1
|
Kim S, Porto R, Nussbaum MA. User Experiences and Adoption Factors for a Back-Support Exosuit in Automotive Logistics: Results from Field Testing up to 18 Months. IISE Trans Occup Ergon Hum Factors 2025:1-9. [PMID: 40235114 DOI: 10.1080/24725838.2025.2491485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/20/2025] [Accepted: 04/07/2025] [Indexed: 04/17/2025]
Abstract
Occupational ApplicationsWe interviewed 24 automotive logistic workers who had used (or stopped using) a soft back-support exoskeleton (exosuit). These workers generally recognized potentially benefits of back-support exosuits, with 11 continuing use. Their use was primarily influenced by usability, compatibility, and comfort factors. We found wide variability in use patterns and adaptation periods, and that there were specific design concerns and concerns regarding thermal discomfort. To enhance long-term adoption of exosuits in industrial settings, organizations should consider: 1) implementing flexible, individualized training programs addressing specific usability challenges; 2) adopting a voluntary approach accommodating varied adaptation needs; 3) providing comprehensive education on potential health benefits; 4) using peer demonstrations to promote acceptance; and 5) collaborating with manufacturers to improve designs based on user feedback. These strategies may help enhance acceptance and sustained use of exosuits, potentially contributing to more effective support for occupational health during manual material handling tasks.
Collapse
Affiliation(s)
- Sunwook Kim
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Ryan Porto
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, USA
- Advanced Ergonomics, General Motors, Detroit, MI, USA
| | - Maury A Nussbaum
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
2
|
Chung J, Quirk DA, Cherin JM, Friedrich D, Kim D, Walsh CJ. The perceptual and biomechanical effects of scaling back exosuit assistance to changing task demands. Sci Rep 2025; 15:10929. [PMID: 40158010 PMCID: PMC11954937 DOI: 10.1038/s41598-025-94726-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 03/17/2025] [Indexed: 04/01/2025] Open
Abstract
Back exoskeletons are gaining attention for preventing occupational back injuries, but they can disrupt movement, a burden that risks abandonment. Enhanced adaptability is proposed to mitigate burdens, but perceptual benefits are less known. This study investigates the perceptual and biomechanical impacts of a SLACK suit (non-assistive) controller versus three controllers with varying adaptability: a Weight-Direction-Angle adaptive (WDA-ADPT) that scales assistance based on the weight of the boxes using a chest-mounted camera and machine learning algorithm, movement direction, and trunk flexion angle, and standard Direction-Angle adaptive (DA-ADPT) and Angle adaptive (A-ADPT) controllers. Fifteen participants performed a variable weight (2, 8, 14 kg) box-transfer task. WDA-ADPT achieved the highest perceptual score (88%) across survey categories and reduced peak back extensor (BE) muscle amplitudes by 10.1%. DA-ADPT had slightly lower perceptual (76%) and peak BE reduction (8.5%). A-ADPT induced hip restriction, which could explain the lowest perceptual score (55%) despite providing the largest reductions in peak BE muscle activity (17.3%). Reduced perceptual scores achieved by DA and A-ADPT were explained by controllers providing too much or little assistance versus actual task demands. These findings underscore that scaling assistance to task demands improves biomechanical benefits and the perception of the device's suitability.
Collapse
Affiliation(s)
- Jinwon Chung
- John a. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA.
| | - D Adam Quirk
- John a. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Jason M Cherin
- John a. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Dennis Friedrich
- John a. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Daekyum Kim
- John a. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
- School of Mechanical Engineering, Korea University, Seoul, South Korea
| | - Conor J Walsh
- John a. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA.
| |
Collapse
|
3
|
Dal Prete A, Gandolla M, Andreoni G, Braghin F. Low Back Exoskeletons in Industry 5.0: From Machines to Perceiving Co-Pilots-A State-of-the-Art Review. SENSORS (BASEL, SWITZERLAND) 2025; 25:1958. [PMID: 40218472 PMCID: PMC11991514 DOI: 10.3390/s25071958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025]
Abstract
This manuscript presents an updated review of back exoskeletons for occupational use, with a particular focus on sensor technology as a key enabler for intelligent and adaptive support. The study aims to identify key barriers to adoption and explore design characteristics which align these systems with the Industry 5.0 paradigm, where machines function as collaborative co-pilots alongside humans. We propose a structured design pipeline and analyze 32 exoskeletons across multiple dimensions, including design, actuation, control strategies, sensor networks, and intelligence. Additionally, we review eight simulation environments which support the early stages of exoskeleton development. Special emphasis is placed on sensor technology, highlighting its critical role in enhancing adaptability and intelligence. Our findings reveal that while 39.39% of exoskeletons accommodate asymmetric activities, kinematic compatibility remains a challenge. Furthermore, only 33.33% of the systems incorporated intelligent features, with just one being capable of adapting its response based on poor posture or real-time human-machine interaction feedback. The limited integration of advanced sensors and decision-making capabilities constrains their potential for dynamic and adaptive support. Open questions remain in high-level decision making, enhanced environmental awareness, and the development of generalizable methods for integrating sensor data into adaptive control strategies.
Collapse
Affiliation(s)
- Andrea Dal Prete
- Mechanical Engineering Department, Politecnico di Milano, Via Giuseppe La Masa 1, 20156 Milan, Italy; (M.G.); (G.A.); (F.B.)
| | - Marta Gandolla
- Mechanical Engineering Department, Politecnico di Milano, Via Giuseppe La Masa 1, 20156 Milan, Italy; (M.G.); (G.A.); (F.B.)
| | - Giuseppe Andreoni
- Mechanical Engineering Department, Politecnico di Milano, Via Giuseppe La Masa 1, 20156 Milan, Italy; (M.G.); (G.A.); (F.B.)
- Bioengineering Laboratory, Scientific Institute, Bosisio Parini, 23842 Lecco, Italy
| | - Francesco Braghin
- Mechanical Engineering Department, Politecnico di Milano, Via Giuseppe La Masa 1, 20156 Milan, Italy; (M.G.); (G.A.); (F.B.)
| |
Collapse
|
4
|
Qi K, Yin Z, Li C, Zhang J, Song J. Effects of a lumbar exoskeleton that provides two traction forces on spinal loading and muscles. Front Bioeng Biotechnol 2025; 13:1530034. [PMID: 40190714 PMCID: PMC11968719 DOI: 10.3389/fbioe.2025.1530034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/03/2025] [Indexed: 04/09/2025] Open
Abstract
In workplaces with prolonged or repetitive stooping, disc herniation due to excessive pressure at the lumbar L5/S1 joints has been a difficult condition to prevent and treat in the field of lower back pain. Previous research on lumbar exoskeletons mainly focused on the impact of assistive torque on muscle activation, overlooking the fact that providing assistive torque is not the optimal approach when bending over with a low load. Instead, using traction force to reduce disc pressure is a more adaptable method to mitigate the risk of intervertebral disc herniation. In this paper, a novel lumbar exoskeleton mechanism is proposed. The exoskeleton principle is similar to a lever arranged on the torso, which provides two types of traction forces using a single compression spring with a lower support moment and higher traction performance. Subsequently, a kinetic simulation model covering passive physiologic tissues and spring stiffness was developed to determine the optimal range of traction forces for a given load, to predict the disc pressure and muscle activation at optimal traction forces. Eight subjects were invited to wear the exoskeleton for stooping and lifting tests under extreme loads, using myoelectric sensors to measure muscle activation. The results confirm that optimal traction force effectively reduces L5/S1 disc pressure without additionally increasing muscle activation. The exoskeleton in this study provides an alternative idea for the design of lumbar exoskeletons adapted to light load stooping.
Collapse
Affiliation(s)
- Kaicheng Qi
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, China
- Hebei Provincial Key Laboratory of Robot Sensing and Human-Machine Integration, Tianjin, China
- Engineering Research Center of the Ministry of Education for Intelligent Rehabilitation Devices and Testing Technology, Tianjin, China
| | - Zhiyang Yin
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, China
- Hebei Provincial Key Laboratory of Robot Sensing and Human-Machine Integration, Tianjin, China
- Engineering Research Center of the Ministry of Education for Intelligent Rehabilitation Devices and Testing Technology, Tianjin, China
| | - Chao Li
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, China
- Hebei Provincial Key Laboratory of Robot Sensing and Human-Machine Integration, Tianjin, China
- Engineering Research Center of the Ministry of Education for Intelligent Rehabilitation Devices and Testing Technology, Tianjin, China
| | - Jianjun Zhang
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, China
- Hebei Provincial Key Laboratory of Robot Sensing and Human-Machine Integration, Tianjin, China
- Engineering Research Center of the Ministry of Education for Intelligent Rehabilitation Devices and Testing Technology, Tianjin, China
| | - Jingke Song
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, China
- Hebei Provincial Key Laboratory of Robot Sensing and Human-Machine Integration, Tianjin, China
- Engineering Research Center of the Ministry of Education for Intelligent Rehabilitation Devices and Testing Technology, Tianjin, China
| |
Collapse
|
5
|
Kuber PM, Rashedi E. Exoskeletons in Intermittent Bending Tasks: Assessing Muscle Demands, Endurance, and User Perspectives. HUMAN FACTORS 2025:187208251324036. [PMID: 40079432 DOI: 10.1177/00187208251324036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
ObjectiveWe investigated effects of a Back-support industrial exoskeleton (BSIE) across intermittently performed unloaded trunk bending task cycles.BackgroundIndustrial tasks are often performed in the form of task cycles with varying activities and rest breaks after each task cycle. Investigating the effects of BSIEs during such intermittent tasks is crucial to understand translation of their benefits in real-world environments.MethodTwelve participants performed ∼709 task cycles (sustained bending, bending and retraction, standing still, and relaxation activities) with/without BSIE (E/NE) and with/without 45° asymmetry (S/A) towards left until fatigue. Evaluated measures included muscle activity in left (LES)/right (RES) erector spinae and left (LBF)/right (RBF) biceps femoris muscles, endurance, and user perspectives. Temporal effects of fatigue were examined by categorizing muscle activity based on perceived exertion level with Borg scale.ResultsBSIE reduced low-back (LES, RES), and leg (LBF, RBF) mean amplitude by ∼ 18-24% and ∼10-17% respectively. Benefits of BSIE in low-back reduced by ∼11-15% at medium versus low fatigue. Overall, BSIE led to 50% more completed task cycles and was favorably rated by participants in reducing physical demands, most especially during sustained bending portion of the task cycles.ConclusionUsing BSIE in intermittent bending tasks can not only provide benefits in reducing muscle demands but can also delay effects of fatigue in low-back region and increase endurance by enabling wearers to perform more task cycles.ApplicationFindings from this study may be beneficial to practitioners for setting guidelines on implementation of BSIEs in industrial bending tasks.
