1
|
Wang H, Ahn E, Bi L, Kim J. Self-supervised multi-modality learning for multi-label skin lesion classification. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2025; 265:108729. [PMID: 40184849 DOI: 10.1016/j.cmpb.2025.108729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 03/10/2025] [Accepted: 03/16/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND The clinical diagnosis of skin lesions involves the analysis of dermoscopic and clinical modalities. Dermoscopic images provide detailed views of surface structures, while clinical images offer complementary macroscopic information. Clinicians frequently use the seven-point checklist as an auxiliary tool for melanoma diagnosis and identifying lesion attributes. Supervised deep learning approaches, such as convolutional neural networks, have performed well using dermoscopic and clinical modalities (multi-modality) and further enhanced classification by predicting seven skin lesion attributes (multi-label). However, the performance of these approaches is reliant on the availability of large-scale labeled data, which are costly and time-consuming to obtain, more so with annotating multi-attributes METHODS:: To reduce the dependency on large labeled datasets, we propose a self-supervised learning (SSL) algorithm for multi-modality multi-label skin lesion classification. Compared with single-modality SSL, our algorithm enables multi-modality SSL by maximizing the similarities between paired dermoscopic and clinical images from different views. We introduce a novel multi-modal and multi-label SSL strategy that generates surrogate pseudo-multi-labels for seven skin lesion attributes through clustering analysis. A label-relation-aware module is proposed to refine each pseudo-label embedding, capturing the interrelationships between pseudo-multi-labels. We further illustrate the interrelationships of skin lesion attributes and their relationships with clinical diagnoses using an attention visualization technique. RESULTS The proposed algorithm was validated using the well-benchmarked seven-point skin lesion dataset. Our results demonstrate that our method outperforms the state-of-the-art SSL counterparts. Improvements in the area under receiver operating characteristic curve, precision, sensitivity, and specificity were observed across various lesion attributes and melanoma diagnoses. CONCLUSIONS Our self-supervised learning algorithm offers a robust and efficient solution for multi-modality multi-label skin lesion classification, reducing the reliance on large-scale labeled data. By effectively capturing and leveraging the complementary information between the dermoscopic and clinical images and interrelationships between lesion attributes, our approach holds the potential for improving clinical diagnosis accuracy in dermatology.
Collapse
Affiliation(s)
- Hao Wang
- School of Computer Science, Faculty of Engineering, The University of Sydney, Sydney, NSW 2006, Australia; Institute of Translational Medicine, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Euijoon Ahn
- College of Science and Engineering, James Cook University, Cairns, QLD 4870, Australia.
| | - Lei Bi
- Institute of Translational Medicine, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Jinman Kim
- School of Computer Science, Faculty of Engineering, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
2
|
Aftab J, Khan MA, Arshad S, Rehman SU, AlHammadi DA, Nam Y. Artificial intelligence based classification and prediction of medical imaging using a novel framework of inverted and self-attention deep neural network architecture. Sci Rep 2025; 15:8724. [PMID: 40082642 PMCID: PMC11906919 DOI: 10.1038/s41598-025-93718-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 03/10/2025] [Indexed: 03/16/2025] Open
Abstract
Classifying medical images is essential in computer-aided diagnosis (CAD). Although the recent success of deep learning in the classification tasks has proven advantages over the traditional feature extraction techniques, it remains challenging due to the inter and intra-class similarity caused by the diversity of imaging modalities (i.e., dermoscopy, mammography, wireless capsule endoscopy, and CT). In this work, we proposed a novel deep-learning framework for classifying several medical imaging modalities. In the training phase of the deep learning models, data augmentation is performed at the first stage on all selected datasets. After that, two novel custom deep learning architectures were introduced, called the Inverted Residual Convolutional Neural Network (IRCNN) and Self Attention CNN (SACNN). Both models are trained on the augmented datasets with manual hyperparameter selection. Each dataset's testing images are used to extract features during the testing stage. The extracted features are fused using a modified serial fusion with a strong correlation approach. An optimization algorithm- slap swarm controlled standard Error mean (SScSEM) has been employed, and the best features that passed to the shallow wide neural network (SWNN) classifier for the final classification have been selected. GradCAM, an explainable artificial intelligence (XAI) approach, analyzes custom models. The proposed architecture was tested on five publically available datasets of different imaging modalities and obtained improved accuracy of 98.6 (INBreast), 95.3 (KVASIR), 94.3 (ISIC2018), 95.0 (Lung Cancer), and 98.8% (Oral Cancer), respectively. A detailed comparison is conducted based on precision and accuracy, showing that the proposed architecture performs better. The implemented models are available on GitHub ( https://github.com/ComputerVisionLabPMU/ScientificImagingPaper.git ).
Collapse
Affiliation(s)
- Junaid Aftab
- Department of Computer Engineering, HITEC University, Taxila, 47080, Pakistan
| | - Muhammad Attique Khan
- Department of Artificial Intelligence, College of Computer Engineering and Science, Prince Mohammad bin Fahd University, Al Khobar, Saudi Arabia.
| | - Sobia Arshad
- Department of Computer Engineering, HITEC University, Taxila, 47080, Pakistan
| | - Shams Ur Rehman
- Department of Computer Engineering, HITEC University, Taxila, 47080, Pakistan
| | - Dina Abdulaziz AlHammadi
- Department of Information Systems, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, P.O.Box 84428, 11671, Riyadh, Saudi Arabia
| | - Yunyoung Nam
- Department of ICT Convergence, Soonchunhyang University, Asan, South Korea.
| |
Collapse
|
3
|
Gou X, Feng A, Feng C, Cheng J, Hong N. Imaging genomics of cancer: a bibliometric analysis and review. Cancer Imaging 2025; 25:24. [PMID: 40038813 PMCID: PMC11877899 DOI: 10.1186/s40644-025-00841-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/13/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Imaging genomics is a burgeoning field that seeks to connections between medical imaging and genomic features. It has been widely applied to explore heterogeneity and predict responsiveness and disease progression in cancer. This review aims to assess current applications and advancements of imaging genomics in cancer. METHODS Literature on imaging genomics in cancer was retrieved and selected from PubMed, Web of Science, and Embase before July 2024. Detail information of articles, such as systems and imaging features, were extracted and analyzed. Citation information was extracted from Web of Science and Scopus. Additionally, a bibliometric analysis of the included studies was conducted using the Bibliometrix R package and VOSviewer. RESULTS A total of 370 articles were included in the study. The annual growth rate of articles on imaging genomics in cancer is 24.88%. China (133) and the USA (107) were the most productive countries. The top 2 keywords plus were "survival" and "classification". The current research mainly focuses on the central nervous system (121) and the genitourinary system (110, including 44 breast cancer articles). Despite different systems utilizing different imaging modalities, more than half of the studies in each system employed radiomics features. CONCLUSIONS Publication databases provide data support for imaging genomics research. The development of artificial intelligence algorithms, especially in feature extraction and model construction, has significantly advanced this field. It is conducive to enhancing the related-models' interpretability. Nonetheless, challenges such as the sample size and the standardization of feature extraction and model construction must overcome. And the research trends revealed in this study will guide the development of imaging genomics in the future and contribute to more accurate cancer diagnosis and treatment in the clinic.
