1
|
Mariadoss S, Augustin F. Fuzzy entropy DEMATEL inference system for accurate and efficient cardiovascular disease diagnosis. Comput Methods Biomech Biomed Engin 2024; 27:1460-1491. [PMID: 37610123 DOI: 10.1080/10255842.2023.2245518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/29/2023] [Accepted: 07/13/2023] [Indexed: 08/24/2023]
Abstract
The global population is at risk from both communicable and non-communicable deadly diseases, including cardiovascular disease. Early detection and prevention of cardiovascular disease require an accurate self-detection model. Therefore, this study introduces a novel fuzzy entropy DEMATEL inference system for accurate self-detection of cardiovascular disease. It combines fuzzy DEMATEL, entropy, and Mamdani fuzzy inference, utilizing innovative strategies like attribute reduction, entropy-based clustering, influential factor selection, and rule reduction. The system achieves high accuracy (98.69%) and sensitivity (98.62%), outperforming existing methods. Validation includes satisfactory factor analysis, performance measures and statistical analysis, demonstrating its effectiveness in addressing complexity and prioritizing factors.
Collapse
Affiliation(s)
- Stephen Mariadoss
- Division of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Chennai, Tamil Nadu, India
| | - Felix Augustin
- Division of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Chennai, Tamil Nadu, India
| |
Collapse
|
2
|
Babu SV, Ramya P, Gracewell J. Revolutionizing heart disease prediction with quantum-enhanced machine learning. Sci Rep 2024; 14:7453. [PMID: 38548774 PMCID: PMC10978992 DOI: 10.1038/s41598-024-55991-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/23/2023] [Indexed: 04/01/2024] Open
Abstract
The recent developments in quantum technology have opened up new opportunities for machine learning algorithms to assist the healthcare industry in diagnosing complex health disorders, such as heart disease. In this work, we summarize the effectiveness of QuEML in heart disease prediction. To evaluate the performance of QuEML against traditional machine learning algorithms, the Kaggle heart disease dataset was used which contains 1190 samples out of which 53% of samples are labeled as positive samples and rest 47% samples are labeled as negative samples. The performance of QuEML was evaluated in terms of accuracy, precision, recall, specificity, F1 score, and training time against traditional machine learning algorithms. From the experimental results, it has been observed that proposed quantum approaches predicted around 50.03% of positive samples as positive and an average of 44.65% of negative samples are predicted as negative whereas traditional machine learning approaches could predict around 49.78% of positive samples as positive and 44.31% of negative samples as negative. Furthermore, the computational complexity of QuEML was measured which consumed average of 670 µs for its training whereas traditional machine learning algorithms could consume an average 862.5 µs for training. Hence, QuEL was found to be a promising approach in heart disease prediction with an accuracy rate of 0.6% higher and training time of 192.5 µs faster than that of traditional machine learning approaches.
Collapse
Affiliation(s)
- S Venkatesh Babu
- Department of CSE, Christian College of Engineering and Technology, Dindigul, India.
| | - P Ramya
- Department of AI and DS, PSNA College of Engineering and Technology, Dindigul, India
| | - Jeffin Gracewell
- Department of Electronics and Communication Engineering, Saveetha Engineering College, Chennai, India
| |
Collapse
|
3
|
Ahmad PN, Liu Y, Khan K, Jiang T, Burhan U. BIR: Biomedical Information Retrieval System for Cancer Treatment in Electronic Health Record Using Transformers. SENSORS (BASEL, SWITZERLAND) 2023; 23:9355. [PMID: 38067736 PMCID: PMC10708614 DOI: 10.3390/s23239355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 12/18/2023]
Abstract
The rapid growth of electronic health records (EHRs) has led to unprecedented biomedical data. Clinician access to the latest patient information can improve the quality of healthcare. However, clinicians have difficulty finding information quickly and easily due to the sheer data mining volume. Biomedical information retrieval (BIR) systems can help clinicians find the information required by automatically searching EHRs and returning relevant results. However, traditional BIR systems cannot understand the complex relationships between EHR entities. Transformers are a new type of neural network that is very effective for natural language processing (NLP) tasks. As a result, transformers are well suited for tasks such as machine translation and text summarization. In this paper, we propose a new BIR system for EHRs that uses transformers for predicting cancer treatment from EHR. Our system can understand the complex relationships between the different entities in an EHR, which allows it to return more relevant results to clinicians. We evaluated our system on a dataset of EHRs and found that it outperformed state-of-the-art BIR systems on various tasks, including medical question answering and information extraction. Our results show that Transformers are a promising approach for BIR in EHRs, reaching an accuracy and an F1-score of 86.46%, and 0.8157, respectively. We believe that our system can help clinicians find the information they need more quickly and easily, leading to improved patient care.
Collapse
Affiliation(s)
- Pir Noman Ahmad
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Yuanchao Liu
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Khalid Khan
- Department of Computing Science and Mathematics, University of Stirling, Stirling FK9 4LA, UK
| | - Tao Jiang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Umama Burhan
- Department of Computing Science and Mathematics, University of Stirling, Stirling FK9 4LA, UK
| |
Collapse
|
4
|
Ahmad PN, Shah AM, Lee K. A Review on Electronic Health Record Text-Mining for Biomedical Name Entity Recognition in Healthcare Domain. Healthcare (Basel) 2023; 11:1268. [PMID: 37174810 PMCID: PMC10178605 DOI: 10.3390/healthcare11091268] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Biomedical-named entity recognition (bNER) is critical in biomedical informatics. It identifies biomedical entities with special meanings, such as people, places, and organizations, as predefined semantic types in electronic health records (EHR). bNER is essential for discovering novel knowledge using computational methods and Information Technology. Early bNER systems were configured manually to include domain-specific features and rules. However, these systems were limited in handling the complexity of the biomedical text. Recent advances in deep learning (DL) have led to the development of more powerful bNER systems. DL-based bNER systems can learn the patterns of biomedical text automatically, making them more robust and efficient than traditional rule-based systems. This paper reviews the healthcare domain of bNER, using DL techniques and artificial intelligence in clinical records, for mining treatment prediction. bNER-based tools are categorized systematically and represent the distribution of input, context, and tag (encoder/decoder). Furthermore, to create a labeled dataset for our machine learning sentiment analyzer to analyze the sentiment of a set of tweets, we used a manual coding approach and the multi-task learning method to bias the training signals with domain knowledge inductively. To conclude, we discuss the challenges facing bNER systems and future directions in the healthcare field.
Collapse
Affiliation(s)
- Pir Noman Ahmad
- School of Computer Science, Harbin Institute of Technology, Harbin 150001, China
| | - Adnan Muhammad Shah
- Department of Computer Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - KangYoon Lee
- Department of Computer Engineering, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
5
|
Stephen M, Felix A. Fuzzy AHP point factored inference system for detection of cardiovascular disease. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2023. [DOI: 10.3233/jifs-223048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The World health organization (WHO) reported that cardiovascular disease is the leading cause of death worldwide, particularly in developing countries. But while diagnosing cardiovascular disease, medical practitioners might have differences of opinions and faced challenging when there is inadequate information and uncertainty of the problem. Therefore, to resolve ambiguity and vagueness in diagnosing disease, a perfect decision-making model is required to assist medical practitioners in detecting the disease at an early stage. Thus, this study designs a fuzzy analytic hierarchy process (FAHP) point-factored inference system to detect cardiovascular disease. The attributes are selected and classified into sub-attributes and point factor scale using the clinical data, medical practitioners, and literature review. Fuzzy AHP is used in calculating the attribute weights, the strings are generated using the Mamdani fuzzy inference system, and the strength of each set of fuzzy rules is calculated by multiplying the attribute weights with the point factor scale. The string weights determine the output ranges of cardiovascular disease. Moreover, the results are validated using sensitivity analysis, and comparative analysis is performed with AHP techniques. The results show that the proposed method outperforms other methods, which are elucidated by the case study.
