ventilated in an upright position. Consistent with previously published studies, a distinct image texture was observed uniquely within lung regions. Lung regions were automatically identified using supervised machine learning applied to summary measures of the image texture data. It was found that an unsupervised clustering within predefined lung regions colocates with expected differences in anatomy along the cranial-caudal axis in upright mice. It was also found that specifically selected inflation pressures-here, a purposeful surrogate of distinct states of mechanical expansion-can be predicted from the lung image texture alone, that the prediction model itself varies from apex to base and that prediction is accurate regardless of overlap with nonpulmonary structures such as the ribs, mediastinum, and heart. Cross-validation analysis indicated low inter-animal variation in the image texture classifications. Together, these results suggest that the image texture observed in a single X-ray phase-contrast-enhanced projection image could be used across a range of pressure states to study regional variations in regional lung function.
Collapse
Affiliation(s)
- Frank J Brooks
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Sean P Gunsten
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Sunil K Vasireddi
- Heart and Vascular Center, MetroHealth Campus at Case Western Reserve University, Cleveland, Ohio
| | - Steven L Brody
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Mark A Anastasio
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
12
|
Seawright JW, Sreenivasappa H, Gibbs HC, Padgham S, Shin SY, Chaponnier C, Yeh AT, Trzeciakowski JP, Woodman CR, Trache A. Vascular Smooth Muscle Contractile Function Declines With Age in Skeletal Muscle Feed Arteries. Front Physiol 2018; 9:856. [PMID: 30108507 PMCID: PMC6079263 DOI: 10.3389/fphys.2018.00856] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/15/2018] [Indexed: 12/18/2022] Open
Abstract
Aging induces a progressive decline in vasoconstrictor responses in central and peripheral arteries. This study investigated the hypothesis that vascular smooth muscle (VSM) contractile function declines with age in soleus muscle feed arteries (SFA). Contractile function of cannulated SFA isolated from young (4 months) and old (24 months) Fischer 344 rats was assessed by measuring constrictor responses of denuded (endothelium removed) SFA to norepinephrine (NE), phenylephrine (PE), and angiotensin II (Ang II). In addition, we investigated the role of RhoA signaling in modulation of VSM contractile function. Structural and functional characteristics of VSM cells were evaluated by fluorescence imaging and atomic force microscopy (AFM). Results indicated that constrictor responses to PE and Ang II were significantly impaired in old SFA, whereas constrictor responses to NE were preserved. In the presence of a Rho-kinase inhibitor (Y27632), constrictor responses to NE, Ang II, and PE were significantly reduced in young and old SFA. In addition, the age-group difference in constrictor responses to Ang II was eliminated. ROCK1 and ROCK2 content was similar in young and old VSM cells, whereas pROCK1 and pROCK2 were significantly elevated in old VSM cells. Aging was associated with a reduction in smooth muscle α-actin stress fibers and recruitment of proteins to cell-matrix adhesions. Old VSM cells presented an increase in integrin adhesion to the matrix and smooth muscle γ-actin fibers that was associated with increased cell stiffness. In conclusion, our results indicate that VSM contractile function declined with age in SFA. The decrement in contractile function was mediated in part by RhoA/ROCK signaling. Upregulation of pROCK in old VSM cells was not able to rescue contractility in old SFA. Collectively, these results indicate that changes at the VSM cell level play a central role in the reduced contractile function of aged SFA.
Collapse
Affiliation(s)
- John W Seawright
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, United States
| | - Harini Sreenivasappa
- Department of Medical Physiology, Texas A&M University Health Science Center, College Station, TX, United States
| | - Holly C Gibbs
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
| | - Samuel Padgham
- Department of Medical Physiology, Texas A&M University Health Science Center, College Station, TX, United States
| | - Song Y Shin
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, United States
| | - Christine Chaponnier
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Alvin T Yeh
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
| | - Jerome P Trzeciakowski
- Department of Medical Physiology, Texas A&M University Health Science Center, College Station, TX, United States
| | - Christopher R Woodman
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, United States.,Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, United States
| | - Andreea Trache
- Department of Medical Physiology, Texas A&M University Health Science Center, College Station, TX, United States.,Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
| |
Collapse
|
13
|
Abstract
Recent evidence has implicated collagen, particularly fibrillar collagen, in a number of diseases ranging from osteogenesis imperfecta and asthma to breast and ovarian cancer. A key property of collagen that has been correlated with disease has been the alignment of collagen fibers. Collagen can be visualized using a variety of imaging techniques including second-harmonic generation (SHG) microscopy, polarized light microscopy, and staining with dyes or antibodies. However, there exists a great need to easily and robustly quantify images from these modalities for individual fibers in specified regions of interest and with respect to relevant boundaries. Most currently available computational tools rely on calculation of pixel-wise orientation or global window-wise orientation that do not directly calculate or give visible fiber-wise information and do not provide relative orientation against boundaries. We describe and detail how to use a freely available, open-source MATLAB software framework that includes two separate but linked packages "CurveAlign" and "CT-FIRE" that can address this need by either directly extracting individual fibers using an improved fiber tracking algorithm or directly finding optimal representation of fiber edges using the curvelet transform. This curvelet-based framework allows the user to measure fiber alignment on a global, region of interest, and fiber basis. Additionally, users can measure fiber angle relative to manually or automatically segmented boundaries. This tool does not require prior experience of programming or image processing and can handle multiple files, enabling efficient quantification of collagen organization from biological datasets.
Collapse
|
14
|
Georgiadis M, Müller R, Schneider P. Techniques to assess bone ultrastructure organization: orientation and arrangement of mineralized collagen fibrils. J R Soc Interface 2017; 13:rsif.2016.0088. [PMID: 27335222 DOI: 10.1098/rsif.2016.0088] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/18/2016] [Indexed: 12/13/2022] Open
Abstract
Bone's remarkable mechanical properties are a result of its hierarchical structure. The mineralized collagen fibrils, made up of collagen fibrils and crystal platelets, are bone's building blocks at an ultrastructural level. The organization of bone's ultrastructure with respect to the orientation and arrangement of mineralized collagen fibrils has been the matter of numerous studies based on a variety of imaging techniques in the past decades. These techniques either exploit physical principles, such as polarization, diffraction or scattering to examine bone ultrastructure orientation and arrangement, or directly image the fibrils at the sub-micrometre scale. They make use of diverse probes such as visible light, X-rays and electrons at different scales, from centimetres down to nanometres. They allow imaging of bone sections or surfaces in two dimensions or investigating bone tissue truly in three dimensions, in vivo or ex vivo, and sometimes in combination with in situ mechanical experiments. The purpose of this review is to summarize and discuss this broad range of imaging techniques and the different modalities of their use, in order to discuss their advantages and limitations for the assessment of bone ultrastructure organization with respect to the orientation and arrangement of mineralized collagen fibrils.
Collapse
Affiliation(s)
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Philipp Schneider
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland Bioengineering Science Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, UK
| |
Collapse
|
15
|
Liu Y, Rogel N, Harada K, Jarett L, Maiorana CH, German GK, Mahler GJ, Doiron AL. Nanoparticle size-specific actin rearrangement and barrier dysfunction of endothelial cells. Nanotoxicology 2017; 11:846-856. [PMID: 28885066 DOI: 10.1080/17435390.2017.1371349] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this work, we evaluated the impact of gold nanoparticles on endothelial cell behavior and function beyond the influence on cell viability. Five types of gold nanoparticles were studied: 5 nm and 20 nm bare gold nanoparticles, 5 nm and 20 nm gold nanoparticles with biocompatible polyethylene glycol (PEG) coating and 60 nm bare gold nanoparticles. We found that all tested gold nanoparticles did not affect cell viability significantly and reduced the reactive oxygen species (ROS) level in endothelial cells. Only 20 nm bare gold nanoparticles caused an over 50% increase in endothelial barrier permeability and slow recovery of barrier function was observed after the gold nanoparticles were removed. This impairment in endothelial barrier function was caused by unbalanced forces between intracellular tensions and paracellular forces, actin microfilament rearrangement, which occurred through a Rho/ROCK kinase-dependent pathway and broke the force balance between intracellular tensions and paracellular forces. The size-specific effect of gold nanoparticles on endothelial cells may have important implications regarding the behavior of nanoparticles in the biological system and provide valuable guidance in nanomaterial design and biomedical applications.