Collapse
Affiliation(s)
- Xinyi Gou
- Department of Radiology, Peking University People's Hospital, Beijing, China
| | - Aobo Feng
- College of Computer and Information, Inner Mongolia Medical University, Inner Mongolia, China
| | - Caizhen Feng
- Department of Radiology, Peking University People's Hospital, Beijing, China
| | - Jin Cheng
- Department of Radiology, Peking University People's Hospital, Beijing, China.
| | - Nan Hong
- Department of Radiology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
4
|
Xiao C, Zhu A, Xia C, Qiu Z, Liu Y, Zhao C, Ren W, Wang L, Dong L, Wang T, Guo L, Lei B. Attention-Guided Learning With Feature Reconstruction for Skin Lesion Diagnosis Using Clinical and Ultrasound Images. IEEE TRANSACTIONS ON MEDICAL IMAGING 2025; 44:543-555. [PMID: 39208042 DOI: 10.1109/tmi.2024.3450682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Skin lesion is one of the most common diseases, and most categories are highly similar in morphology and appearance. Deep learning models effectively reduce the variability between classes and within classes, and improve diagnostic accuracy. However, the existing multi-modal methods are only limited to the surface information of lesions in skin clinical and dermatoscopic modalities, which hinders the further improvement of skin lesion diagnostic accuracy. This requires us to further study the depth information of lesions in skin ultrasound. In this paper, we propose a novel skin lesion diagnosis network, which combines clinical and ultrasound modalities to fuse the surface and depth information of the lesion to improve diagnostic accuracy. Specifically, we propose an attention-guided learning (AL) module that fuses clinical and ultrasound modalities from both local and global perspectives to enhance feature representation. The AL module consists of two parts, attention-guided local learning (ALL) computes the intra-modality and inter-modality correlations to fuse multi-scale information, which makes the network focus on the local information of each modality, and attention-guided global learning (AGL) fuses global information to further enhance the feature representation. In addition, we propose a feature reconstruction learning (FRL) strategy which encourages the network to extract more discriminative features and corrects the focus of the network to enhance the model's robustness and certainty. We conduct extensive experiments and the results confirm the superiority of our proposed method. Our code is available at: https://github.com/XCL-hub/AGFnet.
Collapse
|
5
|
Behara K, Bhero E, Agee JT. AI in dermatology: a comprehensive review into skin cancer detection. PeerJ Comput Sci 2024; 10:e2530. [PMID: 39896358 PMCID: PMC11784784 DOI: 10.7717/peerj-cs.2530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/28/2024] [Indexed: 02/04/2025]
Abstract
Background Artificial Intelligence (AI) is significantly transforming dermatology, particularly in early skin cancer detection and diagnosis. This technological advancement addresses a crucial public health issue by enhancing diagnostic accuracy, efficiency, and accessibility. AI integration in medical imaging and diagnostic procedures offers promising solutions to the limitations of traditional methods, which often rely on subjective clinical evaluations and histopathological analyses. This study systematically reviews current AI applications in skin cancer classification, providing a comprehensive overview of their advantages, challenges, methodologies, and functionalities. Methodology In this study, we conducted a comprehensive analysis of artificial intelligence (AI) applications in the classification of skin cancer. We evaluated publications from three prominent journal databases: Scopus, IEEE, and MDPI. We conducted a thorough selection process using the PRISMA guidelines, collecting 1,156 scientific articles. Our methodology included evaluating the titles and abstracts and thoroughly examining the full text to determine their relevance and quality. Consequently, we included a total of 95 publications in the final study. We analyzed and categorized the articles based on four key dimensions: advantages, difficulties, methodologies, and functionalities. Results AI-based models exhibit remarkable performance in skin cancer detection by leveraging advanced deep learning algorithms, image processing techniques, and feature extraction methods. The advantages of AI integration include significantly improved diagnostic accuracy, faster turnaround times, and increased accessibility to dermatological expertise, particularly benefiting underserved areas. However, several challenges remain, such as concerns over data privacy, complexities in integrating AI systems into existing workflows, and the need for large, high-quality datasets. AI-based methods for skin cancer detection, including CNNs, SVMs, and ensemble learning techniques, aim to improve lesion classification accuracy and increase early detection. AI systems enhance healthcare by enabling remote consultations, continuous patient monitoring, and supporting clinical decision-making, leading to more efficient care and better patient outcomes. Conclusions This comprehensive review highlights the transformative potential of AI in dermatology, particularly in skin cancer detection and diagnosis. While AI technologies have significantly improved diagnostic accuracy, efficiency, and accessibility, several challenges remain. Future research should focus on ensuring data privacy, developing robust AI systems that can generalize across diverse populations, and creating large, high-quality datasets. Integrating AI tools into clinical workflows is critical to maximizing their utility and effectiveness. Continuous innovation and interdisciplinary collaboration will be essential for fully realizing the benefits of AI in skin cancer detection and diagnosis.
Collapse
Affiliation(s)
- Kavita Behara
- Department of Electrical Engineering, Mangosuthu University of Technology, Durban, Kwazulu- Natal, South Africa
| | - Ernest Bhero
- Discipline of Computer Engineering, University of KwaZulu Natal, Durban, KwaZulu-Natal, South Africa
| | - John Terhile Agee
- Discipline of Computer Engineering, University of KwaZulu Natal, Durban, KwaZulu-Natal, South Africa
| |
Collapse
|
6
|
Hsu BWY, Tseng VS. LightDPH: Lightweight Dual-Projection-Head Hierarchical Contrastive Learning for Skin Lesion Classification. JOURNAL OF HEALTHCARE INFORMATICS RESEARCH 2024; 8:619-639. [PMID: 39463858 PMCID: PMC11499555 DOI: 10.1007/s41666-024-00174-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/25/2024] [Accepted: 09/13/2024] [Indexed: 10/29/2024]
Abstract
Effective skin cancer detection is crucial for early intervention and improved treatment outcomes. Previous studies have primarily focused on enhancing the performance of skin lesion classification models. However, there is a growing need to consider the practical requirements of real-world scenarios, such as portable applications that require lightweight models embedded in devices. Therefore, this study aims to propose a novel method that can address the major-type misclassification problem with a lightweight model. This study proposes an innovative Lightweight Dual Projection-Head Hierarchical contrastive learning (LightDPH) method. We introduce a dual projection-head mechanism to a contrastive learning framework. This mechanism is utilized to train a model with our proposed multi-level contrastive loss (MultiCon Loss), which can effectively learn hierarchical information from samples. Meanwhile, we present a distance-based weight (DBW) function to adjust losses based on hierarchical levels. This unique combination of MultiCon Loss and DBW function in LightDPH tackles the problem of major-type misclassification with lightweight models and enhances the model's sensitivity in skin lesion classification. The experimental results demonstrate that LightDPH significantly reduces the number of parameters by 52.6% and computational complexity by 29.9% in GFLOPs while maintaining high classification performance comparable to state-of-the-art methods. This study also presented a novel evaluation metric, model efficiency score (MES), to evaluate the cost-effectiveness of models with scaling and classification performance. The proposed LightDPH effectively mitigates major-type misclassification and works in a resource-efficient manner, making it highly suitable for clinical applications in resource-constrained environments. To the best of our knowledge, this is the first work that develops an effective lightweight hierarchical classification model for skin lesion detection.
