1
|
Ochodo EA, Olwanda EE, Deeks JJ, Mallett S. Point-of-care viral load tests to detect high HIV viral load in people living with HIV/AIDS attending health facilities. Cochrane Database Syst Rev 2022; 3:CD013208. [PMID: 35266555 PMCID: PMC8908762 DOI: 10.1002/14651858.cd013208.pub2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Viral load (VL) testing in people living with HIV (PLHIV) helps to monitor antiretroviral therapy (ART). VL is still largely tested using central laboratory-based platforms, which have long test turnaround times and involve sophisticated equipment. VL tests with point-of-care (POC) platforms capable of being used near the patient are potentially easy to use, give quick results, are cost-effective, and could replace central or reference VL testing platforms. OBJECTIVES To estimate the diagnostic accuracy of POC tests to detect high viral load levels in PLHIV attending healthcare facilities. SEARCH METHODS We searched eight electronic databases using standard, extensive Cochrane search methods, and did not use any language, document type, or publication status limitations. We also searched the reference lists of included studies and relevant systematic reviews, and consulted an expert in the field from the World Health Organization (WHO) HIV Department for potentially relevant studies. The latest search was 23 November 2020. SELECTION CRITERIA We included any primary study that compared the results of a VL test with a POC platform to that of a central laboratory-based reference test to detect high viral load in PLHIV on HIV/AIDS care or follow-up. We included all forms of POC tests for VL as defined by study authors, regardless of the healthcare facility in which the test was conducted. We excluded diagnostic case-control studies with healthy controls and studies that did not provide sufficient data to create the 2 × 2 tables to calculate sensitivity and specificity. We did not limit our study inclusion to age, gender, or geographical setting. DATA COLLECTION AND ANALYSIS Two review authors independently screened the titles, abstracts, and full texts of the search results to identify eligible articles. They also independently extracted data using a standardized data extraction form and conducted risk of bias assessment using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. Using participants as the unit of analysis, we fitted simplified univariable models for sensitivity and specificity separately, employing a random-effects model to estimate the summary sensitivity and specificity at the current and commonly reported World Health Organization (WHO) threshold (≥ 1000 copies/mL). The bivariate models did not converge to give a model estimate. MAIN RESULTS We identified 18 studies (24 evaluations, 10,034 participants) defining high viral loads at main thresholds ≥ 1000 copies/mL (n = 20), ≥ 5000 copies/mL (n = 1), and ≥ 40 copies/mL (n = 3). All evaluations were done on samples from PLHIV retrieved from routine HIV/AIDS care centres or health facilities. For clinical applicability, we included 14 studies (20 evaluations, 8659 participants) assessing high viral load at the clinical threshold of ≥ 1000 copies/mL in the meta-analyses. Of these, sub-Saharan Africa, Europe, and Asia contributed 16, three, and one evaluation respectively. All included participants were on ART in only nine evaluations; in the other 11 evaluations the proportion of participants on ART was either partial or not clearly stated. Thirteen evaluations included adults only (n = 13), five mixed populations of adults and children, whilst in the remaining two the age of included populations was not clearly stated. The majority of evaluations included commercially available tests (n = 18). Ten evaluations were POC VL tests conducted near the patient in a peripheral or onsite laboratory, whilst the other 10 were evaluations of POC VL tests in a central or reference laboratory setting. The test types evaluated as POC VL tests included Xpert HIV-1 Viral Load test (n = 8), SAMBA HIV-1 Semi-Q Test (n = 9), Alere Q NAT prototype assay for HIV-1 (n = 2) and m-PIMA HIV-1/2 Viral Load test (n = 1). The majority of evaluations (n = 17) used plasma samples, whilst the rest (n = 3) utilized whole blood samples. Pooled sensitivity (95% confidence interval (CI)) of POC VL at a threshold of ≥ 1000 copies/mL was 96.6% (94.8 to 97.8) (20 evaluations, 2522 participants), and pooled specificity (95% CI) was 95.7% (90.8 to 98.0) (20 evaluations, 6137 participants). Median prevalence for high viral load (≥ 1000 copies/mL) (n = 20) was 33.4% (range 6.9% to 88.5%). Limitations The risk of bias was mostly assessed as unclear across the four domains due to incomplete reporting. AUTHORS' CONCLUSIONS We found POC VL to have high sensitivity and high specificity for the diagnosis of high HIV viral load in PLHIV attending healthcare facilities at a clinical threshold of ≥ 1000 copies/mL.