Collapse
|
6
|
Ratke EJ, McMaster H, Vellucci CL, Larson DJ, Holmes MWR, Beaudette SM. Ability of a passive back support exoskeleton to mitigate fatigue related adaptations in a complex repetitive lifting task. J Biomech 2025; 181:112553. [PMID: 39893933 DOI: 10.1016/j.jbiomech.2025.112553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/13/2024] [Accepted: 01/22/2025] [Indexed: 02/04/2025]
Abstract
As work related musculoskeletal disorders (WRMSDs) increase in prevalence, it is important to not only understand the mechanisms underpinning WRMSDs but also investigate ways to mitigate them in the workplace. Exoskeletons are an emerging technology which can reduce the physical demands required from the worker to perform lifting tasks. Previous research has primarily studied the effectiveness of back-support exoskeletons in constrained, flexion/extension tasks. The purpose of this study was to evaluate the effect of a passive back-support exoskeleton in a complex, multiplanar repetitive manual materials handling (MMH) task. Participants (n = 14) completed a multi-planar lifting, transferring, and lowering task for sixty minutes with and without wearing a passive back-support exoskeleton (HeroWear Apex 2). Full body kinematics as well as trunk and shoulder surface electromyography were collected for the entire trial. The back-support exoskeleton significantly decreased ratings of perceived exertion (p < 0.0001) Participants exhibited faster task completion times in the exoskeleton condition (p = 0.0095). Both movement coordination and coordination variability differed between conditions with increased shoulder-lumbar variability (p = 0.0466 - <.0001) and decreased thorax-pelvis variability (p = 0.0281) in the exoskeleton condition. Additionally, the back-support exoskeleton significantly reduced lumbar erector spinae muscle activity asymmetrically (p < 0.0001). While these findings generally support the idea that a passive back-support exoskeleton is effective in altering indicators of fatigue which can lead to injury, more research is needed to study different exoskeleton assistance levels and different types of exoskeletons before recommending their use across a diverse range of occupational settings.
Collapse
Affiliation(s)
- Emma J Ratke
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St., Catherines, ON, Canada
| | - Hannah McMaster
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St., Catherines, ON, Canada
| | - Chris L Vellucci
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St., Catherines, ON, Canada
| | - Dennis J Larson
- Department of Kinesiology & Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Michael W R Holmes
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St., Catherines, ON, Canada
| | - Shawn M Beaudette
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St., Catherines, ON, Canada.
| |
Collapse
|
7
|
Talukder A, Jo J. Elastic textile-based wearable modulation of musculoskeletal load: A comprehensive review of passive exosuits and resistance clothing. WEARABLE TECHNOLOGIES 2025; 6:e11. [PMID: 40071238 PMCID: PMC11894418 DOI: 10.1017/wtc.2025.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/07/2025] [Accepted: 01/22/2025] [Indexed: 03/14/2025]
Abstract
Elastic textiles play a critical role in passive wearable solutions for musculoskeletal load management in both passive exosuits and resistance clothing. These textiles, based on their ability to stretch and retract, can exhibit ambivalence in their load-modulating effects when used in occupational, rehabilitation, exercise, or everyday activity settings. While passive exosuits and resistance garments may appear similar in design, they have opposing goals: to reduce the musculoskeletal load in the case of exosuits and to increase it in the case of resistance clothing. Despite this intrinsic connection, these two approaches have not been extensively linked together. This review aims to fill this gap by examining the common and distinct principles of elastic textiles in passive exosuits and resistance clothing, shedding light on their interactions and the complex dynamics of musculoskeletal load systems. The effectiveness of different designs in passive exosuits that mimic musculoskeletal function and resistance clothing that increase the workload for strength training are critically reviewed. Current challenges in practical implementation and opportunities to improve critical issues, such as preload, thermal comfort, skin friction, and donning and doffing are also highlighted.
Collapse
Affiliation(s)
- Amit Talukder
- Department of Textiles, Merchandising, and Interiors, University of Georgia, Athens, GA, USA
| | - Jeyeon Jo
- Department of Textiles, Merchandising, and Interiors, University of Georgia, Athens, GA, USA
| |
Collapse
|
8
|
Moya-Esteban A, Refai MI, Sridar S, van der Kooij H, Sartori M. Soft back exosuit controlled by neuro-mechanical modeling provides adaptive assistance while lifting unknown loads and reduces lumbosacral compression forces. WEARABLE TECHNOLOGIES 2025; 6:e9. [PMID: 40071245 PMCID: PMC11894419 DOI: 10.1017/wtc.2025.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 12/30/2024] [Accepted: 02/01/2025] [Indexed: 03/14/2025]
Abstract
State-of-the-art controllers for active back exosuits rely on body kinematics and state machines. These controllers do not continuously target the lumbosacral compression forces or adapt to unknown external loads. The use of additional contact or load detection could make such controllers more adaptive; however, it can be impractical for daily use. Here, we developed a novel neuro-mechanical model-based controller (NMBC) that uses a personalized electromyography (EMG)-driven musculoskeletal (MSK) model to estimate lumbosacral joint loading. NMBC provided adaptive, subject- and load-specific assistive forces proportional to estimates of the active part of biological joint moments through a soft back support exosuit. Without a priori information, the maximum assistive forces of the cable were modulated across weights. Simultaneously, we applied a non-adaptive, kinematic-dependent, trunk inclination-based controller (TIBC). Both NMBC and TIBC reduced the mean and peak biomechanical metrics, although not all reductions were significant. TIBC did not modulate assistance across weights. NMBC showed larger reductions of mean than peak values, significant reductions during the erect stance and the cumulative compressive loads by 21% over multiple cycles in a cohort of 10 participants. Overall, NMBC targeted mean lumbosacral compressive forces during lifting without a priori information of the load being carried. This may facilitate the adoption of non-hindering wearable robotics in real-life scenarios. As NMBC is informed by an EMG-driven MSK model, it is possible to tune the timing of NMBC-generated torque commands to the exosuit (delaying or anticipating commands with respect to biological torques) to target further reduction of peak or mean compressive forces and muscle fatigue.
Collapse
Affiliation(s)
- Alejandro Moya-Esteban
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - Mohamed Irfan Refai
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - Saivimal Sridar
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - Herman van der Kooij
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - Massimo Sartori
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| |
Collapse
|
9
|
Pérez-Soto M, Marín J, Marín JJ. L-GABS: Parametric Modeling of a Generic Active Lumbar Exoskeleton for Ergonomic Impact Assessment. SENSORS (BASEL, SWITZERLAND) 2025; 25:1340. [PMID: 40096104 PMCID: PMC11902427 DOI: 10.3390/s25051340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/06/2025] [Accepted: 02/17/2025] [Indexed: 03/19/2025]
Abstract
Companies increasingly implement exoskeletons in their production lines to reduce musculoskeletal disorders. Studies have been conducted on the general ergonomic effects of exoskeletons in production environments; however, it remains challenging to predict the biomechanical effects these devices may have in specific jobs. This article proposes the parametric modeling of an active lumbar exoskeleton using the Forces ergonomic method, which calculates the ergonomic risk using motion capture in the workplace, considering the internal joint forces. The exoskeleton was studied to model it in the Forces method using a four-phase approach based on experimental observations (Phase 1) and objective data collection via motion capture with inertial sensors and load cells for lifting load movements. From the experimentation the angles of each body segment, the effort perceived by the user, and the activation conditions were obtained (Phase 2). After modeling development (Phase 3), the experimental results regarding the force and risk were evaluated obtaining differences between model and experimental data of 0.971 ± 0.171 kg in chest force and 1.983 ± 0.678% in lumbar risk (Phase 4). This approach provides a tool to evaluate the biomechanical effects of this device in a work task, offering a parametric and direct approximation of the effects prior to implementation.
Collapse
Affiliation(s)
- Manuel Pérez-Soto
- IDERGO (Research and Development in Ergonomics), I3A (Instituto de Investigación en Ingeniería de Aragón), University of Zaragoza, C/María de Luna, 3, 50018 Zaragoza, Spain; (J.M.); (J.J.M.)
- Department of Design and Manufacturing Engineering, University of Zaragoza, C/María de Luna, 3, 50018 Zaragoza, Spain
| | - Javier Marín
- IDERGO (Research and Development in Ergonomics), I3A (Instituto de Investigación en Ingeniería de Aragón), University of Zaragoza, C/María de Luna, 3, 50018 Zaragoza, Spain; (J.M.); (J.J.M.)
- Department of Design and Manufacturing Engineering, University of Zaragoza, C/María de Luna, 3, 50018 Zaragoza, Spain
| | - José J. Marín
- IDERGO (Research and Development in Ergonomics), I3A (Instituto de Investigación en Ingeniería de Aragón), University of Zaragoza, C/María de Luna, 3, 50018 Zaragoza, Spain; (J.M.); (J.J.M.)
- Department of Design and Manufacturing Engineering, University of Zaragoza, C/María de Luna, 3, 50018 Zaragoza, Spain
| |
Collapse
|
10
|
Banks JJ, Quirk DA, Chung J, Cherin JM, Walsh CJ, Anderson DE. The effect of a soft active back support exosuit on trunk motion and thoracolumbar spine loading during squat and stoop lifts. ERGONOMICS 2025; 68:223-236. [PMID: 38389220 PMCID: PMC11339243 DOI: 10.1080/00140139.2024.2320355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 02/13/2024] [Indexed: 02/24/2024]
Abstract
Back support exosuits aim to reduce tissue demands and thereby risk of injury and pain. However, biomechanical analyses of soft active exosuit designs have been limited. The objective of this study was to evaluate the effect of a soft active back support exosuit on trunk motion and thoracolumbar spine loading in participants performing stoop and squat lifts of 6 and 10 kg crates, using participant-specific musculoskeletal models. The exosuit did not change overall trunk motion but affected lumbo-pelvic motion slightly, and reduced peak compressive and shear vertebral loads at some levels, although shear increased slightly at others. This study indicates that soft active exosuits have limited kinematic effects during lifting, and can reduce spinal loading depending on the vertebral level. These results support the hypothesis that a soft exosuit can assist without limiting trunk movement or negatively impacting skeletal loading and have implications for future design and ergonomic intervention efforts.
Collapse
Affiliation(s)
- Jacob J. Banks
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, United States
| | - David A. Quirk
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, United States
| | - Jinwon Chung
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, United States
| | - Jason M. Cherin
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, United States
| | - Conor J. Walsh
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, United States
| | - Dennis E. Anderson
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
11
|
Song Y, Goršič M, Feng Z, Cordova H, Li L, Dai B, Novak V. Effects of a back-assist exosuit in lab-based approximations of construction tasks performed by novices and experienced construction workers. ERGONOMICS 2025; 68:267-284. [PMID: 39387502 DOI: 10.1080/00140139.2024.2325535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/25/2024] [Indexed: 10/15/2024]
Abstract
Passive back-assist exosuits may be beneficial for construction workers, but few evaluations have been conducted with actual workers and construction-relevant tasks. This paper presents a laboratory study of the HeroWear Apex exosuit with 35 participants: 15 with significant construction experience and 20 without it. Participants completed several approximations of brief construction tasks (lifting, carrying, raising boards) and three 3-min tasks (hunched standing, kneeling, hunched walking with a nail gun) with and without the exosuit. During brief tasks, erector spinae electromyograms were reduced in all tasks (Cohen's d up to -0.58), kinematics suggested load shifting from the back to the legs, and the exosuit was perceived as helpful. During 3-min tasks, the exosuit was perceived as helpful in all tasks, but only reduced erector spinae electromyograms during kneeling. Thus, the exosuit may benefit workers during several construction-related tasks, though objective benefits could not be shown in 3-min standing or walking.
