1
|
Gupta E, Gupta V. Margin-aware optimized contrastive learning for enhanced self-supervised histopathological image classification. Health Inf Sci Syst 2025; 13:2. [PMID: 39619405 PMCID: PMC11607309 DOI: 10.1007/s13755-024-00316-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 11/02/2024] [Indexed: 01/01/2025] Open
Abstract
Histopathological images, characterized by their high resolution and intricate cellular structures, present unique challenges for automated analysis. Traditional supervised learning-based methods often rely on extensive labeled datasets, which are labour-intensive and expensive. In learning representations, self-supervised learning techniques have shown promising outcomes directly from raw image data without manual annotations. In this paper, we propose a novel margin-aware optimized contrastive learning approach to enhance representation learning from histopathological images using a self-supervised approach. The proposed approach optimizes contrastive learning with a margin-based strategy to effectively learn discriminative representations while enforcing a semantic similarity threshold. In the proposed loss function, a margin is used to enforce a certain level of similarity between positive pairs in the embedding space, and a scaling factor is introduced to adjust the sensitivity of the loss, thereby enhancing the discriminative capacity of the learned representations. Our approach demonstrates robust generalization in in- and out-domain settings through comprehensive experimental evaluations conducted on five distinct benchmark histopathological datasets belonging to three cancer types. The results obtained on different experimental settings show that the proposed approach outmatched the state-of-the-art approaches in cross-domain and cross-disease settings.
Collapse
Affiliation(s)
- Ekta Gupta
- Chandigarh College of Engineering and Technology, Punjab University, Chandigarh, India
| | - Varun Gupta
- Chandigarh College of Engineering and Technology, Punjab University, Chandigarh, India
| |
Collapse
|
2
|
Lee J, Lim J, Byeon K, Kwak JT. Benchmarking pathology foundation models: Adaptation strategies and scenarios. Comput Biol Med 2025; 190:110031. [PMID: 40179809 DOI: 10.1016/j.compbiomed.2025.110031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 02/01/2025] [Accepted: 03/12/2025] [Indexed: 04/05/2025]
Abstract
In computational pathology, several foundation models have recently developed, demonstrating enhanced learning capability for analyzing pathology images. However, adapting these models to various downstream tasks remains challenging, particularly when faced with datasets from different sources and acquisition conditions, as well as limited data availability. In this study, we benchmark four pathology-specific foundation models across 20 datasets and two scenarios - consistency assessment and flexibility assessment - addressing diverse adaptation scenarios and downstream tasks. In the consistency assessment scenario, involving five fine-tuning methods, we found that the parameter-efficient fine-tuning approach was both efficient and effective for adapting pathology-specific foundation models to diverse datasets within the same classification tasks. For slide-level survival prediction, the performance of foundation models depended on the choice of feature aggregation mechanisms and the characteristics of data. In the flexibility assessment scenario under data-limited environments, utilizing five few-shot learning methods, we observed that the foundation models benefited more from the few-shot learning methods that involve modification during the testing phase only. These findings provide insights that could guide the deployment of pathology-specific foundation models in real clinical settings, potentially improving the accuracy and reliability of pathology image analysis. The code for this study is available at https://github.com/QuIIL/BenchmarkingPathologyFoundationModels.
Collapse
Affiliation(s)
- Jaeung Lee
- School of Electrical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jeewoo Lim
- School of Electrical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Keunho Byeon
- School of Electrical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jin Tae Kwak
- School of Electrical Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
3
|
Tran M, Wagner S, Weichert W, Matek C, Boxberg M, Peng T. Navigating Through Whole Slide Images With Hierarchy, Multi-Object, and Multi-Scale Data. IEEE TRANSACTIONS ON MEDICAL IMAGING 2025; 44:2002-2015. [PMID: 40031287 DOI: 10.1109/tmi.2025.3532728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Building deep learning models that can rapidly segment whole slide images (WSIs) using only a handful of training samples remains an open challenge in computational pathology. The difficulty lies in the histological images themselves: many morphological structures within a slide are closely related and very similar in appearance, making it difficult to distinguish between them. However, a skilled pathologist can quickly identify the relevant phenotypes. Through years of training, they have learned to organize visual features into a hierarchical taxonomy (e.g., identifying carcinoma versus healthy tissue, or distinguishing regions within a tumor as cancer cells, the microenvironment, …). Thus, each region is associated with multiple labels representing different tissue types. Pathologists typically deal with this by analyzing the specimen at multiple scales and comparing visual features between different magnifications. Inspired by this multi-scale diagnostic workflow, we introduce the Navigator, a vision model that navigates through WSIs like a domain expert: it searches for the region of interest at a low scale, zooms in gradually, and localizes ever finer microanatomical classes. As a result, the Navigator can detect coarse-grained patterns at lower resolution and fine-grained features at higher resolution. In addition, to deal with sparsely annotated samples, we train the Navigator with a novel semi-supervised framework called S5CL v2. The proposed model improves the F1 score by up to 8% on various datasets including our challenging new TCGA-COAD-30CLS and Erlangen cohorts.
Collapse
|
4
|
Robinson CJ, Dickie B, Lindner C, Herrera J, Dingle L, Reid AJ, Wong JKF, Hiebert P, Cootes TF, Kurinna S. Complex wound analysis using AI. Comput Biol Med 2025; 190:109945. [PMID: 40107021 DOI: 10.1016/j.compbiomed.2025.109945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 02/06/2025] [Accepted: 02/27/2025] [Indexed: 03/22/2025]
Abstract
Impaired wound healing is a significant clinical challenge. Standard wound analysis approaches are macroscopic, with limited histological assessments that rely on visual inspection of haematoxylin and eosin (H&E)-stained sections of biopsies. The analysis is time-consuming, requires a specialist trained to recognise various wound features, and therefore is often omitted in practice. We present an automated deep-learning (DL) approach capable of objectively and comprehensively analysing images of H&E-stained wound sections. Our model has a deep neural network (DNN) architecture, optimised for segmentation of characteristic wound features. We employed our model for the first-time analysis of human complex wounds. Histologically, human wounds are extremely variable, which presented a challenge when segmenting the different tissue classes. To validate our approach, we used mouse wound biopsy images across four timepoints of healing and employed the same DNN architecture for training and analysis in this context (89 % mean test set accuracy). We revised our approach for human complex wounds, analysing the biopsies at a cellular level, where our model performance improved (97 % mean test set accuracy). Together, our approach allows: (i) comprehensive analysis of human wound biopsy images; (ii) in-depth analysis of key features of mouse wound healing with accurate morphometric analysis and; (iii) analysis and quantification of immune cell infiltration, to aid clinical diagnosis of human complex wounds.
Collapse
Affiliation(s)
- Connor J Robinson
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, FBMH, The University of Manchester, M13 9PT, UK.
| | - Bruce Dickie
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, FBMH, The University of Manchester, M13 9PT, UK
| | - Claudia Lindner
- Division of Informatics, Imaging & Data Sciences, School of Health Sciences, FBMH, The University of Manchester, M13 9PT, UK
| | - Jeremy Herrera
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Lewis Dingle
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, FBMH, The University of Manchester, M13 9PT, UK; Department of Plastic Surgery & Burns, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M23 9LT, UK
| | - Adam J Reid
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, FBMH, The University of Manchester, M13 9PT, UK; Department of Plastic Surgery & Burns, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M23 9LT, UK
| | - Jason K F Wong
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, FBMH, The University of Manchester, M13 9PT, UK; Department of Plastic Surgery & Burns, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M23 9LT, UK
| | - Paul Hiebert
- Biomedical Institute for Multimorbidity, Centre for Biomedicine, Hull York Medical School, The University of Hull, HU6 7RX, UK
| | - Timothy F Cootes
- Division of Informatics, Imaging & Data Sciences, School of Health Sciences, FBMH, The University of Manchester, M13 9PT, UK
| | - Svitlana Kurinna
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, FBMH, The University of Manchester, M13 9PT, UK
| |
Collapse
|
5
|
Le Vuong TT, Kwak JT. MoMA: Momentum contrastive learning with multi-head attention-based knowledge distillation for histopathology image analysis. Med Image Anal 2025; 101:103421. [PMID: 39671769 DOI: 10.1016/j.media.2024.103421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/07/2024] [Accepted: 11/29/2024] [Indexed: 12/15/2024]
Abstract
There is no doubt that advanced artificial intelligence models and high quality data are the keys to success in developing computational pathology tools. Although the overall volume of pathology data keeps increasing, a lack of quality data is a common issue when it comes to a specific task due to several reasons including privacy and ethical issues with patient data. In this work, we propose to exploit knowledge distillation, i.e., utilize the existing model to learn a new, target model, to overcome such issues in computational pathology. Specifically, we employ a student-teacher framework to learn a target model from a pre-trained, teacher model without direct access to source data and distill relevant knowledge via momentum contrastive learning with multi-head attention mechanism, which provides consistent and context-aware feature representations. This enables the target model to assimilate informative representations of the teacher model while seamlessly adapting to the unique nuances of the target data. The proposed method is rigorously evaluated across different scenarios where the teacher model was trained on the same, relevant, and irrelevant classification tasks with the target model. Experimental results demonstrate the accuracy and robustness of our approach in transferring knowledge to different domains and tasks, outperforming other related methods. Moreover, the results provide a guideline on the learning strategy for different types of tasks and scenarios in computational pathology.
Collapse
Affiliation(s)
- Trinh Thi Le Vuong
- School of Electrical Engineering, Korea University, Seoul, Republic of Korea
| | - Jin Tae Kwak
- School of Electrical Engineering, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Purma V, Srinath S, Srirangarajan S, Kakkar A, Prathosh AP. GenSelfDiff-HIS: Generative Self-Supervision Using Diffusion for Histopathological Image Segmentation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2025; 44:618-631. [PMID: 39222449 DOI: 10.1109/tmi.2024.3453492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Histopathological image segmentation is a laborious and time-intensive task, often requiring analysis from experienced pathologists for accurate examinations. To reduce this burden, supervised machine-learning approaches have been adopted using large-scale annotated datasets for histopathological image analysis. However, in several scenarios, the availability of large-scale annotated data is a bottleneck while training such models. Self-supervised learning (SSL) is an alternative paradigm that provides some respite by constructing models utilizing only the unannotated data which is often abundant. The basic idea of SSL is to train a network to perform one or many pseudo or pretext tasks on unannotated data and use it subsequently as the basis for a variety of downstream tasks. It is seen that the success of SSL depends critically on the considered pretext task. While there have been many efforts in designing pretext tasks for classification problems, there have not been many attempts on SSL for histopathological image segmentation. Motivated by this, we propose an SSL approach for segmenting histopathological images via generative diffusion models. Our method is based on the observation that diffusion models effectively solve an image-to-image translation task akin to a segmentation task. Hence, we propose generative diffusion as the pretext task for histopathological image segmentation. We also utilize a multi-loss function-based fine-tuning for the downstream task. We validate our method using several metrics on two publicly available datasets along with a newly proposed head and neck (HN) cancer dataset containing Hematoxylin and Eosin (H&E) stained images along with annotations.
Collapse
|
7
|
Huang T, Huang X, Yin H. Deep learning methods for improving the accuracy and efficiency of pathological image analysis. Sci Prog 2025; 108:368504241306830. [PMID: 39814425 PMCID: PMC11736776 DOI: 10.1177/00368504241306830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
This study presents a novel integration of two advanced deep learning models, U-Net and EfficientNetV2, to achieve high-precision segmentation and rapid classification of pathological images. A key innovation is the development of a new heatmap generation algorithm, which leverages meticulous image preprocessing, data enhancement strategies, ensemble learning, attention mechanisms, and deep feature fusion techniques. This algorithm not only produces highly accurate and interpretatively rich heatmaps but also significantly improves the accuracy and efficiency of pathological image analysis. Unlike existing methods, our approach integrates these advanced techniques into a cohesive framework, enhancing its ability to reveal critical features in pathological images. Rigorous experimental validation demonstrated that our algorithm excels in key performance indicators such as accuracy, recall rate, and processing speed, underscoring its potential for broader applications in pathological image analysis and beyond.
Collapse
Affiliation(s)
- Tangsen Huang
- School of Communication Engineering, Hangzhou Dianzi University, Hangzhou, China
- School of Mathematics and Computer Science, Lishui University, Lishui, China
- School of Information Engineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Xingru Huang
- School of Communication Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Haibing Yin
- School of Communication Engineering, Hangzhou Dianzi University, Hangzhou, China
- School of Mathematics and Computer Science, Lishui University, Lishui, China
| |
Collapse
|
8
|
Zheng Y, Wu K, Li J, Tang K, Shi J, Wu H, Jiang Z, Wang W. Partial-Label Contrastive Representation Learning for Fine-Grained Biomarkers Prediction From Histopathology Whole Slide Images. IEEE J Biomed Health Inform 2025; 29:396-408. [PMID: 39012745 DOI: 10.1109/jbhi.2024.3429188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
In the domain of histopathology analysis, existing representation learning methods for biomarkers prediction from whole slide images (WSIs) face challenges due to the complexity of tissue subtypes and label noise problems. This paper proposed a novel partial-label contrastive representation learning approach to enhance the discrimination of histopathology image representations for fine-grained biomarkers prediction. We designed a partial-label contrastive clustering (PLCC) module for partial-label disambiguation and a dynamic clustering algorithm to sample the most representative features of each category to the clustering queue during the contrastive learning process. We conducted comprehensive experiments on three gene mutation prediction datasets, including USTC-EGFR, BRCA-HER2, and TCGA-EGFR. The results show that our method outperforms 9 existing methods in terms of Accuracy, AUC, and F1 Score. Specifically, our method achieved an AUC of 0.950 in EGFR mutation subtyping of TCGA-EGFR and an AUC of 0.853 in HER2 0/1+/2+/3+ grading of BRCA-HER2, which demonstrates its superiority in fine-grained biomarkers prediction from histopathology whole slide images.