Collapse
Affiliation(s)
- Eleanor A Ochodo
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
- Centre for Evidence-based Health Care, Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | | | - Jonathan J Deeks
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Sue Mallett
- UCL Centre for Medical Imaging, Division of Medicine, Faculty of Medical Sciences, University College London, London, UK
| |
Collapse
|
2
|
Kumar S, Nehra M, Khurana S, Dilbaghi N, Kumar V, Kaushik A, Kim KH. Aspects of Point-of-Care Diagnostics for Personalized Health Wellness. Int J Nanomedicine 2021; 16:383-402. [PMID: 33488077 PMCID: PMC7814661 DOI: 10.2147/ijn.s267212] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/24/2020] [Indexed: 12/24/2022] Open
Abstract
Advancements in analytical diagnostic systems for point-of-care (POC) application have gained considerable attention because of their rapid operation at the site required to manage severe diseases, even in a personalized manner. The POC diagnostic devices offer easy operation, fast analytical outcome, and affordable cost, which promote their advanced research and versatile adoptability. Keeping advantages in view, considerable efforts are being made to design and develop smart sensing components such as miniaturized transduction, interdigitated electrodes-based sensing chips, selective detection at low level, portable packaging, and sustainable durability to promote POC diagnostics according to the needs of patient care. Such effective diagnostics systems are in demand, which creates the challenge to make them more efficient in every aspect to generate a desired bio-informatic needed for better health access and management. Keeping advantages and scope in view, this mini review focuses on practical scenarios associated with miniaturized analytical diagnostic devices at POC application for targeted disease diagnostics smartly and efficiently. Moreover, advancements in technologies, such as smartphone-based operation, paper-based sensing assays, and lab-on-a-chip (LOC) which made POC more sensitive, informative, and suitable for major infectious disease diagnosis, are the main focus here. Besides, POC diagnostics based on automated patient sample integration with a sensing platform is continuously improving therapeutics interventions against specific infectious disease. This review also discussed challenges associated with state-of-the-art technology along with future research opportunities to design and develop next generation POC diagnostic systems needed to manage infectious diseases in a personalized manner.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India
| | - Monika Nehra
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India
| | - Sakina Khurana
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Natural Sciences, Division of Sciences, Art, & Mathematics, Florida Polytechnic University, Lakeland, FL, 33805-8531, USA
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
3
|
Han P, Yosinski S, Kobos ZA, Chaudhury R, Lee JS, Fahmy TM, Reed MA. Continuous Label-Free Electronic Discrimination of T Cells by Activation State. ACS NANO 2020; 14:8646-8657. [PMID: 32530598 DOI: 10.1021/acsnano.0c03018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The sensitivity and speed with which the immune system reacts to host disruption is unrivaled by any detection method for pathogenic biomarkers or infectious signatures. Engagement of cellular immunity in response to infections or cancer is contingent upon activation and subsequent cytotoxic activity by T cells. Thus, monitoring T cell activation can reliably serve as a metric for disease diagnosis as well as therapeutic prognosis. Rapid and direct quantification of T cell activation states, however, has been hindered by challenges associated with antigen target identification, labeling requirements, and assay duration. Here we present an electronic, label-free method for simultaneous separation and evaluation of T cell activation states. Our device utilizes a microfluidic design integrated with nanolayered electrode structures for dielectrophoresis (DEP)-driven discrimination of activated vs naïve T cells at single-cell resolution and demonstrates rapid (<2 min) separation of T cells at high single-pass efficiency as quantified by an on-chip Coulter counter module. Our device represents a microfluidic tool for electronic assessment of immune activation states and, hence, a portable diagnostic for quantitative evaluation of immunity and disease state. Further, its ability to achieve label-free enrichment of activated immune cells promises clinical utility in cell-based immunotherapies.