Collapse
Affiliation(s)
- Yu Song
- Division of Kinesiology and Health, University of Wyoming, Laramie, WY, USA
- Department of Health, Sport & Exercise Sciences, University of Kansas, Lawrence, KS, USA
| | - Maja Goršič
- Department of Electrical and Computer Engineering, University of Cincinnati, Cincinnati, OH, USA
- Department of Biomedical Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Zhichen Feng
- Division of Kinesiology and Health, University of Wyoming, Laramie, WY, USA
| | - Haylen Cordova
- Physical Therapy Department, University of Utah, Salt Lake City, UT, USA
| | - Ling Li
- Division of Kinesiology and Health, University of Wyoming, Laramie, WY, USA
| | - Boyi Dai
- Division of Kinesiology and Health, University of Wyoming, Laramie, WY, USA
| | - Vesna Novak
- Department of Electrical and Computer Engineering, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
12
|
Riemer J, Wischniewski S, Jaitner T. Quantifying the biomechanical effects of back-support exoskeletons on work movements using statistical parametric mapping. JOURNAL OF SAFETY RESEARCH 2024; 91:492-504. [PMID: 39998548 DOI: 10.1016/j.jsr.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 07/17/2024] [Accepted: 09/10/2024] [Indexed: 02/27/2025]
Abstract
INTRODUCTION In response to physically demanding industrial environments, back-support exoskeletons (BSEs) have emerged as assistive devices. However, their functional interaction with body structures and potential in preventing musculoskeletal disorders (MSDs) remain unclear. The objective of this study was to analyze biomechanical motion sequences throughout the entire process of different work movements and provide a comprehensive assessment of the influence of BSE. METHOD Using statistical parametric mapping (SPM) methodology, we examined and quantify the magnitude of significant effects of BSEs on muscle activity (MA) and kinematic movement patterns during lifting, carrying, walking, and static bending in a standardized manner. RESULTS Significant changes with large effect sizes were identified during the downward phase of the lifting task, indicating decreased MA in the musculus (M.) biceps femoris and a reduced hip flexion. The usage of BSEs during carrying and walking resulted in a decreased MA of M. biceps femoris during the legs' pre- and mid-swing phases, accompanied by an increased knee and ankle flexion. These changes in MA and kinematics, especially when the BSEs exert pressure on the leg shells through their supporting function, may be indicative of strain in other body regions due to the BSEs. PRACTICAL APPLICATIONS We suggest that the evaluated effects may lead to the non-use of BSEs in the workplace and should therefore be considered in the development of alternative BSE designs.
Collapse
Affiliation(s)
- Julia Riemer
- Institute for Sport and Sport Science, TU Dortmund University, 44227 Dortmund, Germany.
| | - Sascha Wischniewski
- Federal Institute for Occupational Safety and Health, 44149 Dortmund, Germany
| | - Thomas Jaitner
- Institute for Sport and Sport Science, TU Dortmund University, 44227 Dortmund, Germany
| |
Collapse
|
13
|
Rodzak K, Slaughter P, Wolf D, Ice C, Fine S, Zelik K. Can back exosuits simultaneously increase lifting endurance and reduce musculoskeletal disorder risk? WEARABLE TECHNOLOGIES 2024; 5:e17. [PMID: 39811480 PMCID: PMC11729484 DOI: 10.1017/wtc.2024.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/13/2024] [Accepted: 06/20/2024] [Indexed: 01/16/2025]
Abstract
The objectives of this case series study were to test whether an elastic back exosuit could increase a wearer's endurance when lifting heavy objects and to assess whether lifting more cancels out the exosuit's risk reduction benefits. We found that 88% of participants increased their lifting repetitions while wearing an exosuit, with endurance increases ranging from 28 to 75%. We then used these empirical data with an ergonomic assessment model based on fatigue failure principles to estimate the effects on cumulative back damage (an indicator of low back disorder risk) when an exosuit is worn and more lifts are performed. Participants exhibited 27-93% lower cumulative back damage when wearing an exosuit. These results confirmed that wearing an exosuit increased participants' lifting capacity without canceling out injury risk reduction benefits. Back exosuits may make it possible to simultaneously boost productivity and reduce musculoskeletal disorder risks, which is relevant to workers in civilian and defense sectors.
Collapse
Affiliation(s)
- K.M. Rodzak
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| | - P.R. Slaughter
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| | - D.N. Wolf
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| | - C.C. Ice
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| | - S.J. Fine
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| | - K.E. Zelik
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Physical Medicine & Rehabilitation, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
14
|
Favennec A, Moissenet F, Frère J, Mornieux G. Effects of a soft back exoskeleton on lower lumbar spine loads during manual materials handling: a musculoskeletal modelling study. Comput Methods Biomech Biomed Engin 2024:1-9. [PMID: 39492646 DOI: 10.1080/10255842.2024.2422925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/23/2024] [Accepted: 10/12/2024] [Indexed: 11/05/2024]
Abstract
The aim of this study was to append a passive soft back exoskeleton to a validated musculoskeletal model and assess its effectiveness in reducing lumbar loads. Fifteen participants lifted a box, with and without wearing a CORFOR® exoskeleton. A full body OpenSim model was used to estimate lumbar joint moments and reaction forces, as well as low back muscles forces. Wearing the exoskeleton reduced the peak flexion moment, muscles forces, as well as peak compressive and shear forces. This musculoskeletal modelling study shows that wearing the exoskeleton may reduce lumbar spine loads and may contribute to prevent low back disorders.
Collapse
Affiliation(s)
| | - Florent Moissenet
- Biomechanics Laboratory, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Kinesiology Laboratory, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Julien Frère
- Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA Lab, 38000 Grenoble, France
| | - Guillaume Mornieux
- Université de Lorraine, UR3450 DevAH, Nancy, France
- Université de Lorraine, Faculty of Sport Sciences, Nancy, France
| |
Collapse
|
15
|
Raghuraman RN, Barbieri DF, Aviles J, Srinivasan D. Age and gender differences in the perception and use of soft vs. rigid exoskeletons for manual material handling. ERGONOMICS 2024; 67:1453-1470. [PMID: 38613461 DOI: 10.1080/00140139.2024.2338268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 03/27/2024] [Indexed: 04/15/2024]
Abstract
We investigated age and gender differences in the perception and use of soft (Apex) vs. rigid (Paexo Back) passive back-support exoskeletons (BSE) for repetitive lifting and lowering. A gender-balanced sample of 20 young (18-30 years) and 16 old (45-60 years) individuals were recruited. In the first session, participants' self-reported maximum acceptable load (MAL) was assessed using a psychophysical approach. Changes in muscle activity and kinematics due to BSE use in repetitive lifting/lowering tasks were also assessed. Overall, both BSEs increased MAL (by ∼7%), and reduced trunk extensor muscle activity across all groups (by ∼7-18%), compared to the control condition. Both BSEs promoted more squatting postures, increased quadriceps muscle activity (by ∼34%) and abdominal muscle activity during asymmetric tasks (by 5-20%). Some age and gender differences were significant, particularly for the trunk kinematics when using the Apex. Future work should include more diverse user groups in studying willingness to adopt BSEs and characterising their consequent effects on the body.
Collapse
Affiliation(s)
| | | | - Jessica Aviles
- Department of Industrial Engineering, Clemson University, Clemson, SC, USA
| | - Divya Srinivasan
- Department of Industrial Engineering, Clemson University, Clemson, SC, USA
| |
Collapse
|
16
|
Yin S, Yao DR, Song Y, Heng W, Ma X, Han H, Gao W. Wearable and Implantable Soft Robots. Chem Rev 2024; 124:11585-11636. [PMID: 39392765 DOI: 10.1021/acs.chemrev.4c00513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Soft robotics presents innovative solutions across different scales. The flexibility and mechanical characteristics of soft robots make them particularly appealing for wearable and implantable applications. The scale and level of invasiveness required for soft robots depend on the extent of human interaction. This review provides a comprehensive overview of wearable and implantable soft robots, including applications in rehabilitation, assistance, organ simulation, surgical tools, and therapy. We discuss challenges such as the complexity of fabrication processes, the integration of responsive materials, and the need for robust control strategies, while focusing on advances in materials, actuation and sensing mechanisms, and fabrication techniques. Finally, we discuss the future outlook, highlighting key challenges and proposing potential solutions.
Collapse
Affiliation(s)
- Shukun Yin
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Dickson R Yao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Yu Song
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Wenzheng Heng
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Xiaotian Ma
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Hong Han
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
17
|
Slade P, Atkeson C, Donelan JM, Houdijk H, Ingraham KA, Kim M, Kong K, Poggensee KL, Riener R, Steinert M, Zhang J, Collins SH. On human-in-the-loop optimization of human-robot interaction. Nature 2024; 633:779-788. [PMID: 39322732 DOI: 10.1038/s41586-024-07697-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/07/2024] [Indexed: 09/27/2024]
Abstract
From industrial exoskeletons to implantable medical devices, robots that interact closely with people are poised to improve every aspect of our lives. Yet designing these systems is very challenging; humans are incredibly complex and, in many cases, we respond to robotic devices in ways that cannot be modelled or predicted with sufficient accuracy. A new approach, human-in-the-loop optimization, can overcome these challenges by systematically and empirically identifying the device characteristics that result in the best objective performance for a specific user and application. This approach has enabled substantial improvements in human-robot performance in research settings and has the potential to speed development and enhance products. In this Perspective, we describe methods for applying human-in-the-loop optimization to new human-robot interaction problems, addressing each key decision in a variety of contexts. We also identify opportunities to develop new optimization techniques and answer underlying scientific questions. We anticipate that our readers will advance human-in-the-loop optimization and use it to design robotic devices that truly enhance the human experience.