Collapse
Affiliation(s)
- Yizhong Liu
- a Department of Biomedical Engineering , Binghamton University , Binghamton , NY, USA
| | - Noga Rogel
- b Department of Neuroscience , Binghamton University , Binghamton , NY, USA
| | - Kei Harada
- a Department of Biomedical Engineering , Binghamton University , Binghamton , NY, USA
| | - Leigha Jarett
- a Department of Biomedical Engineering , Binghamton University , Binghamton , NY, USA
| | | | - Guy K German
- a Department of Biomedical Engineering , Binghamton University , Binghamton , NY, USA
| | - Gretchen J Mahler
- a Department of Biomedical Engineering , Binghamton University , Binghamton , NY, USA
| | - Amber L Doiron
- a Department of Biomedical Engineering , Binghamton University , Binghamton , NY, USA
| |
Collapse
|
16
|
Fee T, Downs C, Eberhardt A, Zhou Y, Berry J. Image-based quantification of fiber alignment within electrospun tissue engineering scaffolds is related to mechanical anisotropy. J Biomed Mater Res A 2016; 104:1680-6. [PMID: 26939754 DOI: 10.1002/jbm.a.35697] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/19/2016] [Accepted: 02/25/2016] [Indexed: 11/06/2022]
Abstract
It is well documented that electrospun tissue engineering scaffolds can be fabricated with variable degrees of fiber alignment to produce scaffolds with anisotropic mechanical properties. Several attempts have been made to quantify the degree of fiber alignment within an electrospun scaffold using image-based methods. However, these methods are limited by the inability to produce a quantitative measure of alignment that can be used to make comparisons across publications. Therefore, we have developed a new approach to quantifying the alignment present within a scaffold from scanning electron microscopic (SEM) images. The alignment is determined by using the Sobel approximation of the image gradient to determine the distribution of gradient angles with an image. This data was fit to a Von Mises distribution to find the dispersion parameter κ, which was used as a quantitative measure of fiber alignment. We fabricated four groups of electrospun polycaprolactone (PCL) + Gelatin scaffolds with alignments ranging from κ = 1.9 (aligned) to κ = 0.25 (random) and tested our alignment quantification method on these scaffolds. It was found that our alignment quantification method could distinguish between scaffolds of different alignments more accurately than two other published methods. Additionally, the alignment parameter κ was found to be a good predictor the mechanical anisotropy of our electrospun scaffolds. The ability to quantify fiber alignment within and make direct comparisons of scaffold fiber alignment across publications can reduce ambiguity between published results where cells are cultured on "highly aligned" fibrous scaffolds. This could have important implications for characterizing mechanics and cellular behavior on aligned tissue engineering scaffolds. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1680-1686, 2016.
Collapse
Affiliation(s)
- Timothy Fee
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | - Crawford Downs
- Department of Ophthalmology, Center for Ocular Biomechanics and Biotransport, University of Alabama at Birmingham, Birmingham, Alabama
| | - Alan Eberhardt
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | - Yong Zhou
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Joel Berry
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
17
|
Kartasalo K, Pölönen RP, Ojala M, Rasku J, Lekkala J, Aalto-Setälä K, Kallio P. CytoSpectre: a tool for spectral analysis of oriented structures on cellular and subcellular levels. BMC Bioinformatics 2015; 16:344. [PMID: 26503371 PMCID: PMC4624586 DOI: 10.1186/s12859-015-0782-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/15/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Orientation and the degree of isotropy are important in many biological systems such as the sarcomeres of cardiomyocytes and other fibrillar structures of the cytoskeleton. Image based analysis of such structures is often limited to qualitative evaluation by human experts, hampering the throughput, repeatability and reliability of the analyses. Software tools are not readily available for this purpose and the existing methods typically rely at least partly on manual operation. RESULTS We developed CytoSpectre, an automated tool based on spectral analysis, allowing the quantification of orientation and also size distributions of structures in microscopy images. CytoSpectre utilizes the Fourier transform to estimate the power spectrum of an image and based on the spectrum, computes parameter values describing, among others, the mean orientation, isotropy and size of target structures. The analysis can be further tuned to focus on targets of particular size at cellular or subcellular scales. The software can be operated via a graphical user interface without any programming expertise. We analyzed the performance of CytoSpectre by extensive simulations using artificial images, by benchmarking against FibrilTool and by comparisons with manual measurements performed for real images by a panel of human experts. The software was found to be tolerant against noise and blurring and superior to FibrilTool when analyzing realistic targets with degraded image quality. The analysis of real images indicated general good agreement between computational and manual results while also revealing notable expert-to-expert variation. Moreover, the experiment showed that CytoSpectre can handle images obtained of different cell types using different microscopy techniques. Finally, we studied the effect of mechanical stretching on cardiomyocytes to demonstrate the software in an actual experiment and observed changes in cellular orientation in response to stretching. CONCLUSIONS CytoSpectre, a versatile, easy-to-use software tool for spectral analysis of microscopy images was developed. The tool is compatible with most 2D images and can be used to analyze targets at different scales. We expect the tool to be useful in diverse applications dealing with structures whose orientation and size distributions are of interest. While designed for the biological field, the software could also be useful in non-biological applications.
Collapse
Affiliation(s)
- Kimmo Kartasalo
- Department of Automation Science and Engineering, Tampere University of Technology, BioMediTech, Tampere, Finland.
| | - Risto-Pekka Pölönen
- University of Tampere, BioMediTech, Tampere, Finland. .,School of Medicine, University of Tampere, Tampere, Finland.
| | - Marisa Ojala
- University of Tampere, BioMediTech, Tampere, Finland.
| | - Jyrki Rasku
- School of Information Sciences, University of Tampere, Tampere, Finland.
| | - Jukka Lekkala
- Department of Automation Science and Engineering, Tampere University of Technology, BioMediTech, Tampere, Finland.
| | - Katriina Aalto-Setälä
- University of Tampere, BioMediTech, Tampere, Finland. .,School of Medicine, University of Tampere, Tampere, Finland. .,Heart Hospital, Tampere University Hospital, Tampere, Finland.
| | - Pasi Kallio
- Department of Automation Science and Engineering, Tampere University of Technology, BioMediTech, Tampere, Finland.
| |
Collapse
|
18
|
Induction of fiber alignment and mechanical anisotropy in tissue engineered menisci with mechanical anchoring. J Biomech 2015; 48:1436-43. [DOI: 10.1016/j.jbiomech.2015.02.033] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 02/15/2015] [Indexed: 11/21/2022]
|
19
|
Induction and quantification of collagen fiber alignment in a three-dimensional hydroxyapatite-collagen composite scaffold. Acta Biomater 2015; 17:26-35. [PMID: 25653215 DOI: 10.1016/j.actbio.2015.01.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/19/2014] [Accepted: 01/22/2015] [Indexed: 11/21/2022]
Abstract
Hydroxyapatite-collagen composite scaffolds are designed to serve as a regenerative load bearing replacement that mimics bone. However, the material properties of these scaffolds are at least an order of magnitude less than that of bone and subject to fail under physiological loading conditions. These scaffolds compositionally resemble bone but they do not possess important structural attributes such as an ordered arrangement of collagen fibers, which is a correlate to the mechanical properties in bone. Furthermore, it is unclear how much ordering of structure is satisfactory to mimic bone. Therefore, quantitative methods are needed to characterize collagen fiber alignment in these scaffolds for better correlation between the scaffold structure and the mechanical properties. A combination of extrusion and compaction was used to induce collagen fiber alignment in composite scaffolds. Collagen fiber alignment, due to extrusion and compaction, was quantified from polarized light microscopy images with a Fourier transform image processing algorithm. The Fourier transform method was capable of resolving the degree of collagen alignment from polarized light images. Anisotropy indices of the image planes ranged from 0.08 to 0.45. Increases in the degree of fiber alignment induced solely by extrusion (0.08-0.25) or compaction (0.25-0.44) were not as great as those by the combination of extrusion and compaction (0.35-0.45). Additional measures of randomness and fiber direction corroborate these anisotropy findings. This increased degree of collagen fiber alignment was induced in a preferred direction that is consistent with the extrusion direction and parallel with the compacted plane.