Collapse
|
9
|
Xie M, Geng Y, Zhang W, Li S, Dong Y, Wu Y, Tang H, Hong L. Multi-resolution consistency semi-supervised active learning framework for histopathology image classification. EXPERT SYSTEMS WITH APPLICATIONS 2025; 259:125266. [DOI: 10.1016/j.eswa.2024.125266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Nunes JD, Montezuma D, Oliveira D, Pereira T, Cardoso JS. A survey on cell nuclei instance segmentation and classification: Leveraging context and attention. Med Image Anal 2025; 99:103360. [PMID: 39383642 DOI: 10.1016/j.media.2024.103360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/26/2024] [Accepted: 09/27/2024] [Indexed: 10/11/2024]
Abstract
Nuclear-derived morphological features and biomarkers provide relevant insights regarding the tumour microenvironment, while also allowing diagnosis and prognosis in specific cancer types. However, manually annotating nuclei from the gigapixel Haematoxylin and Eosin (H&E)-stained Whole Slide Images (WSIs) is a laborious and costly task, meaning automated algorithms for cell nuclei instance segmentation and classification could alleviate the workload of pathologists and clinical researchers and at the same time facilitate the automatic extraction of clinically interpretable features for artificial intelligence (AI) tools. But due to high intra- and inter-class variability of nuclei morphological and chromatic features, as well as H&E-stains susceptibility to artefacts, state-of-the-art algorithms cannot correctly detect and classify instances with the necessary performance. In this work, we hypothesize context and attention inductive biases in artificial neural networks (ANNs) could increase the performance and generalization of algorithms for cell nuclei instance segmentation and classification. To understand the advantages, use-cases, and limitations of context and attention-based mechanisms in instance segmentation and classification, we start by reviewing works in computer vision and medical imaging. We then conduct a thorough survey on context and attention methods for cell nuclei instance segmentation and classification from H&E-stained microscopy imaging, while providing a comprehensive discussion of the challenges being tackled with context and attention. Besides, we illustrate some limitations of current approaches and present ideas for future research. As a case study, we extend both a general (Mask-RCNN) and a customized (HoVer-Net) instance segmentation and classification methods with context- and attention-based mechanisms and perform a comparative analysis on a multicentre dataset for colon nuclei identification and counting. Although pathologists rely on context at multiple levels while paying attention to specific Regions of Interest (RoIs) when analysing and annotating WSIs, our findings suggest translating that domain knowledge into algorithm design is no trivial task, but to fully exploit these mechanisms in ANNs, the scientific understanding of these methods should first be addressed.
Collapse
Affiliation(s)
- João D Nunes
- INESC TEC - Institute for Systems and Computer Engineering, Technology and Science, R. Dr. Roberto Frias, Porto, 4200-465, Portugal; University of Porto - Faculty of Engineering, R. Dr. Roberto Frias, Porto, 4200-465, Portugal.
| | - Diana Montezuma
- IMP Diagnostics, Praça do Bom Sucesso, 4150-146 Porto, Portugal; Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/[RISE@CI-IPOP], Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal; Doctoral Programme in Medical Sciences, School of Medicine and Biomedical Sciences - University of Porto (ICBAS-UP), Porto, Portugal
| | | | - Tania Pereira
- INESC TEC - Institute for Systems and Computer Engineering, Technology and Science, R. Dr. Roberto Frias, Porto, 4200-465, Portugal; FCTUC - Faculty of Science and Technology, University of Coimbra, Coimbra, 3004-516, Portugal
| | - Jaime S Cardoso
- INESC TEC - Institute for Systems and Computer Engineering, Technology and Science, R. Dr. Roberto Frias, Porto, 4200-465, Portugal; University of Porto - Faculty of Engineering, R. Dr. Roberto Frias, Porto, 4200-465, Portugal
| |
Collapse
|
11
|
Wang L, Chen L, Wei K, Zhou H, Zwiggelaar R, Fu W, Liu Y. Weakly supervised pathological differentiation of primary central nervous system lymphoma and glioblastoma on multi-site whole slide images. J Med Imaging (Bellingham) 2025; 12:017502. [PMID: 39802317 PMCID: PMC11724367 DOI: 10.1117/1.jmi.12.1.017502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/29/2024] [Accepted: 11/01/2024] [Indexed: 01/16/2025] Open
Abstract
Purpose Differentiating primary central nervous system lymphoma (PCNSL) and glioblastoma (GBM) is crucial because their prognosis and treatment differ substantially. Manual examination of their histological characteristics is considered the golden standard in clinical diagnosis. However, this process is tedious and time-consuming and might lead to misdiagnosis caused by morphological similarity between their histology and tumor heterogeneity. Existing research focuses on radiological differentiation, which mostly uses multi-parametric magnetic resonance imaging. By contrast, we investigate the pathological differentiation between the two types of tumors using whole slide images (WSIs) of postoperative formalin-fixed paraffin-embedded samples. Approach To learn the specific and intrinsic histological feature representations from the WSI patches, a self-supervised feature extractor is trained. Then, the patch representations are fused by feeding into a weakly supervised multiple-instance learning model for the WSI classification. We validate our approach on 134 PCNSL and 526 GBM cases collected from three hospitals. We also investigate the effect of feature extraction on the final prediction by comparing the performance of applying the feature extractors trained on the PCNSL/GBM slides from specific institutions, multi-site PCNSL/GBM slides, and large-scale histopathological images. Results Different feature extractors perform comparably with the overall area under the receiver operating characteristic curve value exceeding 85% for each dataset and close to 95% for the combined multi-site dataset. Using the institution-specific feature extractors generally obtains the best overall prediction with both of the PCNSL and GBM classification accuracies reaching 80% for each dataset. Conclusions The excellent classification performance suggests that our approach can be used as an assistant tool to reduce the pathologists' workload by providing an accurate and objective second diagnosis. Moreover, the discriminant regions indicated by the generated attention heatmap improve the model interpretability and provide additional diagnostic information.
Collapse
Affiliation(s)
- Liping Wang
- Shandong Normal University, School of Information Science and Engineering, Jinan, China
| | - Lin Chen
- The Affiliated Hospital of Southwest Medical University, Department of Neurosurgery, Luzhou, China
| | - Kaixi Wei
- The Affiliated Hospital of Southwest Medical University, Department of Neurosurgery, Luzhou, China
- Hejiang County Traditional Chinese Medicine Hospital, Department of Neurosurgery, Luzhou, China
| | - Huiyu Zhou
- University of Leicester, School of Computing and Mathematical Sciences, Leicester, United Kingdom
| | - Reyer Zwiggelaar
- Aberystwyth University, Department of Computer Science, Aberystwyth, United Kingdom
| | - Weiwei Fu
- The Affiliated Hospital of Qingdao University, Department of Pathology, Qingdao, China
| | - Yingchao Liu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Department of Neurosurgery, Jinan, China
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Institute of Brain Science and Brain-inspired Research, Jinan, China
| |
Collapse
|
12
|
Hosseini MS, Bejnordi BE, Trinh VQH, Chan L, Hasan D, Li X, Yang S, Kim T, Zhang H, Wu T, Chinniah K, Maghsoudlou S, Zhang R, Zhu J, Khaki S, Buin A, Chaji F, Salehi A, Nguyen BN, Samaras D, Plataniotis KN. Computational pathology: A survey review and the way forward. J Pathol Inform 2024; 15:100357. [PMID: 38420608 PMCID: PMC10900832 DOI: 10.1016/j.jpi.2023.100357] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 03/02/2024] Open
Abstract
Computational Pathology (CPath) is an interdisciplinary science that augments developments of computational approaches to analyze and model medical histopathology images. The main objective for CPath is to develop infrastructure and workflows of digital diagnostics as an assistive CAD system for clinical pathology, facilitating transformational changes in the diagnosis and treatment of cancer that are mainly address by CPath tools. With evergrowing developments in deep learning and computer vision algorithms, and the ease of the data flow from digital pathology, currently CPath is witnessing a paradigm shift. Despite the sheer volume of engineering and scientific works being introduced for cancer image analysis, there is still a considerable gap of adopting and integrating these algorithms in clinical practice. This raises a significant question regarding the direction and trends that are undertaken in CPath. In this article we provide a comprehensive review of more than 800 papers to address the challenges faced in problem design all-the-way to the application and implementation viewpoints. We have catalogued each paper into a model-card by examining the key works and challenges faced to layout the current landscape in CPath. We hope this helps the community to locate relevant works and facilitate understanding of the field's future directions. In a nutshell, we oversee the CPath developments in cycle of stages which are required to be cohesively linked together to address the challenges associated with such multidisciplinary science. We overview this cycle from different perspectives of data-centric, model-centric, and application-centric problems. We finally sketch remaining challenges and provide directions for future technical developments and clinical integration of CPath. For updated information on this survey review paper and accessing to the original model cards repository, please refer to GitHub. Updated version of this draft can also be found from arXiv.
Collapse
Affiliation(s)
- Mahdi S. Hosseini
- Department of Computer Science and Software Engineering (CSSE), Concordia Univeristy, Montreal, QC H3H 2R9, Canada
| | | | - Vincent Quoc-Huy Trinh
- Institute for Research in Immunology and Cancer of the University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Lyndon Chan
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Danial Hasan
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Xingwen Li
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Stephen Yang
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Taehyo Kim
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Haochen Zhang
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Theodore Wu
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Kajanan Chinniah
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Sina Maghsoudlou
- Department of Computer Science and Software Engineering (CSSE), Concordia Univeristy, Montreal, QC H3H 2R9, Canada
| | - Ryan Zhang
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Jiadai Zhu
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Samir Khaki
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Andrei Buin
- Huron Digitial Pathology, St. Jacobs, ON N0B 2N0, Canada
| | - Fatemeh Chaji
- Department of Computer Science and Software Engineering (CSSE), Concordia Univeristy, Montreal, QC H3H 2R9, Canada
| | - Ala Salehi
- Department of Electrical and Computer Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Bich Ngoc Nguyen
- University of Montreal Hospital Center, Montreal, QC H2X 0C2, Canada
| | - Dimitris Samaras
- Department of Computer Science, Stony Brook University, Stony Brook, NY 11794, United States
| | - Konstantinos N. Plataniotis
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| |
Collapse
|
13
|
Hua S, Yan F, Shen T, Ma L, Zhang X. PathoDuet: Foundation models for pathological slide analysis of H&E and IHC stains. Med Image Anal 2024; 97:103289. [PMID: 39106763 DOI: 10.1016/j.media.2024.103289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/09/2024]
Abstract
Large amounts of digitized histopathological data display a promising future for developing pathological foundation models via self-supervised learning methods. Foundation models pretrained with these methods serve as a good basis for downstream tasks. However, the gap between natural and histopathological images hinders the direct application of existing methods. In this work, we present PathoDuet, a series of pretrained models on histopathological images, and a new self-supervised learning framework in histopathology. The framework is featured by a newly-introduced pretext token and later task raisers to explicitly utilize certain relations between images, like multiple magnifications and multiple stains. Based on this, two pretext tasks, cross-scale positioning and cross-stain transferring, are designed to pretrain the model on Hematoxylin and Eosin (H&E) images and transfer the model to immunohistochemistry (IHC) images, respectively. To validate the efficacy of our models, we evaluate the performance over a wide variety of downstream tasks, including patch-level colorectal cancer subtyping and whole slide image (WSI)-level classification in H&E field, together with expression level prediction of IHC marker, tumor identification and slide-level qualitative analysis in IHC field. The experimental results show the superiority of our models over most tasks and the efficacy of proposed pretext tasks. The codes and models are available at https://github.com/openmedlab/PathoDuet.
Collapse
Affiliation(s)
- Shengyi Hua
- Qing Yuan Research Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fang Yan
- Shanghai Artificial Intelligence Laboratory, Shanghai 200232, China
| | - Tianle Shen
- Qing Yuan Research Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Ma
- National Biomedical Imaging Center, College of Future Technology, Peking University, Beijing 100871, China
| | - Xiaofan Zhang
- Qing Yuan Research Institute, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Artificial Intelligence Laboratory, Shanghai 200232, China.
| |
Collapse
|
14
|
Marini N, Marchesin S, Wodzinski M, Caputo A, Podareanu D, Guevara BC, Boytcheva S, Vatrano S, Fraggetta F, Ciompi F, Silvello G, Müller H, Atzori M. Multimodal representations of biomedical knowledge from limited training whole slide images and reports using deep learning. Med Image Anal 2024; 97:103303. [PMID: 39154617 DOI: 10.1016/j.media.2024.103303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/20/2024]
Abstract
The increasing availability of biomedical data creates valuable resources for developing new deep learning algorithms to support experts, especially in domains where collecting large volumes of annotated data is not trivial. Biomedical data include several modalities containing complementary information, such as medical images and reports: images are often large and encode low-level information, while reports include a summarized high-level description of the findings identified within data and often only concerning a small part of the image. However, only a few methods allow to effectively link the visual content of images with the textual content of reports, preventing medical specialists from properly benefitting from the recent opportunities offered by deep learning models. This paper introduces a multimodal architecture creating a robust biomedical data representation encoding fine-grained text representations within image embeddings. The architecture aims to tackle data scarcity (combining supervised and self-supervised learning) and to create multimodal biomedical ontologies. The architecture is trained on over 6,000 colon whole slide Images (WSI), paired with the corresponding report, collected from two digital pathology workflows. The evaluation of the multimodal architecture involves three tasks: WSI classification (on data from pathology workflow and from public repositories), multimodal data retrieval, and linking between textual and visual concepts. Noticeably, the latter two tasks are available by architectural design without further training, showing that the multimodal architecture that can be adopted as a backbone to solve peculiar tasks. The multimodal data representation outperforms the unimodal one on the classification of colon WSIs and allows to halve the data needed to reach accurate performance, reducing the computational power required and thus the carbon footprint. The combination of images and reports exploiting self-supervised algorithms allows to mine databases without needing new annotations provided by experts, extracting new information. In particular, the multimodal visual ontology, linking semantic concepts to images, may pave the way to advancements in medicine and biomedical analysis domains, not limited to histopathology.