Collapse
Affiliation(s)
- Patrick Han
- Department of Chemical & Environmental Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, Connecticut 06511, United States
| | - Shari Yosinski
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, Connecticut 06511, United States
| | - Zachary A Kobos
- Department of Electrical Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, Connecticut 06511, United States
| | - Rabib Chaudhury
- Department of Chemical & Environmental Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, Connecticut 06511, United States
| | - Jung Seok Lee
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, Connecticut 06511, United States
| | - Tarek M Fahmy
- Department of Chemical & Environmental Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, Connecticut 06511, United States
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, Connecticut 06511, United States
| | - Mark A Reed
- Department of Electrical Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
4
|
Tangential Flow Microfiltration for Viral Separation and Concentration. MICROMACHINES 2019; 10:mi10050320. [PMID: 31083603 PMCID: PMC6563004 DOI: 10.3390/mi10050320] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 01/20/2023]
Abstract
Microfluidic devices that allow biological particle separation and concentration have found wide applications in medical diagnosis. Here we present a viral separation polydimethylsiloxane (PDMS) device that combines tangential flow microfiltration and affinity capture to enrich HIV virus in a single flow-through fashion. The set-up contains a filtration device and a tandem resistance channel. The filtration device consists of two parallel flow channels separated by a polycarbonate nanoporous membrane. The resistance channel, with dimensions design-guided by COMSOL simulation, controls flow permeation through the membrane in the filtration device. A flow-dependent viral capture efficiency is observed, which likely reflects the interplay of several processes, including specific binding of target virus, physical deposition of non-specific particles, and membrane cleaning by shear flow. At the optimal flow rate, nearly 100% of viral particles in the permeate are captured on the membrane with various input viral concentrations. With its easy operation and consistent performance, this microfluidic device provides a potential solution for HIV sample preparation in resource-limited settings.
Collapse
|
5
|
Wasserberg D, Zhang X, Breukers C, Connell BJ, Baeten E, van den Blink D, S O L À Benet È, Bloem AC, Nijhuis M, Wensing AMJ, Terstappen LWMM, Beck M. All-printed cell counting chambers with on-chip sample preparation for point-of-care CD4 counting. Biosens Bioelectron 2018; 117:659-668. [PMID: 30005387 DOI: 10.1016/j.bios.2018.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/27/2018] [Accepted: 07/01/2018] [Indexed: 12/19/2022]
Abstract
We demonstrate the fabrication of fully printed microfluidic CD4 counting chips with complete on-chip sample preparation and their applicability as a CD4 counting assay using samples from healthy donors and HIV-infected patients. CD4 counting in low-income and resource-limited point-of-care settings is only practical and affordable, if disposable tests can be fabricated at very low cost and all manual sample preparation is avoided, while operation as well as quantification is fully automated and independent of the skills of the operator. Here, we show the successful use of (inkjet) printing methods both to fabricate microfluidic cell counting chambers with controlled heights, and to deposit hydrogel layers with embedded fluorophore-labeled antibodies for on-chip sample preparation and reagent storage. The maturation process of gelatin after deposition prevents antibody wash-off during blood inflow very well, while temperature-controlled dissolution of the matrix ensures complete antibody release for immunostaining after the inflow has stopped. The prevention of antibody wash-off together with the subsequent complete antibody release guarantees a homogeneous fluorescence background, making rapid and accurate CD4 counting possible. We show the successful application of our fully printed CD4 counting chips on samples from healthy donors as well as from HIV-infected patients and find an excellent agreement between results from our method and from the gold standard, flow cytometry, in both cases.
Collapse
Affiliation(s)
- Dorothee Wasserberg
- Medical Cell Biophysics, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, PO Box 217, 7500 AE Enschede, The Netherlands
| | - Xichen Zhang
- Medical Cell Biophysics, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, PO Box 217, 7500 AE Enschede, The Netherlands
| | - Christian Breukers
- Medical Cell Biophysics, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, PO Box 217, 7500 AE Enschede, The Netherlands
| | - Bridgette J Connell
- University Medical Center Utrecht, Department of Medical Microbiology, Virology, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Ellen Baeten
- University Medical Center Utrecht, Laboratory of Translational Immunology, Section Diagnostics, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Dorine van den Blink
- University Medical Center Utrecht, Laboratory of Translational Immunology, Section Diagnostics, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Èlia S O L À Benet
- Medical Cell Biophysics, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, PO Box 217, 7500 AE Enschede, The Netherlands
| | - Andries C Bloem
- University Medical Center Utrecht, Laboratory of Translational Immunology, Section Diagnostics, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Monique Nijhuis
- University Medical Center Utrecht, Department of Medical Microbiology, Virology, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Annemarie M J Wensing
- University Medical Center Utrecht, Department of Medical Microbiology, Virology, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Leon W M M Terstappen
- Medical Cell Biophysics, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, PO Box 217, 7500 AE Enschede, The Netherlands
| | - Markus Beck
- Medical Cell Biophysics, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, PO Box 217, 7500 AE Enschede, The Netherlands.