Collapse
|
20
|
Reinitz A, DeStefano J, Ye M, Wong AD, Searson PC. Human brain microvascular endothelial cells resist elongation due to shear stress. Microvasc Res 2015; 99:8-18. [PMID: 25725258 DOI: 10.1016/j.mvr.2015.02.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 02/11/2015] [Accepted: 02/12/2015] [Indexed: 02/02/2023]
Abstract
Endothelial cells in straight sections of vessels are known to elongate and align in the direction of flow. This phenotype has been replicated in confluent monolayers of bovine aortic endothelial cells and human umbilical vein endothelial cells (HUVECs) in cell culture under physiological shear stress. Here we report on the morphological response of human brain microvascular endothelial cells (HBMECs) in confluent monolayers in response to shear stress. Using a microfluidic platform we image confluent monolayers of HBMECs and HUVECs under shear stresses up to 16 dyne cm(-2). From live-cell imaging we quantitatively analyze the cell morphology and cell speed as a function of time. We show that HBMECs do not undergo a classical transition from cobblestone to spindle-like morphology in response to shear stress. We further show that under shear stress, actin fibers are randomly oriented in the cells indicating that there is no cytoskeletal remodeling. These results suggest that HBMECs are programmed to resist elongation and alignment under shear stress, a phenotype that may be associated with the unique properties of the blood-brain barrier.
Collapse
Affiliation(s)
- Adam Reinitz
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA; Institute for Nanobiotechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Jackson DeStefano
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA; Institute for Nanobiotechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Mao Ye
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA; Institute for Nanobiotechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Andrew D Wong
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA; Institute for Nanobiotechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Peter C Searson
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA; Institute for Nanobiotechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA.
| |
Collapse
|
21
|
Notbohm J, Lesman A, Tirrell DA, Ravichandran G. Quantifying cell-induced matrix deformation in three dimensions based on imaging matrix fibers. Integr Biol (Camb) 2015; 7:1186-95. [DOI: 10.1039/c5ib00013k] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An experimental technique that images fibers of an extracellular matrix to quantify cell-induced deformations and microstructural changes in three dimensions.
Collapse
Affiliation(s)
- Jacob Notbohm
- Division of Engineering and Applied Science
- California Institute of Technology
- Pasadena
- USA
| | - Ayelet Lesman
- Division of Chemistry and Chemical Engineering
- California Institute of Technology
- Pasadena
- USA
| | - David A. Tirrell
- Division of Chemistry and Chemical Engineering
- California Institute of Technology
- Pasadena
- USA
| | - Guruswami Ravichandran
- Division of Engineering and Applied Science
- California Institute of Technology
- Pasadena
- USA
| |
Collapse
|
22
|
Kelleher JE, Siegmund T, Chan RW. Collagen microstructure in the vocal ligament: initial results on the potential effects of smoking. Laryngoscope 2014; 124:E361-7. [PMID: 24473992 DOI: 10.1002/lary.24626] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 01/07/2014] [Accepted: 01/27/2014] [Indexed: 11/07/2022]
Abstract
OBJECTIVES/HYPOTHESIS This investigation quantitatively characterizes the collagenous microstructure of human vocal ligament specimens excised postmortem from nonsmokers and smokers. STUDY DESIGN Retrospective cohort study. METHODS Second harmonic generation (SHG) imaging was performed at three anatomical locations of vocal ligament specimens: anterior, mid-membranous, and posterior regions. Two microstructural parameters were extracted from the SHG images: (1) normalized fiber density, and (2) fiber dispersion coefficient, quantifying the degree of collagen fiber dispersion about a preferred direction. RESULTS For both the nonsmoker and smoker subjects, the fiber dispersion coefficient was heterogeneous. Differences in the collagenous structure of nonsmokers and smoker subjects were pronounced at the mid-membranous location. However, the directionality of the heterogeneity in the smoker subjects was opposite to that in the nonsmoker subjects. Specifically, the fiber dispersion coefficient in the nonsmoker subjects was lower in the mid-membranous region (indicating more fiber alignment) than at the anterior/posterior regions, but for the smoker subjects the fiber dispersion coefficient was higher at the mid-membranous region. The normalized fiber density was near constant in the nonsmoker subjects, but the smoker subjects had fewer fibers in the mid-membranous region than at the anterior/posterior regions. CONCLUSION Spatial microstructural variations may exist in the vocal fold ligament both in nonsmokers and smokers. Smoking appears to influence the degree and direction of microstructure heterogeneity in the vocal fold ligament.
Collapse
Affiliation(s)
- Jordan E Kelleher
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana
| | | | | |
Collapse
|
23
|
Ros SJ, Andarawis-Puri N, Flatow EL. Tendon extracellular matrix damage detection and quantification using automated edge detection analysis. J Biomech 2013; 46:2844-7. [PMID: 24112781 DOI: 10.1016/j.jbiomech.2013.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 08/16/2013] [Accepted: 09/04/2013] [Indexed: 11/17/2022]
Abstract
The accumulation of sub-rupture tendon fatigue damage in the extracellular matrix, particularly of type I collagen fibrils, is thought to contribute to the development of tendinopathy, a chronic and degenerative pathology of tendons. Quantitative assessment of collagen fibril alignment is paramount to understanding the importance of matrix injury to cellular function and remodeling capabilities. This study presents a novel application of edge detection analysis to calculate local collagen fibril orientation in tendon. This technique incorporates damage segmentation and stratification by severity which will allow future analysis of the direct effect of matrix damage severity on the cellular and molecular response.
Collapse
Affiliation(s)
- Stephen J Ros
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, 5 East 98th Street, 9th Floor, New York, NY 10029, United States
| | | | | |
Collapse
|
24
|
Kelleher JE, Siegmund T, Du M, Naseri E, Chan RW. The anisotropic hyperelastic biomechanical response of the vocal ligament and implications for frequency regulation: a case study. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2013; 133:1625-36. [PMID: 23464032 PMCID: PMC3606228 DOI: 10.1121/1.4776204] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
One of the primary mechanisms to vary one's vocal frequency is through vocal fold length changes. As stress and deformation are linked to each other, it is hypothesized that the anisotropy in the biomechanical properties of the vocal fold tissue would affect the phonation characteristics. A biomechanical model of vibrational frequency rise during vocal fold elongation is developed which combines an advanced biomechanical characterization protocol of the vocal fold tissue with continuum beam models. Biomechanical response of the tissue is related to a microstructurally informed, anisotropic, nonlinear hyperelastic constitutive model. A microstructural characteristic (the dispersion of collagen) was represented through a statistical orientation function acquired from a second harmonic generation image of the vocal ligament. Continuum models of vibration were constructed based upon Euler-Bernoulli and Timoshenko beam theories, and applied to the study of the vibration of a vocal ligament specimen. From the natural frequency predictions in dependence of elongation, two competing processes in frequency control emerged, i.e., the applied tension raises the frequency while simultaneously shear deformation lowers the frequency. Shear becomes much more substantial at higher modes of vibration and for highly anisotropic tissues. The analysis was developed as a case study based on a human vocal ligament specimen.
Collapse
Affiliation(s)
- Jordan E Kelleher
- Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, Indiana 47907, USA
| | | | | | | | | |
Collapse
|
25
|
Banik S, Rangayyan RM, Desautels JL. Computer-aided Detection of Architectural Distortion in Prior Mammograms of Interval Cancer. ACTA ACUST UNITED AC 2013. [DOI: 10.2200/s00463ed1v01y201212bme047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
26
|
Chen T, Hilton MJ, Brown EB, Zuscik MJ, Awad HA. Engineering superficial zone features in tissue engineered cartilage. Biotechnol Bioeng 2012; 110:1476-86. [PMID: 23239161 DOI: 10.1002/bit.24799] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 10/22/2012] [Accepted: 11/23/2012] [Indexed: 12/11/2022]
Abstract
A major challenge in cartilage tissue engineering is the need to recreate the native tissue's anisotropic extracellular matrix structure. This anisotropy has important mechanical and biological consequences and could be crucial for integrative repair. Here, we report that hydrodynamic conditions that mimic the motion-induced flow fields in between the articular surfaces in the synovial joint induce the formation of a distinct superficial layer in tissue engineered cartilage hydrogels, with enhanced production of cartilage matrix proteoglycan and Type II collagen. Moreover, the flow stimulation at the surface induces the production of the surface zone protein Proteoglycan 4 (aka PRG4 or lubricin). Analysis of second harmonic generation signature of collagen in this superficial layer reveals a highly aligned fibrillar matrix that resembles the alignment pattern in native tissue's surface zone, suggesting that mimicking synovial fluid flow at the cartilage surface in hydrodynamic bioreactors could be key to creating engineered cartilage with superficial zone features.