Collapse
Affiliation(s)
- Patrick Slade
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
| | | | - J Maxwell Donelan
- WearTech Labs, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Han Houdijk
- Department of Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Kimberly A Ingraham
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| | - Myunghee Kim
- Mechanical and Industrial Engineering, University of Illinois Chicago, Chicago, IL, USA
| | - Kyoungchul Kong
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Katherine L Poggensee
- Department of Rehabilitation Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
- Faculty of Mechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Robert Riener
- Sensory-Motor Systems Lab, ETH Zurich, Zürich, Switzerland
- Faculty of Medicine, University of Zurich, Zürich, Switzerland
| | - Martin Steinert
- Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Juanjuan Zhang
- College of Artificial Intelligence, Institute of Robotics and Automatic Information System, Nankai University, Tianjin, China
| | - Steven H Collins
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
18
|
Kang SH, Mirka GA. Effects of a Passive Back-Support Exosuit on Erector Spinae and Abdominal Muscle Activity During Short-Duration, Asymmetric Trunk Posture Maintenance Tasks. HUMAN FACTORS 2024; 66:1830-1843. [PMID: 37635094 DOI: 10.1177/00187208231197264] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
OBJECTIVE To examine the effects of asymmetry and lower extremity mobility restrictions on the effectiveness of a passive back-support exosuit in short-duration, static trunk flexion postures. BACKGROUND The effectiveness of trunk exoskeletons/suits for sagittally symmetric trunk posture maintenance has been investigated, but there has been limited study of the effects of asymmetric trunk postures or lower extremity motion restriction. METHOD Sixteen participants held trunk flexion postures involving trunk flexion (20°, 40°, 60°), asymmetry (0°, 30°), and lower extremity mobility (Free, Restricted) for 3 s. Participants held these postures with and without an exosuit while erector spinae and abdominal muscle activities were collected. RESULTS There were no significant interactions between exosuit and asymmetry or exosuit and lower extremity motion restrictions, indicating no significant effects of these factors on the effectiveness of the exosuit at reducing trunk muscle activity. The exosuit was found to be effective at reducing erector spinae muscle activity regardless of asymmetry of posture or lower extremity restrictions (average 21%, from 11.2% MVC to 8.8% MVC). The magnitude of the erector spinae activity at 60° of trunk flexion with the exosuit was similar to that seen at 20° without the exosuit. CONCLUSION The exosuit consistently provided biomechanical benefit through reduced activation of the erector spinae muscles and neither asymmetry of trunk posture nor lower extremity restriction influenced this effectiveness. APPLICATION Trunk exoskeletons/suits can reduce trunk muscle activation and understanding how characteristics of the trunk postures assumed impact these responses may help target tasks wherein these devices may be effective.
Collapse
|
19
|
Mohamed Refai MI, Moya-Esteban A, van Zijl L, van der Kooij H, Sartori M. Benchmarking commercially available soft and rigid passive back exoskeletons for an industrial workplace. WEARABLE TECHNOLOGIES 2024; 5:e6. [PMID: 38510984 PMCID: PMC10952052 DOI: 10.1017/wtc.2024.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/22/2023] [Accepted: 01/19/2024] [Indexed: 03/22/2024]
Abstract
Low-back pain is a common occupational hazard for industrial workers. Several studies show the advantages of using rigid and soft back-support passive exoskeletons and exosuits (exos) to reduce the low-back loading and risk of injury. However, benefits of using these exos have been shown to be task-specific. Therefore, in this study, we developed a benchmarking approach to assess exos for an industrial workplace at Hankamp Gears B.V. We assessed two rigid (Laevo Flex, Paexo back) and two soft (Auxivo Liftsuit 1.0, and Darwing Hakobelude) exos for tasks resembling the workplace. We measured the assistive moment provided by each exo and their respective influence on muscle activity as well as the user's perception of comfort and exertion. Ten participants performed four lifting tasks (Static hold, Asymmetric, Squat, and Stoop), while their electromyography and subjective measures were collected. The two rigid exos provided the largest assistance during the Dynamic tasks. Reductions in erector spinae activity were seen to be task-specific, with larger reductions for the two rigid exos. Overall, Laevo Flex offered a good balance between assistive moments, reductions in muscle activity, as well as user comfort and reductions in perceived exertion. Thus, we recommend benchmarking exos for intended use in the industrial workplace. This will hopefully result in a better adoption of the back-support exoskeletons in the workplace and help reduce low-back pain.
Collapse
Affiliation(s)
| | - Alejandro Moya-Esteban
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - Lynn van Zijl
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - Herman van der Kooij
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - Massimo Sartori
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| |
Collapse
|
20
|
Kang SH, Mirka GA. Effect of trunk flexion angle and time on lumbar and abdominal muscle activity while wearing a passive back-support exosuit device during simple posture-maintenance tasks. ERGONOMICS 2023; 66:2182-2192. [PMID: 36921063 DOI: 10.1080/00140139.2023.2191908] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Quantifying the trunk flexion angles at which wearable support systems (exoskeletons/exosuits) provide substantial trunk extension moment during posture maintenance tasks (such as those seen in surgical environments) can provide a deeper understanding of this potential intervention strategy. Understanding how time (i.e. adaptation/learning) might impact the reliance on wearable support is also of value. Sixteen participants were asked to maintain specific trunk flexion angles (range 0-60°) with and without an exosuit system while erector spinae and rectus abdominis muscle activity were captured using surface electromyography. The effects of the exosuit showed a statistically significant (p < 0.007) effect on the activity of the erector spinae muscles at 10-60°-an effect that became 'large' (Cohen's d = 0.84) after 20° of trunk flexion. There were no meaningful time-dependent trends in the levels of muscle activation indicating there was no adaptation/learning effect of the exosuit in the task studied.Practitioner summary: This study examined the effectiveness of a back-support exosuit as a function of trunk flexion angle and time of use. The results revealed that the exosuit significantly reduced erector spinae muscle activity beyond 20° of trunk flexion but did not show a meaningful adaption/learning effect.Abbreviations: LBP: low back pain; EMG: electromyography; NEMG: normalized electromyography; IMU: inertial measurement unit; ES: erector spinae; RA: rectus abdominis; MVC: maximum voluntary contraction; FFT: Fast Fourier Transform.
Collapse
Affiliation(s)
- Sang Hyeon Kang
- The Physical Ergonomics and Biomechanics Laboratory, Department of Industrial and Manufacturing Systems Engineering, Iowa State University, Ames, IA, USA
| | - Gary A Mirka
- The Physical Ergonomics and Biomechanics Laboratory, Department of Industrial and Manufacturing Systems Engineering, Iowa State University, Ames, IA, USA
| |
Collapse
|
21
|
Xiang X, Tanaka M, Umeno S, Kikuchi Y, Kobayashi Y. Dynamic assessment for low back-support exoskeletons during manual handling tasks. Front Bioeng Biotechnol 2023; 11:1289686. [PMID: 38026894 PMCID: PMC10667710 DOI: 10.3389/fbioe.2023.1289686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Abstract
Exoskeletons can protect users' lumbar spine and reduce the risk of low back injury during manual lifting tasks. Although many exoskeletons have been developed, their adoptability is limited by their task- and movement-specific effects on reducing burden. Many studies have evaluated the safety and effectiveness of an exoskeleton using the peak/mean values of biomechanical variables, whereas the performance of the exoskeleton at other time points of the movement has not been investigated in detail. A functional analysis, which presents discrete time-series data as continuous functions, makes it possible to highlight the features of the movement waveform and determine the difference in each variable at each time point. This study investigated an assessment method for exoskeletons based on functional ANOVA, which made it possible to quantify the differences in the biomechanical variables throughout the movement when using an exoskeleton. Additionally, we developed a method based on the interpolation technique to estimate the assistive torque of an exoskeleton. Ten men lifted a 10-kg box under symmetric and asymmetric conditions five times each. Lumbar load was significantly reduced during all phases (flexion, lifting, and laying) under both conditions. Additionally, reductions in kinematic variables were observed, indicating the exoskeleton's impact on motion restrictions. Moreover, the overlap F-ratio curves of the lumbar load and kinematic variables imply that exoskeletons reduce the lumbar load by restricting the kinematic variables. The results suggested that at smaller trunk angles (<25°), an exoskeleton neither significantly reduces the lumbar load nor restricts trunk movement. Our findings will help increasing exoskeleton safety and designing effective products for reducing lumbar injury risks.
Collapse
Affiliation(s)
- Xiaohan Xiang
- Institute of Agricultural Machinery, National Agriculture and Food Research Organization (NARO), Saitama, Japan
| | | | | | | | | |
Collapse
|
22
|
Ding S, Reyes FA, Bhattacharya S, Seyram O, Yu H. A Novel Passive Back-Support Exoskeleton With a Spring-Cable-Differential for Lifting Assistance. IEEE Trans Neural Syst Rehabil Eng 2023; 31:3781-3789. [PMID: 37725739 DOI: 10.1109/tnsre.2023.3317059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Lower back injuries are the most common work-related musculoskeletal disorders. As a wearable device, a back-support exoskeleton (BSE) can reduce the risk of lower back injuries and passive BSEs can achieve a low device weight. However, with current passive BSEs, there is a problem that the user must push against the device when lifting the leg to walk, which is perceived as particularly uncomfortable due to the resistance. To solve this problem, we propose a novel passive BSE that can automatically distinguish between lifting and walking. A unique spring-cable-differential acts as a torque generator to drive both hip joints, providing adequate assistive torque during lifting and low resistance during walking. The optimization of parameters can accommodate the asymmetry of human gait. In addition, the assistive torque on both sides of the user is always the same to ensure the balance of forces. By using a cable to transmit the spring force, we placed the torque generator on the person's back to reduce the weight on the legs. To test the effectiveness of the device, we performed a series of simulated lifting tasks and walking trials. When lifting a load of 10 kg in a squatting and stooping position, the device was able to reduce the activation of the erector spinae muscles by up to 41%. No significant change in the activation of the leg and back muscles was detected during walking.
Collapse
|
23
|
Slaughter PR, Rodzak KM, Fine SJ, Ice CC, Wolf DN, Zelik KE. Evaluation of U.S. Army Soldiers wearing a back exosuit during a field training exercise. WEARABLE TECHNOLOGIES 2023; 4:e20. [PMID: 38487775 PMCID: PMC10936316 DOI: 10.1017/wtc.2023.16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/07/2023] [Accepted: 05/12/2023] [Indexed: 03/17/2024]
Abstract
Back overuse injuries are a significant problem in the U.S. Army, responsible for nearly a quarter of musculoskeletal injuries. Back exosuits are wearable devices that relieve musculoskeletal strain, make lifting easier, and could potentially reduce Soldier overuse injuries. But published studies have not evaluated exosuits during realistic field operations to assess acceptability to Soldiers. We tested a back exosuit on field artillery Soldiers during a field training exercise. Afterward, Soldiers completed a survey to quantify their satisfaction, intent to use, and performance impact of the exosuit. Feedback was overwhelmingly positive: Approximately 90% of Soldiers reported that exosuits increased their ability to perform their duties, and 100% said that if the exosuit were further developed and made available to them, they would be likely to wear it. These numerical survey results indicated that exosuits can provide a practical and acceptable way to assist lifting and augment physical performance during realistic Army operations without interfering with other duties.