Collapse
Affiliation(s)
- Niccolò Marini
- Information Systems Institute, University of Applied Sciences Western Switzerland (HES-SO Valais), Sierre, Switzerland.
| | - Stefano Marchesin
- Department of Information Engineering, University of Padua, Padua, Italy.
| | - Marek Wodzinski
- Information Systems Institute, University of Applied Sciences Western Switzerland (HES-SO Valais), Sierre, Switzerland; Department of Measurement and Electronics, AGH University of Kraków, Krakow, Poland
| | - Alessandro Caputo
- Department of Pathology, Ruggi University Hospital, Salerno, Italy; Pathology Unit, Gravina Hospital Caltagirone ASP, Catania, Italy
| | | | | | - Svetla Boytcheva
- Ontotext, Sofia, Bulgaria; Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Simona Vatrano
- Pathology Unit, Gravina Hospital Caltagirone ASP, Catania, Italy
| | - Filippo Fraggetta
- Pathology Unit, Gravina Hospital Caltagirone ASP, Catania, Italy; Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Francesco Ciompi
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gianmaria Silvello
- Department of Information Engineering, University of Padua, Padua, Italy
| | - Henning Müller
- Information Systems Institute, University of Applied Sciences Western Switzerland (HES-SO Valais), Sierre, Switzerland; Medical faculty, University of Geneva, 1211 Geneva, Switzerland
| | - Manfredo Atzori
- Information Systems Institute, University of Applied Sciences Western Switzerland (HES-SO Valais), Sierre, Switzerland; Department of Neurosciences, University of Padua, Padua, Italy
| |
Collapse
|
15
|
Ghandian S, Albarghouthi L, Nava K, Sharma SRR, Minaud L, Beckett L, Saito N, DeCarli C, Rissman RA, Teich AF, Jin LW, Dugger BN, Keiser MJ. Learning precise segmentation of neurofibrillary tangles from rapid manual point annotations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594372. [PMID: 39386601 PMCID: PMC11463656 DOI: 10.1101/2024.05.15.594372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Accumulation of abnormal tau protein into neurofibrillary tangles (NFTs) is a pathologic hallmark of Alzheimer disease (AD). Accurate detection of NFTs in tissue samples can reveal relationships with clinical, demographic, and genetic features through deep phenotyping. However, expert manual analysis is time-consuming, subject to observer variability, and cannot handle the data amounts generated by modern imaging. We present a scalable, open-source, deep-learning approach to quantify NFT burden in digital whole slide images (WSIs) of post-mortem human brain tissue. To achieve this, we developed a method to generate detailed NFT boundaries directly from single-point-per-NFT annotations. We then trained a semantic segmentation model on 45 annotated 2400μm by 1200μm regions of interest (ROIs) selected from 15 unique temporal cortex WSIs of AD cases from three institutions (University of California (UC)-Davis, UC-San Diego, and Columbia University). Segmenting NFTs at the single-pixel level, the model achieved an area under the receiver operating characteristic of 0.832 and an F1 of 0.527 (196-fold over random) on a held-out test set of 664 NFTs from 20 ROIs (7 WSIs). We compared this to deep object detection, which achieved comparable but coarser-grained performance that was 60% faster. The segmentation and object detection models correlated well with expert semi-quantitative scores at the whole-slide level (Spearman's rho ρ=0.654 (p=6.50e-5) and ρ=0.513 (p=3.18e-3), respectively). We openly release this multi-institution deep-learning pipeline to provide detailed NFT spatial distribution and morphology analysis capability at a scale otherwise infeasible by manual assessment.
Collapse
Affiliation(s)
- Sina Ghandian
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, 94158, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, 94158, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Liane Albarghouthi
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, 94158, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, 94158, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Kiana Nava
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, Sacramento, CA, 95817, USA
| | - Shivam R. Rai Sharma
- Department of Computer Science, University of California, Davis, Davis, CA, 95616, USA
- Robust and Ubiquitous Networking (RUbiNet) Lab, University of California, Davis, Davis, CA, 95616, USA
| | - Lise Minaud
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, 94158, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, 94158, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Laurel Beckett
- Division of Biostatistics, Department of Public Health Sciences, University of California Davis, Davis, CA, USA
| | - Naomi Saito
- Division of Biostatistics, Department of Public Health Sciences, University of California Davis, Davis, CA, USA
| | - Charles DeCarli
- Alzheimer’s Disease Research Center, Department of Neurology, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Robert A. Rissman
- Department of Neurosciences, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Andrew F. Teich
- Taub Institute for Research On Alzheimer’s Disease and Aging Brain, Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Lee-Way Jin
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, Sacramento, CA, 95817, USA
| | - Brittany N. Dugger
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, Sacramento, CA, 95817, USA
| | - Michael J. Keiser
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, 94158, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, 94158, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA
| |
Collapse
|
16
|
Asadi-Aghbolaghi M, Darbandsari A, Zhang A, Contreras-Sanz A, Boschman J, Ahmadvand P, Köbel M, Farnell D, Huntsman DG, Churg A, Black PC, Wang G, Gilks CB, Farahani H, Bashashati A. Learning generalizable AI models for multi-center histopathology image classification. NPJ Precis Oncol 2024; 8:151. [PMID: 39030380 PMCID: PMC11271637 DOI: 10.1038/s41698-024-00652-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 07/11/2024] [Indexed: 07/21/2024] Open
Abstract
Investigation of histopathology slides by pathologists is an indispensable component of the routine diagnosis of cancer. Artificial intelligence (AI) has the potential to enhance diagnostic accuracy, improve efficiency, and patient outcomes in clinical pathology. However, variations in tissue preparation, staining protocols, and histopathology slide digitization could result in over-fitting of deep learning models when trained on the data from only one center, thereby underscoring the necessity to generalize deep learning networks for multi-center use. Several techniques, including the use of grayscale images, color normalization techniques, and Adversarial Domain Adaptation (ADA) have been suggested to generalize deep learning algorithms, but there are limitations to their effectiveness and discriminability. Convolutional Neural Networks (CNNs) exhibit higher sensitivity to variations in the amplitude spectrum, whereas humans predominantly rely on phase-related components for object recognition. As such, we propose Adversarial fourIer-based Domain Adaptation (AIDA) which applies the advantages of a Fourier transform in adversarial domain adaptation. We conducted a comprehensive examination of subtype classification tasks in four cancers, incorporating cases from multiple medical centers. Specifically, the datasets included multi-center data for 1113 ovarian cancer cases, 247 pleural cancer cases, 422 bladder cancer cases, and 482 breast cancer cases. Our proposed approach significantly improved performance, achieving superior classification results in the target domain, surpassing the baseline, color augmentation and normalization techniques, and ADA. Furthermore, extensive pathologist reviews suggested that our proposed approach, AIDA, successfully identifies known histotype-specific features. This superior performance highlights AIDA's potential in addressing generalization challenges in deep learning models for multi-center histopathology datasets.
Collapse
Affiliation(s)
| | - Amirali Darbandsari
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Allen Zhang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Vancouver General Hospital, Vancouver, BC, Canada
| | | | - Jeffrey Boschman
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Pouya Ahmadvand
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Martin Köbel
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | - David Farnell
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Vancouver General Hospital, Vancouver, BC, Canada
| | - David G Huntsman
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- BC Cancer Research Institute, Vancouver, BC, Canada
| | - Andrew Churg
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Vancouver General Hospital, Vancouver, BC, Canada
| | - Peter C Black
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Gang Wang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - C Blake Gilks
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Vancouver General Hospital, Vancouver, BC, Canada
| | - Hossein Farahani
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Ali Bashashati
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
17
|
Hu D, Jiang Z, Shi J, Xie F, Wu K, Tang K, Cao M, Huai J, Zheng Y. Histopathology language-image representation learning for fine-grained digital pathology cross-modal retrieval. Med Image Anal 2024; 95:103163. [PMID: 38626665 DOI: 10.1016/j.media.2024.103163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 03/09/2024] [Accepted: 04/02/2024] [Indexed: 04/18/2024]
Abstract
Large-scale digital whole slide image (WSI) datasets analysis have gained significant attention in computer-aided cancer diagnosis. Content-based histopathological image retrieval (CBHIR) is a technique that searches a large database for data samples matching input objects in both details and semantics, offering relevant diagnostic information to pathologists. However, the current methods are limited by the difficulty of gigapixels, the variable size of WSIs, and the dependence on manual annotations. In this work, we propose a novel histopathology language-image representation learning framework for fine-grained digital pathology cross-modal retrieval, which utilizes paired diagnosis reports to learn fine-grained semantics from the WSI. An anchor-based WSI encoder is built to extract hierarchical region features and a prompt-based text encoder is introduced to learn fine-grained semantics from the diagnosis reports. The proposed framework is trained with a multivariate cross-modal loss function to learn semantic information from the diagnosis report at both the instance level and region level. After training, it can perform four types of retrieval tasks based on the multi-modal database to support diagnostic requirements. We conducted experiments on an in-house dataset and a public dataset to evaluate the proposed method. Extensive experiments have demonstrated the effectiveness of the proposed method and its advantages to the present histopathology retrieval methods. The code is available at https://github.com/hudingyi/FGCR.
Collapse
Affiliation(s)
- Dingyi Hu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100191, China; Image Processing Center, School of Astronautics, Beihang University, Beijing, 100191, China
| | - Zhiguo Jiang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100191, China; Image Processing Center, School of Astronautics, Beihang University, Beijing, 100191, China
| | - Jun Shi
- School of Software, Hefei University of Technology, Hefei 230601, China
| | - Fengying Xie
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100191, China; Image Processing Center, School of Astronautics, Beihang University, Beijing, 100191, China
| | - Kun Wu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100191, China; Image Processing Center, School of Astronautics, Beihang University, Beijing, 100191, China
| | - Kunming Tang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100191, China; Image Processing Center, School of Astronautics, Beihang University, Beijing, 100191, China
| | - Ming Cao
- Department of Pathology, the First People's Hospital of Wuhu, China
| | - Jianguo Huai
- Department of Pathology, the First People's Hospital of Wuhu, China
| | - Yushan Zheng
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100191, China.
| |
Collapse
|
18
|
Jiang Z, Wang L, Wang Y, Jia G, Zeng G, Wang J, Li Y, Chen D, Qian G, Jin Q. A Self-Supervised Learning Based Framework for Eyelid Malignant Melanoma Diagnosis in Whole Slide Images. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:701-714. [PMID: 36136924 DOI: 10.1109/tcbb.2022.3207352] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Eyelid malignant melanoma (MM) is a rare disease with high mortality. Accurate diagnosis of such disease is important but challenging. In clinical practice, the diagnosis of MM is currently performed manually by pathologists, which is subjective and biased. Since the heavy manual annotation workload, most pathological whole slide image (WSI) datasets are only partially labeled (without region annotations), which cannot be directly used in supervised deep learning. For these reasons, it is of great practical significance to design a laborsaving and high data utilization diagnosis method. In this paper, a self-supervised learning (SSL) based framework for automatically detecting eyelid MM is proposed. The framework consists of a self-supervised model for detecting MM areas at the patch-level and a second model for classifying lesion types at the slide level. A squeeze-excitation (SE) attention structure and a feature-projection (FP) structure are integrated to boost learning on details of pathological images and improve model performance. In addition, this framework also provides visual heatmaps with high quality and reliability to highlight the likely areas of the lesion to assist the evaluation and diagnosis of the eyelid MM. Extensive experimental results on different datasets show that our proposed method outperforms other state-of-the-art SSL and fully supervised methods at both patch and slide levels when only a subset of WSIs are annotated. It should be noted that our method is even comparable to supervised methods when all WSIs are fully annotated. To the best of our knowledge, our work is the first SSL method for automatic diagnosis of MM at the eyelid and has a great potential impact on reducing the workload of human annotations in clinical practice.
Collapse
|
19
|
Thandiackal K, Piccinelli L, Gupta R, Pati P, Goksel O. Multi-Scale Feature Alignment for Continual Learning of Unlabeled Domains. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:2599-2609. [PMID: 38381642 DOI: 10.1109/tmi.2024.3368365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Methods for unsupervised domain adaptation (UDA) help to improve the performance of deep neural networks on unseen domains without any labeled data. Especially in medical disciplines such as histopathology, this is crucial since large datasets with detailed annotations are scarce. While the majority of existing UDA methods focus on the adaptation from a labeled source to a single unlabeled target domain, many real-world applications with a long life cycle involve more than one target domain. Thus, the ability to sequentially adapt to multiple target domains becomes essential. In settings where the data from previously seen domains cannot be stored, e.g., due to data protection regulations, the above becomes a challenging continual learning problem. To this end, we propose to use generative feature-driven image replay in conjunction with a dual-purpose discriminator that not only enables the generation of images with realistic features for replay, but also promotes feature alignment during domain adaptation. We evaluate our approach extensively on a sequence of three histopathological datasets for tissue-type classification, achieving state-of-the-art results. We present detailed ablation experiments studying our proposed method components and demonstrate a possible use-case of our continual UDA method for an unsupervised patch-based segmentation task given high-resolution tissue images. Our code is available at: https://github.com/histocartography/multi-scale-feature-alignment.