Collapse
Affiliation(s)
- Tony Chen
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
27
|
Choe AS, Stepniewska I, Colvin DC, Ding Z, Anderson AW. Validation of diffusion tensor MRI in the central nervous system using light microscopy: quantitative comparison of fiber properties. NMR IN BIOMEDICINE 2012; 25:900-8. [PMID: 22246940 PMCID: PMC4818098 DOI: 10.1002/nbm.1810] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 09/05/2011] [Accepted: 10/18/2011] [Indexed: 05/11/2023]
Abstract
Diffusion tensor imaging (DTI) provides an indirect measure of tissue structure on a microscopic scale. To date, DTI is the only imaging method that provides such information in vivo, and has proven to be a valuable tool in both research and clinical settings. In this study, we investigated the relationship between white matter structure and diffusion parameters measured by DTI. We used micrographs from light microscopy of fixed, myelin-stained brain sections as a gold standard for direct comparison with data from DTI. Relationships between microscopic tissue properties observed with light microscopy (fiber orientation, density and coherence) and fiber properties observed by DTI (tensor orientation, diffusivities and fractional anisotropy) were investigated. Agreement between the major eigenvector of the tensor and myelinated fibers was excellent in voxels with high fiber coherence. In addition, increased fiber spread was strongly associated with increased radial diffusivity (p = 6 × 10(-6)) and decreased fractional anisotropy (p = 5 × 10(-8)), and was weakly associated with decreased axial diffusivity (p = 0.07). Increased fiber density was associated with increased fractional anisotropy (p = 0.03), and weakly associated with decreased radial diffusivity (p < 0.06), but not with axial diffusivity (p = 0.97). The mean diffusivity was largely independent of fiber spread (p = 0.24) and fiber density (p = 0.34).
Collapse
Affiliation(s)
- A S Choe
- Vanderbilt University Institute of Imaging Science, Nashville, TN, USA.
| | | | | | | | | |
Collapse
|
28
|
Wan W, Dixon JB, Gleason RL. Constitutive modeling of mouse carotid arteries using experimentally measured microstructural parameters. Biophys J 2012; 102:2916-25. [PMID: 22735542 DOI: 10.1016/j.bpj.2012.04.035] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 04/13/2012] [Accepted: 04/24/2012] [Indexed: 10/28/2022] Open
Abstract
Changes in the local mechanical environment and tissue mechanical properties affect the biological activity of cells and play a key role in a variety of diseases, such as cancer, arthritis, nephropathy, and cardiovascular disease. Constitutive relations have long been used to predict the local mechanical environment within biological tissues and to investigate the relationship between biological responses and mechanical stimuli. Recent constitutive relations for soft tissues consider both material and structural properties by incorporating parameters that describe microstructural organization, such as fiber distributions, fiber angles, fiber crimping, and constituent volume fractions. The recently developed technique of imaging the microstructure of a single artery as it undergoes multiple deformations provides quantitative structural data that can reduce the number of estimated parameters by using parameters that are truly experimentally intractable. Here, we employed nonlinear multiphoton microscopy to quantify collagen fiber organization in mouse carotid arteries and incorporated measured fiber distribution data into structurally motivated constitutive relations. Microscopy results demonstrate that collagen fibers deform in an affine manner over physiologically relevant deformations. The incorporation of measured fiber angle distributions into constitutive relations improves the model's predictive accuracy and does not significantly reduce the goodness of fit. The use of measured structural parameters rather than estimated structural parameters promises to improve the predictive capabilities of the local mechanical environment, and to extend the utility of intravital imaging methods for estimating the mechanical behavior of tissues using in situ structural information.
Collapse
Affiliation(s)
- William Wan
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | | | | |
Collapse
|
29
|
Kouris NA, Squirrell JM, Jung JP, Pehlke CA, Hacker T, Eliceiri KW, Ogle BM. A nondenatured, noncrosslinked collagen matrix to deliver stem cells to the heart. Regen Med 2012; 6:569-82. [PMID: 21916593 DOI: 10.2217/rme.11.48] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
AIMS Stem cell transplantation holds promise as a therapeutic approach for the repair of damaged myocardial tissue. One challenge of this approach is efficient delivery and long-term retention of the stem cells. Although several synthetic and natural biomaterials have been developed for this purpose, the ideal formulation has yet to be identified. MATERIALS & METHODS Here we investigate the utility of a nondenatured, noncrosslinked, commercially available natural biomaterial (TissueMend(®) [TEI Biosciences, Boston, MA, USA]) for delivery of human mesenchymal stem cells (MSCs) to the murine heart. RESULTS We found that MSCs attached, proliferated and migrated within and out of the TissueMend matrix in vitro. Human MSCs delivered to damaged murine myocardium via the matrix (2.3 × 10(4) ± 0.8 × 10(4) CD73(+) cells/matrix) were maintained in vivo for 3 weeks and underwent at least three population doublings during that period (21.9 × 10(4) ± 14.4 × 10(4) CD73(+) cells/matrix). In addition, collagen within the TissueMend matrix could be remodeled by MSCs in vivo, resulting in a significant decrease in the coefficient of alignment of fibers (0.12 ± 0.12) compared with the matrix alone (0.28 ± 0.07), and the MSCs were capable of migrating out of the matrix and into the host tissue. CONCLUSION Thus, TissueMend matrix offers a commercially available, biocompatible and malleable vehicle for the delivery and retention of stem cells to the heart.
Collapse
Affiliation(s)
- Nicholas A Kouris
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Verhaegen PDHM, Marle JV, Kuehne A, Schouten HJ, Gaffney EA, Maini PK, Middelkoop E, Zuijlen PPMV. Collagen bundle morphometry in skin and scar tissue: a novel distance mapping method provides superior measurements compared to Fourier analysis. J Microsc 2011; 245:82-9. [PMID: 21919907 DOI: 10.1111/j.1365-2818.2011.03547.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Histopathological evaluations of fibrotic processes require the characterization of collagen morphology in terms of geometrical features such as bundle orientation thickness and spacing. However, there are currently no reliable and valid techniques of measuring bundle thickness and spacing. Hence, two objective methods quantifying the collagen bundle thickness and spacing were tested for their reliability and validity: Fourier first-order maximum analysis and Distance Mapping, with the latter constituting a newly developed morphometric technique. Histological slides were constructed and imaged from 50 scar and 50 healthy human skin biopsies and subsequently analyzed by two observers to determine the interobserver reliability via the intraclass correlation coefficient. An intraclass correlation coefficient larger than 0.7 is considered as representing good reliability. The interobserver reliability for the Fourier first-order maximum and for the Distance Mapping algorithms, respectively, showed an intraclass correlation coefficient above 0.72 and 0.89. Additionally, we performed an assessment of validity in the form of responsiveness, in particular, demonstrating medium to excellent results via a calculation of the effect size, highlighting that both methods are sensitive enough to measure a treatment effect in clinical practice. In summary, two reliable and valid measurement methods were demonstrated for collagen bundle morphometry for the first time. Due to its superior reliability and more useful measures (bundle thickness and bundle spacing), Distance Mapping emerges as the preferred and more practical method. Nevertheless, in the future, both methods can be used for reliable and valid collagen morphometry of skin and scars, whereas further applications evaluating the quantitative microscopy of other fibrotic processes are anticipated.