Collapse
Affiliation(s)
- P. R. Slaughter
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee, United States
| | - K. M. Rodzak
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee, United States
| | - S. J. Fine
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee, United States
| | - C. C. Ice
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee, United States
| | - D. N. Wolf
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee, United States
| | - K. E. Zelik
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States
- Department of Physical Medicine & Rehabilitation, Vanderbilt University, Nashville, Tennessee, United States
| |
Collapse
|
24
|
Goršič M, Novak VD. Effects of the Auxivo CarrySuit occupational exoskeleton when carrying front and side loads on a treadmill. J Biomech 2023; 156:111692. [PMID: 37348177 DOI: 10.1016/j.jbiomech.2023.111692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/22/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023]
Abstract
Low-cost exoskeletons can effectively support workers in physically demanding jobs, but most such exoskeletons have been developed to support repetitive lifting or uncomfortable static postures. Very few low-cost exoskeletons have been designed to support walking while carrying heavy objects, which would be beneficial for jobs such as moving furniture and warehouse work. This paper thus presents a single-session lab evaluation of the Auxivo CarrySuit, a low-cost upper-body exoskeleton designed for carrying objects that would normally be held with the arms. Twenty participants carried four loads (box or two bags, 20 or 40 lb total weight) for 2 min each on a treadmill with and without the CarrySuit. Across all loads, the CarrySuit significantly reduced the mean electromyogram of the middle trapezius (partial eta-squared = 0.74 - from 16.1% to 8.8% of maximum voluntary contraction value) and anterior deltoid (partial eta-squared = 0.26 - from 3.0% to 1.1% of maximum voluntary contraction value) with no corresponding increase in lower back muscle activation. Furthermore, maximum heart rate and Ratings of Perceived Exertion were also reduced by the CarrySuit, and discomfort was shifted from the upper body to the legs. While arm EMG was not measured, it is likely that it was also reduced due to the unloading of the arms. The CarrySuit can thus be considered beneficial in the short term, though longer-term evaluations with actual workers are needed to determine practical benefits.
Collapse
Affiliation(s)
- Maja Goršič
- Department of Electrical and Computer Engineering, University of Cincinnati, USA
| | - Vesna D Novak
- Department of Electrical and Computer Engineering, University of Cincinnati, USA.
| |
Collapse
|
25
|
Novak VD, Song Y, Gorsic M, Dai B. Effects of a Passive Back Support Exoskeleton when Lifting and Carrying Lumber Boards. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083667 DOI: 10.1109/embc40787.2023.10340289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Passive back support exoskeletons, which support the human trunk using elements like springs and elastic bands, have demonstrated positive results in laboratory-based studies, but have seen significantly less field testing. As an intermediate step between generic lab evaluations and field tests, we conducted a single-session lab evaluation of the HeroWear Apex exoskeleton with mockup construction tasks: 20 adult men (without extensive construction experience) lifted, carried and raised lumber boards (265 cm length, up to 18 kg total load). The exoskeleton significantly reduced mean erector spinae electromyograms, with effect sizes (Cohen's d) ranging from -0.2 to -0.55 - corresponding to reductions of 5-25% relative to noexoskeleton electromyogram values. In asymmetric carrying tasks, the exoskeleton provided more assistance to the more heavily loaded erector spinae muscle. Additionally, in lifting tasks, the exoskeleton decreased trunk/hip flexion/extension range of motion and increased knee range of motion, indicating changes in lifting strategy. These results indicate potential exoskeleton benefits for lumber board carrying and will serve as the basis for further evaluations with workers in the field.Clinical Relevance- This study establishes that a passive back exoskeleton reduces erector spinae electromyograms by 525% when lifting and carrying lumber boards used in construction work.
Collapse
|
26
|
Wolf DN, Fine SJ, Ice CC, Slaughter PR, Rodzak KM, Zelik KE. Integrating Exosuit Capabilities into Clothing to Make Back Relief Accessible to Workers Unserved by Existing Exoskeletons: Design and Preliminary Evaluation. IISE Trans Occup Ergon Hum Factors 2023; 11:94-107. [PMID: 38149915 DOI: 10.1080/24725838.2023.2295859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/28/2023]
Abstract
OCCUPATIONAL APPLICATIONSWe developed a method for integrating back-assist exosuit capabilities into regular clothing to make musculoskeletal relief accessible to more workers. We demonstrated proof-of-concept that this uniform-integrated exosuit can be effective and usable. Existing occupational exosuits are standalone accessories worn on top of a user's clothing and are not suitable for all workers. Our newly developed sub-class of exosuit could be beneficial to workers who alternate between bending, lifting, and sitting tasks, or to those in customer- or patient-facing jobs where it is important for wearable technology to be discreet.
Collapse
Affiliation(s)
- Derek N Wolf
- Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Shimra J Fine
- Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Chad C Ice
- Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Paul R Slaughter
- Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| | | | - Karl E Zelik
- Mechanical Engineering, Biomedical Engineering, Physical Medicine and Rehabilitation, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
27
|
Bhardwaj S, Shinde AB, Singh R, Vashista V. Manipulating device-to-body forces in passive exosuit: An experimental investigation on the effect of moment arm orientation using passive back-assist exosuit emulator. WEARABLE TECHNOLOGIES 2023; 4:e17. [PMID: 38487771 PMCID: PMC10936296 DOI: 10.1017/wtc.2023.12] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/03/2023] [Accepted: 04/28/2023] [Indexed: 03/17/2024]
Abstract
Passive exosuits have been vastly researched in the past decade for lifting tasks to alleviate the mechanical loading on the spine and reduce the lower back muscle activities in lifting tasks. Despite promising advantages of exosuits, factors such as comfort directly influence the user's acceptability of such body-worn devices. Exosuits' routing/anchoring points, which transmit device-to-body forces, remain the leading cause of discomfort among users. In the present study, we sought to investigate the effect of the routing element, that is, the "moment arm," in altering the device-to-body forces and perceived discomfort. We first presented a simplified human-exosuit model to establish insight into the effect of the moment arm on the device-to-body forces acting at the shoulder (FS) and waist (FW). Further, an experimental investigation was conducted on 10 participants with six different exosuit moment arm configurations (C1, C2, C3, C4, C5, and C6) to investigate their effect on the device-to-body forces, perceived discomfort, and muscle activity using a passive back-assist exosuit emulator in a lifting/lowering task. Configuration C4 was found to be most beneficial in reducing device-to-body forces at the shoulder and waist by up to 44.6 and 22.2%, respectively, during lifting. Subjective scores also comprehended with the device-to-body forces, indicating that C4 produces significantly less discomfort for participants. The outcome of the study illustrates the importance of selecting an appropriate moment arm configuration for passive back support exosuits in alleviating the device-to-body forces and perceived discomfort.
Collapse
Affiliation(s)
- Siddharth Bhardwaj
- Human-Centered Robotics Lab, Indian Institute of Technology Gandhinagar, Gandhinagar, India
| | - Akshayraj B. Shinde
- Human-Centered Robotics Lab, Indian Institute of Technology Gandhinagar, Gandhinagar, India
| | - Randheer Singh
- Human-Centered Robotics Lab, Indian Institute of Technology Gandhinagar, Gandhinagar, India
| | - Vineet Vashista
- Human-Centered Robotics Lab, Indian Institute of Technology Gandhinagar, Gandhinagar, India
| |
Collapse
|
28
|
Farah L, Roll D, Sorais A, Vallée A. Assessment of Exoskeletons on Nurses' Quality of Work Life: A Pilot Study at Foch Hospital. NURSING REPORTS 2023; 13:780-791. [PMID: 37218949 DOI: 10.3390/nursrep13020068] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND The prevention of occupational risks is part of the quality of work life and it is a component that improves the physical work environment. The purpose of the present study was to investigate how to maintain posture and to reduce pain and fatigue for nurses, with an exoskeleton adapted to the work at hospital. METHODS The exoskeleton was used between 2022 to 2023 at Foch Hospital, France. Phase 1 consisted of the selection of the exoskeleton, and Phase 2 included the testing of the device by the nurses and a questionnaire to assess it. RESULTS The "active" ATLAS model from JAPET, ensuring lumbar protection, was selected because it corresponds to all the specification criteria to tackle the nurses' unmet need. Among the 14 healthcare professionals, 86% were women; the age of the nurses was between 23 years old and 58 years old. The global median satisfaction score of the nurses relative to the use of the exoskeleton was 6/10. The median impact of the exoskeleton on nurses' fatigue was 7/10. CONCLUSIONS The implementation of the exoskeleton received global positive qualitative feedback from the nurses concerning the improvement of posture and the reduction in fatigue and pain.
Collapse
Affiliation(s)
- Line Farah
- Innovation Center for Medical Devices, Foch Hospital, 92150 Suresnes, France
| | - Dorota Roll
- Quality of Work Life Department, Foch Hospital, 92150 Suresnes, France
| | - Amrei Sorais
- Quality of Work Life Department, Foch Hospital, 92150 Suresnes, France
| | - Alexandre Vallée
- Department of Epidemiology-Data-Biostatistics, Foch Hospital, 92150 Suresnes, France
| |
Collapse
|
29
|
Reimeir B, Calisti M, Mittermeier R, Ralfs L, Weidner R. Effects of back-support exoskeletons with different functional mechanisms on trunk muscle activity and kinematics. WEARABLE TECHNOLOGIES 2023; 4:e12. [PMID: 38487765 PMCID: PMC10936326 DOI: 10.1017/wtc.2023.5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/25/2022] [Accepted: 02/05/2023] [Indexed: 03/17/2024]
Abstract
Musculoskeletal disorders constitute the leading work-related health issue. Mechanical loading of the lower back contributes as a major risk factor and is prevalent in many tasks performed in logistics. The study aimed to compare acute effects of exoskeletons with different functional mechanisms in a logistic task. Twelve young, healthy individuals participated in the study. Five exoskeletons with different functional mechanisms were tested in a logistic task, consisting of lifting, carrying, and lowering a 13 kg box. By using electromyography (EMG), mean muscle activities of four muscles in the trunk were analyzed. Additionally, kinematics by task completion time and range of motion (RoM) of the major joints and segments were investigated. A main effect was found for Musculus erector spinae, Musculus multifidus, and Musculus latissimus dorsi showing differences in muscle activity reductions between exoskeletons. Reduction in ES mean activity compared to baseline was primarily during lifting from ground level. The exoskeletons SoftExo Lift and Cray X also showed ES mean reduction during lowering the box. Prolonged task duration during the lifting phase was found for the exoskeletons BionicBack, SoftExo Lift, and Japet.W. Japet.W showed a trend in reducing hip RoM during that phase. SoftExo Lift caused a reduction in trunk flexion during the lifting phase. A stronger trunk inclination was only found during lifting from the table for the SoftExo Lift and the Cray X. In conclusion, muscle activity reductions by exoskeleton use should not be assessed without taking their designed force paths into account to correctly interpret the effects for long-term injury prevention.