Collapse
Affiliation(s)
- Benny Wei-Yun Hsu
- Institute of Computer Science and Engineering, National Yang Ming Chiao Tung University, No. 1001, Daxue Rd., Hsinchu City, 300093 Taiwan Republic of China
| | - Vincent S. Tseng
- Institute of Computer Science and Engineering, National Yang Ming Chiao Tung University, No. 1001, Daxue Rd., Hsinchu City, 300093 Taiwan Republic of China
- Department of Computer Science, National Yang Ming Chiao Tung University, No. 1001, Daxue Rd., Hsinchu City, 300093 Taiwan Republic of China
| |
Collapse
|
7
|
Vardasca R, Mendes JG, Magalhaes C. Skin Cancer Image Classification Using Artificial Intelligence Strategies: A Systematic Review. J Imaging 2024; 10:265. [PMID: 39590729 PMCID: PMC11595075 DOI: 10.3390/jimaging10110265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/26/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024] Open
Abstract
The increasing incidence of and resulting deaths associated with malignant skin tumors are a public health problem that can be minimized if detection strategies are improved. Currently, diagnosis is heavily based on physicians' judgment and experience, which can occasionally lead to the worsening of the lesion or needless biopsies. Several non-invasive imaging modalities, e.g., confocal scanning laser microscopy or multiphoton laser scanning microscopy, have been explored for skin cancer assessment, which have been aligned with different artificial intelligence (AI) strategies to assist in the diagnostic task, based on several image features, thus making the process more reliable and faster. This systematic review concerns the implementation of AI methods for skin tumor classification with different imaging modalities, following the PRISMA guidelines. In total, 206 records were retrieved and qualitatively analyzed. Diagnostic potential was found for several techniques, particularly for dermoscopy images, with strategies yielding classification results close to perfection. Learning approaches based on support vector machines and artificial neural networks seem to be preferred, with a recent focus on convolutional neural networks. Still, detailed descriptions of training/testing conditions are lacking in some reports, hampering reproduction. The use of AI methods in skin cancer diagnosis is an expanding field, with future work aiming to construct optimal learning approaches and strategies. Ultimately, early detection could be optimized, improving patient outcomes, even in areas where healthcare is scarce.
Collapse
Affiliation(s)
- Ricardo Vardasca
- ISLA Santarem, Rua Teixeira Guedes 31, 2000-029 Santarem, Portugal
- Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, Universidade do Porto, 4099-002 Porto, Portugal; (J.G.M.); (C.M.)
| | - Joaquim Gabriel Mendes
- Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, Universidade do Porto, 4099-002 Porto, Portugal; (J.G.M.); (C.M.)
- Faculdade de Engenharia, Universidade do Porto, 4099-002 Porto, Portugal
| | - Carolina Magalhaes
- Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, Universidade do Porto, 4099-002 Porto, Portugal; (J.G.M.); (C.M.)
- Faculdade de Engenharia, Universidade do Porto, 4099-002 Porto, Portugal
| |
Collapse
|
8
|
Alipour N, Burke T, Courtney J. Skin Type Diversity in Skin Lesion Datasets: A Review. CURRENT DERMATOLOGY REPORTS 2024; 13:198-210. [PMID: 39184010 PMCID: PMC11343783 DOI: 10.1007/s13671-024-00440-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2024] [Indexed: 08/27/2024]
Abstract
Purpose of review Skin type diversity in image datasets refers to the representation of various skin types. This diversity allows for the verification of comparable performance of a trained model across different skin types. A widespread problem in datasets involving human skin is the lack of verifiable diversity in skin types, making it difficult to evaluate whether the performance of the trained models generalizes across different skin types. For example, the diversity issues in skin lesion datasets, which are used to train deep learning-based models, often result in lower accuracy for darker skin types that are typically under-represented in these datasets. Under-representation in datasets results in lower performance in deep learning models for under-represented skin types. Recent findings This issue has been discussed in previous works; however, the reporting of skin types, and inherent diversity, have not been fully assessed. Some works report skin types but do not attempt to assess the representation of each skin type in datasets. Others, focusing on skin lesions, identify the issue but do not measure skin type diversity in the datasets examined. Summary Effort is needed to address these shortcomings and move towards facilitating verifiable diversity. Building on previous works in skin lesion datasets, this review explores the general issue of skin type diversity by investigating and evaluating skin lesion datasets specifically. The main contributions of this work are an evaluation of publicly available skin lesion datasets and their metadata to assess the frequency and completeness of reporting of skin type and an investigation into the diversity and representation of each skin type within these datasets. Supplementary Information The online version contains material available at 10.1007/s13671-024-00440-0.
Collapse
Affiliation(s)
- Neda Alipour
- School of Electrical and Electronic Engineering Technological, TU Dublin, City Campus, Dublin, Ireland
| | - Ted Burke
- School of Electrical and Electronic Engineering Technological, TU Dublin, City Campus, Dublin, Ireland
| | - Jane Courtney
- School of Electrical and Electronic Engineering Technological, TU Dublin, City Campus, Dublin, Ireland
| |
Collapse
|
9
|
Lyakhova UA, Lyakhov PA. Systematic review of approaches to detection and classification of skin cancer using artificial intelligence: Development and prospects. Comput Biol Med 2024; 178:108742. [PMID: 38875908 DOI: 10.1016/j.compbiomed.2024.108742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/03/2024] [Accepted: 06/08/2024] [Indexed: 06/16/2024]
Abstract
In recent years, there has been a significant improvement in the accuracy of the classification of pigmented skin lesions using artificial intelligence algorithms. Intelligent analysis and classification systems are significantly superior to visual diagnostic methods used by dermatologists and oncologists. However, the application of such systems in clinical practice is severely limited due to a lack of generalizability and risks of potential misclassification. Successful implementation of artificial intelligence-based tools into clinicopathological practice requires a comprehensive study of the effectiveness and performance of existing models, as well as further promising areas for potential research development. The purpose of this systematic review is to investigate and evaluate the accuracy of artificial intelligence technologies for detecting malignant forms of pigmented skin lesions. For the study, 10,589 scientific research and review articles were selected from electronic scientific publishers, of which 171 articles were included in the presented systematic review. All selected scientific articles are distributed according to the proposed neural network algorithms from machine learning to multimodal intelligent architectures and are described in the corresponding sections of the manuscript. This research aims to explore automated skin cancer recognition systems, from simple machine learning algorithms to multimodal ensemble systems based on advanced encoder-decoder models, visual transformers (ViT), and generative and spiking neural networks. In addition, as a result of the analysis, future directions of research, prospects, and potential for further development of automated neural network systems for classifying pigmented skin lesions are discussed.