Collapse
|
31
|
Dolan JM, Meng H, Singh S, Paluch R, Kolega J. High fluid shear stress and spatial shear stress gradients affect endothelial proliferation, survival, and alignment. Ann Biomed Eng 2011; 39:1620-31. [PMID: 21312062 DOI: 10.1007/s10439-011-0267-8] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 01/29/2011] [Indexed: 01/09/2023]
Abstract
Cerebral aneurysms develop near bifurcation apices, where complex hemodynamics occur: Flow impinges on the apex, accelerates into branches, then slows again distally, creating high wall shear stress (WSS) and positive and negative spatial gradients in WSS (WSSG). Endothelial responses to these kinds of high WSS hemodynamic environments are not well characterized. We examined endothelial cells (ECs) under elevated WSS and positive and negative WSSG using a flow chamber with constant-height channels to create regions of uniform WSS and converging and diverging channels to create positive and negative WSSG, respectively. Cultured bovine aortic ECs were subjected to 3.5 and 28.4 Pa with and without WSSG for 24 and 36 h. High WSS inhibited EC alignment to flow, increased EC proliferation assessed by bromodeoxyuridine incorporation, and increased apoptosis determined by terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling. These responses to high WSS were either accentuated or ameliorated by WSSG: Positive WSSG (+980 Pa/m) inhibited alignment and stimulated proliferation and apoptosis, whereas negative WSSG (-1120 Pa/m) promoted alignment and suppressed proliferation and apoptosis. These results demonstrate that ECs discriminate between positive and negative WSSG under high WSS conditions. EC responses to positive WSSG may contribute to pathogenic remodeling that occurs at bifurcations preceding aneurysm formation.
Collapse
Affiliation(s)
- Jennifer M Dolan
- Toshiba Stroke Research Center, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | | | | | | | | |
Collapse
|
32
|
Chiu YW, Lo MT, Tsai MR, Chang YC, Hsu RB, Yu HY, Sun CK, Ho YL. Applying harmonic optical microscopy for spatial alignment of atrial collagen fibers. PLoS One 2010; 5:e13917. [PMID: 21085489 PMCID: PMC2976704 DOI: 10.1371/journal.pone.0013917] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 10/18/2010] [Indexed: 01/18/2023] Open
Abstract
Background Atrial fibrosis creates a vulnerable tissue for atrial fibrillation (AF), but the spatial disarray of collagen fibers underlying atrial fibrosis is not fully elucidated. Objective This study hypothesizes that harmonics optical microscopy can illuminate the spatial mal-alignment of collagen fibers in AF via a layer-by-layer approach. Patients and Methods Atrial tissues taken from patients who underwent open-heart surgery were examined by harmonics optical microscopy. Using the two-dimensional Fourier transformation method, a spectral-energy description of image texture was constituted and its entropy was used to quantify the mal-alignment of collagen fibers. The amount of collagen fiber was derived from its area ratio to total atrial tissue in each image. Serum C-terminal pro-collagen pro-peptide (CICP), pro-matrix metalloproteinase-1 (pro-MMP-1), and tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) were also evaluated. Results 46 patients were evaluated, including 20 with normal sinus rhythm and 26 with AF. The entropy of spectral-energy distribution of collagen alignment was significantly higher in AF than that in sinus rhythm (3.97±0.33 vs. 2.80±0.18, p<0.005). This difference was more significant in the permanent AF group. The amount of collagen was also significantly higher in AF patients (0.39±0.13 vs. 0.18±0.06, p<0.005) but serum markers of cardiac fibrosis were not significantly different between the two groups. Conclusions Harmonics optical microscopy can quantify the spatial mal-alignment of collagen fibers in AF. The entropy of spectral-energy distribution of collagen alignment is a potential tool for research in atrial remodeling.
Collapse
Affiliation(s)
- Yu-Wei Chiu
- Division of Cardiology, Department of Internal Medicine, Far-Eastern Memorial Hospital, Taipei, Taiwan
| | - Men Tzung Lo
- Research Center for Adaptive Data Analysis, National Central University, Taoyuan, Taiwan
| | - Ming-Rung Tsai
- Department of Electrical Engineering, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan
| | - Yi-Chung Chang
- Graduate Institute of Communication Engineering, National Taiwan University, Taipei, Taiwan
| | - Rong-Bin Hsu
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsu-Yu Yu
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chi-Kuang Sun
- Department of Electrical Engineering, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan
| | - Yi-Lwun Ho
- Graduate Institute of Clinical Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
33
|
Bilgin CC, Lund AW, Can A, Plopper GE, Yener B. Quantification of three-dimensional cell-mediated collagen remodeling using graph theory. PLoS One 2010; 5. [PMID: 20927339 PMCID: PMC2948014 DOI: 10.1371/journal.pone.0012783] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 08/20/2010] [Indexed: 11/24/2022] Open
Abstract
Background Cell cooperation is a critical event during tissue development. We present the first precise metrics to quantify the interaction between mesenchymal stem cells (MSCs) and extra cellular matrix (ECM). In particular, we describe cooperative collagen alignment process with respect to the spatio-temporal organization and function of mesenchymal stem cells in three dimensions. Methodology/Principal Findings We defined two precise metrics: Collagen Alignment Index and Cell Dissatisfaction Level, for quantitatively tracking type I collagen and fibrillogenesis remodeling by mesenchymal stem cells over time. Computation of these metrics was based on graph theory and vector calculus. The cells and their three dimensional type I collagen microenvironment were modeled by three dimensional cell-graphs and collagen fiber organization was calculated from gradient vectors. With the enhancement of mesenchymal stem cell differentiation, acceleration through different phases was quantitatively demonstrated. The phases were clustered in a statistically significant manner based on collagen organization, with late phases of remodeling by untreated cells clustering strongly with early phases of remodeling by differentiating cells. The experiments were repeated three times to conclude that the metrics could successfully identify critical phases of collagen remodeling that were dependent upon cooperativity within the cell population. Conclusions/Significance Definition of early metrics that are able to predict long-term functionality by linking engineered tissue structure to function is an important step toward optimizing biomaterials for the purposes of regenerative medicine.
Collapse
Affiliation(s)
- Cemal Cagatay Bilgin
- Computer Science Department, Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | - Amanda W. Lund
- Biology Department, Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | - Ali Can
- General Electric Global Research Center, Niskayuna, New York, United States of America
| | - George E. Plopper
- Biology Department, Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | - Bülent Yener
- Computer Science Department, Rensselaer Polytechnic Institute, Troy, New York, United States of America
- * E-mail:
| |
Collapse
|
34
|
Bowles RD, Williams RM, Zipfel WR, Bonassar LJ. Self-assembly of aligned tissue-engineered annulus fibrosus and intervertebral disc composite via collagen gel contraction. Tissue Eng Part A 2010; 16:1339-48. [PMID: 19905878 DOI: 10.1089/ten.tea.2009.0442] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Many cartilaginous tissues such as intervertebral disc (IVD) display a heterogeneous collagen microstructure that results in mechanical anisotropy. These structures are responsible for mechanical function of the tissue and regulate cellular interactions and metabolic responses of cells embedded within these tissues. Using collagen gels seeded with ovine annulus fibrosus cells, constructs of varying structure and heterogeneity were created to mimic the circumferential alignment of the IVD. Alignment was induced within gels by contracting annular gels around an inner boundary using both a polyethylene center and alginate center to create a composite engineered IVD. Collagen alignment and heterogeneity were measured using second harmonic generation microscopy. Decreasing initial collagen density from 2.5 mg/mL to 1 mg/mL produced greater contraction of constructs, resulting in gels that were 55% and 6.2% of the original area after culture, respectively. As a result, more alignment occurred in annular-shaped 1 mg/mL gels compared with 2.5 mg/mL gels (p < 0.05). This alignment was also produced in a composite-engineered IVD with alginate nucleus pulposus. The resulting collagen alignment could promote further aligned collagen development necessary for the creation of a mechanically functional tissue-engineered IVD.