Collapse
|
20
|
Claudio Quiros A, Coudray N, Yeaton A, Yang X, Liu B, Le H, Chiriboga L, Karimkhan A, Narula N, Moore DA, Park CY, Pass H, Moreira AL, Le Quesne J, Tsirigos A, Yuan K. Mapping the landscape of histomorphological cancer phenotypes using self-supervised learning on unannotated pathology slides. Nat Commun 2024; 15:4596. [PMID: 38862472 PMCID: PMC11525555 DOI: 10.1038/s41467-024-48666-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 05/08/2024] [Indexed: 06/13/2024] Open
Abstract
Cancer diagnosis and management depend upon the extraction of complex information from microscopy images by pathologists, which requires time-consuming expert interpretation prone to human bias. Supervised deep learning approaches have proven powerful, but are inherently limited by the cost and quality of annotations used for training. Therefore, we present Histomorphological Phenotype Learning, a self-supervised methodology requiring no labels and operating via the automatic discovery of discriminatory features in image tiles. Tiles are grouped into morphologically similar clusters which constitute an atlas of histomorphological phenotypes (HP-Atlas), revealing trajectories from benign to malignant tissue via inflammatory and reactive phenotypes. These clusters have distinct features which can be identified using orthogonal methods, linking histologic, molecular and clinical phenotypes. Applied to lung cancer, we show that they align closely with patient survival, with histopathologically recognised tumor types and growth patterns, and with transcriptomic measures of immunophenotype. These properties are maintained in a multi-cancer study.
Collapse
Affiliation(s)
- Adalberto Claudio Quiros
- School of Computing Science, University of Glasgow, Glasgow, Scotland, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Nicolas Coudray
- Applied Bioinformatics Laboratories, NYU Grossman School of Medicine, New York, NY, USA
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY, USA
- Department of Medicine, Division of Precision Medicine, NYU Grossman School of Medicine, New York, USA
| | - Anna Yeaton
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Xinyu Yang
- School of Computing Science, University of Glasgow, Glasgow, Scotland, UK
| | - Bojing Liu
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Soln, Sweden
| | - Hortense Le
- Department of Medicine, Division of Precision Medicine, NYU Grossman School of Medicine, New York, USA
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Luis Chiriboga
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Afreen Karimkhan
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Navneet Narula
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - David A Moore
- Department of Cellular Pathology, University College London Hospital, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Christopher Y Park
- Department of Medicine, Division of Precision Medicine, NYU Grossman School of Medicine, New York, USA
| | - Harvey Pass
- Department of Cardiothoracic Surgery, NYU Grossman School of Medicine, New York, NY, USA
| | - Andre L Moreira
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - John Le Quesne
- School of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK.
- Cancer Research UK Scotland Institute, Glasgow, Scotland, UK.
- Queen Elizabeth University Hospital, Greater Glasgow and Clyde NHS Trust, Glasgow, Scotland, UK.
| | - Aristotelis Tsirigos
- Applied Bioinformatics Laboratories, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Medicine, Division of Precision Medicine, NYU Grossman School of Medicine, New York, USA.
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA.
| | - Ke Yuan
- School of Computing Science, University of Glasgow, Glasgow, Scotland, UK.
- School of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK.
- Cancer Research UK Scotland Institute, Glasgow, Scotland, UK.
| |
Collapse
|
21
|
Zhou J, Dong X, Liu Q. Clustering-Guided Twin Contrastive Learning for Endomicroscopy Image Classification. IEEE J Biomed Health Inform 2024; 28:2879-2890. [PMID: 38358859 DOI: 10.1109/jbhi.2024.3366223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Learning better representations is essential in medical image analysis for computer-aided diagnosis. However, learning discriminative semantic features is a major challenge due to the lack of large-scale well-annotated datasets. Thus, how can we learn a well-structured categorizable embedding space in limited-scale and unlabeled datasets? In this paper, we proposed a novel clustering-guided twin-contrastive learning framework (CTCL) that learns the discriminative representations of probe-based confocal laser endomicroscopy (pCLE) images for gastrointestinal (GI) tumor classification. Compared with traditional contrastive learning, in which only two randomly augmented views of the same instance are considered, the proposed CTCL aligns more semantically related and class-consistent samples by clustering, which improved intra-class tightness and inter-class variability to produce more informative representations. Furthermore, based on the inherent properties of CLE (geometric invariance and intrinsic noise), we proposed to regard CLE images with any angle rotation and CLE images with different noises as the same instance, respectively, for increased variability and diversity of samples. By optimizing CTCL in an end-to-end expectation-maximization framework, comprehensive experimental results demonstrated that CTCL-based visual representations achieved competitive performance on each downstream task as well as more robustness and transferability compared with existing state-of-the-art SSL and supervised methods. Notably, CTCL achieved 75.60%/78.45% and 64.12%/77.37% top-1 accuracy on the linear evaluation protocol and few-shot classification downstream tasks, respectively, which outperformed the previous best results by 1.27%/1.63% and 0.5%/3%, respectively. The proposed method holds great potential to assist pathologists in achieving an automated, fast, and high-precision diagnosis of GI tumors and accurately determining different stages of tumor development based on CLE images.
Collapse
|
22
|
Jahanifar M, Shephard A, Zamanitajeddin N, Graham S, Raza SEA, Minhas F, Rajpoot N. Mitosis detection, fast and slow: Robust and efficient detection of mitotic figures. Med Image Anal 2024; 94:103132. [PMID: 38442527 DOI: 10.1016/j.media.2024.103132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/07/2024]
Abstract
Counting of mitotic figures is a fundamental step in grading and prognostication of several cancers. However, manual mitosis counting is tedious and time-consuming. In addition, variation in the appearance of mitotic figures causes a high degree of discordance among pathologists. With advances in deep learning models, several automatic mitosis detection algorithms have been proposed but they are sensitive to domain shift often seen in histology images. We propose a robust and efficient two-stage mitosis detection framework, which comprises mitosis candidate segmentation (Detecting Fast) and candidate refinement (Detecting Slow) stages. The proposed candidate segmentation model, termed EUNet, is fast and accurate due to its architectural design. EUNet can precisely segment candidates at a lower resolution to considerably speed up candidate detection. Candidates are then refined using a deeper classifier network, EfficientNet-B7, in the second stage. We make sure both stages are robust against domain shift by incorporating domain generalization methods. We demonstrate state-of-the-art performance and generalizability of the proposed model on the three largest publicly available mitosis datasets, winning the two mitosis domain generalization challenge contests (MIDOG21 and MIDOG22). Finally, we showcase the utility of the proposed algorithm by processing the TCGA breast cancer cohort (1,124 whole-slide images) to generate and release a repository of more than 620K potential mitotic figures (not exhaustively validated).
Collapse
Affiliation(s)
- Mostafa Jahanifar
- Tissue Image Analytic (TIA) Center, Department of Computer Science, University of Warwick, UK.
| | - Adam Shephard
- Tissue Image Analytic (TIA) Center, Department of Computer Science, University of Warwick, UK
| | - Neda Zamanitajeddin
- Tissue Image Analytic (TIA) Center, Department of Computer Science, University of Warwick, UK
| | - Simon Graham
- Tissue Image Analytic (TIA) Center, Department of Computer Science, University of Warwick, UK; Histofy Ltd, Birmingham, UK
| | - Shan E Ahmed Raza
- Tissue Image Analytic (TIA) Center, Department of Computer Science, University of Warwick, UK
| | - Fayyaz Minhas
- Tissue Image Analytic (TIA) Center, Department of Computer Science, University of Warwick, UK
| | - Nasir Rajpoot
- Tissue Image Analytic (TIA) Center, Department of Computer Science, University of Warwick, UK; Histofy Ltd, Birmingham, UK.
| |
Collapse
|
23
|
Liu P, Ji L, Zhang X, Ye F. Pseudo-Bag Mixup Augmentation for Multiple Instance Learning-Based Whole Slide Image Classification. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:1841-1852. [PMID: 38194395 DOI: 10.1109/tmi.2024.3351213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Given the special situation of modeling gigapixel images, multiple instance learning (MIL) has become one of the most important frameworks for Whole Slide Image (WSI) classification. In current practice, most MIL networks often face two unavoidable problems in training: i) insufficient WSI data and ii) the sample memorization inclination inherent in neural networks. These problems may hinder MIL models from adequate and efficient training, suppressing the continuous performance promotion of classification models on WSIs. Inspired by the basic idea of Mixup, this paper proposes a new Pseudo-bag Mixup (PseMix) data augmentation scheme to improve the training of MIL models. This scheme generalizes the Mixup strategy for general images to special WSIs via pseudo-bags so as to be applied in MIL-based WSI classification. Cooperated by pseudo-bags, our PseMix fulfills the critical size alignment and semantic alignment in Mixup strategy. Moreover, it is designed as an efficient and decoupled method, neither involving time-consuming operations nor relying on MIL model predictions. Comparative experiments and ablation studies are specially designed to evaluate the effectiveness and advantages of our PseMix. Experimental results show that PseMix could often assist state-of-the-art MIL networks to refresh their classification performance on WSIs. Besides, it could also boost the generalization performance of MIL models in special test scenarios, and promote their robustness to patch occlusion and label noise. Our source code is available at https://github.com/liupei101/PseMix.
Collapse
|
24
|
Despotovic V, Kim SY, Hau AC, Kakoichankava A, Klamminger GG, Borgmann FBK, Frauenknecht KB, Mittelbronn M, Nazarov PV. Glioma subtype classification from histopathological images using in-domain and out-of-domain transfer learning: An experimental study. Heliyon 2024; 10:e27515. [PMID: 38562501 PMCID: PMC10982966 DOI: 10.1016/j.heliyon.2024.e27515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 04/04/2024] Open
Abstract
We provide in this paper a comprehensive comparison of various transfer learning strategies and deep learning architectures for computer-aided classification of adult-type diffuse gliomas. We evaluate the generalizability of out-of-domain ImageNet representations for a target domain of histopathological images, and study the impact of in-domain adaptation using self-supervised and multi-task learning approaches for pretraining the models using the medium-to-large scale datasets of histopathological images. A semi-supervised learning approach is furthermore proposed, where the fine-tuned models are utilized to predict the labels of unannotated regions of the whole slide images (WSI). The models are subsequently retrained using the ground-truth labels and weak labels determined in the previous step, providing superior performance in comparison to standard in-domain transfer learning with balanced accuracy of 96.91% and F1-score 97.07%, and minimizing the pathologist's efforts for annotation. Finally, we provide a visualization tool working at WSI level which generates heatmaps that highlight tumor areas; thus, providing insights to pathologists concerning the most informative parts of the WSI.
Collapse
Affiliation(s)
- Vladimir Despotovic
- Bioinformatics Platform, Department of Medical Informatics, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Sang-Yoon Kim
- Bioinformatics Platform, Department of Medical Informatics, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Ann-Christin Hau
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Frankfurt am Main, Germany
- Edinger Institute, Institute of Neurology, Goethe University, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
- University Cancer Center Frankfurt, Frankfurt am Main, Germany
- University Hospital, Goethe University, Frankfurt am Main, Germany
- Laboratoire national de santé, National Center of Pathology, Dudelange, Luxembourg
| | - Aliaksandra Kakoichankava
- Multi-Omics Data Science group, Department of Cancer Research, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Gilbert Georg Klamminger
- Luxembourg Centre of Neuropathology, Dudelange, Luxembourg
- Klinik für Frauenheilkunde, Geburtshilfe und Reproduktionsmedizin, Saarland University, Homburg, Germany
| | - Felix Bruno Kleine Borgmann
- Luxembourg Centre of Neuropathology, Dudelange, Luxembourg
- Department of Cancer Research, Luxembourg Institute of Health, Strassen, Luxembourg
- Haupitaux Robert Schumann, Kirchberg, Luxembourg
| | - Katrin B.M. Frauenknecht
- Laboratoire national de santé, National Center of Pathology, Dudelange, Luxembourg
- Luxembourg Centre of Neuropathology, Dudelange, Luxembourg
| | - Michel Mittelbronn
- Laboratoire national de santé, National Center of Pathology, Dudelange, Luxembourg
- Luxembourg Centre of Neuropathology, Dudelange, Luxembourg
- Department of Cancer Research, Luxembourg Institute of Health, Strassen, Luxembourg
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belval, Luxembourg
- Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Petr V. Nazarov
- Bioinformatics Platform, Department of Medical Informatics, Luxembourg Institute of Health, Strassen, Luxembourg
- Multi-Omics Data Science group, Department of Cancer Research, Luxembourg Institute of Health, Strassen, Luxembourg
| |
Collapse
|
25
|
Chen RJ, Ding T, Lu MY, Williamson DFK, Jaume G, Song AH, Chen B, Zhang A, Shao D, Shaban M, Williams M, Oldenburg L, Weishaupt LL, Wang JJ, Vaidya A, Le LP, Gerber G, Sahai S, Williams W, Mahmood F. Towards a general-purpose foundation model for computational pathology. Nat Med 2024; 30:850-862. [PMID: 38504018 PMCID: PMC11403354 DOI: 10.1038/s41591-024-02857-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/05/2024] [Indexed: 03/21/2024]
Abstract
Quantitative evaluation of tissue images is crucial for computational pathology (CPath) tasks, requiring the objective characterization of histopathological entities from whole-slide images (WSIs). The high resolution of WSIs and the variability of morphological features present significant challenges, complicating the large-scale annotation of data for high-performance applications. To address this challenge, current efforts have proposed the use of pretrained image encoders through transfer learning from natural image datasets or self-supervised learning on publicly available histopathology datasets, but have not been extensively developed and evaluated across diverse tissue types at scale. We introduce UNI, a general-purpose self-supervised model for pathology, pretrained using more than 100 million images from over 100,000 diagnostic H&E-stained WSIs (>77 TB of data) across 20 major tissue types. The model was evaluated on 34 representative CPath tasks of varying diagnostic difficulty. In addition to outperforming previous state-of-the-art models, we demonstrate new modeling capabilities in CPath such as resolution-agnostic tissue classification, slide classification using few-shot class prototypes, and disease subtyping generalization in classifying up to 108 cancer types in the OncoTree classification system. UNI advances unsupervised representation learning at scale in CPath in terms of both pretraining data and downstream evaluation, enabling data-efficient artificial intelligence models that can generalize and transfer to a wide range of diagnostically challenging tasks and clinical workflows in anatomic pathology.