Collapse
Affiliation(s)
- M. Stephen
- Mathematics Division, School of Advanced Sciences, Vellore Institute of Technology, Chennai Campus, Chennai, TamilNadu, India
| | - A. Felix
- Mathematics Division, School of Advanced Sciences, Vellore Institute of Technology, Chennai Campus, Chennai, TamilNadu, India
| |
Collapse
|
6
|
Czmil A. Comparative Study of Fuzzy Rule-Based Classifiers for Medical Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:992. [PMID: 36679786 PMCID: PMC9864287 DOI: 10.3390/s23020992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/20/2022] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
The use of machine learning in medical decision support systems can improve diagnostic accuracy and objectivity for clinical experts. In this study, we conducted a comparison of 16 different fuzzy rule-based algorithms applied to 12 medical datasets and real-world data. The results of this comparison showed that the best performing algorithms in terms of average results of Matthews correlation coefficient (MCC), area under the curve (AUC), and accuracy (ACC) was a classifier based on fuzzy logic and gene expression programming (GPR), repeated incremental pruning to produce error reduction (Ripper), and ordered incremental genetic algorithm (OIGA), respectively. We also analyzed the number and size of the rules generated by each algorithm and provided examples to objectively evaluate the utility of each algorithm in clinical decision support. The shortest and most interpretable rules were generated by 1R, GPR, and C45Rules-C. Our research suggests that GPR is capable of generating concise and interpretable rules while maintaining good classification performance, and it may be a valuable algorithm for generating rules from medical data.
Collapse
Affiliation(s)
- Anna Czmil
- The Faculty of Electrical and Computer Engineering, Rzeszow University of Technology, Powstancow Warszawy 12, 35-959 Rzeszow, Poland
| |
Collapse
|
7
|
Li Y, Zhang Z. Enhanced Laterality Index: A Novel Measure for Hemispheric Asymmetry. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:8997108. [PMID: 35529543 PMCID: PMC9076328 DOI: 10.1155/2022/8997108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/30/2022] [Accepted: 02/25/2022] [Indexed: 11/17/2022]
Abstract
During sleep, the two hemispheres display asymmetries in their activation pattern. Various hemispheric asymmetry measures have been utilized in existing works. Nevertheless, all these measures have one common problem that they would merely take one representative quantity into account when evaluating the functional asymmetry. However, there is a complex series of information exchanges between the two cerebral hemispheres, and only considering one quantity inevitably leads to one-sided or even incorrect conclusions. Consequently, to address the limitation of conventional laterality indices, we propose the so-called enhanced laterality index (ELI), which considers multiple measures of functional asymmetries. Normal sleep and obstructive sleep apnea electroencephalograms (EEGs) from 21 subjects collected in the clinical acquisition system are applied, and two representative quantities are considered simultaneously in this paper. We measure the signal complexity by using fuzzy entropy, and the signal strength is evaluated by calculating EEG energy. The difference of ELI is demonstrated by the comparison with the traditional laterality index (LI) in evaluating the functional asymmetry during sleep.
Collapse
Affiliation(s)
- Yuwen Li
- School of Instrument Science and Engineering, Southeast University, Nanjing 210000, China
| | - Zhimin Zhang
- Science and Technology on Information Systems Engineering Laboratory, The 28th Research Institute of CETC, Nanjing 210000, China
| |
Collapse
|
8
|
Javeed A, Khan SU, Ali L, Ali S, Imrana Y, Rahman A. Machine Learning-Based Automated Diagnostic Systems Developed for Heart Failure Prediction Using Different Types of Data Modalities: A Systematic Review and Future Directions. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9288452. [PMID: 35154361 PMCID: PMC8831075 DOI: 10.1155/2022/9288452] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/15/2022] [Indexed: 12/13/2022]
Abstract
One of the leading causes of deaths around the globe is heart disease. Heart is an organ that is responsible for the supply of blood to each part of the body. Coronary artery disease (CAD) and chronic heart failure (CHF) often lead to heart attack. Traditional medical procedures (angiography) for the diagnosis of heart disease have higher cost as well as serious health concerns. Therefore, researchers have developed various automated diagnostic systems based on machine learning (ML) and data mining techniques. ML-based automated diagnostic systems provide an affordable, efficient, and reliable solutions for heart disease detection. Various ML, data mining methods, and data modalities have been utilized in the past. Many previous review papers have presented systematic reviews based on one type of data modality. This study, therefore, targets systematic review of automated diagnosis for heart disease prediction based on different types of modalities, i.e., clinical feature-based data modality, images, and ECG. Moreover, this paper critically evaluates the previous methods and presents the limitations in these methods. Finally, the article provides some future research directions in the domain of automated heart disease detection based on machine learning and multiple of data modalities.
Collapse
Affiliation(s)
- Ashir Javeed
- Aging Research Center, Karolinska Institutet, Sweden
| | - Shafqat Ullah Khan
- Department of Electrical Engineering, University of Science and Technology Bannu, Pakistan
| | - Liaqat Ali
- Department of Electronics, University of Buner, Buner, Pakistan
| | - Sardar Ali
- School of Engineering and Applied Sciences, Isra University Islamabad Campus, Pakistan
| | - Yakubu Imrana
- School of Engineering, University of Development Studies, Tamale, Ghana
- School of Computer Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Atiqur Rahman
- Department of Computer Science, University of Science and Technology Bannu, Pakistan
| |
Collapse
|
9
|
Mazumder O, Banerjee R, Roy D, Bhattacharya S, Ghose A, Sinha A. Synthetic PPG signal Generation to Improve Coronary Artery Disease Classification: Study with Physical Model of Cardiovascular System. IEEE J Biomed Health Inform 2022; 26:2136-2146. [PMID: 35104231 DOI: 10.1109/jbhi.2022.3147383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This paper presents a novel approach of generating synthetic Photoplethysmogram (PPG) data using a physical model of the cardiovascular system to improve classifier performance with a combination of synthetic and real data. The physical model is an in-silico cardiac computational model, consisting of a four-chambered heart with electrophysiology, hemodynamic, and blood pressure autoregulation functionality. Starting with a small number of measured PPG data, the cardiac model is used to synthesize healthy as well as PPG time-series pertaining to coronary artery disease (CAD) by varying pathophysiological parameters. A Variational Autoencoder (VAE) structure is proposed to derive a statistical feature space for CAD classification. Results are presented in two perspectives namely, (i) using artificially reduced real disease data and (ii) using all the real disease data. In both cases, by augmenting with the synthetic data for training, the performance (sensitivity, specificity) of the classifier changes from (i) (0.65, 1) to (1, 0.9) and (ii) (1, 0.95) to (1,1). The proposed hybrid approach of combining physical modelling and statistical feature space selection generates realistic PPG data with pathophysiological interpretation and can outperform a baseline Generative Adversarial Network (GAN) architecture with a relatively small amount of real data for training. This proposed method could aid as a substitution technique for handling the problem of bulk data required for training machine learning algorithms for cardiac health-care applications.