Collapse
Affiliation(s)
- Robby D Bowles
- Department of Biomedical Engineering, Cornell University , Ithaca, NY, USA
| | | | | | | |
Collapse
|
35
|
Au-Yeung KL, Sze KY, Sham MH, Chan BP. Development of a micromanipulator-based loading device for mechanoregulation study of human mesenchymal stem cells in three-dimensional collagen constructs. Tissue Eng Part C Methods 2010; 16:93-107. [PMID: 19368498 DOI: 10.1089/ten.tec.2008.0707] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mechanical signal is important for regulating cellular activities, including proliferation, metabolism, matrix production, and orientation. Bioreactors with loading functions can be used to precondition cells in three-dimensional (3D) constructs so as to study the cellular responses to mechanical stimulation. However, full-scale bioreactor is not always an affordable option considering the high cost of equipment and the liter-sized medium with serum and growth factor supplements. In this study, a custom-built loading system was developed by coupling a conventional camera-equipped inverted research microscope with two micromanipulators. The system was programmed to deliver either cyclic compressive loading with different frequencies or static compressive loading for 1 week to investigate the cellular responses of human mesenchymal stem cells (hMSCs) entrapped in a 3D construct consists of reconstituted collagen fibers. Cellular properties, including their alignment, cytoskeleton, and cell metabolism, and properties of matrix molecules, such as collagen fiber alignment and glycosaminoglycan deposition, were evaluated. Using a MatLab-based image analysis program, reorientation of the entrapped cells from a random distribution to a preferred alignment along the loading direction in constructs with both static and cyclic compression has been demonstrated, but no such alignment was found in the free-floating controls. Fluorescent staining on filamentous actin cytoskeleton also confirmed the finding. Nevertheless, the collagen fiber meshwork entrapping the hMSCs remained randomly distributed, and no change in cellular metabolism and glycosaminoglycans production was noted. The current study provides a simple and affordable option toward setting up a mechanoregulation facility based on existing laboratory equipment and sheds new insights on the effect of mechanical loading on the alignment of hMSCs in 3D collagen constructs.
Collapse
Affiliation(s)
- Kwan Lok Au-Yeung
- The University of Hong Kong , Hong Kong Special Administrative Region, China
| | | | | | | |
Collapse
|
36
|
Second harmonic generation imaging and Fourier transform spectral analysis reveal damage in fatigue-loaded tendons. Ann Biomed Eng 2010; 38:1741-51. [PMID: 20232150 DOI: 10.1007/s10439-010-9976-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 02/02/2010] [Indexed: 10/19/2022]
Abstract
Conventional histologic methods provide valuable information regarding the physical nature of damage in fatigue-loaded tendons, limited to thin, two-dimensional sections. We introduce an imaging method that characterizes tendon microstructure three-dimensionally and develop quantitative, spatial measures of damage formation within tendons. Rat patellar tendons were fatigue loaded in vivo to low, moderate, and high damage levels. Tendon microstructure was characterized using multiphoton microscopy by capturing second harmonic generation signals. Image stacks were analyzed using Fourier transform-derived computations to assess frequency-based properties of damage. Results showed 3D microstructure with progressively increased density and variety of damage patterns, characterized by kinked deformations at low, fiber dissociation at moderate, and fiber thinning and out-of-plane discontinuities at high damage levels. Image analysis generated radial distributions of power spectral gradients, establishing a "fingerprint" of tendon damage. Additionally, matrix damage was mapped using local, discretized orientation vectors. The frequency distribution of vector angles, a measure of damage content, differed from one damage level to the next. This study established an objective 3D imaging and analysis method for tendon microstructure, which characterizes directionality and anisotropy of the tendon microstructure and quantitative measures of damage that will advance investigations of the microstructural basis of degradation that precedes overuse injuries.
Collapse
|
37
|
van der Meer AD, Poot AA, Feijen J, Vermes I. Analyzing shear stress-induced alignment of actin filaments in endothelial cells with a microfluidic assay. BIOMICROFLUIDICS 2010; 4:11103. [PMID: 20644662 PMCID: PMC2905259 DOI: 10.1063/1.3366720] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 02/23/2010] [Indexed: 05/07/2023]
Abstract
The physiology of vascular endothelial cells is strongly affected by fluid shear stress on their surface. In this study, a microfluidic assay was employed to analyze the alignment of actin filaments in endothelial cells in response to shear stress. When cells were cultured in microfluidic channels and subjected to shear stress, the alignment of filaments in the channel direction was significantly higher than in static cultures. By adding inhibitory drugs, the roles of several signaling proteins in the process of alignment were determined. Thus, it is shown how microfluidic technology can be employed to provide a mechanistic insight into cell physiology.
Collapse
Affiliation(s)
- A D van der Meer
- Polymer Chemistry and Biomaterials, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | | | | | | |
Collapse
|
38
|
Tsai MR, Chiu YW, Lo MT, Sun CK. Second-harmonic generation imaging of collagen fibers in myocardium for atrial fibrillation diagnosis. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:026002. [PMID: 20459247 DOI: 10.1117/1.3365943] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Atrial fibrillation (AF) is the most common irregular heart rhythm and the mortality rate for patients with AF is approximately twice the mortality rate for patients with normal sinus rhythm (NSR). Some research has indicated that myocardial fibrosis plays an important role in predisposing patients to AF. Therefore, realizing the relationship between myocardial collagen fibrosis and AF is significant. Second-harmonic generation (SHG) is an optically nonlinear coherent process to image the collagen network. We perform SHG microscopic imaging of the collagen fibers in the human atrial myocardium. Utilizing the SHG images, we can identify the differences in morphology and the arrangement of collagen fibers between NSR and AF tissues. We also quantify the arrangement of the collagen fibers using Fourier transform images and calculating the values of angle entropy. We indicate that SHG imaging, a nondestructive and reproducible method to analyze the arrangement of collagen fibers, can provide explicit information about the relationship between myocardial fibrosis and AF.
Collapse
Affiliation(s)
- Ming-Rung Tsai
- National Taiwan University, Graduate Institute of Photonics and Optoelectronics and Department of Electrical Engineering, 1 Roosevelt Road Section 4, Taipei, 10617 Taiwan
| | | | | | | |
Collapse
|
39
|
Timmins LH, Wu Q, Yeh AT, Moore JE, Greenwald SE. Structural inhomogeneity and fiber orientation in the inner arterial media. Am J Physiol Heart Circ Physiol 2010; 298:H1537-45. [PMID: 20173046 DOI: 10.1152/ajpheart.00891.2009] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The microstructural orientation of vascular wall constituents is of interest to scientists and clinicians because alterations in their native states are associated with various cardiovascular diseases. In the arterial media, the orientation of these constituents is often described as circumferential. However, it has been noted that, just below the endothelial surface, the vascular wall constituents are oriented axially. To further study this reported change in orientation, and to resolve previous observations (which were made under conditions of no load), we used nonlinear optical microscopy to examine the orientation of collagen and elastin fibers in the inner medial region of bovine common carotid arteries. Images were obtained from this part of the arterial wall under varying degrees of mechanical strain: 0%, 10% axial, 10% circumferential, and 10% biaxial. We observed that close to the endothelium these components are aligned in the axial direction but abruptly change to a circumferential alignment at a depth of approximately 20 mum from the endothelial surface. The application of mechanical strain resulted in a significantly greater degree of fiber alignment, both collagen and elastin, in the strain direction, regardless of their initial unloaded orientation. Furthermore, variations in strain conditions resulted in an increase or a decrease in the overall degree of fiber alignment in the subendothelial layer depending on the direction of the applied strain. This high-resolution investigation adds more detail to existing descriptions of complex structure-function relationships in vascular tissue, which is essential for a better understanding of the pathophysiological processes resulting from injury, disease progression, and interventional therapies.
Collapse
|
40
|
Groh A, Louis AK. Stochastic modelling of biased cell migration and collagen matrix modification. J Math Biol 2009; 61:617-47. [PMID: 20012047 DOI: 10.1007/s00285-009-0314-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 11/09/2009] [Indexed: 10/20/2022]
Abstract
Matrix dynamics plays a crucial role in several physiological and pathological processes. In this paper we develop a model framework, which describes the temporal fibre network evolution depending on the influence of migrating fibroblasts. The cells are regarded as discrete objects in the plane, whose velocities are determined by a generalised Langevin equation. For its solution we verify existence and uniqueness. The courses of the trajectories are affected by two external impulses, chemotaxis and contact guidance, respectively. The extracellular matrix is described by a continuous vector field which contains both information on density and orientation of the fibrous material. Modelling dynamic interaction between the discrete and the continuum variables is an essential point of this paper. In particular, the smoothing of the fluctuating paths plays a key role. Besides a detailed description of the formulated equations, we also supply the condensed pseudo code of the algorithm. We investigate several examples and present results both from artificial and real data.