Collapse
Affiliation(s)
- Richard J Chen
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Tong Ding
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Ming Y Lu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
- Electrical Engineering and Computer Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Drew F K Williamson
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Guillaume Jaume
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Andrew H Song
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Bowen Chen
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrew Zhang
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
- Health Sciences and Technology, Harvard-MIT, Cambridge, MA, USA
| | - Daniel Shao
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
- Health Sciences and Technology, Harvard-MIT, Cambridge, MA, USA
| | - Muhammad Shaban
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mane Williams
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Lukas Oldenburg
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Luca L Weishaupt
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
- Health Sciences and Technology, Harvard-MIT, Cambridge, MA, USA
| | - Judy J Wang
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anurag Vaidya
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
- Health Sciences and Technology, Harvard-MIT, Cambridge, MA, USA
| | - Long Phi Le
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Health Sciences and Technology, Harvard-MIT, Cambridge, MA, USA
| | - Georg Gerber
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sharifa Sahai
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Systems Biology, Harvard University, Cambridge, MA, USA
| | - Walt Williams
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Faisal Mahmood
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Data Science Initiative, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
26
|
Zhang Y, Li Z, Han X, Ding S, Li J, Wang J, Ying S, Shi J. Pseudo-Data Based Self-Supervised Federated Learning for Classification of Histopathological Images. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:902-915. [PMID: 37815963 DOI: 10.1109/tmi.2023.3323540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Computer-aided diagnosis (CAD) can help pathologists improve diagnostic accuracy together with consistency and repeatability for cancers. However, the CAD models trained with the histopathological images only from a single center (hospital) generally suffer from the generalization problem due to the straining inconsistencies among different centers. In this work, we propose a pseudo-data based self-supervised federated learning (FL) framework, named SSL-FT-BT, to improve both the diagnostic accuracy and generalization of CAD models. Specifically, the pseudo histopathological images are generated from each center, which contain both inherent and specific properties corresponding to the real images in this center, but do not include the privacy information. These pseudo images are then shared in the central server for self-supervised learning (SSL) to pre-train the backbone of global mode. A multi-task SSL is then designed to effectively learn both the center-specific information and common inherent representation according to the data characteristics. Moreover, a novel Barlow Twins based FL (FL-BT) algorithm is proposed to improve the local training for the CAD models in each center by conducting model contrastive learning, which benefits the optimization of the global model in the FL procedure. The experimental results on four public histopathological image datasets indicate the effectiveness of the proposed SSL-FL-BT on both diagnostic accuracy and generalization.
Collapse
|
27
|
Dimitriou N, Arandjelović O, Harrison DJ. Magnifying Networks for Histopathological Images with Billions of Pixels. Diagnostics (Basel) 2024; 14:524. [PMID: 38472996 DOI: 10.3390/diagnostics14050524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Amongst the other benefits conferred by the shift from traditional to digital pathology is the potential to use machine learning for diagnosis, prognosis, and personalization. A major challenge in the realization of this potential emerges from the extremely large size of digitized images, which are often in excess of 100,000 × 100,000 pixels. In this paper, we tackle this challenge head-on by diverging from the existing approaches in the literature-which rely on the splitting of the original images into small patches-and introducing magnifying networks (MagNets). By using an attention mechanism, MagNets identify the regions of the gigapixel image that benefit from an analysis on a finer scale. This process is repeated, resulting in an attention-driven coarse-to-fine analysis of only a small portion of the information contained in the original whole-slide images. Importantly, this is achieved using minimal ground truth annotation, namely, using only global, slide-level labels. The results from our tests on the publicly available Camelyon16 and Camelyon17 datasets demonstrate the effectiveness of MagNets-as well as the proposed optimization framework-in the task of whole-slide image classification. Importantly, MagNets process at least five times fewer patches from each whole-slide image than any of the existing end-to-end approaches.
Collapse
Affiliation(s)
- Neofytos Dimitriou
- Maritime Digitalisation Centre, Cyprus Marine and Maritime Institute, Larnaca 6300, Cyprus
- School of Computer Science, University of St Andrews, St Andrews KY16 9SX, UK
| | - Ognjen Arandjelović
- School of Computer Science, University of St Andrews, St Andrews KY16 9SX, UK
| | - David J Harrison
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK
- NHS Lothian Pathology, Division of Laboratory Medicine, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
| |
Collapse
|
28
|
Kumari S, Singh P. Deep learning for unsupervised domain adaptation in medical imaging: Recent advancements and future perspectives. Comput Biol Med 2024; 170:107912. [PMID: 38219643 DOI: 10.1016/j.compbiomed.2023.107912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/02/2023] [Accepted: 12/24/2023] [Indexed: 01/16/2024]
Abstract
Deep learning has demonstrated remarkable performance across various tasks in medical imaging. However, these approaches primarily focus on supervised learning, assuming that the training and testing data are drawn from the same distribution. Unfortunately, this assumption may not always hold true in practice. To address these issues, unsupervised domain adaptation (UDA) techniques have been developed to transfer knowledge from a labeled domain to a related but unlabeled domain. In recent years, significant advancements have been made in UDA, resulting in a wide range of methodologies, including feature alignment, image translation, self-supervision, and disentangled representation methods, among others. In this paper, we provide a comprehensive literature review of recent deep UDA approaches in medical imaging from a technical perspective. Specifically, we categorize current UDA research in medical imaging into six groups and further divide them into finer subcategories based on the different tasks they perform. We also discuss the respective datasets used in the studies to assess the divergence between the different domains. Finally, we discuss emerging areas and provide insights and discussions on future research directions to conclude this survey.
Collapse
Affiliation(s)
- Suruchi Kumari
- Department of Computer Science and Engineering, Indian Institute of Technology Roorkee, India.
| | - Pravendra Singh
- Department of Computer Science and Engineering, Indian Institute of Technology Roorkee, India.
| |
Collapse
|
29
|
Ye J, Kalra S, Miri MS. Cluster-based histopathology phenotype representation learning by self-supervised multi-class-token hierarchical ViT. Sci Rep 2024; 14:3202. [PMID: 38331955 PMCID: PMC10853503 DOI: 10.1038/s41598-024-53361-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/31/2024] [Indexed: 02/10/2024] Open
Abstract
Developing a clinical AI model necessitates a significant amount of highly curated and carefully annotated dataset by multiple medical experts, which results in increased development time and costs. Self-supervised learning (SSL) is a method that enables AI models to leverage unlabelled data to acquire domain-specific background knowledge that can enhance their performance on various downstream tasks. In this work, we introduce CypherViT, a cluster-based histo-pathology phenotype representation learning by self-supervised multi-class-token hierarchical Vision Transformer (ViT). CypherViT is a novel backbone that can be integrated into a SSL pipeline, accommodating both coarse and fine-grained feature learning for histopathological images via a hierarchical feature agglomerative attention module with multiple classification (cls) tokens in ViT. Our qualitative analysis showcases that our approach successfully learns semantically meaningful regions of interest that align with morphological phenotypes. To validate the model, we utilize the DINO self-supervised learning (SSL) framework to train CypherViT on a substantial dataset of unlabeled breast cancer histopathological images. This trained model proves to be a generalizable and robust feature extractor for colorectal cancer images. Notably, our model demonstrates promising performance in patch-level tissue phenotyping tasks across four public datasets. The results from our quantitative experiments highlight significant advantages over existing state-of-the-art SSL models and traditional transfer learning methods, such as those relying on ImageNet pre-training.
Collapse
Affiliation(s)
- Jiarong Ye
- Roche Diagnostics Solutions, Santa Clara, CA, USA
| | - Shivam Kalra
- Roche Diagnostics Solutions, Santa Clara, CA, USA.
| | | |
Collapse
|
30
|
Zingman I, Stierstorfer B, Lempp C, Heinemann F. Learning image representations for anomaly detection: Application to discovery of histological alterations in drug development. Med Image Anal 2024; 92:103067. [PMID: 38141454 DOI: 10.1016/j.media.2023.103067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/01/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
We present a system for anomaly detection in histopathological images. In histology, normal samples are usually abundant, whereas anomalous (pathological) cases are scarce or not available. Under such settings, one-class classifiers trained on healthy data can detect out-of-distribution anomalous samples. Such approaches combined with pre-trained Convolutional Neural Network (CNN) representations of images were previously employed for anomaly detection (AD). However, pre-trained off-the-shelf CNN representations may not be sensitive to abnormal conditions in tissues, while natural variations of healthy tissue may result in distant representations. To adapt representations to relevant details in healthy tissue we propose training a CNN on an auxiliary task that discriminates healthy tissue of different species, organs, and staining reagents. Almost no additional labeling workload is required, since healthy samples come automatically with aforementioned labels. During training we enforce compact image representations with a center-loss term, which further improves representations for AD. The proposed system outperforms established AD methods on a published dataset of liver anomalies. Moreover, it provided comparable results to conventional methods specifically tailored for quantification of liver anomalies. We show that our approach can be used for toxicity assessment of candidate drugs at early development stages and thereby may reduce expensive late-stage drug attrition.
Collapse
Affiliation(s)
- Igor Zingman
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH and Co., Biberach an der Riß, Germany.
| | - Birgit Stierstorfer
- Non-Clinical Drug Safety, Boehringer Ingelheim Pharma GmbH and Co., Biberach an der Riß, Germany
| | - Charlotte Lempp
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH and Co., Biberach an der Riß, Germany
| | - Fabian Heinemann
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH and Co., Biberach an der Riß, Germany.
| |
Collapse
|
31
|
Bai Y, Li W, An J, Xia L, Chen H, Zhao G, Gao Z. Masked autoencoders with handcrafted feature predictions: Transformer for weakly supervised esophageal cancer classification. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 244:107936. [PMID: 38016392 DOI: 10.1016/j.cmpb.2023.107936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 10/28/2023] [Accepted: 11/19/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND AND OBJECTIVE Esophageal cancer is a serious disease with a high prevalence in Eastern Asia. Histopathology tissue analysis stands as the gold standard in diagnosing esophageal cancer. In recent years, there has been a shift towards digitizing histopathological images into whole slide images (WSIs), progressively integrating them into cancer diagnostics. However, the gigapixel sizes of WSIs present significant storage and processing challenges, and they often lack localized annotations. To address this issue, multi-instance learning (MIL) has been introduced for WSI classification, utilizing weakly supervised learning for diagnosis analysis. By applying the principles of MIL to WSI analysis, it is possible to reduce the workload of pathologists by facilitating the generation of localized annotations. Nevertheless, the approach's effectiveness is hindered by the traditional simple aggregation operation and the domain shift resulting from the prevalent use of convolutional feature extractors pretrained on ImageNet. METHODS We propose a MIL-based framework for WSI analysis and cancer classification. Concurrently, we introduce employing self-supervised learning, which obviates the need for manual annotation and demonstrates versatility in various tasks, to pretrain feature extractors. This method enhances the extraction of representative features from esophageal WSI for MIL, ensuring more robust and accurate performance. RESULTS We build a comprehensive dataset of whole esophageal slide images and conduct extensive experiments utilizing this dataset. The performance on our dataset demonstrates the efficiency of our proposed MIL framework and the pretraining process, with our framework outperforming existing methods, achieving an accuracy of 93.07% and AUC (area under the curve) of 95.31%. CONCLUSION This work proposes an effective MIL method to classify WSI of esophageal cancer. The promising results indicate that our cancer classification framework holds great potential in promoting the automatic whole esophageal slide image analysis.