Collapse
|
10
|
Prediction of Coronary Heart Disease Based on Combined Reinforcement Multitask Progressive Time-Series Networks. Methods 2021; 198:96-106. [PMID: 34954350 DOI: 10.1016/j.ymeth.2021.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 11/21/2022] Open
Abstract
Coronary heart disease is the first killer of human health. At present, the most widely used approach of coronary heart disease diagnosis is coronary angiography, a surgery that could potentially cause some physical damage to the patients, together with some complications and adverse reactions. Furthermore, coronary angiography is expensive thus cannot be widely used in under development country. On the other hand, the heart color Doppler echocardiography report, blood biochemical indicators and other basic information(patients' gender, age, diabetes…) can reflect the degree of heart damage in patients to some extent. This paper proposes a combined reinforcement multitask progressive time-series networks (CRMPTN) model to predict the grade of coronary heart disease through heart color Doppler echocardiography report, blood biochemical indicators and ten basic body information items about the patients. In this model, the first step is to perform deep reinforcement learning (DRL) pre-training through asynchronous advantage actor-critic (A3C). Training data is adopted to optimize the recurrent neural network (RNN) that parameterizes the stochastic policy. In the second step, soft parameter sharing module, hard parameter sharing module and progressive time-series networks are used to predict the status of coronary heart disease. The experimental results show that after DRL pre-training, the multiple tasks in the model interact with each other and learn together to achieve satisfactory results and outperform other state-of-the-art methods.
Collapse
|
11
|
Basheer S, Alluhaidan AS, Bivi MA. Real-time monitoring system for early prediction of heart disease using Internet of Things. Soft comput 2021. [DOI: 10.1007/s00500-021-05865-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
12
|
Alvanou AG, Stylidou A, Exarchos TP. Web-Based Decision Support System for Coronary Heart Disease Diagnosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1338:31-38. [DOI: 10.1007/978-3-030-78775-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Alizadehsani R, Khosravi A, Roshanzamir M, Abdar M, Sarrafzadegan N, Shafie D, Khozeimeh F, Shoeibi A, Nahavandi S, Panahiazar M, Bishara A, Beygui RE, Puri R, Kapadia S, Tan RS, Acharya UR. Coronary artery disease detection using artificial intelligence techniques: A survey of trends, geographical differences and diagnostic features 1991-2020. Comput Biol Med 2020; 128:104095. [PMID: 33217660 DOI: 10.1016/j.compbiomed.2020.104095] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/24/2020] [Accepted: 10/24/2020] [Indexed: 02/06/2023]
Abstract
While coronary angiography is the gold standard diagnostic tool for coronary artery disease (CAD), but it is associated with procedural risk, it is an invasive technique requiring arterial puncture, and it subjects the patient to radiation and iodinated contrast exposure. Artificial intelligence (AI) can provide a pretest probability of disease that can be used to triage patients for angiography. This review comprehensively investigates published papers in the domain of CAD detection using different AI techniques from 1991 to 2020, in order to discern broad trends and geographical differences. Moreover, key decision factors affecting CAD diagnosis are identified for different parts of the world by aggregating the results from different studies. In this study, all datasets that have been used for the studies for CAD detection, their properties, and achieved performances using various AI techniques, are presented, compared, and analyzed. In particular, the effectiveness of machine learning (ML) and deep learning (DL) techniques to diagnose and predict CAD are reviewed. From PubMed, Scopus, Ovid MEDLINE, and Google Scholar search, 500 papers were selected to be investigated. Among these selected papers, 256 papers met our criteria and hence were included in this study. Our findings demonstrate that AI-based techniques have been increasingly applied for the detection of CAD since 2008. AI-based techniques that utilized electrocardiography (ECG), demographic characteristics, symptoms, physical examination findings, and heart rate signals, reported high accuracy for the detection of CAD. In these papers, the authors ranked the features based on their assessed clinical importance with ML techniques. The results demonstrate that the attribution of the relative importance of ML features for CAD diagnosis is different among countries. More recently, DL methods have yielded high CAD detection performance using ECG signals, which drives its burgeoning adoption.
Collapse
Affiliation(s)
- Roohallah Alizadehsani
- Institute for Intelligent Systems Research and Innovations (IISRI), Deakin University, Geelong, Australia
| | - Abbas Khosravi
- Institute for Intelligent Systems Research and Innovations (IISRI), Deakin University, Geelong, Australia
| | - Mohamad Roshanzamir
- Department of Engineering, Fasa Branch, Islamic Azad University, Post Box No 364, Fasa, Fars, 7461789818, Iran
| | - Moloud Abdar
- Institute for Intelligent Systems Research and Innovations (IISRI), Deakin University, Geelong, Australia
| | - Nizal Sarrafzadegan
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Khorram Ave, Isfahan, Iran; Faculty of Medicine, SPPH, University of British Columbia, Vancouver, BC, Canada.
| | - Davood Shafie
- Heart Failure Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fahime Khozeimeh
- Institute for Intelligent Systems Research and Innovations (IISRI), Deakin University, Geelong, Australia
| | - Afshin Shoeibi
- Computer Engineering Department, Ferdowsi University of Mashhad, Mashhad, Iran; Faculty of Electrical and Computer Engineering, Biomedical Data Acquisition Lab, K. N. Toosi University of Technology, Tehran, Iran
| | - Saeid Nahavandi
- Institute for Intelligent Systems Research and Innovations (IISRI), Deakin University, Geelong, Australia
| | - Maryam Panahiazar
- Institute for Computational Health Sciences, University of California, San Francisco, USA
| | - Andrew Bishara
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, USA
| | - Ramin E Beygui
- Cardiovascular Surgery Division, Department of Surgery, University of California, San Francisco, CA, USA
| | - Rishi Puri
- Department of Cardiovascular Medicine, Cleveland Clinic, OH, USA
| | - Samir Kapadia
- Department of Cardiovascular Medicine, Cleveland Clinic, OH, USA
| | - Ru-San Tan
- Department of Cardiology, National Heart Centre Singapore, Singapore
| | - U Rajendra Acharya
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore; Department of Biomedical Engineering, School of Science and Technology, Singapore University of Social Sciences, Singapore; Department of Bioinformatics and Medical Engineering, Asia University, Taiwan
| |
Collapse
|
14
|
A Novel Approach for Coronary Artery Disease Diagnosis using Hybrid Particle Swarm Optimization based Emotional Neural Network. Biocybern Biomed Eng 2020. [DOI: 10.1016/j.bbe.2020.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Onay A, Onay M. A Drug Decision Support System for Developing a Successful Drug Candidate Using Machine Learning Techniques. Curr Comput Aided Drug Des 2019; 16:407-419. [PMID: 31438830 DOI: 10.2174/1573409915666190716143601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/24/2019] [Accepted: 05/06/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Virtual screening of candidate drug molecules using machine learning techniques plays a key role in pharmaceutical industry to design and discovery of new drugs. Computational classification methods can determine drug types according to the disease groups and distinguish approved drugs from withdrawn ones. INTRODUCTION Classification models developed in this study can be used as a simple filter in drug modelling to eliminate potentially inappropriate molecules in the early stages. In this work, we developed a Drug Decision Support System (DDSS) to classify each drug candidate molecule as potentially drug or non-drug and to predict its disease group. METHODS Molecular descriptors were identified for the determination of a number of rules in drug molecules. They were derived using ADRIANA.Code program and Lipinski's rule of five. We used Artificial Neural Network (ANN) to classify drug molecules correctly according to the types of diseases. Closed frequent molecular structures in the form of subgraph fragments were also obtained with Gaston algorithm included in ParMol Package to find common molecular fragments for withdrawn drugs. RESULTS We observed that TPSA, XlogP Natoms, HDon_O and TPSA are the most distinctive features in the pool of the molecular descriptors and evaluated the performances of classifiers on all datasets and found that classification accuracies are very high on all the datasets. Neural network models achieved 84.6% and 83.3% accuracies on test sets including cardiac therapy, anti-epileptics and anti-parkinson drugs with approved and withdrawn drugs for drug classification problems. CONCLUSION The experimental evaluation shows that the system is promising at determination of potential drug molecules to classify drug molecules correctly according to the types of diseases.