Collapse
Affiliation(s)
- Andreas Groh
- Fakultät für Mathematik und Informatik, Postfach 151150, 66041, Saarbrücken, Germany.
| | | |
Collapse
|
41
|
Saeidi N, Sander EA, Ruberti JW. Dynamic shear-influenced collagen self-assembly. Biomaterials 2009; 30:6581-92. [PMID: 19765820 DOI: 10.1016/j.biomaterials.2009.07.070] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2009] [Accepted: 07/27/2009] [Indexed: 02/08/2023]
Abstract
The ability to influence the direction of polymerization of a self-assembling biomolecular system has the potential to generate materials with extremely high anisotropy. In biological systems where highly-oriented cellular populations give rise to aligned and often load-bearing tissue such organized molecular scaffolds could aid in the contact guidance of cells for engineered tissue constructs (e.g. cornea and tendon). In this investigation we examine the detailed dynamics of pepsin-extracted type I bovine collagen assembly on a glass surface under the influence of flow between two plates. Differential Interference Contrast (DIC) imaging (60x-1.4NA) with focal plane stabilization was used to resolve and track the growth of collagen aggregates on borosilicate glass for 4 different shear rates (500, 80, 20, and 9s(-1)). The detailed morphology of the collagen fibrils/aggregates was examined using Quick Freeze Deep Etch (QFDE) electron microscopy. Nucleation of fibrils on the glass was observed to occur rapidly (approximately 2 min) followed by continued growth of the fibrils. The growth rates were dependent on flow in a complex manner with the highest rate of axial growth (0.1 micro/s) occurring at a shear rate of 9s(-1). The lowest growth rate occurred at the highest shear. Fibrils were observed to both branch and join during the experiments. The best alignment of fibrils was observed at intermediate shear rates of 20 and 80s(-1). However, the investigation revealed that fibril directional growth was not stable. At high shear rates, fibrils would often turn downstream forming what we term "hooks" which are likely the combined result of monomer interaction with the initial collagen layer or "mat" and the high shear rate. Further, QFDE examination of fibril morphology demonstrated that the assembled fibrillar structure did not possess native D-periodicity. Instead, fibrils comprised a collection of generally aligned, monomers which were self-assembled to form a fibril-like aggregate. In conclusion, though constant shear-rate clearly influences collagen fibrillar alignment, the formation of highly-organized collagenous arrays of native-like D-banded fibrils remains a challenge. Modulation of shear in combination with surface energy patterning to produce a highly-aligned initial mat may provide significant improvement of both the fibril morphology and alignment.
Collapse
Affiliation(s)
- Nima Saeidi
- Department of Mechanical and Industrial Engineering, Northeastern University, 334 Snell Engineering, Boston, MA 02115, USA.
| | | | | |
Collapse
|
42
|
Hu JJ, Humphrey JD, Yeh AT. Characterization of engineered tissue development under biaxial stretch using nonlinear optical microscopy. Tissue Eng Part A 2009; 15:1553-64. [PMID: 19063662 DOI: 10.1089/ten.tea.2008.0287] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Little is known about the precise mechanical stimuli that cells sense and respond to as they maintain or refashion the extracellular matrix in multiaxially loaded native or bioengineered tissues. Such information would benefit many areas of research involving soft tissues, including tissue morphogenesis, wound healing, and tissue engineering. A custom tissue culture device has been constructed that can impart well-defined biaxial stretches on cruciform-shaped, fibroblast-seeded collagen gels and be mounted on the stage of a nonlinear optical microscopy (NLOM) system for microscopic characterization of matrix organization. The cruciform geometry permitted direct comparison of matrix (re-)organization within regions of the collagen gel exposed to either uniaxial or biaxial boundary conditions and examination by NLOM for up to 6 days. In addition, sequential NLOM measurements of collagen fiber orientations within gels while stretched, unloaded, or decellularized delineated contributions of applied stretches, cell-mediated tractions, and matrix remodeling on the measured distributions. The integration of intravital NLOM with novel bioreactors enables visualization of dynamic tissue properties in culture.
Collapse
Affiliation(s)
- Jin-Jia Hu
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | | | | |
Collapse
|
43
|
de Campos Vidal B, Mello MLS. Structural organization of collagen fibers in chordae tendineae as assessed by optical anisotropic properties and Fast Fourier transform. J Struct Biol 2009; 167:166-75. [DOI: 10.1016/j.jsb.2009.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 05/10/2009] [Accepted: 05/13/2009] [Indexed: 10/20/2022]
|
44
|
Sander EA, Barocas VH. Comparison of 2D fiber network orientation measurement methods. J Biomed Mater Res A 2009; 88:322-31. [PMID: 18286605 DOI: 10.1002/jbm.a.31847] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The mechanical properties of tissues, tissue analogs, and biomaterials are dependent on their underlying microstructure. As such, many mechanical models incorporate some aspect of microstructure, but a robust protocol for characterizing fiber architecture remains a challenge. A number of image-based methods, including mean intercept length (MIL), line fraction deviation (LFD), and Fourier transform methods (FTM), have been applied to microstructural images to describe material heterogeneity and orientation, but a performance comparison, particularly for fiber networks, has not been conducted. In this study, we constructed 40 two-dimensional test images composed of simulated fiber networks varying in fiber number, orientation, and anisotropy index. We assessed the accuracy of each method in measuring principal direction (theta) and anisotropy index (alpha). FTM proved to be the superior method because it was more reliable in measurement accuracy (Deltatheta = 2.95 degrees +/- 6.72 degrees , Deltaalpha = 0.03 +/- 0.02), faster in execution time, and flexible in its application. MIL (Deltatheta = 6.23 degrees +/- 10.68 degrees , Deltaalpha = 0.08 +/- 0.06) was not significantly less accurate than FTM but was much slower. LFD (Deltatheta = 9.97 degrees +/- 11.82 degrees , Deltaalpha = 0.24 +/- 0.13) consistently underperformed. FTM results agreed qualitatively with fibrin gel SEM micrographs, suggesting that FTM can be used to obtain image-based statistical measurements of microstructure.
Collapse
Affiliation(s)
- E A Sander
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
45
|
Vidal BDC, Mello MLS. Optical anisotropy of collagen fibers of rat calcaneal tendons: An approach to spatially resolved supramolecular organization. Acta Histochem 2008; 112:53-61. [PMID: 18835013 DOI: 10.1016/j.acthis.2008.07.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 07/15/2008] [Accepted: 07/24/2008] [Indexed: 11/12/2022]
Abstract
Optical anisotropic characteristics investigated by polarization microscopy have been valuable for the study of the oriented organization of collagen fibers in tendons. However, topographic differences in supramolecular organization of collagen fibers along extensive areas in tendons have not yet been described. Here, the statistical variability of the oriented organization of collagen fibers along extensive areas (10(5)-10(6)microm(2)) of 7-microm thick unstained sections of rat calcaneal tendons were studied by assessing their birefringence with polarization microscopy and image analysis, and the periodic frequency distribution in their birefringent images with the fast Fourier transform (FFT). Various levels of birefringence intensity were determined principally by image analysis procedures, and periodicity in the birefringent images was revealed by FFT line profile and spectrum image patterns. Present results support the idea of a helical distribution for collagen bundles along the tendon long axis, and of a statistical architecture for the rat calcaneal tendons in terms of variability in the oriented distribution of their collagen fibers.