Collapse
Affiliation(s)
- Benjamin Reimeir
- Institute of Mechatronics, University of Innsbruck, Innsbruck, Austria
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Maité Calisti
- Institute of Mechatronics, University of Innsbruck, Innsbruck, Austria
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Ronja Mittermeier
- Institute of Mechatronics, University of Innsbruck, Innsbruck, Austria
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Lennart Ralfs
- Institute of Mechatronics, University of Innsbruck, Innsbruck, Austria
| | - Robert Weidner
- Institute of Mechatronics, University of Innsbruck, Innsbruck, Austria
- Laboratory of Manufacturing Technology, Helmut-Schmidt-University/University of the Federal Armed Forces Hamburg, Hamburg, Germany
| |
Collapse
|
30
|
van Sluijs RM, Wehrli M, Brunner A, Lambercy O. Evaluation of the physiological benefits of a passive back-support exoskeleton during lifting and working in forward leaning postures. J Biomech 2023; 149:111489. [PMID: 36806003 DOI: 10.1016/j.jbiomech.2023.111489] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/18/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
Musculoskeletal disorders affecting the back are highly prevalent in fields of occupation involving repetitive lifting and working in forward leaning postures. Back-support exoskeletons are developed to relieve workers in physically demanding occupations. This study investigates the physiological effects of a lightweight exoskeleton which provides support through textile springs worn on the back. We hypothesized that wearing such a passive back-support exoskeleton reduces muscle activity of the back and hip muscles, while not influencing abdominal muscle activity and movement kinematics during typical occupational tasks. We collected electromyography data from the main back and hip muscles as well as whole body kinematics data via optical motion tracking during a set of relevant weight lifting tasks corresponding to typical work conditions. In our sample of 30 healthy volunteers, wearing the exoskeleton significantly reduced muscle activity, with reductions up to 25.59% during forward leaning and 20.52% during lifting in the main back and hip muscles (Erector Spinae at thoracic and lumbar level and Quadratus Lumborum). Simultaneously, no changes in knee and hip range of motion were observed. The stretch of the textile springs correlated with the body mass index and chest circumference of the wearer, and depended on posture, but not on the lifted load. The LiftSuit exoskeleton relieved back and hip muscles during typically straining occupational tasks, while biomechanical parameters were preserved. This suggests that passive lift-support exoskeletons can be safely used to relieve workers during lifting and forward leaning tasks.
Collapse
Affiliation(s)
- Rachel M van Sluijs
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland; Auxivo AG, Zurich, Switzerland
| | - Michael Wehrli
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Annina Brunner
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Olivier Lambercy
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
31
|
Madinei S, Nussbaum MA. Estimating lumbar spine loading when using back-support exoskeletons in lifting tasks. J Biomech 2023; 147:111439. [PMID: 36638578 DOI: 10.1016/j.jbiomech.2023.111439] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 12/14/2022] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
Low-back pain (LBP) continues as the leading cause of work-related musculoskeletal disorders, and the high LBP burden is attributed largely to physical risk factors prevalent in manual material handling tasks. Industrial back-support exoskeletons (BSEs) are a promising ergonomic intervention to help control/prevent exposures to such risk factors. While earlier research has demonstrated beneficial effects of BSEs in terms of reductions in superficial back muscle activity, limited evidence is available regarding the impacts of these devices on spine loads. We evaluated the effects of two passive BSEs (BackX™ AC and Laevo™ V2.5) on lumbosacral compression and shear forces during repetitive lifting using an optimization-based model. Eighteen participants (gender-balanced) completed four minutes of repetitive lifting in nine different conditions, involving symmetric and asymmetric postures when using the BSEs (along with no BSE as a control condition). Using both BSEs reduced estimated peak compression and anteroposterior shear forces (by ∼8-15%). Such reductions, however, were task-specific and depended on the BSE design. Laevo™ use reduced mediolateral shear forces during asymmetric lifting (by ∼35%). We also found that reductions in composite measures of trunk muscle activity may not correspond well with changes in spine forces when using a BSE. These results can help guide the proper selection and application of BSEs during repetitive lifting tasks. Future work is recommended to explore the viability of different biomechanical models to assess changes in spine mechanical loads when using BSEs and whether reasonable estimates would be obtained using such models.
Collapse
Affiliation(s)
- Saman Madinei
- Department of Industrial and Systems Engineering, Virginia Tech, 250 Durham Hall (0118), Blacksburg, VA 24061, USA
| | - Maury A Nussbaum
- Department of Industrial and Systems Engineering, Virginia Tech, 250 Durham Hall (0118), Blacksburg, VA 24061, USA.
| |
Collapse
|
32
|
Shi Y, Dong W, Lin W, Gao Y. Soft Wearable Robots: Development Status and Technical Challenges. SENSORS (BASEL, SWITZERLAND) 2022; 22:7584. [PMID: 36236683 PMCID: PMC9573304 DOI: 10.3390/s22197584] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/25/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
In recent years, more and more research has begun to focus on the flexible and lightweight design of wearable robots. During this process, many novel concepts and achievements have been continuously made and shown to the public, while new problems have emerged at the same time, which need to be solved. In this paper, we give an overview of the development status of soft wearable robots for human movement assistance. On the basis of a clear definition, we perform a system classification according to the target assisted joint and attempt to describe the overall prototype design level in related fields. Additionally, it is necessary to sort out the latest research progress of key technologies such as structure, actuation, control and evaluation, thereby analyzing the design ideas and basic characteristics of them. Finally, we discuss the possible application fields, and propose the main challenges of this valuable research direction.
Collapse
Affiliation(s)
| | | | | | - Yongzhuo Gao
- State Key Laboratory of Robotics and System, Harbin Institute of Technology (HIT), Harbin 150001, China
| |
Collapse
|
33
|
Rayssiguie E, Erden MS. A Review of Exoskeletons Considering Nurses. SENSORS (BASEL, SWITZERLAND) 2022; 22:7035. [PMID: 36146385 PMCID: PMC9501849 DOI: 10.3390/s22187035] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/17/2022] [Accepted: 08/29/2022] [Indexed: 05/31/2023]
Abstract
Daily tasks of nurses include manual handling to assist patients. Repetitive manual handling leads to high risk of injuries due to the loads on nurses' bodies. Nurses, in hospitals and care homes, can benefit from the advances in exoskeleton technology assisting their manual handling tasks. There are already exoskeletons both in the market and in the research area made to assist physical workers to handle heavy loads. However, those exoskeletons are mostly designed for men, as most physical workers are men, whereas most nurses are women. In the case of nurses, they handle patients, a more delicate task than handling objects, and any such device used by nurses should easily be disinfected. In this study, the needs of nurses are examined, and a review of the state-of-the-art exoskeletons is conducted from the perspective of to what extent the existing technologies address the needs of nurses. Possible solutions and technologies and particularly the needs that have not been addressed by the existing technologies are discussed.
Collapse
Affiliation(s)
| | - Mustafa Suphi Erden
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| |
Collapse
|
34
|
Liang J, Zhang Q, Liu Y, Wang T, Wan G. A review of the design of load-carrying exoskeletons. SCIENCE CHINA. TECHNOLOGICAL SCIENCES 2022; 65:2051-2067. [PMID: 36032505 PMCID: PMC9392988 DOI: 10.1007/s11431-022-2145-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
The increasing necessity of load-carrying activities has led to greater human musculoskeletal damage and an increased metabolic cost. With the rise of exoskeleton technology, researchers have begun exploring different approaches to developing wearable robots to augment human load-carrying ability. However, there is a lack of systematic discussion on biomechanics, mechanical designs, and augmentation performance. To achieve this, extensive studies have been reviewed and 108 references are selected mainly from 2013 to 2022 to address the most recent development. Other earlier 20 studies are selected to present the origin of different design principles. In terms of the way to achieve load-carrying augmentation, the exoskeletons reviewed in this paper are sorted by four categories based on the design principles, namely load-suspended backpacks, lower-limb exoskeletons providing joint torques, exoskeletons transferring load to the ground and exoskeletons transferring load between body segments. Specifically, the driving modes of active and passive, the structure of rigid and flexible, the conflict between assistive performance and the mass penalty of the exoskeleton, and the autonomy are discussed in detail in each section to illustrate the advances, challenges, and future trends of exoskeletons designed to carry loads.
Collapse
Affiliation(s)
- JieJunYi Liang
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - QinHao Zhang
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Yang Liu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Tao Wang
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - GuangFu Wan
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| |
Collapse
|
35
|
Design of a Compact Energy Storage with Rotary Series Elastic Actuator for Lumbar Support Exoskeleton. MACHINES 2022. [DOI: 10.3390/machines10070584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Lumbar support exoskeletons with active and passive actuators are currently the cutting-edge technology for preventing back injuries in workers while lifting heavy objects. However, many challenges still exist in both types of exoskeletons, including rigid actuators, risks of human–robot interaction, high battery consumption, bulky design, and limited assistance. In this paper, the design of a compact, lightweight energy storage device combined with a rotary series elastic actuator (ES-RSEA) is proposed for use in a lumbar support exoskeleton to increase the level of assistance and exploit the human bioenergy during the two stages of the lifting task. The energy storage device takes the responsibility to store and release passive mechanical energy while RSEA provides excellent compliance and prevents injury from the human body’s undesired movement. The experimental tests on the spiral spring show excellent linear characteristics (above 99%) with an actual spring stiffness of 9.96 Nm/rad. The results demonstrate that ES-RSEA can provide maximum torque assistance in the ascent phase with 66.6 Nm while generating nearly 21 Nm of spring torque during descent without turning on the DC motor. Ultimately, the proposed design can maximize the energy storage of human energy, exploit the biomechanics of lifting tasks, and reduce the burden on human effort to perform lifting tasks.
Collapse
|
36
|
Goršič M, Song Y, Dai B, Novak VD. Short-term effects of the Auxivo LiftSuit during lifting and static leaning. APPLIED ERGONOMICS 2022; 102:103765. [PMID: 35405455 DOI: 10.1016/j.apergo.2022.103765] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/24/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Back support exosuits can support workers in physically demanding jobs by reducing muscle load, which could reduce risk of work-related musculoskeletal disorders. This paper presents a two-session evaluation of a commercial exosuit, the Auxivo LiftSuit 1.1. In session 1, 17 participants performed single repetitions of lifting and static leaning tasks with and without the LiftSuit. In session 2, 10 participants performed 50 box lifting repetitions with and without the LiftSuit. In session 1, the exosuit was considered mildly to moderately helpful, and reduced erector spinae and middle trapezius electromyograms. In session 2, the exosuit was not considered helpful, but reduced the middle trapezius electromyogram and trunk and thigh ranges of motion. These effects are likely due to placement of elastic elements and excessive stiffness at the hips. Overall, the LiftSuit appears suboptimal for long-term use, though elastic elements on the upper back may reduce muscle activation in future exosuit designs.