| |
Collapse
|
6
|
Damhorst GL, Kooiman JM, Bashir R. HIV-1 IIIB capture from whole blood on magnetic microparticles. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:5785-5788. [PMID: 28269569 DOI: 10.1109/embc.2016.7592042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Viral load quantification is a critical need for HIV management worldwide. However, the diagnostic technologies currently available are too limited by their size and expense to reach many remote and resource-limited populations. Toward the development of techniques which can be leveraged for point-of-care assays, we have investigated affinity capture of whole viruses using magnetic microparticles functionalized with antibodies or proteins targeting components of the HIV envelope. Results show the best performance from T-20, a small peptide employed in antiretroviral pharmacotherapy which targets an HIV envelope protein. This demonstration introduces an interesting alternative to antibodies for future affinity-capture applications in HIV diagnostics.
Collapse
|
7
|
Golchin J, Golchin K, Alidadian N, Ghaderi S, Eslamkhah S, Eslamkhah M, Akbarzadeh A. Nanozyme applications in biology and medicine: an overview. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 45:1-8. [DOI: 10.1080/21691401.2017.1313268] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Jafar Golchin
- Division of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kazem Golchin
- Division of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Alidadian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahrooz Ghaderi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Division of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sajjad Eslamkhah
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Eslamkhah
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Akbarzadeh
- Division of Nanomedicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Adly N, Feng L, Krause KJ, Mayer D, Yakushenko A, Offenhäusser A, Wolfrum B. Flexible Microgap Electrodes by Direct Inkjet Printing for Biosensing Application. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/adbi.201600016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Nouran Adly
- Institute of Bioelectronics (PGI-8/ICS-8) and JARA - Fundamentals of Future Information Technology; Forschungszentrum Jülich; 52425 Jülich Germany
| | - Lingyan Feng
- Institute of Bioelectronics (PGI-8/ICS-8) and JARA - Fundamentals of Future Information Technology; Forschungszentrum Jülich; 52425 Jülich Germany
- Materials Genome Institute; Shanghai University; 200444 Shanghai China
| | - Kay J. Krause
- Institute of Bioelectronics (PGI-8/ICS-8) and JARA - Fundamentals of Future Information Technology; Forschungszentrum Jülich; 52425 Jülich Germany
| | - Dirk Mayer
- Institute of Bioelectronics (PGI-8/ICS-8) and JARA - Fundamentals of Future Information Technology; Forschungszentrum Jülich; 52425 Jülich Germany
| | - Alexey Yakushenko
- Institute of Bioelectronics (PGI-8/ICS-8) and JARA - Fundamentals of Future Information Technology; Forschungszentrum Jülich; 52425 Jülich Germany
| | - Andreas Offenhäusser
- Institute of Bioelectronics (PGI-8/ICS-8) and JARA - Fundamentals of Future Information Technology; Forschungszentrum Jülich; 52425 Jülich Germany
| | - Bernhard Wolfrum
- Institute of Bioelectronics (PGI-8/ICS-8) and JARA - Fundamentals of Future Information Technology; Forschungszentrum Jülich; 52425 Jülich Germany
- Neuroelectronics; Munich School of Bioengineering; Department of Electrical and Computer Engineering; Technical University of Munich (TUM) & BCCN Munich; Boltzmannstrasse 11 85748 Garching Germany
| |
Collapse
|
9
|
Dak P, Ebrahimi A, Swaminathan V, Duarte-Guevara C, Bashir R, Alam MA. Droplet-based Biosensing for Lab-on-a-Chip, Open Microfluidics Platforms. BIOSENSORS 2016; 6:14. [PMID: 27089377 PMCID: PMC4931474 DOI: 10.3390/bios6020014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/31/2016] [Accepted: 04/09/2016] [Indexed: 01/09/2023]
Abstract
Low cost, portable sensors can transform health care by bringing easily available diagnostic devices to low and middle income population, particularly in developing countries. Sample preparation, analyte handling and labeling are primary cost concerns for traditional lab-based diagnostic systems. Lab-on-a-chip (LoC) platforms based on droplet-based microfluidics promise to integrate and automate these complex and expensive laboratory procedures onto a single chip; the cost will be further reduced if label-free biosensors could be integrated onto the LoC platforms. Here, we review some recent developments of label-free, droplet-based biosensors, compatible with "open" digital microfluidic systems. These low-cost droplet-based biosensors overcome some of the fundamental limitations of the classical sensors, enabling timely diagnosis. We identify the key challenges that must be addressed to make these sensors commercially viable and summarize a number of promising research directions.