Collapse
Affiliation(s)
- U A Lyakhova
- Department of Mathematical Modeling, North-Caucasus Federal University, 355017, Stavropol, Russia.
| | - P A Lyakhov
- Department of Mathematical Modeling, North-Caucasus Federal University, 355017, Stavropol, Russia; North-Caucasus Center for Mathematical Research, North-Caucasus Federal University, 355017, Stavropol, Russia.
| |
Collapse
|
10
|
Suleiman TA, Anyimadu DT, Permana AD, Ngim HAA, Scotto di Freca A. Two-step hierarchical binary classification of cancerous skin lesions using transfer learning and the random forest algorithm. Vis Comput Ind Biomed Art 2024; 7:15. [PMID: 38884841 PMCID: PMC11183002 DOI: 10.1186/s42492-024-00166-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/24/2024] [Indexed: 06/18/2024] Open
Abstract
Skin lesion classification plays a crucial role in the early detection and diagnosis of various skin conditions. Recent advances in computer-aided diagnostic techniques have been instrumental in timely intervention, thereby improving patient outcomes, particularly in rural communities lacking specialized expertise. Despite the widespread adoption of convolutional neural networks (CNNs) in skin disease detection, their effectiveness has been hindered by the limited size and data imbalance of publicly accessible skin lesion datasets. In this context, a two-step hierarchical binary classification approach is proposed utilizing hybrid machine and deep learning (DL) techniques. Experiments conducted on the International Skin Imaging Collaboration (ISIC 2017) dataset demonstrate the effectiveness of the hierarchical approach in handling large class imbalances. Specifically, employing DenseNet121 (DNET) as a feature extractor and random forest (RF) as a classifier yielded the most promising results, achieving a balanced multiclass accuracy (BMA) of 91.07% compared to the pure deep-learning model (end-to-end DNET) with a BMA of 88.66%. The RF ensemble exhibited significantly greater efficiency than other machine-learning classifiers in aiding DL to address the challenge of learning with limited data. Furthermore, the implemented predictive hybrid hierarchical model demonstrated enhanced performance while significantly reducing computational time, indicating its potential efficiency in real-world applications for the classification of skin lesions.
Collapse
Affiliation(s)
- Taofik Ahmed Suleiman
- Department of Electrical and Information Engineering, University of Cassino and Southern Lazio, Cassino, 03043, Italy
| | - Daniel Tweneboah Anyimadu
- Department of Electrical and Information Engineering, University of Cassino and Southern Lazio, Cassino, 03043, Italy
| | - Andrew Dwi Permana
- Department of Electrical and Information Engineering, University of Cassino and Southern Lazio, Cassino, 03043, Italy
| | - Hsham Abdalgny Abdalwhab Ngim
- Department of Electrical and Information Engineering, University of Cassino and Southern Lazio, Cassino, 03043, Italy
| | - Alessandra Scotto di Freca
- Department of Electrical and Information Engineering, University of Cassino and Southern Lazio, Cassino, 03043, Italy.
| |
Collapse
|
11
|
Liu T, He Z, Lin Z, Cao GZ, Su W, Xie S. An Adaptive Image Segmentation Network for Surface Defect Detection. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:8510-8523. [PMID: 37015643 DOI: 10.1109/tnnls.2022.3230426] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Surface defect detection plays an essential role in industry, and it is challenging due to the following problems: 1) the similarity between defect and nondefect texture is very high, which eventually leads to recognition or classification errors and 2) the size of defects is tiny, which are much more difficult to be detected than larger ones. To address such problems, this article proposes an adaptive image segmentation network (AIS-Net) for pixelwise segmentation of surface defects. It consists of three main parts: multishuffle-block dilated convolution (MSDC), dual attention context guidance (DACG), and adaptive category prediction (ACP) modules, where MSDC is designed to merge the multiscale defect features for avoiding the loss of tiny defect feature caused by model depth, DACG is designed to capture more contextual information from the defect feature map for locating defect regions and obtaining clear segmentation boundaries, and ACP is used to make classification and regression for predicting defect categories. Experimental results show that the proposed AIS-Net is superior to the state-of-the-art approaches on four actual surface defect datasets (NEU-DET: 98.38% ± 0.03%, DAGM: 99.25% ± 0.02%, Magnetic-tile: 98.73% ± 0.13%, and MVTec: 99.72% ± 0.02%).
Collapse
|
12
|
Ali R, Manikandan A, Lei R, Xu J. A novel SpaSA based hyper-parameter optimized FCEDN with adaptive CNN classification for skin cancer detection. Sci Rep 2024; 14:9336. [PMID: 38653997 DOI: 10.1038/s41598-024-57393-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
Skin cancer is the most prevalent kind of cancer in people. It is estimated that more than 1 million people get skin cancer every year in the world. The effectiveness of the disease's therapy is significantly impacted by early identification of this illness. Preprocessing is the initial detecting stage in enhancing the quality of skin images by removing undesired background noise and objects. This study aims is to compile preprocessing techniques for skin cancer imaging that are currently accessible. Researchers looking into automated skin cancer diagnosis might use this article as an excellent place to start. The fully convolutional encoder-decoder network and Sparrow search algorithm (FCEDN-SpaSA) are proposed in this study for the segmentation of dermoscopic images. The individual wolf method and the ensemble ghosting technique are integrated to generate a neighbour-based search strategy in SpaSA for stressing the correct balance between navigation and exploitation. The classification procedure is accomplished by using an adaptive CNN technique to discriminate between normal skin and malignant skin lesions suggestive of disease. Our method provides classification accuracies comparable to commonly used incremental learning techniques while using less energy, storage space, memory access, and training time (only network updates with new training samples, no network sharing). In a simulation, the segmentation performance of the proposed technique on the ISBI 2017, ISIC 2018, and PH2 datasets reached accuracies of 95.28%, 95.89%, 92.70%, and 98.78%, respectively, on the same dataset and assessed the classification performance. It is accurate 91.67% of the time. The efficiency of the suggested strategy is demonstrated through comparisons with cutting-edge methodologies.
Collapse
Affiliation(s)
- Rizwan Ali
- Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, China
| | - A Manikandan
- Department of ECE, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, India
| | - Rui Lei
- Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, China.
| | - Jinghong Xu
- Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, China.
| |
Collapse
|
13
|
Quishpe-Usca A, Cuenca-Dominguez S, Arias-Viñansaca A, Bosmediano-Angos K, Villalba-Meneses F, Ramírez-Cando L, Tirado-Espín A, Cadena-Morejón C, Almeida-Galárraga D, Guevara C. The effect of hair removal and filtering on melanoma detection: a comparative deep learning study with AlexNet CNN. PeerJ Comput Sci 2024; 10:e1953. [PMID: 38660169 PMCID: PMC11041978 DOI: 10.7717/peerj-cs.1953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/03/2024] [Indexed: 04/26/2024]
Abstract
Melanoma is the most aggressive and prevalent form of skin cancer globally, with a higher incidence in men and individuals with fair skin. Early detection of melanoma is essential for the successful treatment and prevention of metastasis. In this context, deep learning methods, distinguished by their ability to perform automated and detailed analysis, extracting melanoma-specific features, have emerged. These approaches excel in performing large-scale analysis, optimizing time, and providing accurate diagnoses, contributing to timely treatments compared to conventional diagnostic methods. The present study offers a methodology to assess the effectiveness of an AlexNet-based convolutional neural network (CNN) in identifying early-stage melanomas. The model is trained on a balanced dataset of 10,605 dermoscopic images, and on modified datasets where hair, a potential obstructive factor, was detected and removed allowing for an assessment of how hair removal affects the model's overall performance. To perform hair removal, we propose a morphological algorithm combined with different filtering techniques for comparison: Fourier, Wavelet, average blur, and low-pass filters. The model is evaluated through 10-fold cross-validation and the metrics of accuracy, recall, precision, and the F1 score. The results demonstrate that the proposed model performs the best for the dataset where we implemented both a Wavelet filter and hair removal algorithm. It has an accuracy of 91.30%, a recall of 87%, a precision of 95.19%, and an F1 score of 90.91%.