Collapse
Affiliation(s)
- Yunhao Bai
- the School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Wenqi Li
- Department of Pathology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jianpeng An
- the School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Lili Xia
- the School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Huazhen Chen
- the School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Gang Zhao
- Department of Pathology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhongke Gao
- the School of Electrical and Information Engineering, Tianjin University, Tianjin, China.
| |
Collapse
|
32
|
Zhang Y, Gan H, Wang F, Cheng X, Wu X, Yan J, Yang Z, Zhou R. A self-supervised fusion network for carotid plaque ultrasound image classification. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:3110-3128. [PMID: 38454721 DOI: 10.3934/mbe.2024138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Carotid plaque classification from ultrasound images is crucial for predicting ischemic stroke risk. While deep learning has shown effectiveness, it heavily relies on substantial labeled datasets. Achieving high performance with limited labeled images is essential for clinical use. Self-supervised learning (SSL) offers a potential solution; however, the existing works mainly focus on constructing the SSL tasks, neglecting the use of multiple tasks for pretraining. To overcome these limitations, this study proposed a self-supervised fusion network (Fusion-SSL) for carotid plaque ultrasound image classification with limited labeled data. Fusion-SSL consists of two SSL tasks: classifying image block order (Ordering) and predicting image rotation angle (Rotating). A dual-branch residual neural network was developed to fuse feature presentations learned by the two tasks, which can extract richer visual boundary shape and contour information than a single task. In this experiment, 1270 carotid plaque ultrasound images were collected from 844 patients at Zhongnan Hospital (Wuhan, China). The results showed that Fusion-SSL outperforms single SSL methods across different percentages of labeled training data, ranging from 10 to 100%. Moreover, with only 40% labeled training data, Fusion-SSL achieved comparable results to a single SSL method (predicting image rotation angle) with 100% labeled data. These results indicate that Fusion-SSL could be beneficial for the classification of carotid plaques and the early warning of a stroke in clinical practice.
Collapse
Affiliation(s)
- Yue Zhang
- School of Computer Science, Hubei University of Technology, Wuhan 430068, China
| | - Haitao Gan
- School of Computer Science, Hubei University of Technology, Wuhan 430068, China
| | - Furong Wang
- Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xinyao Cheng
- Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan 430068, China
| | - Xiaoyan Wu
- Cardiovascular Division, Zhongnan Hospital, Wuhan University, Wuhan 430068, China
| | - Jiaxuan Yan
- School of Computer Science, Hubei University of Technology, Wuhan 430068, China
| | - Zhi Yang
- School of Computer Science, Hubei University of Technology, Wuhan 430068, China
| | - Ran Zhou
- School of Computer Science, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
33
|
Bashir RMS, Qaiser T, Raza SEA, Rajpoot NM. Consistency regularisation in varying contexts and feature perturbations for semi-supervised semantic segmentation of histology images. Med Image Anal 2024; 91:102997. [PMID: 37866169 DOI: 10.1016/j.media.2023.102997] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/24/2023]
Abstract
Semantic segmentation of various tissue and nuclei types in histology images is fundamental to many downstream tasks in the area of computational pathology (CPath). In recent years, Deep Learning (DL) methods have been shown to perform well on segmentation tasks but DL methods generally require a large amount of pixel-wise annotated data. Pixel-wise annotation sometimes requires expert's knowledge and time which is laborious and costly to obtain. In this paper, we present a consistency based semi-supervised learning (SSL) approach that can help mitigate this challenge by exploiting a large amount of unlabelled data for model training thus alleviating the need for a large annotated dataset. However, SSL models might also be susceptible to changing context and features perturbations exhibiting poor generalisation due to the limited training data. We propose an SSL method that learns robust features from both labelled and unlabelled images by enforcing consistency against varying contexts and feature perturbations. The proposed method incorporates context-aware consistency by contrasting pairs of overlapping images in a pixel-wise manner from changing contexts resulting in robust and context invariant features. We show that cross-consistency training makes the encoder features invariant to different perturbations and improves the prediction confidence. Finally, entropy minimisation is employed to further boost the confidence of the final prediction maps from unlabelled data. We conduct an extensive set of experiments on two publicly available large datasets (BCSS and MoNuSeg) and show superior performance compared to the state-of-the-art methods.
Collapse
Affiliation(s)
| | - Talha Qaiser
- Tissue Image Analytics Centre, University of Warwick, Coventry, United Kingdom.
| | - Shan E Ahmed Raza
- Tissue Image Analytics Centre, University of Warwick, Coventry, United Kingdom.
| | - Nasir M Rajpoot
- Tissue Image Analytics Centre, University of Warwick, Coventry, United Kingdom; The Alan Turing Institute, London, United Kingdom; Histofy Ltd, United Kingdom; Department of Pathology, University Hospitals Coventry & Warwickshire, United Kingdom.
| |
Collapse
|
34
|
Maedera S, Mizuno T, Kusuhara H. Investigation of latent representation of toxicopathological images extracted by CNN model for understanding compound properties in vivo. Comput Biol Med 2024; 168:107748. [PMID: 38016375 DOI: 10.1016/j.compbiomed.2023.107748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/25/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023]
Abstract
Toxicopathological images acquired during safety assessment elucidate an individual's biological responses to a given compound, and their numerization can yield valuable insights contributing to the assessment of compound properties. Currently, toxicopathological images are mainly encoded as pathological findings, evaluated by pathologists, which introduces challenges when used as input for modeling, specifically in terms of representation capability and comparability. In this study, we assessed the usefulness of latent representations extracted from toxicopathological images using Convolutional Neural Network (CNN) in estimating compound properties in vivo. Special emphasis was placed on examining the impact of learning pathological findings, the depth of frozen layers during learning, and the selection of the layer for latent representation. Our findings demonstrate that a machine learning model fed with the latent representation as input surpassed the performance of a model directly employing pathological findings as input, particularly in the classification of a compound's Mechanism of Action and in predicting late-phase findings from early-phase images in repeated-dose tests. While learning pathological findings did improve accuracy, the magnitude of improvement was relatively modest. Similarly, the effect of freezing layers during learning was also limited. Notably, the selection of the layer for latent representation had a substantial impact on the accurate estimation of compound properties in vivo.
Collapse
Affiliation(s)
- Shotaro Maedera
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, Japan
| | - Tadahaya Mizuno
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, Japan.
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, Japan
| |
Collapse
|
35
|
Sun X, Li W, Fu B, Peng Y, He J, Wang L, Yang T, Meng X, Li J, Wang J, Huang P, Wang R. TGMIL: A hybrid multi-instance learning model based on the Transformer and the Graph Attention Network for whole-slide images classification of renal cell carcinoma. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 242:107789. [PMID: 37722310 DOI: 10.1016/j.cmpb.2023.107789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND AND OBJECTIVES The pathological diagnosis of renal cell carcinoma is crucial for treatment. Currently, the multi-instance learning method is commonly used for whole-slide image classification of renal cell carcinoma, which is mainly based on the assumption of independent identical distribution. But this is inconsistent with the need to consider the correlation between different instances in the diagnosis process. Furthermore, the problem of high resource consumption of pathology images is still urgent to be solved. Therefore, we propose a new multi-instance learning method to solve this problem. METHODS In this study, we proposed a hybrid multi-instance learning model based on the Transformer and the Graph Attention Network, called TGMIL, to achieve whole-slide image of renal cell carcinoma classification without pixel-level annotation or region of interest extraction. Our approach is divided into three steps. First, we designed a feature pyramid with the multiple low magnifications of whole-slide image named MMFP. It makes the model incorporates richer information, and reduces memory consumption as well as training time compared to the highest magnification. Second, TGMIL amalgamates the Transformer and the Graph Attention's capabilities, adeptly addressing the loss of instance contextual and spatial. Within the Graph Attention network stream, an easy and efficient approach employing max pooling and mean pooling yields the graph adjacency matrix, devoid of extra memory consumption. Finally, the outputs of two streams of TGMIL are aggregated to achieve the classification of renal cell carcinoma. RESULTS On the TCGA-RCC validation set, a public dataset for renal cell carcinoma, the area under a receiver operating characteristic (ROC) curve (AUC) and accuracy of TGMIL were 0.98±0.0015,0.9191±0.0062, respectively. It showcased remarkable proficiency on the private validation set of renal cell carcinoma pathology images, attaining AUC of 0.9386±0.0162 and ACC of 0.9197±0.0124. Furthermore, on the public breast cancer whole-slide image test dataset, CAMELYON 16, our model showed good classification performance with an accuracy of 0.8792. CONCLUSIONS TGMIL models the diagnostic process of pathologists and shows good classification performance on multiple datasets. Concurrently, the MMFP module efficiently diminishes resource requirements, offering a novel angle for exploring computational pathology images.
Collapse
Affiliation(s)
- Xinhuan Sun
- Engineering Research Center of Text Computing & Cognitive Intelligence, Ministry of Education, Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province, State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, 550025, China; Department of Radiology, International Exemplary Cooperation Base of Precision Imaging for Diagnosis and Treatment, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Wuchao Li
- Department of Radiology, International Exemplary Cooperation Base of Precision Imaging for Diagnosis and Treatment, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Bangkang Fu
- Department of Radiology, International Exemplary Cooperation Base of Precision Imaging for Diagnosis and Treatment, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Yunsong Peng
- Department of Radiology, International Exemplary Cooperation Base of Precision Imaging for Diagnosis and Treatment, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Junjie He
- Engineering Research Center of Text Computing & Cognitive Intelligence, Ministry of Education, Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province, State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, 550025, China; Department of Radiology, International Exemplary Cooperation Base of Precision Imaging for Diagnosis and Treatment, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Lihui Wang
- Engineering Research Center of Text Computing & Cognitive Intelligence, Ministry of Education, Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province, State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, 550025, China
| | - Tongyin Yang
- Department of Pathology, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Xue Meng
- Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Jin Li
- Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Jinjing Wang
- Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Ping Huang
- Department of Pathology, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Rongpin Wang
- Department of Radiology, International Exemplary Cooperation Base of Precision Imaging for Diagnosis and Treatment, Guizhou Provincial People's Hospital, Guiyang, 550002, China.
| |
Collapse
|
36
|
Lin G, Zhang Z, Long K, Zhang Y, Lu Y, Geng J, Zhou Z, Feng Q, Lu L, Cao L. GCLR: A self-supervised representation learning pretext task for glomerular filtration barrier segmentation in TEM images. Artif Intell Med 2023; 146:102720. [PMID: 38042604 DOI: 10.1016/j.artmed.2023.102720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 10/04/2023] [Accepted: 11/14/2023] [Indexed: 12/04/2023]
Abstract
Automatic segmentation of the three substructures of glomerular filtration barrier (GFB) in transmission electron microscopy (TEM) images holds immense potential for aiding pathologists in renal disease diagnosis. However, the labor-intensive nature of manual annotations limits the training data for a fully-supervised deep learning model. Addressing this, our study harnesses self-supervised representation learning (SSRL) to utilize vast unlabeled data and mitigate annotation scarcity. Our innovation, GCLR, is a hybrid pixel-level pretext task tailored for GFB segmentation, integrating two subtasks: global clustering (GC) and local restoration (LR). GC captures the overall GFB by learning global context representations, while LR refines three substructures by learning local detail representations. Experiments on 18,928 unlabeled glomerular TEM images for self-supervised pre-training and 311 labeled ones for fine-tuning demonstrate that our proposed GCLR obtains the state-of-the-art segmentation results for all three substructures of GFB with the Dice similarity coefficient of 86.56 ± 0.16%, 75.56 ± 0.36%, and 79.41 ± 0.16%, respectively, compared with other representative self-supervised pretext tasks. Our proposed GCLR also outperforms the fully-supervised pre-training methods based on the three large-scale public datasets - MitoEM, COCO, and ImageNet - with less training data and time.
Collapse
Affiliation(s)
- Guoyu Lin
- School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, 510515, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, 510515, China
| | - Zhentai Zhang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, 510515, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, 510515, China
| | - Kaixing Long
- School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, 510515, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, 510515, China
| | - Yiwen Zhang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, 510515, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, 510515, China
| | - Yanmeng Lu
- Central Laboratory, Southern Medical University, Guangzhou, 510515, China
| | - Jian Geng
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China; Guangzhou Huayin Medical Laboratory Center, Guangzhou, 510515, China
| | - Zhitao Zhou
- Central Laboratory, Southern Medical University, Guangzhou, 510515, China
| | - Qianjin Feng
- School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, 510515, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, 510515, China
| | - Lijun Lu
- School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, 510515, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, 510515, China.
| | - Lei Cao
- School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, 510515, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
37
|
Ding S, Li J, Wang J, Ying S, Shi J. Multi-Scale Efficient Graph-Transformer for Whole Slide Image Classification. IEEE J Biomed Health Inform 2023; 27:5926-5936. [PMID: 37725722 DOI: 10.1109/jbhi.2023.3317067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
The multi-scale information among the whole slide images (WSIs) is essential for cancer diagnosis. Although the existing multi-scale vision Transformer has shown its effectiveness for learning multi-scale image representation, it still cannot work well on the gigapixel WSIs due to their extremely large image sizes. To this end, we propose a novel Multi-scale Efficient Graph-Transformer (MEGT) framework for WSI classification. The key idea of MEGT is to adopt two independent efficient Graph-based Transformer (EGT) branches to process the low-resolution and high-resolution patch embeddings (i.e., tokens in a Transformer) of WSIs, respectively, and then fuse these tokens via a multi-scale feature fusion module (MFFM). Specifically, we design an EGT to efficiently learn the local-global information of patch tokens, which integrates the graph representation into Transformer to capture spatial-related information of WSIs. Meanwhile, we propose a novel MFFM to alleviate the semantic gap among different resolution patches during feature fusion, which creates a non-patch token for each branch as an agent to exchange information with another branch by cross-attention mechanism. In addition, to expedite network training, a new token pruning module is developed in EGT to reduce the redundant tokens. Extensive experiments on both TCGA-RCC and CAMELYON16 datasets demonstrate the effectiveness of the proposed MEGT.