Collapse
Affiliation(s)
- Piyush Dak
- Purdue University, West Lafayette 47906, IN, USA.
| | | | | | | | - Rashid Bashir
- University of Illinois at Urbana-Champaign, Urbana 61801, IL, USA.
| | | |
Collapse
|
10
|
Hassan U, Watkins NN, Reddy B, Damhorst G, Bashir R. Microfluidic differential immunocapture biochip for specific leukocyte counting. Nat Protoc 2016; 11:714-26. [PMID: 26963632 PMCID: PMC4893332 DOI: 10.1038/nprot.2016.038] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Enumerating specific cell types from whole blood can be very useful for research and diagnostic purposes-e.g., for counting of CD4 and CD8 T cells in HIV/AIDS diagnostics. We have developed a biosensor based on a differential immunocapture technology to enumerate specific cells in 30 min using 10 μl of blood. This paper provides a comprehensive stepwise protocol to replicate our biosensor for CD4 and CD8 cell counts. The biochip can also be adapted to enumerate other specific cell types such as somatic cells or cells from tissue or liquid biopsies. Capture of other specific cells requires immobilization of their corresponding antibodies within the capture chamber. Therefore, this protocol is useful for research into areas surrounding immunocapture-based biosensor development. The biosensor production requires 24 h, a one-time cell capture optimization takes 6-9 h, and the final cell counting experiment in a laboratory environment requires 30 min to complete.
Collapse
Affiliation(s)
- Umer Hassan
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, William L. Everitt Laboratory, Urbana, Illinois, USA
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Biomedical Research Center, Carle Foundation Hospital, Urbana, Illinois, USA
| | - Nicholas N Watkins
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, William L. Everitt Laboratory, Urbana, Illinois, USA
| | - Bobby Reddy
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Biomedical Research Center, Carle Foundation Hospital, Urbana, Illinois, USA
| | - Gregory Damhorst
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Biomedical Research Center, Carle Foundation Hospital, Urbana, Illinois, USA
| | - Rashid Bashir
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, William L. Everitt Laboratory, Urbana, Illinois, USA
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Biomedical Research Center, Carle Foundation Hospital, Urbana, Illinois, USA
| |
Collapse
|
11
|
Damhorst GL, Duarte-Guevara C, Chen W, Ghonge T, Cunningham BT, Bashir R. Smartphone-Imaged HIV-1 Reverse-Transcription Loop-Mediated Isothermal Amplification (RT-LAMP) on a Chip from Whole Blood. ENGINEERING (BEIJING, CHINA) 2015; 1:324-335. [PMID: 26705482 PMCID: PMC4687746 DOI: 10.15302/j-eng-2015072] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Viral load measurements are an essential tool for the long-term clinical care of hum an immunodeficiency virus (HIV)-positive individuals. The gold standards in viral load instrumentation, however, are still too limited by their size, cost, and sophisticated operation for these measurements to be ubiquitous in remote settings with poor healthcare infrastructure, including parts of the world that are disproportionately affected by HIV infection. The challenge of developing a point-of-care platform capable of making viral load more accessible has been frequently approached but no solution has yet emerged that meets the practical requirements of low cost, portability, and ease-of-use. In this paper, we perform reverse-transcription loop-mediated isothermal amplification (RT-LAMP) on minimally processed HIV-spiked whole blood samples with a microfluidic and silicon microchip platform, and perform fluorescence measurements with a consumer smartphone. Our integrated assay shows amplification from as few as three viruses in a ~ 60 nL RT-LAMP droplet, corresponding to a whole blood concentration of 670 viruses per µL of whole blood. The technology contains greater power in a digital RT-LAMP approach that could be scaled up for the determination of viral load from a finger prick of blood in the clinical care of HIV-positive individuals. We demonstrate that all aspects of this viral load approach, from a drop of blood to imaging the RT-LAMP reaction, are compatible with lab-on-a-chip components and mobile instrumentation.