Collapse
Affiliation(s)
- Angélica Quishpe-Usca
- School of Biological Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Imbabura, Ecuador
| | - Stefany Cuenca-Dominguez
- School of Biological Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Imbabura, Ecuador
| | - Araceli Arias-Viñansaca
- School of Biological Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Imbabura, Ecuador
| | - Karen Bosmediano-Angos
- School of Biological Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Imbabura, Ecuador
| | - Fernando Villalba-Meneses
- School of Biological Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Imbabura, Ecuador
| | - Lenin Ramírez-Cando
- School of Biological Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Imbabura, Ecuador
| | - Andrés Tirado-Espín
- School of Mathematical and Computational Sciences, Yachay Tech University, San Miguel de Urcuquí, Imbabura, Ecuador
| | - Carolina Cadena-Morejón
- School of Mathematical and Computational Sciences, Yachay Tech University, San Miguel de Urcuquí, Imbabura, Ecuador
| | - Diego Almeida-Galárraga
- School of Biological Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Imbabura, Ecuador
| | - Cesar Guevara
- Quantitative Methods Department, CUNEF Universidad, Madrid, Madrid, Spain
| |
Collapse
|
14
|
Dai C, Xiong H, He R, Zhu C, Li P, Guo M, Gou J, Mei M, Kong D, Li Q, Wee ATS, Fang X, Kong J, Liu Y, Wei D. Electro-Optical Multiclassification Platform for Minimizing Occasional Inaccuracy in Point-of-Care Biomarker Detection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312540. [PMID: 38288781 DOI: 10.1002/adma.202312540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/13/2024] [Indexed: 02/06/2024]
Abstract
On-site diagnostic tests that accurately identify disease biomarkers lay the foundation for self-healthcare applications. However, these tests routinely rely on single-mode signals and suffer from insufficient accuracy, especially for multiplexed point-of-care tests (POCTs) within a few minutes. Here, this work develops a dual-mode multiclassification diagnostic platform that integrates an electrochemiluminescence sensor and a field-effect transistor sensor in a microfluidic chip. The microfluidic channel guides the testing samples to flow across electro-optical sensor units, which produce dual-mode readouts by detecting infectious biomarkers of tuberculosis (TB), human rhinovirus (HRV), and group B streptococcus (GBS). Then, machine-learning classifiers generate three-dimensional (3D) hyperplanes to diagnose different diseases. Dual-mode readouts derived from distinct mechanisms enhance the anti-interference ability physically, and machine-learning-aided diagnosis in high-dimensional space reduces the occasional inaccuracy mathematically. Clinical validation studies with 501 unprocessed samples indicate that the platform has an accuracy approaching 99%, higher than the 77%-93% accuracy of rapid point-of-care testing technologies at 100% statistical power (>150 clinical tests). Moreover, the diagnosis time is 5 min without a trade-off of accuracy. This work solves the occasional inaccuracy issue of rapid on-site diagnosis, endowing POCT systems with the same accuracy as laboratory tests and holding unique prospects for complicated scenes of personalized healthcare.
Collapse
Affiliation(s)
- Changhao Dai
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, China
| | - Huiwen Xiong
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Rui He
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou, 73000, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Chenxin Zhu
- Institute of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Pintao Li
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Mingquan Guo
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Jian Gou
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
| | - Miaomiao Mei
- Yizheng Hospital of Traditional Chinese Medicine, Yangzhou, 211400, China
| | - Derong Kong
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, China
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Andrew Thye Shen Wee
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
| | - Xueen Fang
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Jilie Kong
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, China
| |
Collapse
|
15
|
Zhang Y, Gao Y, Xu J, Zhao G, Shi L, Kong L. Unsupervised Joint Domain Adaptation for Decoding Brain Cognitive States From tfMRI Images. IEEE J Biomed Health Inform 2024; 28:1494-1503. [PMID: 38157464 DOI: 10.1109/jbhi.2023.3348130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Recent advances in large model and neuroscience have enabled exploration of the mechanism of brain activity by using neuroimaging data. Brain decoding is one of the most promising researches to further understand the human cognitive function. However, current methods excessively depends on high-quality labeled data, which brings enormous expense of collection and annotation of neural images by experts. Besides, the performance of cross-individual decoding suffers from inconsistency in data distribution caused by individual variation and different collection equipments. To address mentioned above issues, a Join Domain Adapative Decoding (JDAD) framework is proposed for unsupervised decoding specific brain cognitive state related to behavioral task. Based on the volumetric feature extraction from task-based functional Magnetic Resonance Imaging (tfMRI) data, a novel objective loss function is designed by the combination of joint distribution regularizer, which aims to restrict the distance of both the conditional and marginal probability distribution of labeled and unlabeled samples. Experimental results on the public Human Connectome Project (HCP) S1200 dataset show that JDAD achieves superior performance than other prevalent methods, especially for fine-grained task with 11.5%-21.6% improvements of decoding accuracy. The learned 3D features are visualized by Grad-CAM to build a combination with brain functional regions, which provides a novel path to learn the function of brain cortex regions related to specific cognitive task in group level.
Collapse
|
16
|
Chen W, Tan X, Zhang J, Du G, Fu Q, Jiang H. A robust approach for multi-type classification of brain tumor using deep feature fusion. Front Neurosci 2024; 18:1288274. [PMID: 38440396 PMCID: PMC10909817 DOI: 10.3389/fnins.2024.1288274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/05/2024] [Indexed: 03/06/2024] Open
Abstract
Brain tumors can be classified into many different types based on their shape, texture, and location. Accurate diagnosis of brain tumor types can help doctors to develop appropriate treatment plans to save patients' lives. Therefore, it is very crucial to improve the accuracy of this classification system for brain tumors to assist doctors in their treatment. We propose a deep feature fusion method based on convolutional neural networks to enhance the accuracy and robustness of brain tumor classification while mitigating the risk of over-fitting. Firstly, the extracted features of three pre-trained models including ResNet101, DenseNet121, and EfficientNetB0 are adjusted to ensure that the shape of extracted features for the three models is the same. Secondly, the three models are fine-tuned to extract features from brain tumor images. Thirdly, pairwise summation of the extracted features is carried out to achieve feature fusion. Finally, classification of brain tumors based on fused features is performed. The public datasets including Figshare (Dataset 1) and Kaggle (Dataset 2) are used to verify the reliability of the proposed method. Experimental results demonstrate that the fusion method of ResNet101 and DenseNet121 features achieves the best performance, which achieves classification accuracy of 99.18 and 97.24% in Figshare dataset and Kaggle dataset, respectively.