Collapse
|
38
|
Kim H, Kwak TY, Chang H, Kim SW, Kim I. RCKD: Response-Based Cross-Task Knowledge Distillation for Pathological Image Analysis. Bioengineering (Basel) 2023; 10:1279. [PMID: 38002403 PMCID: PMC10669242 DOI: 10.3390/bioengineering10111279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/19/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023] Open
Abstract
We propose a novel transfer learning framework for pathological image analysis, the Response-based Cross-task Knowledge Distillation (RCKD), which improves the performance of the model by pretraining it on a large unlabeled dataset guided by a high-performance teacher model. RCKD first pretrains a student model to predict the nuclei segmentation results of the teacher model for unlabeled pathological images, and then fine-tunes the pretrained model for the downstream tasks, such as organ cancer sub-type classification and cancer region segmentation, using relatively small target datasets. Unlike conventional knowledge distillation, RCKD does not require that the target tasks of the teacher and student models be the same. Moreover, unlike conventional transfer learning, RCKD can transfer knowledge between models with different architectures. In addition, we propose a lightweight architecture, the Convolutional neural network with Spatial Attention by Transformers (CSAT), for processing high-resolution pathological images with limited memory and computation. CSAT exhibited a top-1 accuracy of 78.6% on ImageNet with only 3M parameters and 1.08 G multiply-accumulate (MAC) operations. When pretrained by RCKD, CSAT exhibited average classification and segmentation accuracies of 94.2% and 0.673 mIoU on six pathological image datasets, which is 4% and 0.043 mIoU higher than EfficientNet-B0, and 7.4% and 0.006 mIoU higher than ConvNextV2-Atto pretrained on ImageNet, respectively.
Collapse
Affiliation(s)
- Hyunil Kim
- Deep Bio Inc., Seoul 08380, Republic of Korea; (H.K.); (T.-Y.K.); (H.C.); (S.W.K.)
| | - Tae-Yeong Kwak
- Deep Bio Inc., Seoul 08380, Republic of Korea; (H.K.); (T.-Y.K.); (H.C.); (S.W.K.)
| | - Hyeyoon Chang
- Deep Bio Inc., Seoul 08380, Republic of Korea; (H.K.); (T.-Y.K.); (H.C.); (S.W.K.)
| | - Sun Woo Kim
- Deep Bio Inc., Seoul 08380, Republic of Korea; (H.K.); (T.-Y.K.); (H.C.); (S.W.K.)
| | - Injung Kim
- School of Computer Science and Electrical Engineering, Handong Global University, Pohang 37554, Republic of Korea
| |
Collapse
|
39
|
Ding R, Yadav A, Rodriguez E, Araujo Lemos da Silva AC, Hsu W. Tailoring pretext tasks to improve self-supervised learning in histopathologic subtype classification of lung adenocarcinomas. Comput Biol Med 2023; 166:107484. [PMID: 37741228 PMCID: PMC11149924 DOI: 10.1016/j.compbiomed.2023.107484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/29/2023] [Accepted: 09/15/2023] [Indexed: 09/25/2023]
Abstract
Lung adenocarcinoma (LUAD) is a morphologically heterogeneous disease with five predominant histologic subtypes. Fully supervised convolutional neural networks can improve the accuracy and reduce the subjectivity of LUAD histologic subtyping using hematoxylin and eosin (H&E)-stained whole slide images (WSIs). However, developing supervised models with good prediction accuracy usually requires extensive manual data annotation, which is time-consuming and labor-intensive. This work proposes three self-supervised learning (SSL) pretext tasks to reduce labeling effort. These tasks not only leverage the multi-resolution nature of the H&E WSIs but also explicitly consider the relevance to the downstream task of classifying the LUAD histologic subtypes. Two tasks involve predicting the spatial relationship between tiles cropped from lower and higher magnification WSIs. We hypothesize that these tasks induce the model to learn to distinguish different tissue structures presented in the images, thus benefiting the downstream classification. The third task involves predicting the eosin stain from the hematoxylin stain, inducing the model to learn cytoplasmic features relevant to LUAD subtypes. The effectiveness of the three proposed SSL tasks and their ensemble was demonstrated by comparison with other state-of-the-art pretraining and SSL methods using three publicly available datasets. Our work can be extended to any other cancer type where tissue architectural information is important. The model could be used to expedite and complement the process of routine pathology diagnosis tasks. The code is available at https://github.com/rina-ding/ssl_luad_classification.
Collapse
Affiliation(s)
- Ruiwen Ding
- Medical & Imaging Informatics, Department of Radiological Sciences, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, USA.
| | - Anil Yadav
- Medical & Imaging Informatics, Department of Radiological Sciences, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Erika Rodriguez
- Department of Pathology & Laboratory Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | - William Hsu
- Medical & Imaging Informatics, Department of Radiological Sciences, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|
40
|
Lin Y, Liang Z, He Y, Huang W, Guan T. End-to-end affine registration framework for histopathological images with weak annotations. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 241:107763. [PMID: 37634308 DOI: 10.1016/j.cmpb.2023.107763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/12/2023] [Accepted: 08/12/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND AND OBJECTIVE Histopathological image registration is an essential component in digital pathology and biomedical image analysis. Deep-learning-based algorithms have been proposed to achieve fast and accurate affine registration. Some previous studies assume that the pairs are free from sizeable initial position misalignment and large rotation angles before performing the affine transformation. However, large-rotation angles are often introduced into image pairs during the production process in real-world pathology images. Reliable initial alignment is important for registration performance. The existing deep-learning-based approaches often use a two-step affine registration pipeline because convolutional neural networks (CNNs) cannot correct large-angle rotations. METHODS In this manuscript, a general framework ARoNet is developed to achieve end-to-end affine registration for histopathological images. We use CNNs to extract global features of images and fuse them to construct correspondent information for affine transformation. In ARoNet, a rotation recognition network is implemented to eliminate great rotation misalignment. In addition, a self-supervised learning task is proposed to assist the learning of image representations in an unsupervised manner. RESULTS We applied our model to four datasets, and the results indicate that ARoNet surpasses existing affine registration algorithms in alignment accuracy when large angular misalignments (e.g., 180 rotation) are present, providing accurate affine initialization for subsequent non-rigid alignments. Besides, ARoNet shows advantages in execution time (0.05 per pair), registration accuracy, and robustness. CONCLUSION We believe that the proposed general framework promises to simplify and speed up the registration process and has the potential for clinical applications.
Collapse
Affiliation(s)
- Yuanhua Lin
- Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
| | - Zhendong Liang
- Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
| | - Yonghong He
- Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
| | - Wenting Huang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 518116, Shenzhen, China
| | - Tian Guan
- Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China.
| |
Collapse
|
41
|
Lin Y, Qu Z, Chen H, Gao Z, Li Y, Xia L, Ma K, Zheng Y, Cheng KT. Nuclei segmentation with point annotations from pathology images via self-supervised learning and co-training. Med Image Anal 2023; 89:102933. [PMID: 37611532 DOI: 10.1016/j.media.2023.102933] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/21/2023] [Accepted: 08/10/2023] [Indexed: 08/25/2023]
Abstract
Nuclei segmentation is a crucial task for whole slide image analysis in digital pathology. Generally, the segmentation performance of fully-supervised learning heavily depends on the amount and quality of the annotated data. However, it is time-consuming and expensive for professional pathologists to provide accurate pixel-level ground truth, while it is much easier to get coarse labels such as point annotations. In this paper, we propose a weakly-supervised learning method for nuclei segmentation that only requires point annotations for training. First, coarse pixel-level labels are derived from the point annotations based on the Voronoi diagram and the k-means clustering method to avoid overfitting. Second, a co-training strategy with an exponential moving average method is designed to refine the incomplete supervision of the coarse labels. Third, a self-supervised visual representation learning method is tailored for nuclei segmentation of pathology images that transforms the hematoxylin component images into the H&E stained images to gain better understanding of the relationship between the nuclei and cytoplasm. We comprehensively evaluate the proposed method using two public datasets. Both visual and quantitative results demonstrate the superiority of our method to the state-of-the-art methods, and its competitive performance compared to the fully-supervised methods. Codes are available at https://github.com/hust-linyi/SC-Net.
Collapse
Affiliation(s)
- Yi Lin
- Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Hong Kong
| | - Zhiyong Qu
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Hao Chen
- Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Hong Kong; Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong.
| | - Zhongke Gao
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | | | - Lili Xia
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Kai Ma
- Tencent Jarvis Lab, Shenzhen, China
| | | | - Kwang-Ting Cheng
- Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Hong Kong
| |
Collapse
|
42
|
Lin T, Yu Z, Xu Z, Hu H, Xu Y, Chen CW. SGCL: Spatial guided contrastive learning on whole-slide pathological images. Med Image Anal 2023; 89:102845. [PMID: 37597317 DOI: 10.1016/j.media.2023.102845] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 08/21/2023]
Abstract
Self-supervised representation learning (SSL) has achieved remarkable success in its application to natural images while falling behind in performance when applied to whole-slide pathological images (WSIs). This is because the inherent characteristics of WSIs in terms of gigapixel resolution and multiple objects in training patches are fundamentally different from natural images. Directly transferring the state-of-the-art (SOTA) SSL methods designed for natural images to WSIs will inevitably compromise their performance. We present a novel scheme SGCL: Spatial Guided Contrastive Learning, to fully explore the inherent properties of WSIs, leveraging the spatial proximity and multi-object priors for stable self-supervision. Beyond the self-invariance of instance discrimination, we expand and propagate the spatial proximity for the intra-invariance from the same WSI and inter-invariance from different WSIs, as well as propose the spatial-guided multi-cropping for inner-invariance within patches. To adaptively explore such spatial information without supervision, we propose a new loss function and conduct a theoretical analysis to validate it. This novel scheme of SGCL is able to achieve additional improvements over the SOTA pre-training methods on diverse downstream tasks across multiple datasets. Extensive ablation studies have been carried out and visualizations of these results have been presented to aid understanding of the proposed SGCL scheme. As open science, all codes and pre-trained models are available at https://github.com/HHHedo/SGCL.
Collapse
Affiliation(s)
- Tiancheng Lin
- Shanghai Key Lab of Digital Media Processing and Transmission, Shanghai Jiao Tong University, China; MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University, China
| | - Zhimiao Yu
- Shanghai Key Lab of Digital Media Processing and Transmission, Shanghai Jiao Tong University, China; MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University, China
| | - Zengchao Xu
- Department of Mathematics and Lab for Educational Big Data and Policymaking, Shanghai Normal University, China
| | - Hongyu Hu
- Shanghai Key Lab of Digital Media Processing and Transmission, Shanghai Jiao Tong University, China; MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University, China
| | - Yi Xu
- Shanghai Key Lab of Digital Media Processing and Transmission, Shanghai Jiao Tong University, China; MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University, China.
| | | |
Collapse
|
43
|
Khanal B, Bhattarai B, Khanal B, Linte CA. Improving Medical Image Classification in Noisy Labels Using only Self-supervised Pretraining. DATA ENGINEERING IN MEDICAL IMAGING : FIRST MICCAI WORKSHOP, DEMI 2023, HELD IN CONJUNCTION WITH MICCAI 2023, VANCOUVER, BC, CANADA, OCTOBER 8, 2023, PROCEEDINGS. DEMI (WORKSHOP) (1ST : 2023 : VANCOUVER, B.C.) 2023; 14314:78-90. [PMID: 39144367 PMCID: PMC11321236 DOI: 10.1007/978-3-031-44992-5_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Noisy labels hurt deep learning-based supervised image classification performance as the models may overfit the noise and learn corrupted feature extractors. For natural image classification training with noisy labeled data, model initialization with contrastive self-supervised pretrained weights has shown to reduce feature corruption and improve classification performance. However, no works have explored: i) how other self-supervised approaches, such as pretext task-based pretraining, impact the learning with noisy label, and ii) any self-supervised pretraining methods alone for medical images in noisy label settings. Medical images often feature smaller datasets and subtle inter-class variations, requiring human expertise to ensure correct classification. Thus, it is not clear if the methods improving learning with noisy labels in natural image datasets such as CIFAR would also help with medical images. In this work, we explore contrastive and pretext task-based selfsupervised pretraining to initialize the weights of a deep learning classification model for two medical datasets with self-induced noisy labels-NCT-CRC-HE-100K tissue histological images and COVID-QU-Ex chest X-ray images. Our results show that models initialized with pretrained weights obtained from self-supervised learning can effectively learn better features and improve robustness against noisy labels.
Collapse
Affiliation(s)
- Bidur Khanal
- Center for Imaging Science, RIT, Rochester, NY, USA
| | | | - Bishesh Khanal
- NepAl Applied Mathematics and Informatics Institute for Research (NAAMII), Patan, Nepal
| | - Cristian A Linte
- Center for Imaging Science, RIT, Rochester, NY, USA
- Biomedical Engineering, RIT, Rochester, NY, USA
| |
Collapse
|
44
|
Ponzio F, Descombes X, Ambrosetti D. Improving CNNs classification with pathologist-based expertise: the renal cell carcinoma case study. Sci Rep 2023; 13:15887. [PMID: 37741835 PMCID: PMC10517931 DOI: 10.1038/s41598-023-42847-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 09/15/2023] [Indexed: 09/25/2023] Open
Abstract
The prognosis of renal cell carcinoma (RCC) malignant neoplasms deeply relies on an accurate determination of the histological subtype, which currently involves the light microscopy visual analysis of histological slides, considering notably tumor architecture and cytology. RCC subtyping is therefore a time-consuming and tedious process, sometimes requiring expert review, with great impact on diagnosis, prognosis and treatment of RCC neoplasms. In this study, we investigate the automatic RCC subtyping classification of 91 patients, diagnosed with clear cell RCC, papillary RCC, chromophobe RCC, or renal oncocytoma, through deep learning based methodologies. We show how the classification performance of several state-of-the-art Convolutional Neural Networks (CNNs) are perfectible among the different RCC subtypes. Thus, we introduce a new classification model leveraging a combination of supervised deep learning models (specifically CNNs) and pathologist's expertise, giving birth to a hybrid approach that we termed ExpertDeepTree (ExpertDT). Our findings prove ExpertDT's superior capability in the RCC subtyping task, with respect to traditional CNNs, and suggest that introducing some expert-based knowledge into deep learning models may be a valuable solution for complex classification cases.