Collapse
Affiliation(s)
- Aytun Onay
- Department of Computer Engineering, Faculty of Engineering & Architecture, Kafkas University, Kars, 36100, Turkey
| | - Melih Onay
- Department of Environmental Engineering, Computational & Experimental Biochemistry Lab, Faculty of Engineering, Van Yuzuncu Yil University, 65100, Van, Turkey
| |
Collapse
|
16
|
Alizadehsani R, Abdar M, Roshanzamir M, Khosravi A, Kebria PM, Khozeimeh F, Nahavandi S, Sarrafzadegan N, Acharya UR. Machine learning-based coronary artery disease diagnosis: A comprehensive review. Comput Biol Med 2019; 111:103346. [PMID: 31288140 DOI: 10.1016/j.compbiomed.2019.103346] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/26/2019] [Accepted: 06/26/2019] [Indexed: 02/02/2023]
Abstract
Coronary artery disease (CAD) is the most common cardiovascular disease (CVD) and often leads to a heart attack. It annually causes millions of deaths and billions of dollars in financial losses worldwide. Angiography, which is invasive and risky, is the standard procedure for diagnosing CAD. Alternatively, machine learning (ML) techniques have been widely used in the literature as fast, affordable, and noninvasive approaches for CAD detection. The results that have been published on ML-based CAD diagnosis differ substantially in terms of the analyzed datasets, sample sizes, features, location of data collection, performance metrics, and applied ML techniques. Due to these fundamental differences, achievements in the literature cannot be generalized. This paper conducts a comprehensive and multifaceted review of all relevant studies that were published between 1992 and 2019 for ML-based CAD diagnosis. The impacts of various factors, such as dataset characteristics (geographical location, sample size, features, and the stenosis of each coronary artery) and applied ML techniques (feature selection, performance metrics, and method) are investigated in detail. Finally, the important challenges and shortcomings of ML-based CAD diagnosis are discussed.
Collapse
Affiliation(s)
- Roohallah Alizadehsani
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Australia.
| | - Moloud Abdar
- Département d'informatique, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Mohamad Roshanzamir
- Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Abbas Khosravi
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Australia
| | - Parham M Kebria
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Australia
| | - Fahime Khozeimeh
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeid Nahavandi
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Australia
| | - Nizal Sarrafzadegan
- Faculty of Medicine, SPPH, University of British Columbia, Vancouver, BC, Canada; Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Khorram Ave, Isfahan, Iran
| | - U Rajendra Acharya
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore; Department of Biomedical Engineering, School of Science and Technology, Singapore University of Social Sciences, Singapore; Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Malaysia
| |
Collapse
|
17
|
Georga EI, Tachos NS, Sakellarios AI, Kigka VI, Exarchos TP, Pelosi G, Parodi O, Michalis LK, Fotiadis DI. Artificial Intelligence and Data Mining Methods for Cardiovascular Risk Prediction. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/978-981-10-5092-3_14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
|
19
|
A Fibrosis Diagnosis Clinical Decision Support System Using Fuzzy Knowledge. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2018. [DOI: 10.1007/s13369-018-3670-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Feature selection and classification systems for chronic disease prediction: A review. EGYPTIAN INFORMATICS JOURNAL 2018. [DOI: 10.1016/j.eij.2018.03.002] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Narayan S, Sathiyamoorthy E. A novel recommender system based on FFT with machine learning for predicting and identifying heart diseases. Neural Comput Appl 2018. [DOI: 10.1007/s00521-018-3662-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Jerline Amutha A, Padmajavalli R, Prabhakar D. A novel approach for the prediction of treadmill test in cardiology using data mining algorithms implemented as a mobile application. Indian Heart J 2018; 70:511-518. [PMID: 30170646 PMCID: PMC6117803 DOI: 10.1016/j.ihj.2018.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 12/21/2017] [Accepted: 01/08/2018] [Indexed: 10/31/2022] Open
Abstract
OBJECTIVE To develop a mobile app called "TMT Predict" to predict the results of Treadmill Test (TMT), using data mining techniques applied to a clinical dataset using minimal clinical attributes. To prospectively test the results of the app in realtime to TMT and correlate with coronary angiogram results. METHODS In this study, instead of statistics, data mining approach has been utilized for the prediction of the results of TMT by analyzing the clinical records of 1000 cardiac patients. This research employed the Decision Tree algorithm, a new modified version of K-Nearest Neighbor (KNN) algorithm, K-Sorting and Searching (KSS). Furthermore, curve fitting mathematical technique was used to improve the Accuracy. The system used six clinical attributes such as age, gender, body mass index (BMI), dyslipidemia, diabetes mellitus and systemic hypertension. An Android app called "TMT Predict" was developed, wherein all three inputs were combined and analyzed. The final result is based on the dominating values of the three results. The app was further tested prospectively in 300 patients to predict the results of TMT and correlate with Coronary angiography. RESULTS The accuracy of predicting the result of a TMT using data mining algorithms, Decision Tree and K-Sorting & Searching (KSS) were 73% and 78%, respectively. The mathematical method curve fitting predicted with 82% accuracy. The accuracy of the mobile app "TMT Predict", improved to 84%. Age-wise analysis of the results show that the accuracy of the app dips when the age is more than 60years indicating that there may be other factors like retirement stress that may have to be included. This gives scope for future research also. In the prospective study, the positive and negative predictive values of the app for the results of TMT and coronary angiogram were found to be 40% and 83% for TMT and 52% and 80% for coronary angiogram. The negative predictive value of the app was high, indicating that it is a good screening tool to rule out coronary artery heart disease (CAHD). CONCLUSION "TMT Predict" is a simple user-friendly android app, which uses six simple clinical attributes to predict the results of TMT. The app has a high negative predictive value indicating that it is a useful tool to rule out CAHD. The "TMT Predict" could be a future digital replacement for the manual TMT as an initial screening tool to rule out CAHD.
Collapse
Affiliation(s)
- A Jerline Amutha
- Research Scholar, Department of Computer Science, Bharathiar University, Coimbatore, India; Assistant Professor, Department of Computer Science, Women's Christian College, Chennai, India.
| | - R Padmajavalli
- Head, Department of Computer Applications, Bhaktavatsalam Memorial College for Women, Korattur, Chennai, India; Research Supervisor, Department of Computer Science, Bharathiar University, Coimbatore, Chennai, India.
| | - D Prabhakar
- Consultant Cardiologist, Ashwin Clinic, AG 25, Annanagar, Chennai, 600040, India.
| |
Collapse
|
23
|
Alizadehsani R, Hosseini MJ, Khosravi A, Khozeimeh F, Roshanzamir M, Sarrafzadegan N, Nahavandi S. Non-invasive detection of coronary artery disease in high-risk patients based on the stenosis prediction of separate coronary arteries. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2018; 162:119-127. [PMID: 29903478 DOI: 10.1016/j.cmpb.2018.05.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 04/24/2018] [Accepted: 05/03/2018] [Indexed: 05/10/2023]
Abstract
BACKGROUND AND OBJECTIVE Cardiovascular diseases are an extremely widespread sickness and account for 17 million deaths in the world per annum. Coronary artery disease (CAD) is one of such diseases with an annual mortality rate of about 7 million. Thus, early diagnosis of CAD is of vital importance. Angiography is currently the modality of choice for the detection of CAD. However, its complications and costs have prompted researchers to seek alternative methods via machine learning algorithms. METHODS The present study proposes a novel machine learning algorithm. The proposed algorithm uses three classifiers for detection of the stenosis of three coronary arteries, i.e., left anterior descending (LAD), left circumflex (LCX) and right coronary artery (RCA) to get higher accuracy for CAD diagnosis. RESULTS This method was applied on the extension of Z-Alizadeh Sani dataset which contains demographic, examination, ECG, and laboratory and echo data of 500 patients. This method achieves an accuracy, sensitivity and specificity rates of 96.40%, 100% and 88.1%, respectively for the detection of CAD. To our knowledge, such high rates of accuracy and sensitivity have not been attained elsewhere before. CONCLUSION This new algorithm reliably distinguishes those with normal coronary arteries from those with CAD which may obviate the need for angiography in the normal group.