Collapse
Affiliation(s)
- Wenna Chen
- The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Xinghua Tan
- College of Information Engineering, Henan University of Science and Technology, Luoyang, China
| | - Jincan Zhang
- College of Information Engineering, Henan University of Science and Technology, Luoyang, China
| | - Ganqin Du
- The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Qizhi Fu
- The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Hongwei Jiang
- The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
17
|
An X, Li P, Zhang C. Deep Cascade-Learning Model via Recurrent Attention for Immunofixation Electrophoresis Image Analysis. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:3847-3859. [PMID: 37698964 DOI: 10.1109/tmi.2023.3314507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Immunofixation Electrophoresis (IFE) analysis has been an indispensable prerequisite for the diagnosis of M-protein, which is an important criterion to recognize diversified plasma cell diseases. Existing intelligent methods of IFE diagnosis commonly employ a single unified classifier to directly classify whether M-protein exists and which isotype of M-protein is. However, this unified classification is not optimal because the two tasks have different characteristics and require different feature extraction techniques. Classifying the M-protein existence depends on the presence or absence of dense bands in IFE data, while classifying the M-protein isotype depends on the location of dense bands. Consequently, a cascading two-classifier framework suitable to the two tasks respectively may achieve better performance. In this paper, we propose a novel deep cascade-learning model, which sequentially integrates a positive-negative classifier based on deep collocative learning and an isotype classifier based on recurrent attention model to address these two tasks respectively. Specifically, the attention mechanism can mimic the visual perception of clinicians, where only the most informative local regions are extracted through sequential partial observations. This not only avoids the interference of redundant regions but also saves computational power. Further, domain knowledge about SP lane and heavy-light-chain lanes is also introduced to assist our attention location. Extensive numerical experiments show that our deep cascade-learning outperforms state-of-the-art methods on recognized evaluation metrics and can effectively capture the co-location of dense bands in different lanes.
Collapse
|
18
|
Saiwaeo S, Arwatchananukul S, Mungmai L, Preedalikit W, Aunsri N. Human skin type classification using image processing and deep learning approaches. Heliyon 2023; 9:e21176. [PMID: 38027689 PMCID: PMC10656243 DOI: 10.1016/j.heliyon.2023.e21176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Cosmetics consumers need to be aware of their skin type before purchasing products. Identifying skin types can be challenging, especially when they vary from oily to dry in different areas, with skin specialist providing more accurate results. In recent years, artificial intelligence and machine learning have been utilized across various fields, including medicine, to assist in identifying and predicting situations. This study developed a skin type classification model using a Convolutional Neural Networks (CNN) deep learning algorithms. The dataset consisted of normal, oily, and dry skin images, with 112 images for normal skin, 120 images for oily skin, and 97 images for dry skin. Image quality was enhanced using the Contrast Limited Adaptive Histogram Equalization (CLAHE) technique, with data augmentation by rotation applied to increase dataset variety, resulting in a total of 1,316 images. CNN architectures including MobileNet-V2, EfficientNet-V2, InceptionV2, and ResNet-V1 were optimized and evaluated. Findings showed that the EfficientNet-V2 architecture performed the best, achieving an accuracy of 91.55% with average loss of 22.74%. To further improve the model, hyperparameter tuning was conducted, resulting in an accuracy of 94.57% and a loss of 13.77%. The Model performance was validated using 10-fold cross-validation and tested on unseen data, achieving an accuracy of 89.70% with a loss of 21.68%.
Collapse
Affiliation(s)
- Sirawit Saiwaeo
- School of Information Technology, Mae Fah Luang University, Chiang Rai, Thailand
| | - Sujitra Arwatchananukul
- School of Information Technology, Mae Fah Luang University, Chiang Rai, Thailand
- Integrated AgriTech Ecosystem Research Group (IATE), Mae Fah Luang University, Chiang Rai, Thailand
| | - Lapatrada Mungmai
- Division of Cosmetic Science, School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
- Research and Innovation Center in Cosmetic Sciences and Natural products, Division of Cosmetic Sciences, School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
| | - Weeraya Preedalikit
- Division of Cosmetic Science, School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
- Research and Innovation Center in Cosmetic Sciences and Natural products, Division of Cosmetic Sciences, School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
| | - Nattapol Aunsri
- School of Information Technology, Mae Fah Luang University, Chiang Rai, Thailand
- Integrated AgriTech Ecosystem Research Group (IATE), Mae Fah Luang University, Chiang Rai, Thailand
| |
Collapse
|
19
|
Ahmad N, Shah JH, Khan MA, Baili J, Ansari GJ, Tariq U, Kim YJ, Cha JH. A novel framework of multiclass skin lesion recognition from dermoscopic images using deep learning and explainable AI. Front Oncol 2023; 13:1151257. [PMID: 37346069 PMCID: PMC10281646 DOI: 10.3389/fonc.2023.1151257] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/19/2023] [Indexed: 06/23/2023] Open
Abstract
Skin cancer is a serious disease that affects people all over the world. Melanoma is an aggressive form of skin cancer, and early detection can significantly reduce human mortality. In the United States, approximately 97,610 new cases of melanoma will be diagnosed in 2023. However, challenges such as lesion irregularities, low-contrast lesions, intraclass color similarity, redundant features, and imbalanced datasets make improved recognition accuracy using computerized techniques extremely difficult. This work presented a new framework for skin lesion recognition using data augmentation, deep learning, and explainable artificial intelligence. In the proposed framework, data augmentation is performed at the initial step to increase the dataset size, and then two pretrained deep learning models are employed. Both models have been fine-tuned and trained using deep transfer learning. Both models (Xception and ShuffleNet) utilize the global average pooling layer for deep feature extraction. The analysis of this step shows that some important information is missing; therefore, we performed the fusion. After the fusion process, the computational time was increased; therefore, we developed an improved Butterfly Optimization Algorithm. Using this algorithm, only the best features are selected and classified using machine learning classifiers. In addition, a GradCAM-based visualization is performed to analyze the important region in the image. Two publicly available datasets-ISIC2018 and HAM10000-have been utilized and obtained improved accuracy of 99.3% and 91.5%, respectively. Comparing the proposed framework accuracy with state-of-the-art methods reveals improved and less computational time.
Collapse
Affiliation(s)
- Naveed Ahmad
- Department of Computer Science, COMSATS University Islamabad, Wah Cantt, Pakistan
| | - Jamal Hussain Shah
- Department of Computer Science, COMSATS University Islamabad, Wah Cantt, Pakistan
| | - Muhammad Attique Khan
- Department of Computer Science, HITEC University, Taxila, Pakistan
- Department of Informatics, University of Leicester, Leicester, United Kingdom
| | - Jamel Baili
- College of Computer Science, King Khalid University, Abha, Saudi Arabia
| | | | - Usman Tariq
- Department of Management Information Systems, CoBA, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ye Jin Kim
- Department of Computer Science, Hanyang University, Seoul, Republic of Korea
| | - Jae-Hyuk Cha
- Department of Computer Science, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
20
|
Alwakid G, Gouda W, Humayun M, Jhanjhi NZ. Diagnosing Melanomas in Dermoscopy Images Using Deep Learning. Diagnostics (Basel) 2023; 13:diagnostics13101815. [PMID: 37238299 DOI: 10.3390/diagnostics13101815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/04/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
When it comes to skin tumors and cancers, melanoma ranks among the most prevalent and deadly. With the advancement of deep learning and computer vision, it is now possible to quickly and accurately determine whether or not a patient has malignancy. This is significant since a prompt identification greatly decreases the likelihood of a fatal outcome. Artificial intelligence has the potential to improve healthcare in many ways, including melanoma diagnosis. In a nutshell, this research employed an Inception-V3 and InceptionResnet-V2 strategy for melanoma recognition. The feature extraction layers that were previously frozen were fine-tuned after the newly added top layers were trained. This study used data from the HAM10000 dataset, which included an unrepresentative sample of seven different forms of skin cancer. To fix the discrepancy, we utilized data augmentation. The proposed models outperformed the results of the previous investigation with an effectiveness of 0.89 for Inception-V3 and 0.91 for InceptionResnet-V2.