Collapse
Affiliation(s)
- Francesco Ponzio
- Interuniversity Department of Regional and Urban Studies and Planning, Politecnico di Torino, Turin, Italy.
| | | | - Damien Ambrosetti
- Department of Pathology, CHU Nice, Université Côte d'Azur, Nice, France
| |
Collapse
|
45
|
Nguyen TD, Le DT, Bum J, Kim S, Song SJ, Choo H. Self-FI: Self-Supervised Learning for Disease Diagnosis in Fundus Images. Bioengineering (Basel) 2023; 10:1089. [PMID: 37760191 PMCID: PMC10526021 DOI: 10.3390/bioengineering10091089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Self-supervised learning has been successful in computer vision, and its application to medical imaging has shown great promise. This study proposes a novel self-supervised learning method for medical image classification, specifically targeting ultra-wide-field fundus images (UFI). The proposed method utilizes contrastive learning to pre-train a deep learning model and then fine-tune it with a small set of labeled images. This approach reduces the reliance on labeled data, which is often limited and costly to obtain, and has the potential to improve disease detection in UFI. This method employs two contrastive learning techniques, namely bi-lateral contrastive learning and multi-modality pre-training, to form positive pairs using the data correlation. Bi-lateral learning fuses multiple views of the same patient's images, and multi-modality pre-training leverages the complementary information between UFI and conventional fundus images (CFI) to form positive pairs. The results show that the proposed contrastive learning method achieves state-of-the-art performance with an area under the receiver operating characteristic curve (AUC) score of 86.96, outperforming other approaches. The findings suggest that self-supervised learning is a promising direction for medical image analysis, with potential applications in various clinical settings.
Collapse
Affiliation(s)
- Toan Duc Nguyen
- Department of AI Systems Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Duc-Tai Le
- College of Computing and Informatics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Junghyun Bum
- Sungkyun AI Research Institute, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seongho Kim
- Department of Ophthalmology, Kangbuk Samsung Hospital, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Su Jeong Song
- Department of Ophthalmology, Kangbuk Samsung Hospital, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyunseung Choo
- Department of AI Systems Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea;
- College of Computing and Informatics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
46
|
Zhang H, AbdulJabbar K, Grunewald T, Akarca AU, Hagos Y, Sobhani F, Lecat CSY, Patel D, Lee L, Rodriguez-Justo M, Yong K, Ledermann JA, Le Quesne J, Hwang ES, Marafioti T, Yuan Y. Self-supervised deep learning for highly efficient spatial immunophenotyping. EBioMedicine 2023; 95:104769. [PMID: 37672979 PMCID: PMC10493897 DOI: 10.1016/j.ebiom.2023.104769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Efficient biomarker discovery and clinical translation depend on the fast and accurate analytical output from crucial technologies such as multiplex imaging. However, reliable cell classification often requires extensive annotations. Label-efficient strategies are urgently needed to reveal diverse cell distribution and spatial interactions in large-scale multiplex datasets. METHODS This study proposed Self-supervised Learning for Antigen Detection (SANDI) for accurate cell phenotyping while mitigating the annotation burden. The model first learns intrinsic pairwise similarities in unlabelled cell images, followed by a classification step to map learnt features to cell labels using a small set of annotated references. We acquired four multiplex immunohistochemistry datasets and one imaging mass cytometry dataset, comprising 2825 to 15,258 single-cell images to train and test the model. FINDINGS With 1% annotations (18-114 cells), SANDI achieved weighted F1-scores ranging from 0.82 to 0.98 across the five datasets, which was comparable to the fully supervised classifier trained on 1828-11,459 annotated cells (-0.002 to -0.053 of averaged weighted F1-score, Wilcoxon rank-sum test, P = 0.31). Leveraging the immune checkpoint markers stained in ovarian cancer slides, SANDI-based cell identification reveals spatial expulsion between PD1-expressing T helper cells and T regulatory cells, suggesting an interplay between PD1 expression and T regulatory cell-mediated immunosuppression. INTERPRETATION By striking a fine balance between minimal expert guidance and the power of deep learning to learn similarity within abundant data, SANDI presents new opportunities for efficient, large-scale learning for histology multiplex imaging data. FUNDING This study was funded by the Royal Marsden/ICR National Institute of Health Research Biomedical Research Centre.
Collapse
Affiliation(s)
- Hanyun Zhang
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK; Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Khalid AbdulJabbar
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK; Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Tami Grunewald
- Department of Oncology, UCL Cancer Institute, University College London, London, UK
| | - Ayse U Akarca
- Department of Cellular Pathology, University College London Hospital, London, UK
| | - Yeman Hagos
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK; Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Faranak Sobhani
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK; Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Catherine S Y Lecat
- Research Department of Hematology, Cancer Institute, University College London, UK
| | - Dominic Patel
- Research Department of Hematology, Cancer Institute, University College London, UK
| | - Lydia Lee
- Research Department of Hematology, Cancer Institute, University College London, UK
| | | | - Kwee Yong
- Research Department of Hematology, Cancer Institute, University College London, UK
| | - Jonathan A Ledermann
- Department of Oncology, UCL Cancer Institute, University College London, London, UK
| | - John Le Quesne
- School of Cancer Sciences, University of Glasgow, Glasgow, UK; CRUK Beatson Institute, Garscube Estate, Glasgow, UK; Department of Histopathology, Queen Elizabeth University Hospital, Glasgow, UK
| | - E Shelley Hwang
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Teresa Marafioti
- Department of Cellular Pathology, University College London Hospital, London, UK
| | - Yinyin Yuan
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK; Division of Molecular Pathology, The Institute of Cancer Research, London, UK.
| |
Collapse
|
47
|
Asif A, Rajpoot K, Graham S, Snead D, Minhas F, Rajpoot N. Unleashing the potential of AI for pathology: challenges and recommendations. J Pathol 2023; 260:564-577. [PMID: 37550878 PMCID: PMC10952719 DOI: 10.1002/path.6168] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 08/09/2023]
Abstract
Computational pathology is currently witnessing a surge in the development of AI techniques, offering promise for achieving breakthroughs and significantly impacting the practices of pathology and oncology. These AI methods bring with them the potential to revolutionize diagnostic pipelines as well as treatment planning and overall patient care. Numerous peer-reviewed studies reporting remarkable performance across diverse tasks serve as a testimony to the potential of AI in the field. However, widespread adoption of these methods in clinical and pre-clinical settings still remains a challenge. In this review article, we present a detailed analysis of the major obstacles encountered during the development of effective models and their deployment in practice. We aim to provide readers with an overview of the latest developments, assist them with insights into identifying some specific challenges that may require resolution, and suggest recommendations and potential future research directions. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Amina Asif
- Tissue Image Analytics Centre, Department of Computer ScienceUniversity of WarwickCoventryUK
| | - Kashif Rajpoot
- School of Computer ScienceUniversity of BirminghamBirminghamUK
| | - Simon Graham
- Histofy Ltd, Birmingham Business ParkBirminghamUK
| | - David Snead
- Histofy Ltd, Birmingham Business ParkBirminghamUK
- Department of PathologyUniversity Hospitals Coventry & Warwickshire NHS TrustCoventryUK
| | - Fayyaz Minhas
- Tissue Image Analytics Centre, Department of Computer ScienceUniversity of WarwickCoventryUK
- Cancer Research CentreUniversity of WarwickCoventryUK
| | - Nasir Rajpoot
- Tissue Image Analytics Centre, Department of Computer ScienceUniversity of WarwickCoventryUK
- Histofy Ltd, Birmingham Business ParkBirminghamUK
- Cancer Research CentreUniversity of WarwickCoventryUK
- The Alan Turing InstituteLondonUK
| |
Collapse
|
48
|
Sato J, Suzuki Y, Wataya T, Nishigaki D, Kita K, Yamagata K, Tomiyama N, Kido S. Anatomy-aware self-supervised learning for anomaly detection in chest radiographs. iScience 2023; 26:107086. [PMID: 37434699 PMCID: PMC10331430 DOI: 10.1016/j.isci.2023.107086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/17/2023] [Accepted: 06/06/2023] [Indexed: 07/13/2023] Open
Abstract
In this study, we present a self-supervised learning (SSL)-based model that enables anatomical structure-based unsupervised anomaly detection (UAD). The model employs an anatomy-aware pasting (AnatPaste) augmentation tool that uses a threshold-based lung segmentation pretext task to create anomalies in normal chest radiographs used for model pretraining. These anomalies are similar to real anomalies and help the model recognize them. We evaluate our model using three open-source chest radiograph datasets. Our model exhibits area under curves of 92.1%, 78.7%, and 81.9%, which are the highest among those of existing UAD models. To the best of our knowledge, this is the first SSL model to employ anatomical information from segmentation as a pretext task. The performance of AnatPaste shows that incorporating anatomical information into SSL can effectively improve accuracy.
Collapse
Affiliation(s)
- Junya Sato
- Department of Artificial Intelligence Diagnostic Radiology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
- Department of Radiology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
- Graduate School of Information Science and Technology, Osaka University, Yamadaoka, 1-5 Suita, Osaka 565-0871, Japan
| | - Yuki Suzuki
- Department of Artificial Intelligence Diagnostic Radiology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tomohiro Wataya
- Department of Artificial Intelligence Diagnostic Radiology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
- Department of Radiology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Daiki Nishigaki
- Department of Artificial Intelligence Diagnostic Radiology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
- Department of Radiology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kosuke Kita
- Department of Artificial Intelligence Diagnostic Radiology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazuki Yamagata
- Department of Artificial Intelligence Diagnostic Radiology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
- Department of Radiology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Noriyuki Tomiyama
- Department of Radiology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shoji Kido
- Department of Artificial Intelligence Diagnostic Radiology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
49
|
DiPalma J, Torresani L, Hassanpour S. HistoPerm: A permutation-based view generation approach for improving histopathologic feature representation learning. J Pathol Inform 2023; 14:100320. [PMID: 37457594 PMCID: PMC10339175 DOI: 10.1016/j.jpi.2023.100320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023] Open
Abstract
Deep learning has been effective for histology image analysis in digital pathology. However, many current deep learning approaches require large, strongly- or weakly labeled images and regions of interest, which can be time-consuming and resource-intensive to obtain. To address this challenge, we present HistoPerm, a view generation method for representation learning using joint embedding architectures that enhances representation learning for histology images. HistoPerm permutes augmented views of patches extracted from whole-slide histology images to improve classification performance. We evaluated the effectiveness of HistoPerm on 2 histology image datasets for Celiac disease and Renal Cell Carcinoma, using 3 widely used joint embedding architecture-based representation learning methods: BYOL, SimCLR, and VICReg. Our results show that HistoPerm consistently improves patch- and slide-level classification performance in terms of accuracy, F1-score, and AUC. Specifically, for patch-level classification accuracy on the Celiac disease dataset, HistoPerm boosts BYOL and VICReg by 8% and SimCLR by 3%. On the Renal Cell Carcinoma dataset, patch-level classification accuracy is increased by 2% for BYOL and VICReg, and by 1% for SimCLR. In addition, on the Celiac disease dataset, models with HistoPerm outperform the fully supervised baseline model by 6%, 5%, and 2% for BYOL, SimCLR, and VICReg, respectively. For the Renal Cell Carcinoma dataset, HistoPerm lowers the classification accuracy gap for the models up to 10% relative to the fully supervised baseline. These findings suggest that HistoPerm can be a valuable tool for improving representation learning of histopathology features when access to labeled data is limited and can lead to whole-slide classification results that are comparable to or superior to fully supervised methods.
Collapse
Affiliation(s)
- Joseph DiPalma
- Department of Computer Science, Dartmouth College, Hanover, NH 03755, USA
| | - Lorenzo Torresani
- Department of Computer Science, Dartmouth College, Hanover, NH 03755, USA
| | - Saeed Hassanpour
- Department of Computer Science, Dartmouth College, Hanover, NH 03755, USA
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|
50
|
Liu B, Zhan LM, Xu L, Wu XM. Medical Visual Question Answering via Conditional Reasoning and Contrastive Learning. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:1532-1545. [PMID: 37015503 DOI: 10.1109/tmi.2022.3232411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Medical visual question answering (Med-VQA) aims to accurately answer a clinical question presented with a medical image. Despite its enormous potential in healthcare services, the development of this technology is still in the initial stage. On the one hand, Med-VQA tasks are highly challenging due to the massive diversity of clinical questions that require different visual reasoning skills for different types of questions. On the other hand, medical images are complex in nature and very different from natural images, while current Med-VQA datasets are small-scale with a few hundred radiology images, making it difficult to train a well-performing visual feature extractor. This paper addresses above two critical issues. We propose a novel conditional reasoning mechanism with a question-conditioned reasoning component and a type-conditioned reasoning strategy to learn effective reasoning skills for different Med-VQA tasks adaptively. Further, we propose to pre-train a visual feature extractor for Med-VQA via contrastive learning on large amounts of unlabeled radiology images. The effectiveness of our proposals is validated by extensive experiments on existing Med-VQA benchmarks, which show significant improvement of our model in prediction accuracy over state-of-the-art methods. The source code and pre-training dataset are provided at https://github.com/Awenbocc/CPCR.
Collapse
|