Collapse
Affiliation(s)
- Maja Goršič
- University of Wyoming, 1000 E University Ave., Laramie, WY, 82071, USA; University of Cincinnati, 2600 Clifton Ave., Cincinnati, OH, 45221, USA.
| | - Yu Song
- University of Wyoming, 1000 E University Ave., Laramie, WY, 82071, USA.
| | - Boyi Dai
- University of Wyoming, 1000 E University Ave., Laramie, WY, 82071, USA.
| | - Vesna D Novak
- University of Wyoming, 1000 E University Ave., Laramie, WY, 82071, USA; University of Cincinnati, 2600 Clifton Ave., Cincinnati, OH, 45221, USA.
| |
Collapse
|
37
|
Li JM, Molinaro DD, King AS, Mazumdar A, Young AJ. Design and Validation of a Cable-Driven Asymmetric Back Exosuit. IEEE T ROBOT 2022. [DOI: 10.1109/tro.2021.3112280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jared M. Li
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Dean D. Molinaro
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Andrew S. King
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Anirban Mazumdar
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Aaron J. Young
- Institute of Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
38
|
Moon C, Bae J, Kwak J, Hong D. A Lower-Back Exoskeleton with a Four-bar Linkage Structure for Providing Extensor Moment and Lumbar Traction Force. IEEE Trans Neural Syst Rehabil Eng 2022; 30:729-737. [PMID: 35286262 DOI: 10.1109/tnsre.2022.3159178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Lower back pain and related injuries are prevalent and serious problems in various industries, and high compression force to the lumbosacral (L5/S1) region has been known as one of the key factors. Previous research on passive lower back exoskeletons focused on reducing lumbar muscle activation by providing an extensor moment. Additionally, lumbar traction forces can reduce the compression force, and is a common treatment method for lower back pain in clinics. In this paper, we propose a novel passive lower back exoskeleton that provides both extensor moment and lumbar traction force. The working principle of the exoskeleton, extending the coil springs during lumbar flexion, and its design criteria regarding the amount of each force element were provided. The kinematic model explained its operation, and the dynamic simulation estimated its performance and validated its satisfaction with the design criteria. The biomechanical model provided a brief insight into the expected exoskeleton's effect on the reduced lower back compression force. Ten subjects performed static holding and dynamic lifting tasks, and the generated force elements in two directions, parallel and perpendicular to the trunk, were evaluated using a force sensor and electromyography sensors, respectively. The experiment demonstrated a pulling force opposite to the direction of intradiscal pressure and reduced erector spinae activation. This implies the effect of wearing the exoskeleton to decrease the intervertebral pressure during static back bending or heavy lifting tasks.
Collapse
|
39
|
Zelik KE, Nurse CA, Schall MC, Sesek RF, Marino MC, Gallagher S. An ergonomic assessment tool for evaluating the effect of back exoskeletons on injury risk. APPLIED ERGONOMICS 2022; 99:103619. [PMID: 34740072 PMCID: PMC9827614 DOI: 10.1016/j.apergo.2021.103619] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/14/2021] [Accepted: 10/20/2021] [Indexed: 06/01/2023]
Abstract
Low back disorders (LBDs) are a leading injury in the workplace. Back exoskeletons (exos) are wearable assist devices that complement traditional ergonomic controls and reduce LBD risks by alleviating musculoskeletal overexertion. However, there are currently no ergonomic assessment tools to evaluate risk for workers wearing back exos. Exo-LiFFT, an extension of the Lifting Fatigue Failure Tool, is introduced as a means to unify the etiology of LBDs with the biomechanical function of exos. We present multiple examples demonstrating how Exo-LiFFT can assess or predict the effect of exos on LBD risk without costly, time-consuming electromyography studies. For instance, using simulated and real-world material handling data we show an exo providing a 30 Nm lumbar moment is projected to reduce cumulative back damage by ∼70% and LBD risk by ∼20%. Exo-LiFFT provides a practical, efficient ergonomic assessment tool to assist safety professionals exploring back exos as part of a comprehensive occupational health program.
Collapse
Affiliation(s)
- Karl E Zelik
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Department of Physical Medicine and Rehabilitation, Vanderbilt University, Nashville, TN, USA; HeroWear, LLC, Nashville, TN, USA.
| | - Cameron A Nurse
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Mark C Schall
- Department of Industrial and Systems Engineering, Auburn University, Auburn, AL, USA
| | - Richard F Sesek
- Department of Industrial and Systems Engineering, Auburn University, Auburn, AL, USA
| | | | - Sean Gallagher
- Department of Industrial and Systems Engineering, Auburn University, Auburn, AL, USA
| |
Collapse
|
40
|
Alemi MM, Simon AA, Geissinger J, Asbeck AT. Modeling the Metabolic Reductions of a Passive Back-Support Exoskeleton. J Appl Physiol (1985) 2022; 132:737-760. [PMID: 35023764 DOI: 10.1152/japplphysiol.00171.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Despite several attempts to quantify the metabolic savings resulting from the use of passive back-support exoskeletons (BSEs), no study has modeled the metabolic change while wearing an exoskeleton during lifting. The objectives of this study were to: 1) quantify the metabolic reductions due to the VT-Lowe's exoskeleton during lifting; and 2) provide a comprehensive model to estimate the metabolic reductions from using a passive BSE. In this study, 15 healthy adults (13M, 2F) of ages 20 to 34 years (mean=25.33, SD=4.43) performed repeated freestyle lifting and lowering of an empty box and a box with 20% of their bodyweight. Oxygen consumption and metabolic expenditure data were collected. A model for metabolic expenditure was developed and fitted with the experimental data of two prior studies and the without-exoskeleton experimental results. The metabolic cost model was then modified to reflect the effect of the exoskeleton. The experimental results revealed that VT-Lowe's exoskeleton significantly lowered the oxygen consumption by ~9% for an empty box and 8% for a 20% bodyweight box, which corresponds to a net metabolic cost reduction of ~12% and ~9%, respectively. The mean metabolic difference (i.e., without-exo minus with-exo) and the 95% confidence interval were 0.36 and (0.2-0.52) [Watts/kg] for 0% bodyweight, and 0.43 and (0.18-0.69) [Watts/kg] for 20% bodyweight. Our modeling predictions for with-exoskeleton conditions were precise, with absolute freestyle prediction errors of <2.1%. The model developed in this study can be modified based on different study designs, and can assist researchers in enhancing designs of future lifting exoskeletons.
Collapse
Affiliation(s)
- Mohammad Mehdi Alemi
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, United States.,Department of Orthopaedic Surgery, Harvard Medical School, Boston, MA, United States.,Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Athulya A Simon
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Jack Geissinger
- Department of Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Alan T Asbeck
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
41
|
Lazzaroni M, Fanti V, Sposito M, Chini G, Draicchio F, Natali CD, G. Caldwell D, Ortiz J. Improving the Efficacy of an Active Back-Support Exoskeleton for Manual Material Handling Using the Accelerometer Signal. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3183757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Maria Lazzaroni
- Department of Advanced Robotics, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Vasco Fanti
- Department of Advanced Robotics, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Matteo Sposito
- Department of Advanced Robotics, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Giorgia Chini
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Rome, Italy
| | - Francesco Draicchio
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Rome, Italy
| | - Christian Di Natali
- Department of Advanced Robotics, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Darwin G. Caldwell
- Department of Advanced Robotics, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Jesus Ortiz
- Department of Advanced Robotics, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| |
Collapse
|
42
|
Elstub LJ, Fine SJ, Zelik KE. Exoskeletons and Exosuits Could Benefit from Mode-Switching Body Interfaces That Loosen/Tighten to Improve Thermal Comfort. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:13115. [PMID: 34948723 PMCID: PMC8701000 DOI: 10.3390/ijerph182413115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022]
Abstract
Exoskeletons and exosuits (exos) are wearable devices that physically assist movement. User comfort is critically important for societal adoption of exos. Thermal comfort (a person's satisfaction with their thermal environment) represents a key design challenge. Exos must physically attach/interface to the body to apply forces, and these interfaces inevitably trap some heat. It is envisioned that thermal comfort could be improved by designing mode-switching exo interfaces that temporarily loosen around a body segment when assistive forces are not being applied. To inform exo design, a case series study (N = 4) based on single-subject design principles was performed. Our objective was to assess individual responses to skin temperature and thermal comfort during physical activity with a Loose leg-sleeve interface compared with a Form-Fitting one, and immediately after a Form-Fitting sleeve switched to Loose. Skin under the Loose sleeve was 2-3 °C (4-6 °F) cooler after 25 min of physical activity, and two of four participants reported the Loose sleeve improved their thermal comfort. After completion of the physical activity, the Form-Fitting sleeve was loosened, causing a 2-4 °C (3-8 °F) drop in skin temperature underneath for all participants, and two participants to report slightly improved thermal comfort. These findings confirmed that an exo that can quickly loosen its interface when assistance is not required-and re-tighten when it is- has the potential to enhance thermal comfort for some individuals and environments. More broadly, this study demonstrates that mode-switching mechanisms in exos can do more than adjust physical assistance: they can also exploit thermodynamics and facilitate thermoregulation in a way that enhances comfort for exo users.
Collapse
Affiliation(s)
- Laura J. Elstub
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37212, USA; (S.J.F.); (K.E.Z.)
| | - Shimra J. Fine
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37212, USA; (S.J.F.); (K.E.Z.)
| | - Karl E. Zelik
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37212, USA; (S.J.F.); (K.E.Z.)
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA
- Department of Physical Medicine & Rehabilitation, Vanderbilt University, Nashville, TN 37212, USA
| |
Collapse
|
43
|
Lanotte F, McKinney Z, Grazi L, Chen B, Crea S, Vitiello N. Adaptive Control Method for Dynamic Synchronization of Wearable Robotic Assistance to Discrete Movements: Validation for Use Case of Lifting Tasks. IEEE T ROBOT 2021. [DOI: 10.1109/tro.2021.3073836] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Babič J, Laffranchi M, Tessari F, Verstraten T, Novak D, Šarabon N, Ugurlu B, Peternel L, Torricelli D, Veneman JF. Challenges and solutions for application and wider adoption of wearable robots. WEARABLE TECHNOLOGIES 2021; 2:e14. [PMID: 38486636 PMCID: PMC10936284 DOI: 10.1017/wtc.2021.13] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/25/2021] [Accepted: 09/18/2021] [Indexed: 03/17/2024]
Abstract
The science and technology of wearable robots are steadily advancing, and the use of such robots in our everyday life appears to be within reach. Nevertheless, widespread adoption of wearable robots should not be taken for granted, especially since many recent attempts to bring them to real-life applications resulted in mixed outcomes. The aim of this article is to address the current challenges that are limiting the application and wider adoption of wearable robots that are typically worn over the human body. We categorized the challenges into mechanical layout, actuation, sensing, body interface, control, human-robot interfacing and coadaptation, and benchmarking. For each category, we discuss specific challenges and the rationale for why solving them is important, followed by an overview of relevant recent works. We conclude with an opinion that summarizes possible solutions that could contribute to the wider adoption of wearable robots.