Collapse
Affiliation(s)
- Ghadah Alwakid
- Department of Computer Science, College of Computer and Information Sciences, Jouf University, Sakakah 72341, Saudi Arabia
| | - Walaa Gouda
- Department of Electrical Engineering, Shoubra Faculty of Engineering, Benha University, Cairo 11672, Egypt
| | - Mamoona Humayun
- Department of Information Systems, College of Computer and Information Sciences, Jouf University, Sakakah 72341, Saudi Arabia
| | - N Z Jhanjhi
- School of Computer Science (SCS), Taylor's University, Subang Jaya 47500, Malaysia
| |
Collapse
|
21
|
Zhang Y, Xie F, Chen J. TFormer: A throughout fusion transformer for multi-modal skin lesion diagnosis. Comput Biol Med 2023; 157:106712. [PMID: 36907033 DOI: 10.1016/j.compbiomed.2023.106712] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/27/2023] [Accepted: 02/26/2023] [Indexed: 03/04/2023]
Abstract
Multi-modal skin lesion diagnosis (MSLD) has achieved remarkable success by modern computer-aided diagnosis (CAD) technology based on deep convolutions. However, the information aggregation across modalities in MSLD remains challenging due to severity unaligned spatial resolution (e.g., dermoscopic image and clinical image) and heterogeneous data (e.g., dermoscopic image and patients' meta-data). Limited by the intrinsic local attention, most recent MSLD pipelines using pure convolutions struggle to capture representative features in shallow layers, thus the fusion across different modalities is usually done at the end of the pipelines, even at the last layer, leading to an insufficient information aggregation. To tackle the issue, we introduce a pure transformer-based method, which we refer to as "Throughout Fusion Transformer (TFormer)", for sufficient information integration in MSLD. Different from the existing approaches with convolutions, the proposed network leverages transformer as feature extraction backbone, bringing more representative shallow features. We then carefully design a stack of dual-branch hierarchical multi-modal transformer (HMT) blocks to fuse information across different image modalities in a stage-by-stage way. With the aggregated information of image modalities, a multi-modal transformer post-fusion (MTP) block is designed to integrate features across image and non-image data. Such a strategy that information of the image modalities is firstly fused then the heterogeneous ones enables us to better divide and conquer the two major challenges while ensuring inter-modality dynamics are effectively modeled. Experiments conducted on the public Derm7pt dataset validate the superiority of the proposed method. Our TFormer achieves an average accuracy of 77.99% and diagnostic accuracy of 80.03% , which outperforms other state-of-the-art methods. Ablation experiments also suggest the effectiveness of our designs. The codes can be publicly available from https://github.com/zylbuaa/TFormer.git.
Collapse
Affiliation(s)
- Yilan Zhang
- Image Processing Center, School of Astronautics, Beihang University, Beijing 100191, China
| | - Fengying Xie
- Image Processing Center, School of Astronautics, Beihang University, Beijing 100191, China.
| | - Jianqi Chen
- Image Processing Center, School of Astronautics, Beihang University, Beijing 100191, China
| |
Collapse
|
22
|
Chen X, You G, Chen Q, Zhang X, Wang N, He X, Zhu L, Li Z, Liu C, Yao S, Ge J, Gao W, Yu H. Development and evaluation of an artificial intelligence system for children intussusception diagnosis using ultrasound images. iScience 2023; 26:106456. [PMID: 37063466 PMCID: PMC10090215 DOI: 10.1016/j.isci.2023.106456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/16/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Accurate identification of intussusception in children is critical for timely non-surgical management. We propose an end-to-end artificial intelligence algorithm, the Children Intussusception Diagnosis Network (CIDNet) system, that utilizes ultrasound images to rapidly diagnose intussusception. 9999 ultrasound images of 4154 pediatric patients were divided into training, validation, test, and independent reader study datasets. The independent reader study cohort was used to compare the diagnostic performance of the CIDNet system to six radiologists. Performance was evaluated using, among others, balance accuracy (BACC) and area under the receiver operating characteristic curve (AUC). The CIDNet system performed the best in diagnosing intussusception with a BACC of 0.8464 and AUC of 0.9716 in the test dataset compared to other deep learning algorithms. The CIDNet system compared favorably with expert radiologists by outstanding identification performance and robustness (BACC:0.9297; AUC:0.9769). CIDNet is a stable and precise technological tool for identifying intussusception in ultrasound scans of children.
Collapse
Affiliation(s)
- Xiong Chen
- Department of Paediatric Urology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, P. R. China
- Department of Paediatric Surgery, Guangzhou Institute of Paediatrics, Guangzhou Medical University, Guangzhou 510623, P. R. China
| | - Guochang You
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, P. R. China
| | - Qinchang Chen
- Department of Pediatric Cardiology, Guangdong Provincial Key Laboratory of Structural Heart Disease, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangdong Cardiovascular Institute, Guangzhou 510080, P. R. China
| | - Xiangxiang Zhang
- Department of Ultrasound, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, P. R. China
| | - Na Wang
- Department of Ultrasound, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, P. R. China
| | - Xuehua He
- Department of Ultrasound, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, P. R. China
| | - Liling Zhu
- Department of Ultrasound, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, P. R. China
| | - Zhouzhou Li
- Department of Ultrasound, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, P. R. China
| | - Chen Liu
- Department of Ultrasound, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, P. R. China
| | - Shixiang Yao
- Department of Ultrasound, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, P. R. China
| | - Junshuang Ge
- Clinical Data Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, P. R. China
| | - Wenjing Gao
- Clinical Data Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, P. R. China
- Corresponding author
| | - Hongkui Yu
- Department of Ultrasound, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, P. R. China
- Corresponding author
| |
Collapse
|
23
|
Hasan MK, Ahamad MA, Yap CH, Yang G. A survey, review, and future trends of skin lesion segmentation and classification. Comput Biol Med 2023; 155:106624. [PMID: 36774890 DOI: 10.1016/j.compbiomed.2023.106624] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/04/2023] [Accepted: 01/28/2023] [Indexed: 02/03/2023]
Abstract
The Computer-aided Diagnosis or Detection (CAD) approach for skin lesion analysis is an emerging field of research that has the potential to alleviate the burden and cost of skin cancer screening. Researchers have recently indicated increasing interest in developing such CAD systems, with the intention of providing a user-friendly tool to dermatologists to reduce the challenges encountered or associated with manual inspection. This article aims to provide a comprehensive literature survey and review of a total of 594 publications (356 for skin lesion segmentation and 238 for skin lesion classification) published between 2011 and 2022. These articles are analyzed and summarized in a number of different ways to contribute vital information regarding the methods for the development of CAD systems. These ways include: relevant and essential definitions and theories, input data (dataset utilization, preprocessing, augmentations, and fixing imbalance problems), method configuration (techniques, architectures, module frameworks, and losses), training tactics (hyperparameter settings), and evaluation criteria. We intend to investigate a variety of performance-enhancing approaches, including ensemble and post-processing. We also discuss these dimensions to reveal their current trends based on utilization frequencies. In addition, we highlight the primary difficulties associated with evaluating skin lesion segmentation and classification systems using minimal datasets, as well as the potential solutions to these difficulties. Findings, recommendations, and trends are disclosed to inform future research on developing an automated and robust CAD system for skin lesion analysis.