Collapse
Affiliation(s)
- Roohallah Alizadehsani
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Victoria 3217, Australia
| | - Mohammad Javad Hosseini
- Department of Computer Science and Engineering, University of Washington, Seattle, United States
| | - Abbas Khosravi
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Victoria 3217, Australia.
| | - Fahime Khozeimeh
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohamad Roshanzamir
- Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Nizal Sarrafzadegan
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences,Isfahan,Iran & Faculty of Medicine, SPPH, University of British Columbia, Vancouver,BC, Canada
| | - Saeid Nahavandi
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Victoria 3217, Australia
| |
Collapse
|
24
|
Islam MS, Hasan MM, Wang X, Germack HD, Noor-E-Alam M. A Systematic Review on Healthcare Analytics: Application and Theoretical Perspective of Data Mining. Healthcare (Basel) 2018; 6:E54. [PMID: 29882866 PMCID: PMC6023432 DOI: 10.3390/healthcare6020054] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 05/17/2018] [Accepted: 05/21/2018] [Indexed: 12/17/2022] Open
Abstract
The growing healthcare industry is generating a large volume of useful data on patient demographics, treatment plans, payment, and insurance coverage—attracting the attention of clinicians and scientists alike. In recent years, a number of peer-reviewed articles have addressed different dimensions of data mining application in healthcare. However, the lack of a comprehensive and systematic narrative motivated us to construct a literature review on this topic. In this paper, we present a review of the literature on healthcare analytics using data mining and big data. Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we conducted a database search between 2005 and 2016. Critical elements of the selected studies—healthcare sub-areas, data mining techniques, types of analytics, data, and data sources—were extracted to provide a systematic view of development in this field and possible future directions. We found that the existing literature mostly examines analytics in clinical and administrative decision-making. Use of human-generated data is predominant considering the wide adoption of Electronic Medical Record in clinical care. However, analytics based on website and social media data has been increasing in recent years. Lack of prescriptive analytics in practice and integration of domain expert knowledge in the decision-making process emphasizes the necessity of future research.
Collapse
Affiliation(s)
- Md Saiful Islam
- Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA.
| | - Md Mahmudul Hasan
- Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA.
| | - Xiaoyi Wang
- Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA.
| | - Hayley D Germack
- Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA.
- National Clinician Scholars Program, Yale University School of Medicine, New Haven, CT 06511, USA.
- Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, USA.
| | - Md Noor-E-Alam
- Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
25
|
Saqlain SM, Sher M, Shah FA, Khan I, Ashraf MU, Awais M, Ghani A. Fisher score and Matthews correlation coefficient-based feature subset selection for heart disease diagnosis using support vector machines. Knowl Inf Syst 2018. [DOI: 10.1007/s10115-018-1185-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Mastoi QUA, Wah TY, Gopal Raj R, Iqbal U. Automated Diagnosis of Coronary Artery Disease: A Review and Workflow. Cardiol Res Pract 2018; 2018:2016282. [PMID: 29507812 PMCID: PMC5817359 DOI: 10.1155/2018/2016282] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/19/2017] [Indexed: 11/21/2022] Open
Abstract
Coronary artery disease (CAD) is the most dangerous heart disease which may lead to sudden cardiac death. However, CAD diagnoses are quite expensive and time-consuming procedures which a patient need to go through. The aim of our paper is to present a unique review of state-of-the-art methods up to 2017 for automatic CAD classification. The protocol of review methods is identifying best methods and classifier for CAD identification. The study proposes two workflows based on two parameter sets for instances A and B. It is necessary to follow the proper procedure, for future evaluation process of automatic diagnosis of CAD. The initial two stages of the parameter set A workflow are preprocessing and feature extraction. Subsequently, stages (feature selection and classification) are same for both workflows. In literature, the SVM classifier represents a promising approach for CAD classification. Moreover, the limitation leads to extract proper features from noninvasive signals.
Collapse
Affiliation(s)
- Qurat-ul-ain Mastoi
- Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Teh Ying Wah
- Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Ram Gopal Raj
- Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Uzair Iqbal
- Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
27
|
Raghavendra U, Fujita H, Gudigar A, Shetty R, Nayak K, Pai U, Samanth J, Acharya U. Automated technique for coronary artery disease characterization and classification using DD-DTDWT in ultrasound images. Biomed Signal Process Control 2018. [DOI: 10.1016/j.bspc.2017.09.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
|
29
|
Dhanaseelan R, Jeya Sutha M. Diagnosis of coronary artery disease using an efficient hash table based closed frequent itemsets mining. Med Biol Eng Comput 2017; 56:749-759. [PMID: 28905236 DOI: 10.1007/s11517-017-1719-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 08/28/2017] [Indexed: 10/18/2022]
Abstract
This paper proposes an efficient hash table based closed frequent itemsets (HCFI) mining algorithm to envisage coronary artery disease early. HCFI algorithm generates closed frequent itemsets efficiently by performing intersection operation on transaction id's of itemset without considering the name of item/itemset. The employed hash table reduces search efficiency to O(1) or constant time. HCFI algorithm is applied on the UCI (University of California, Irvine) Cleveland dataset, a biological database of cardiovascular disease to generate closed frequent itemsets on the dataset. The findings of HCFI algorithm are (1) it determines a set of distinguished features to differentiate a 'healthy' and a 'sick' class. The features such as heart status being normal, oldpeak being less than or equal to 1.2, slope being up, number of vessels colored being zero, absence of exercise-induced angina, maximum heart rate achieved between 151 and 180 are referred as 'healthy' class. The features like chest pain are being asymptomatic, heart-status being reversible defect, slope being flat, and presence of exercise-induced-angina and serum cholesterol being greater than 240 indicate a presumption of heart disease to both genders. (2) It predicts that females have less chance of coronary heart disease than males. This algorithm is also compared with two other state-of-the-art-algorithms 'NAFCP' (N-list based algorithm for mining frequent closed patterns) and 'PredictiveApriori' to show the effectiveness of the proposed algorithm.
Collapse
Affiliation(s)
- Ramesh Dhanaseelan
- Department of Computer Applications, St.Xavier's Catholic College of Engineering, Chunkankadai, K.K. Dist., Nagercoil, 629003, Tamil Nadu, India
| | - M Jeya Sutha
- Department of Computer Applications, St.Xavier's Catholic College of Engineering, Chunkankadai, K.K. Dist., Nagercoil, 629003, Tamil Nadu, India.
| |
Collapse
|
30
|
Paul AK, Shill PC, Rabin MRI, Murase K. Adaptive weighted fuzzy rule-based system for the risk level assessment of heart disease. APPL INTELL 2017. [DOI: 10.1007/s10489-017-1037-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Kadi I, Idri A, Fernandez-Aleman JL. Systematic mapping study of data mining–based empirical studies in cardiology. Health Informatics J 2017; 25:741-770. [DOI: 10.1177/1460458217717636] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Data mining provides the methodology and technology to transform huge amount of data into useful information for decision making. It is a powerful process to extract knowledge and discover new patterns embedded in large data sets. Data mining has been increasingly used in medicine, particularly in cardiology. In fact, data mining applications can greatly benefits all parts involved in cardiology such as patients, cardiologists and nurses. This article aims to perform a systematic mapping study so as to analyze and synthesize empirical studies on the application of data mining techniques in cardiology. A total of 142 articles published between 2000 and 2015 were therefore selected, studied and analyzed according to the four following criteria: year and channel of publication, research type, medical task and empirical type. The results of this mapping study are discussed and a list of recommendations for researchers and cardiologists is provided.