Collapse
Affiliation(s)
- Gregory L. Damhorst
- Department of Bioengineering, The University of Illinois at
Urbana-Champaign, Urbana, IL 61801, USA
- Micro and Nanotechnology Laboratory, The University of
Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Carlos Duarte-Guevara
- Micro and Nanotechnology Laboratory, The University of
Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, The
University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Weili Chen
- Micro and Nanotechnology Laboratory, The University of
Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, The
University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tanmay Ghonge
- Department of Bioengineering, The University of Illinois at
Urbana-Champaign, Urbana, IL 61801, USA
- Micro and Nanotechnology Laboratory, The University of
Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Brian T. Cunningham
- Department of Bioengineering, The University of Illinois at
Urbana-Champaign, Urbana, IL 61801, USA
- Micro and Nanotechnology Laboratory, The University of
Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, The
University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Rashid Bashir
- Department of Bioengineering, The University of Illinois at
Urbana-Champaign, Urbana, IL 61801, USA
- Micro and Nanotechnology Laboratory, The University of
Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, The
University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Correspondence author.
| |
Collapse
|
12
|
Peng MP, Ma W, Long YT. Alcohol Dehydrogenase-Catalyzed Gold Nanoparticle Seed-Mediated Growth Allows Reliable Detection of Disease Biomarkers with the Naked Eye. Anal Chem 2015; 87:5891-6. [PMID: 25969857 DOI: 10.1021/acs.analchem.5b00287] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Here, we reported a strategy-based plasmonic enzyme-linked immunosorbent assay (ELISA) using alcohol dehydrogenase-catalyzed gold nanoparticle seed-mediated growth to serve as a colorimetric signal generation method for detecting disease biomarkers with the naked eye. This system possesses the advantages of outstanding robustness, sensitivity, and universality. By using this strategy, we investigated the hepatitis B surface antigen (HBsAg) and α-fetoprotein (AFP) with the lowest concentration of naked-eye detection down to 1.0 × 10(-12) g mL(-1). Experiments with real serum samples from HBsAg-infected patients are presented, demonstrating the potential for clinical analysis. Our method eliminates the need for sophisticated instruments and high detection expenses, making it possible to be a reliable alternative in resource-constrained regions.
Collapse
|
13
|
Damhorst GL, Smith CE, Salm EM, Sobieraj MM, Ni H, Kong H, Bashir R. A liposome-based ion release impedance sensor for biological detection. Biomed Microdevices 2013; 15:895-905. [PMID: 23793417 PMCID: PMC4079459 DOI: 10.1007/s10544-013-9778-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Low-cost detection of pathogens and biomolecules at the point-of-care promises to revolutionize medicine through more individualized monitoring and increased accessibility to diagnostics in remote and resource-limited areas. While many approaches to biosensing are still limited by expensive components or inadequate portability, we present here an ELISA-inspired lab-on-a-chip strategy for biological detection based on liposome tagging and ion-release impedance spectroscopy. Ion-encapsulating dipalmitoylphosphatidylcholine (DPPC) liposomes can be functionalized with antibodies and are stable in deionized water yet permeabilized for ion release upon heating, making them ideal reporters for electrical biosensing of surface-immobilized antigens. We demonstrate the quantification of these liposomes by real-time impedance measurements, as well as the qualitative detection of viruses as a proof-of-concept toward a portable platform for viral load determination which can be applied broadly to the detection of pathogens and other biomolecules.
Collapse
Affiliation(s)
- Gregory L. Damhorst
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, 208 N Wright St, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Cartney E. Smith
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Eric M. Salm
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, 208 N Wright St, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Magdalena M. Sobieraj
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, 208 N Wright St, Urbana, IL 61801, USA
| | - Hengkan Ni
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hyunjoon Kong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Rashid Bashir
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, 208 N Wright St, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|