Collapse
|
46
|
Lakshman N, Kim A, Bayless KJ, Davis GE, Petroll WM. Rho plays a central role in regulating local cell-matrix mechanical interactions in 3D culture. ACTA ACUST UNITED AC 2007; 64:434-45. [PMID: 17342762 DOI: 10.1002/cm.20194] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The purpose of this study was to assess quantitatively the role of the small GTPase Rho on cell morphology, f-actin organization, and cell-induced matrix remodeling in 3D culture. Human corneal fibroblasts (HTK) were infected with adenoviruses that express green fluorescent protein (GFP) or GFP-N19Rho (dominant negative Rho). One day later cells were plated inside collagen matrices and allowed to spread for 24 h. Cells were fixed and stained for f-actin. Fluorescent (for f-actin) and reflected light (for collagen fibrils) images were acquired using confocal microscopy. Fourier transform analysis was used to assess local collagen fibril alignment, and changes in cell morphology and collagen density were measured using MetaMorph. The decrease in matrix height was used as an indicator of global matrix contraction. HTK and HTK-GFP cells induced significant global matrix contraction; this was inhibited by N19Rho. HTK and HTK-GFP fibroblasts generally had a bipolar morphology and occasional intracellular stress fibers. Collagen fibrils were compacted and aligned parallel to stress fibers and pseudopodia. In contrast, HTK-GFPN19 cells were elongated, and had a more cortical f-actin distribution. Numerous small extensions were also observed along the cell body. In addition, both local collagen fibril density and alignment were significantly reduced. Rho plays a key role in regulating both the morphology and mechanical behavior of corneal fibroblasts in 3D culture. Overall, the data suggest that Rho-kinase dependent cell contractility contributes to global and local matrix remodeling, whereas Rho dependent activation of mDia and/or other downstream effectors regulates the structure and number of cell processes.
Collapse
Affiliation(s)
- N Lakshman
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9057, USA
| | | | | | | | | |
Collapse
|
47
|
Kim A, Lakshman N, Petroll WM. Quantitative assessment of local collagen matrix remodeling in 3-D culture: the role of Rho kinase. Exp Cell Res 2006; 312:3683-92. [PMID: 16978606 PMCID: PMC2075357 DOI: 10.1016/j.yexcr.2006.08.009] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Revised: 08/11/2006] [Accepted: 08/11/2006] [Indexed: 11/16/2022]
Abstract
The purpose of this study was to quantitatively assess the role of Rho kinase in modulating the pattern and amount of local cell-induced collagen matrix remodeling. Human corneal fibroblasts were plated inside 100-microm thick fibrillar collagen matrices and cultured for 24 h in media with or without the Rho kinase inhibitor Y-27632. Cells were then fixed and stained with phalloidin. Fluorescent (for f-actin) and reflected light (for collagen fibrils) 3-D optical section images were acquired using laser confocal microscopy. Fourier transform analysis was used to assess collagen fibril alignment, and 3-D cell morphology and local collagen density were measured using MetaMorph. Culture in serum-containing media induced significant global matrix contraction, which was inhibited by blocking Rho kinase (p<0.001). Fibroblasts generally had a bipolar morphology and intracellular stress fibers. Collagen fibrils were compacted and aligned parallel to stress fibers and pseudopodia. When Rho kinase was inhibited, cells had a more cortical f-actin distribution and dendritic morphology. Both local collagen fibril density and alignment were significantly reduced (p<0.01). Overall, the data suggests that Rho kinase-dependent contractile force generation leads to co-alignment of cells and collagen fibrils along the plane of greatest resistance, and that this process contributes to global matrix contraction.
Collapse
Affiliation(s)
- Areum Kim
- Graduate Program in Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | |
Collapse
|
48
|
Petroll WM. Differential interference contrast and confocal reflectance imaging of collagen organization in three-dimensional matrices. SCANNING 2006; 28:305-10. [PMID: 17181131 DOI: 10.1002/sca.4950280602] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The remodeling of extracellular matrices by cells plays a defining role in developmental morphogenesis and wound healing as well as in tissue engineering. Three-dimensional (3-D) type I collagen matrices have been used extensively as an in vitro model for studying cell-induced matrix reorganization at the macroscopic level. However, few studies have directly assessed the process of 3-D extracellular matrix (ECM) remodeling at the cellular and subcellular level. In this study, we directly compare two imaging modalities for both quantitative and qualitative imaging of 3-D collagen organization in vitro: differential interference contrast (DIC) and confocal reflectance imaging. The results demonstrate that two-dimensional (2-D) DIC images allow visualization of the same population of collagen fibrils as observed in 2-D confocal reflectance images. Thus, DIC can be used for qualitative assessment of fibril organization, as well as tracking of fibril movement in sequential time-lapse 2-D images. However, we also found that quantitative techniques that can be applied to confocal reflectance images, such as Fourier transform analysis, give different results when applied to DIC images. Furthermore, common techniques used for 3-D visualization and reconstruction of confocal reflectance datasets are not generally applicable to DIC. Overall, obtaining a complete understanding of cell-matrix mechanical interactions will likely require a combination of both wide-field DIC imaging to study rapid changes in ECM deformation which can occur within minutes, and confocal reflectance imaging to assess more gradual changes in cell-induced compaction and alignment of ECM which occur over a longer time course.
Collapse
Affiliation(s)
- W Matthew Petroll
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9057, USA.
| |
Collapse
|
49
|
Ng CP, Swartz MA. Mechanisms of interstitial flow-induced remodeling of fibroblast-collagen cultures. Ann Biomed Eng 2006; 34:446-54. [PMID: 16482410 DOI: 10.1007/s10439-005-9067-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Accepted: 11/11/2005] [Indexed: 11/27/2022]
Abstract
Interstitial fluid flow, critical for macromolecular transport, was recently shown to drive fibroblast differentiation and perpendicular cell and matrix alignment in 3D collagen cultures. Here we explore the mechanisms underlying this flow-induced cell and collagen alignment. Cell and matrix alignment was assessed from 3D confocal reflectance stacks using a Fast Fourier Transform method. We found that human dermal and lung fibroblasts align perpendicular to flow in the range of 5-13 mum/s (0.1-0.3 dyn/cm(2)) in collagen; however, neither cells nor matrix fibers align in fibrin cultures, which unlike collagen, is covalently cross-linked and generally degraded by cell fibrinolysis. We also found that even acellular collagen matrices align weakly upon exposure to flow. Matrix alignment begins within 12 h of flow onset and continues, along with cell alignment, over 48 h. Together, these data suggest that interstitial flow first induces collagen fiber alignment, providing contact guidance for the cells to orient along the aligned matrix; later, the aligned cells further remodel and align their surrounding matrix fibers. These findings help elucidate the effects of interstitial flow on cells in matrices and have relevance physiologically in tissue remodeling and in tissue engineering applications.
Collapse
Affiliation(s)
- Chee Ping Ng
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | | |
Collapse
|
50
|
Nagatomi J, Toosi KK, Grashow JS, Chancellor MB, Sacks MS. Quantification of bladder smooth muscle orientation in normal and spinal cord injured rats. Ann Biomed Eng 2005; 33:1078-89. [PMID: 16133916 DOI: 10.1007/s10439-005-5776-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Accepted: 04/01/2005] [Indexed: 11/27/2022]
Abstract
Spinal cord injuries (SCI) often lead to severe bladder dysfunctions. Our previous studies have demonstrated that following SCI, rat bladder wall tissue became hypertrophied, significantly more compliant, and changed its mechanical behavior from orthotropic to isotropic. In order to elucidate the link between the tissue microstructure and mechanical properties of the wall, we have developed a novel semi-automated image analysis method to quantify smooth muscle bundle orientation and mass fraction in the bladder wall tissues from normal and 10 day-post-SCI rats. Results of the present study revealed that there were significant (p < 0.05) increases in smooth muscle area fractions as well as significantly (p < 0.001) fewer cell nuclei per muscle area in the SCI groups compared to the normal groups. Furthermore, while the normal rat bladders exhibited predominant smooth muscle orientation only in the longitudinal direction, the SCI rat bladders exhibited smooth muscles oriented in both the circumferential and longitudinal directions. These results provide first evidence that bladder smooth muscle cells exhibit hypertrophy rather than hyperplasia and developed a second, orthogonal orientation of smooth muscle bundles following SCI. The results of the present study corroborate our previous mechanical anisotropy data and provide the basis for development of structure-based constitutive models for urinary bladder wall tissue.
Collapse
Affiliation(s)
- Jiro Nagatomi
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | | | | | | | | |
Collapse
|