Collapse
Affiliation(s)
| | - Ali Idri
- Mohammed V University in Rabat, Morocco
| | | |
Collapse
|
32
|
Movahedi F, Coyle JL, Sejdic E. Deep Belief Networks for Electroencephalography: A Review of Recent Contributions and Future Outlooks. IEEE J Biomed Health Inform 2017; 22:642-652. [PMID: 28715343 DOI: 10.1109/jbhi.2017.2727218] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Deep learning, a relatively new branch of machine learning, has been investigated for use in a variety of biomedical applications. Deep learning algorithms have been used to analyze different physiological signals and gain a better understanding of human physiology for automated diagnosis of abnormal conditions. In this paper, we provide an overview of deep learning approaches with a focus on deep belief networks in electroencephalography applications. We investigate the state-of-the-art algorithms for deep belief networks and then cover the application of these algorithms and their performances in electroencephalographic applications. We covered various applications of electroencephalography in medicine, including emotion recognition, sleep stage classification, and seizure detection, in order to understand how deep learning algorithms could be modified to better suit the tasks desired. This review is intended to provide researchers with a broad overview of the currently existing deep belief network methodology for electroencephalography signals, as well as to highlight potential challenges for future research.
Collapse
|
33
|
Verma L, Srivastava S, Negi PC. An intelligent noninvasive model for coronary artery disease detection. COMPLEX INTELL SYST 2017. [DOI: 10.1007/s40747-017-0048-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
34
|
Study on the Efficiency of a Multi-layer Perceptron Neural Network Based on the Number of Hidden Layers and Nodes for Diagnosing Coronary- Artery Disease. ACTA ACUST UNITED AC 2017. [DOI: 10.5812/jjhr.63032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
35
|
Rezaei-Hachesu P, Oliyaee A, Safaie N, Ferdousi R. Comparison of coronary artery disease guidelines with extracted knowledge from data mining. J Cardiovasc Thorac Res 2017; 9:95-101. [PMID: 28740629 PMCID: PMC5516058 DOI: 10.15171/jcvtr.2017.16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 03/19/2017] [Indexed: 11/09/2022] Open
Abstract
Introduction: Coronary artery disease (CAD) is one of the major causes of disability and death in the world. Accordingly utilizing from a national and update guideline in heart-related disease are essential. Finding interesting rules from CAD data and comparison with guidelines was the objectives of this study. Methods: In this study 1993 valid and completed records related to patients (from 2009 to 2014) who had suffered from CAD were recruited and analyzed. Total of 25 variable including a target variable (CAD) and 24 inputs or predictor variables were used for knowledge discovery. To perform comparison between extracted knowledge and well trusted guidelines, Canadian Cardiovascular Society (CCS) guideline and US National Institute of Health (NIH) guideline were selected. Results of valid datamining rules were compared with guidelines and then were ranked based on their importance. Results: The most significant factor influencing CAD was chest pain. Elderly males (age >54) have a high probability to be diagnosed with CAD. Diagnostic methods that are listed in guidelines were confirmed and ranked based on analyzing of local CAD patients data. Knowledge discovery revealed that blood test has more diagnostic value among other medical tests that were recommended in guidelines. Conclusion: Guidelines confirm the achieved results from data mining (DM) techniques and help to rank important risk factors based on national and local information. Evaluation of extracted rules determined new patterns for CAD patients.
Collapse
Affiliation(s)
- Peyman Rezaei-Hachesu
- Health Information Technology Department, School of Management and Medical Informatics, Road Traffic Injury Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azadeh Oliyaee
- Industrial Engineering Faculty, Sharif University Technology, Tehran, Iran
| | - Naser Safaie
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Ferdousi
- Health Information Technology Department, School of Management and Medical Informatics, Road Traffic Injury Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
36
|
Arabasadi Z, Alizadehsani R, Roshanzamir M, Moosaei H, Yarifard AA. Computer aided decision making for heart disease detection using hybrid neural network-Genetic algorithm. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2017; 141:19-26. [PMID: 28241964 DOI: 10.1016/j.cmpb.2017.01.004] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 12/18/2016] [Accepted: 01/12/2017] [Indexed: 05/28/2023]
Abstract
Cardiovascular disease is one of the most rampant causes of death around the world and was deemed as a major illness in Middle and Old ages. Coronary artery disease, in particular, is a widespread cardiovascular malady entailing high mortality rates. Angiography is, more often than not, regarded as the best method for the diagnosis of coronary artery disease; on the other hand, it is associated with high costs and major side effects. Much research has, therefore, been conducted using machine learning and data mining so as to seek alternative modalities. Accordingly, we herein propose a highly accurate hybrid method for the diagnosis of coronary artery disease. As a matter of fact, the proposed method is able to increase the performance of neural network by approximately 10% through enhancing its initial weights using genetic algorithm which suggests better weights for neural network. Making use of such methodology, we achieved accuracy, sensitivity and specificity rates of 93.85%, 97% and 92% respectively, on Z-Alizadeh Sani dataset.
Collapse
Affiliation(s)
- Zeinab Arabasadi
- Department of Computer Engineering, University of Bojnord, Bojnord, Iran
| | - Roohallah Alizadehsani
- Department of Computer Engineering, Sharif University of Technology, Azadi Ave, Tehran, Iran.
| | - Mohamad Roshanzamir
- Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Hossein Moosaei
- Department of Mathematics, Faculty of Science, University of Bojnord, Iran
| | | |
Collapse
|
37
|
Tayefi M, Tajfard M, Saffar S, Hanachi P, Amirabadizadeh AR, Esmaeily H, Taghipour A, Ferns GA, Moohebati M, Ghayour-Mobarhan M. hs-CRP is strongly associated with coronary heart disease (CHD): A data mining approach using decision tree algorithm. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2017; 141:105-109. [PMID: 28241960 DOI: 10.1016/j.cmpb.2017.02.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 01/25/2017] [Accepted: 02/02/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND AND AIMS Coronary heart disease (CHD) is an important public health problem globally. Algorithms incorporating the assessment of clinical biomarkers together with several established traditional risk factors can help clinicians to predict CHD and support clinical decision making with respect to interventions. Decision tree (DT) is a data mining model for extracting hidden knowledge from large databases. We aimed to establish a predictive model for coronary heart disease using a decision tree algorithm. METHODS Here we used a dataset of 2346 individuals including 1159 healthy participants and 1187 participant who had undergone coronary angiography (405 participants with negative angiography and 782 participants with positive angiography). We entered 10 variables of a total 12 variables into the DT algorithm (including age, sex, FBG, TG, hs-CRP, TC, HDL, LDL, SBP and DBP). RESULTS Our model could identify the associated risk factors of CHD with sensitivity, specificity, accuracy of 96%, 87%, 94% and respectively. Serum hs-CRP levels was at top of the tree in our model, following by FBG, gender and age. CONCLUSION Our model appears to be an accurate, specific and sensitive model for identifying the presence of CHD, but will require validation in prospective studies.