Collapse
Affiliation(s)
- Jan Babič
- Laboratory for Neuromechanics and Biorobotics, Department of Automation, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Matteo Laffranchi
- Rehab Technologies Lab, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Federico Tessari
- Rehab Technologies Lab, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Tom Verstraten
- Robotics & Multibody Mechanics Research Group, Vrije Universiteit Brussel and Flanders Make, Brussels, Belgium
| | - Domen Novak
- University of Wyoming, Laramie, Wyoming, USA
| | - Nejc Šarabon
- Faculty of Health Sciences, University of Primorska, Izola, Slovenia
| | - Barkan Ugurlu
- Biomechatronics Laboratory, Faculty of Engineering, Ozyegin University, Istanbul, Turkey
| | - Luka Peternel
- Delft Haptics Lab, Department of Cognitive Robotics, Delft University of Technology, Delft, The Netherlands
| | - Diego Torricelli
- Cajal Institute, Spanish National Research Council, Madrid, Spain
| | | |
Collapse
|
45
|
Ali A, Fontanari V, Schmoelz W, Agrawal SK. Systematic Review of Back-Support Exoskeletons and Soft Robotic Suits. Front Bioeng Biotechnol 2021; 9:765257. [PMID: 34805118 PMCID: PMC8603112 DOI: 10.3389/fbioe.2021.765257] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/12/2021] [Indexed: 11/23/2022] Open
Abstract
Lower back pain and musculoskeletal injuries are serious concerns for workers subjected to physical workload and manual material handling tasks. Spine assistive exoskeletons are being developed to support the spine and distribute the spine load. This article presents a detailed up-to-date review on the back support exoskeletons by discussing their type (Active/Passive), structure (Rigid/Soft), power transmission methods, weight, maximum assistive force, battery technologies, tasks (lifting, bending, stooping work), kinematic compatibility and other important features. This article also assesses the back support exoskeletons in terms of their ability to reduce the physical load on the spine. By reviewing functional and structural characteristics, the goal is to increase communication and realization among ergonomics practitioners, developers, customers, and factory workers. The search resulted in reviewing 34 exoskeletons of which 16 were passive and 18 were active. In conclusion, back support exoskeletons have immense potential to significantly reduce the factors regarding work-related musculoskeletal injuries. However, various technical challenges and a lack of established safety standards limit the wide adaptation of exoskeletons in industry.
Collapse
Affiliation(s)
- Athar Ali
- Department of Industrial Engineering, University of Trento, Trento, Italy
| | - Vigilio Fontanari
- Department of Industrial Engineering, University of Trento, Trento, Italy
| | - Werner Schmoelz
- Department of Orthopedics and Traumatology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sunil K. Agrawal
- Robotics and Rehabilitation (ROAR) Laboratory, Department of Mechanical Engineering, Columbia University, New York, NY, United States
| |
Collapse
|
46
|
Gorsic M, Song Y, Johnson AP, Dai B, Novak D. Simultaneously varying back stiffness and trunk compression in a passive trunk exoskeleton during different activities: A pilot study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:4886-4890. [PMID: 34892304 DOI: 10.1109/embc46164.2021.9630081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Passive trunk exoskeletons support the human body with mechanical elements like springs and trunk compression, allowing them to guide motion and relieve the load on the spine. However, to provide appropriate support, elements of the exoskeleton (e.g., degree of compression) should be intelligently adapted to the current task. As it is not currently clear how adjusting different exoskeleton elements affects the wearer, this study preliminarily examines the effects of simultaneously adjusting both exoskeletal spinal column stiffness and trunk compression in a passive trunk exoskeleton. Six participants performed four dynamic tasks (walking, sit-to-stand, lifting a 20-lb box, lifting a 40-lb box) and experienced unexpected perturbations both without the exoskeleton and in six exoskeleton configurations corresponding to two compression levels and three stiffness levels. While results are preliminary due to the small sample size and relatively small increases in stiffness, they indicate that both compression and stiffness may affect kinematics and electromyography, that the effects may differ between activities, and that there may be interaction effects between stiffness and compression. As the next step, we will conduct a larger study with the same protocol more participants and larger stiffness increases to systematically evaluate the effects of different exoskeleton characteristics on the wearer.Clinical Relevance- Trunk exoskeletons can support wearers during a variety of different tasks, but their configuration may need to be intelligently adjusted to provide appropriate support. This pilot study provides information about the effects of exoskeleton back stiffness and trunk compression on the wearer, which can be used as a basis for more effective device design and usage.
Collapse
|
47
|
Hass D, Miller BA, Dai B, Novak D, Gorsic M. Design and Pilot Evaluation of a Prototype Sensorized Trunk Exoskeleton. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:4537-4541. [PMID: 34892226 DOI: 10.1109/embc46164.2021.9630445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Trunk exoskeletons are wearable devices that support wearers during physically demanding tasks by reducing biomechanical loads and increasing stability. In this paper, we present a prototype sensorized passive trunk exoskeleton, which includes five motion processing units (3-axis accelerometers and gyroscopes with onboard digital processing), four one-axis flex sensors along the exoskeletal spinal column, and two one-axis force sensors for measuring the interaction force between the wearer and exoskeleton. A pilot evaluation of the exoskeleton was conducted with two wearers, who performed multiple everyday tasks (sitting on a chair and standing up, walking in a straight line, picking up a box with a straight back, picking up a box with a bent back, bending forward while standing, bending laterally while standing) while wearing the exoskeleton. Illustrative examples of the results are presented as graphs. Finally, potential applications of the sensorized exoskeleton as the basis for a semi-active exoskeleton design or for audio/haptic feedback to guide the wearer are discussed.
Collapse
|
48
|
Miller BA, Novak D. Toward Real-Time Detection of Object Lifting Using Wearable Inertial Measurement Units. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:6831-6834. [PMID: 34892676 DOI: 10.1109/embc46164.2021.9629585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Back injuries and other occupational injuries are common in workers who engage in long, arduous physical labor. The risk of these injuries could be reduced using assistive devices that automatically detect an object lifting motion and support the user while they perform the lift; however, such devices must be able to detect the lifting motion as it occurs. We thus developed a system to detect the start and end of a lift (performed as a stoop or squat) in real time based on pelvic angle and the distance between the user's hands and the user's center of mass. The measurements were input to an algorithm that first searches for hand-center distance peaks in a sliding window, then checks the pelvic displacement angle to verify lift occurrence. The approach was tested with 5 participants, who performed a total of 100 lifts of four different types. The times of actual lifts were determined by manual video annotation. The median time error (absolute difference between detected and actual occurrence time) for lifts that were not false negatives was 0.11 s; a lift was considered a false negative if it was not detected within two seconds of it actually occurring. Furthermore, 95% of lifts that were detected occurred within 0.28 s of actual occurrence. This shows that it is possible to reliably detect lifts in real time based on the pelvic displacement angle and the distance between the user's hands and their center of mass.
Collapse
|
49
|
Ziaei M, Choobineh A, Ghaem H, Abdoli-Eramaki M. Evaluation of a passive low-back support exoskeleton (Ergo-Vest) for manual waste collection. ERGONOMICS 2021; 64:1255-1270. [PMID: 33866962 DOI: 10.1080/00140139.2021.1915502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
The purpose of study was to determine the biomechanical, physiological, and subjective effect of a Passive Exoskeleton device (called Ergo-Vest) among 20 waste collectors in the working environment. Compression force and moment on L4/L5 related to 400 critical postures of the participants were estimated using the 3DSSPP software. The heart rate and energy expenditure are measured as the physiological strain using the Polar RS400 Heart Rate Monitor. Borg scale perceived exertion, system usability scale, and ergonomic design indicators of the device were collected as the subjective parameters. Compression force and moment on L4/L5 disc were decreased when the Ergo-Vest was utilised. There was no significant difference in energy expenditure and heart rate with and without the device. The workers' perceived physical exertion was decreased while using the Ergo-Vest. From the perspective of end users, the usability and ergonomic design features of the Ergo-Vest was acceptable. Practitioner summary: The prevalence of musculoskeletal disorders is high among the Iranian waste collectors. To mitigate this occupational problem, the effect of a passive exoskeleton for lower-back support (Ergo-Vest) was investigated on the workers' spine loading, physiological parameters, and perceived physical exertion. The result shows spine force reduction and lower subjective responses.
Collapse
Affiliation(s)
- Mansour Ziaei
- School of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Alireza Choobineh
- Research Center for Health Sciences, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Haleh Ghaem
- Department of Epidemiology, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
50
|
Goršič M, Song Y, Dai B, Novak D. Evaluation of the HeroWear Apex back-assist exosuit during multiple brief tasks. J Biomech 2021; 126:110620. [PMID: 34293602 PMCID: PMC8453127 DOI: 10.1016/j.jbiomech.2021.110620] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/11/2021] [Accepted: 07/05/2021] [Indexed: 11/16/2022]
Abstract
Trunk exoskeletons are wearable devices that support humans during physically demanding tasks by reducing biomechanical loads on the back. While most trunk exoskeletons are rigid devices, more lightweight soft exoskeletons (exosuits) have recently been developed. One such exosuit is the HeroWear Apex, which achieved promising results in the developers' own work but has not been independently evaluated. This paper thus presents an evaluation of the Apex with 20 adult participants during multiple brief tasks: standing up from a stool with a symmetric or asymmetric load, lifting a unilateral or bilateral load from the floor to waist level, lifting the same bilateral load with a 90-degree turn to the right, lowering a bilateral load from waist level to floor, and walking while carrying a bilateral load. The tasks were performed in an ABA-style protocol: first with exosuit assistance disengaged, then with it engaged, then disengaged again. Four measurement types were taken: electromyography (of the erector spinae, rectus abdominis, and middle trapezius), trunk kinematics, self-report ratings, and heart rate. The exosuit decreased the erector spinae electromyogram by about 15% during object lifting and lowering tasks; furthermore, participants found the exosuit mildly to moderately helpful. No adverse effects on other muscles or during non-lifting tasks were noted, and a decrease in middle trapezius electromyogram was observed for one task. This confirms that the HeroWear Apex could reduce muscle demand and fatigue. The results may transfer to other exoskeletons with similar design principles, and may inform researchers working with other wearable devices.
Collapse
Affiliation(s)
- Maja Goršič
- Department of Electrical and Computer Engineering, University of Wyoming
| | - Yu Song
- Division of Kinesiology and Health, University of Wyoming
| | - Boyi Dai
- Division of Kinesiology and Health, University of Wyoming
| | - Domen Novak
- Department of Electrical and Computer Engineering, University of Wyoming.
| |
Collapse
|