Collapse
Affiliation(s)
- Maryam Tayefi
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, 99199-91766 Mashhad, Iran ; Department of New Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Tajfard
- Department of Health Education and Health Promotion, School of Health, Management and Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Saffar
- Neurogenic Inflammation Research Center, Department of New Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parichehr Hanachi
- Department of Biology, Biochemistry Unit, Alzahra University, Tehran, Iran
| | - Ali Reza Amirabadizadeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
| | - Habibollah Esmaeily
- Department of Biostatistics and Epidemiology, School of Health, Management and Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Taghipour
- Department of Biostatistics and Epidemiology, School of Health, Management and Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Mohsen Moohebati
- Cardiovascular Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, 99199-91766 Mashhad, Iran ; Department of New Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Cardiovascular Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
38
|
Machine learning based decision support systems (DSS) for heart disease diagnosis: a review. Artif Intell Rev 2017. [DOI: 10.1007/s10462-017-9552-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
39
|
Kadi I, Idri A, Fernandez-Aleman J. Knowledge discovery in cardiology: A systematic literature review. Int J Med Inform 2017; 97:12-32. [DOI: 10.1016/j.ijmedinf.2016.09.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 09/01/2016] [Accepted: 09/11/2016] [Indexed: 11/24/2022]
|
40
|
A Hybrid Data Mining Model to Predict Coronary Artery Disease Cases Using Non-Invasive Clinical Data. J Med Syst 2016; 40:178. [DOI: 10.1007/s10916-016-0536-z] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/01/2016] [Indexed: 11/30/2022]
|
41
|
Khowaja SA, Unar MA, Ismaili IA, Khuwaja P. Supervised method for blood vessel segmentation from coronary angiogram images using 7-D feature vector. IMAGING SCIENCE JOURNAL 2016. [DOI: 10.1080/13682199.2016.1159815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
42
|
A Boolean Consistent Fuzzy Inference System for Diagnosing Diseases and Its Application for Determining Peritonitis Likelihood. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2015; 2015:147947. [PMID: 27069500 PMCID: PMC4812018 DOI: 10.1155/2015/147947] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/07/2015] [Accepted: 09/09/2015] [Indexed: 11/18/2022]
Abstract
Fuzzy inference systems (FIS) enable automated assessment and reasoning in a logically consistent manner akin to the way in which humans reason. However, since no conventional fuzzy set theory is in the Boolean frame, it is proposed that Boolean consistent fuzzy logic should be used in the evaluation of rules. The main distinction of this approach is that it requires the execution of a set of structural transformations before the actual values can be introduced, which can, in certain cases, lead to different results. While a Boolean consistent FIS could be used for establishing the diagnostic criteria for any given disease, in this paper it is applied for determining the likelihood of peritonitis, as the leading complication of peritoneal dialysis (PD). Given that patients could be located far away from healthcare institutions (as peritoneal dialysis is a form of home dialysis) the proposed Boolean consistent FIS would enable patients to easily estimate the likelihood of them having peritonitis (where a high likelihood would suggest that prompt treatment is indicated), when medical experts are not close at hand.
Collapse
|
43
|
Exarchos KP, Carpegianni C, Rigas G, Exarchos TP, Vozzi F, Sakellarios A, Marraccini P, Naka K, Michalis L, Parodi O, Fotiadis DI. A Multiscale Approach for Modeling Atherosclerosis Progression. IEEE J Biomed Health Inform 2015; 19:709-19. [DOI: 10.1109/jbhi.2014.2323935] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
44
|
Lee BJ, Kim JY. Indicators of hypertriglyceridemia from anthropometric measures based on data mining. Comput Biol Med 2014; 57:201-11. [PMID: 25591048 DOI: 10.1016/j.compbiomed.2014.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 12/04/2014] [Accepted: 12/06/2014] [Indexed: 02/08/2023]
Abstract
BACKGROUND The best indicator for the prediction of hypertriglyceridemia derived from anthropometric measures of body shape remains a matter of debate. The objectives are to determine the strongest predictor of hypertriglyceridemia from anthropometric measures and to investigate whether a combination of measures can improve the prediction accuracy compared with individual measures. METHODS A total of 5517 subjects aged 20-90 years participated in this study. The numbers of normal and hypertriglyceridemia subjects were 3022 and 653 females, respectively, and 1306 and 536 males, respectively. We evaluated 33 anthropometric measures for the prediction of hypertriglyceridemia using statistical analysis and data mining. RESULTS In the 20-90-year-old groups, age in women was the variable that exhibited the highest predictive power; however, this was not the case in men in all age groups. Of the anthropometric measures, the waist-to-height ratio (WHtR) was the best predictor of hypertriglyceridemia in women. In men, the rib-to-forehead circumference ratio (RFcR) was the strongest indicator. The use of a combination of measures provides better predictive power compared with individual measures in both women and men. However, in the subgroups of ages 20-50 and 51-90 years, the strongest indicators for hypertriglyceridemia were rib circumference in the 20-50-year-old group and WHtR in the 51-90-year-old group in women and RFcR in the 20-50-year-old group and BMI in the 51-90-year-old group in men. CONCLUSIONS Our results demonstrated that the best predictor of hypertriglyceridemia may differ according to gender and age.
Collapse
Affiliation(s)
- Bum Ju Lee
- Medical Research Division, Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Yuseong-gu, Deajeon 305-811, Republic of Korea
| | - Jong Yeol Kim
- Medical Research Division, Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Yuseong-gu, Deajeon 305-811, Republic of Korea.
| |
Collapse
|
45
|
Almeida VG, Borba J, Pereira HC, Pereira T, Correia C, Pêgo M, Cardoso J. Cardiovascular risk analysis by means of pulse morphology and clustering methodologies. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2014; 117:257-266. [PMID: 25023535 DOI: 10.1016/j.cmpb.2014.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 06/12/2014] [Accepted: 06/17/2014] [Indexed: 06/03/2023]
Abstract
The purpose of this study was the development of a clustering methodology to deal with arterial pressure waveform (APW) parameters to be used in the cardiovascular risk assessment. One hundred sixteen subjects were monitored and divided into two groups. The first one (23 hypertensive subjects) was analyzed using APW and biochemical parameters, while the remaining 93 healthy subjects were only evaluated through APW parameters. The expectation maximization (EM) and k-means algorithms were used in the cluster analysis, and the risk scores (the Framingham Risk Score (FRS), the Systematic COronary Risk Evaluation (SCORE) project, the Assessing cardiovascular risk using Scottish Intercollegiate Guidelines Network (ASSIGN) and the PROspective Cardiovascular Münster (PROCAM)), commonly used in clinical practice were selected to the cluster risk validation. The result from the clustering risk analysis showed a very significant correlation with ASSIGN (r=0.582, p<0.01) and a significant correlation with FRS (r=0.458, p<0.05). The results from the comparison of both groups also allowed to identify the cluster with higher cardiovascular risk in the healthy group. These results give new insights to explore this methodology in future scoring trials.
Collapse
Affiliation(s)
- Vânia G Almeida
- Physics Department, Electronics and Instrumentation Group, University of Coimbra, Portugal.
| | - J Borba
- Physics Department, Electronics and Instrumentation Group, University of Coimbra, Portugal
| | - H Catarina Pereira
- Physics Department, Electronics and Instrumentation Group, University of Coimbra, Portugal; Intelligent Sensing Anywhere, Portugal
| | - Tânia Pereira
- Physics Department, Electronics and Instrumentation Group, University of Coimbra, Portugal
| | - Carlos Correia
- Physics Department, Electronics and Instrumentation Group, University of Coimbra, Portugal
| | - Mariano Pêgo
- Cardiology Department, Hospital and University Coimbra Center, Portugal
| | - João Cardoso
- Physics Department, Electronics and Instrumentation Group, University of Coimbra, Portugal
| |
Collapse
|
46
|
Miranda GHB, Felipe JC. Computer-aided diagnosis system based on fuzzy logic for breast cancer categorization. Comput Biol Med 2014; 64:334-46. [PMID: 25453323 DOI: 10.1016/j.compbiomed.2014.10.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 09/20/2014] [Accepted: 10/01/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND Fuzzy logic can help reduce the difficulties faced by computational systems to represent and simulate the reasoning and the style adopted by radiologists in the process of medical image analysis. The study described in this paper consists of a new method that applies fuzzy logic concepts to improve the representation of features related to image description in order to make it semantically more consistent. Specifically, we have developed a computer-aided diagnosis tool for automatic BI-RADS categorization of breast lesions. The user provides parameters such as contour, shape and density and the system gives a suggestion about the BI-RADS classification. METHODS Initially, values of malignancy were defined for each image descriptor, according to the BI-RADS standard. When analyzing contour, for example, our method considers the matching of features and linguistic variables. Next, we created the fuzzy inference system. The generation of membership functions was carried out by the Fuzzy Omega algorithm, which is based on the statistical analysis of the dataset. This algorithm maps the distribution of different classes in a set. RESULTS Images were analyzed by a group of physicians and the resulting evaluations were submitted to the Fuzzy Omega algorithm. The results were compared, achieving an accuracy of 76.67% for nodules and 83.34% for calcifications. CONCLUSIONS The fit of definitions and linguistic rules to numerical models provided by our method can lead to a tighter connection between the specialist and the computer system, yielding more effective and reliable results.
Collapse
Affiliation(s)
- Gisele Helena Barboni Miranda
- Department of Computing and Mathematics, Faculty of Philosophy, Sciences and Languages of Ribeirão Preto, University of São Paulo at Ribeirão Preto, Avenida Bandeirantes, 3900, Ribeirão Preto 14040-901, SP, Brazil.
| | - Joaquim Cezar Felipe
- Department of Computing and Mathematics, Faculty of Philosophy, Sciences and Languages of Ribeirão Preto, University of São Paulo at Ribeirão Preto, Avenida Bandeirantes, 3900, Ribeirão Preto 14040-901, SP, Brazil.
| |
Collapse
|
47
|
Mokeddem S, Atmani B, Mokaddem M. A New Approach for Coronary Artery Diseases Diagnosis Based on Genetic Algorithm. INTERNATIONAL JOURNAL OF DECISION SUPPORT SYSTEM TECHNOLOGY 2014. [DOI: 10.4018/ijdsst.2014100101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Feature Selection (FS) has become the motivation of much research on decision support systems areas for which datasets with large number of features are analyzed. This paper presents a new method for the diagnosis of Coronary Artery Diseases (CAD) founded on Genetic Algorithm (GA) wrapper Bayes Naïve (BN). Initially, thirteen attributes were involved in predicting CAD. In GA–BN algorithm, GA produces in each iteration a subset of attributes that will be evaluated using the BN in the second step of the selection procedure. The final result set of attribute holds the most pertinent feature model that increases the accuracy. The accuracy results showed that the algorithm produces 85.50% classification accuracy in the diagnosis of CAD. Therefore, the strength of the Algorithm is then compared with other machine learning algorithms such as Support Vector Machine (SVM), Multi-Layer Perceptron (MLP) and C4.5 decision tree Algorithm. The result of classification accuracy for those algorithms are respectively 83.5%, 83.16% and 80.85%. Then, the GA wrapper BN Algorithm is similarly compared with other FS algorithms. The Obtained results have shown very favorable outcomes for the diagnosis of CAD.
Collapse
Affiliation(s)
| | - Baghdad Atmani
- Computer Science Department, University of Oran, Oran, Algeria
| | | |
Collapse
|
48
|
Gastounioti A, Makrodimitris S, Golemati S, Kadoglou NPE, Liapis CD, Nikita KS. A novel computerized tool to stratify risk in carotid atherosclerosis using kinematic features of the arterial wall. IEEE J Biomed Health Inform 2014; 19:1137-45. [PMID: 24951709 DOI: 10.1109/jbhi.2014.2329604] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Valid characterization of carotid atherosclerosis (CA) is a crucial public health issue, which would limit the major risks held by CA for both patient safety and state economies. This paper investigated the unexplored potential of kinematic features in assisting the diagnostic decision for CA in the framework of a computer-aided diagnosis (CAD) tool. To this end, 15 CAD schemes were designed and were fed with a wide variety of kinematic features of the atherosclerotic plaque and the arterial wall adjacent to the plaque for 56 patients from two different hospitals. The CAD schemes were benchmarked in terms of their ability to discriminate between symptomatic and asymptomatic patients and the combination of the Fisher discriminant ratio, as a feature-selection strategy, and support vector machines, in the classification module, was revealed as the optimal motion-based CAD tool. The particular CAD tool was evaluated with several cross-validation strategies and yielded higher than 88% classification accuracy; the texture-based CAD performance in the same dataset was 80%. The incorporation of kinematic features of the arterial wall in CAD seems to have a particularly favorable impact on the performance of image-data-driven diagnosis for CA, which remains to be further elucidated in future prospective studies on large datasets.
Collapse
|
49
|
Guo Y, Wang Y, Kong D, Shu X. Automatic classification of intracardiac tumor and thrombi in echocardiography based on sparse representation. IEEE J Biomed Health Inform 2014; 19:601-11. [PMID: 24691169 DOI: 10.1109/jbhi.2014.2313132] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Identification of intracardiac masses in echocardiograms is one important task in cardiac disease diagnosis. To improve diagnosis accuracy, a novel fully automatic classification method based on the sparse representation is proposed to distinguish intracardiac tumor and thrombi in echocardiography. First, a region of interest is cropped to define the mass area. Then, a unique globally denoising method is employed to remove the speckle and preserve the anatomical structure. Subsequently, the contour of the mass and its connected atrial wall are described by the K-singular value decomposition and a modified active contour model. Finally, the motion, the boundary as well as the texture features are processed by a sparse representation classifier to distinguish two masses. Ninety-seven clinical echocardiogram sequences are collected to assess the effectiveness. Compared with other state-of-the-art classifiers, our proposed method demonstrates the best performance by achieving an accuracy of 96.91%, a sensitivity of 100%, and a specificity of 93.02%. It explicates that our method is capable of classifying intracardiac tumors and thrombi in echocardiography, potentially to assist the cardiologists in the clinical practice.
Collapse
|
50
|
Bouktif S, Hanna EM, Zaki N, Khousa EA. Ant colony optimization algorithm for interpretable Bayesian classifiers combination: application to medical predictions. PLoS One 2014; 9:e86456. [PMID: 24498276 PMCID: PMC3911928 DOI: 10.1371/journal.pone.0086456] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 12/14/2013] [Indexed: 11/30/2022] Open
Abstract
Prediction and classification techniques have been well studied by machine learning researchers and developed for several real-word problems. However, the level of acceptance and success of prediction models are still below expectation due to some difficulties such as the low performance of prediction models when they are applied in different environments. Such a problem has been addressed by many researchers, mainly from the machine learning community. A second problem, principally raised by model users in different communities, such as managers, economists, engineers, biologists, and medical practitioners, etc., is the prediction models’ interpretability. The latter is the ability of a model to explain its predictions and exhibit the causality relationships between the inputs and the outputs. In the case of classification, a successful way to alleviate the low performance is to use ensemble classiers. It is an intuitive strategy to activate collaboration between different classifiers towards a better performance than individual classier. Unfortunately, ensemble classifiers method do not take into account the interpretability of the final classification outcome. It even worsens the original interpretability of the individual classifiers. In this paper we propose a novel implementation of classifiers combination approach that does not only promote the overall performance but also preserves the interpretability of the resulting model. We propose a solution based on Ant Colony Optimization and tailored for the case of Bayesian classifiers. We validate our proposed solution with case studies from medical domain namely, heart disease and Cardiotography-based predictions, problems where interpretability is critical to make appropriate clinical decisions. Availability The datasets, Prediction Models and software tool together with supplementary materials are available at http://faculty.uaeu.ac.ae/salahb/ACO4BC.htm.
Collapse
Affiliation(s)
- Salah Bouktif
- Software Development, College of Information Technology, United Arab Emirates University (UAEU), Al-Ain, UAE
- * E-mail:
| | - Eileen Marie Hanna
- Intelligent Systems, College of Information Technology, United Arab Emirates University (UAEU), Al-Ain, UAE
| | - Nazar Zaki
- Intelligent Systems, College of Information Technology, United Arab Emirates University (UAEU), Al-Ain, UAE
| | - Eman Abu Khousa
- Enterprise Systems, College of Information Technology, United Arab Emirates University (UAEU), Al-Ain, UAE
| |
Collapse
|