Collapse
Affiliation(s)
- Md Kamrul Hasan
- Department of Bioengineering, Imperial College London, UK; Department of Electrical and Electronic Engineering (EEE), Khulna University of Engineering & Technology (KUET), Khulna 9203, Bangladesh.
| | - Md Asif Ahamad
- Department of Electrical and Electronic Engineering (EEE), Khulna University of Engineering & Technology (KUET), Khulna 9203, Bangladesh.
| | - Choon Hwai Yap
- Department of Bioengineering, Imperial College London, UK.
| | - Guang Yang
- National Heart and Lung Institute, Imperial College London, UK; Cardiovascular Research Centre, Royal Brompton Hospital, UK.
| |
Collapse
|
24
|
Liu Z, Xiong R, Jiang T. CI-Net: Clinical-Inspired Network for Automated Skin Lesion Recognition. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:619-632. [PMID: 36279355 DOI: 10.1109/tmi.2022.3215547] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The lesion recognition of dermoscopy images is significant for automated skin cancer diagnosis. Most of the existing methods ignore the medical perspective, which is crucial since this task requires a large amount of medical knowledge. A few methods are designed according to medical knowledge, but they ignore to be fully in line with doctors' entire learning and diagnosis process, since certain strategies and steps of those are conducted in practice for doctors. Thus, we put forward Clinical-Inspired Network (CI-Net) to involve the learning strategy and diagnosis process of doctors, as for a better analysis. The diagnostic process contains three main steps: the zoom step, the observe step and the compare step. To simulate these, we introduce three corresponding modules: a lesion area attention module, a feature extraction module and a lesion feature attention module. To simulate the distinguish strategy, which is commonly used by doctors, we introduce a distinguish module. We evaluate our proposed CI-Net on six challenging datasets, including ISIC 2016, ISIC 2017, ISIC 2018, ISIC 2019, ISIC 2020 and PH2 datasets, and the results indicate that CI-Net outperforms existing work. The code is publicly available at https://github.com/lzh19961031/Dermoscopy_classification.
Collapse
|
25
|
Wang Y, Su J, Xu Q, Zhong Y. A Collaborative Learning Model for Skin Lesion Segmentation and Classification. Diagnostics (Basel) 2023; 13:diagnostics13050912. [PMID: 36900056 PMCID: PMC10001355 DOI: 10.3390/diagnostics13050912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/19/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
The automatic segmentation and classification of skin lesions are two essential tasks in computer-aided skin cancer diagnosis. Segmentation aims to detect the location and boundary of the skin lesion area, while classification is used to evaluate the type of skin lesion. The location and contour information of lesions provided by segmentation is essential for the classification of skin lesions, while the skin disease classification helps generate target localization maps to assist the segmentation task. Although the segmentation and classification are studied independently in most cases, we find meaningful information can be explored using the correlation of dermatological segmentation and classification tasks, especially when the sample data are insufficient. In this paper, we propose a collaborative learning deep convolutional neural networks (CL-DCNN) model based on the teacher-student learning method for dermatological segmentation and classification. To generate high-quality pseudo-labels, we provide a self-training method. The segmentation network is selectively retrained through classification network screening pseudo-labels. Specially, we obtain high-quality pseudo-labels for the segmentation network by providing a reliability measure method. We also employ class activation maps to improve the location ability of the segmentation network. Furthermore, we provide the lesion contour information by using the lesion segmentation masks to improve the recognition ability of the classification network. Experiments are carried on the ISIC 2017 and ISIC Archive datasets. The CL-DCNN model achieved a Jaccard of 79.1% on the skin lesion segmentation task and an average AUC of 93.7% on the skin disease classification task, which is superior to the advanced skin lesion segmentation methods and classification methods.
Collapse
Affiliation(s)
- Ying Wang
- School of Information Science and Engineering, University of Jinan, Jinan 250022, China
- Shandong Provincial Key Laboratory of Network Based Intelligent Computing, University of Jinan, Jinan 250022, China
| | - Jie Su
- School of Information Science and Engineering, University of Jinan, Jinan 250022, China
- Shandong Provincial Key Laboratory of Network Based Intelligent Computing, University of Jinan, Jinan 250022, China
- Correspondence: ; Tel.: +86-15054125550
| | - Qiuyu Xu
- School of Information Science and Engineering, University of Jinan, Jinan 250022, China
- Shandong Provincial Key Laboratory of Network Based Intelligent Computing, University of Jinan, Jinan 250022, China
| | - Yixin Zhong
- School of Information Science and Engineering, University of Jinan, Jinan 250022, China
- Artificial Intelligence Research Institute, University of Jinan, Jinan 250022, China
| |
Collapse
|
26
|
Multiscale Feature Fusion for Skin Lesion Classification. BIOMED RESEARCH INTERNATIONAL 2023; 2023:5146543. [PMID: 36644161 PMCID: PMC9836789 DOI: 10.1155/2023/5146543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 12/13/2022] [Accepted: 12/23/2022] [Indexed: 01/07/2023]
Abstract
Skin cancer has a high mortality rate, and early detection can greatly reduce patient mortality. Convolutional neural network (CNN) has been widely applied in the field of computer-aided diagnosis. To improve the ability of convolutional neural networks to accurately classify skin lesions, we propose a multiscale feature fusion model for skin lesion classification. We use a two-stream network, which are a densely connected network (DenseNet-121) and improved visual geometry group network (VGG-16). In the feature fusion module, we construct multireceptive fields to obtain multiscale pathological information and use generalized mean pooling (GeM pooling) to reduce the spatial dimensionality of lesion features. Finally, we built and tested a system with the developed skin lesion classification model. The experiments were performed on the dataset ISIC2018, which can achieve a good classification performance with a test accuracy of 91.24% and macroaverages of 95%.
Collapse
|
27
|
Alwakid G, Gouda W, Humayun M, Sama NU. Melanoma Detection Using Deep Learning-Based Classifications. Healthcare (Basel) 2022; 10:healthcare10122481. [PMID: 36554004 PMCID: PMC9777935 DOI: 10.3390/healthcare10122481] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
One of the most prevalent cancers worldwide is skin cancer, and it is becoming more common as the population ages. As a general rule, the earlier skin cancer can be diagnosed, the better. As a result of the success of deep learning (DL) algorithms in other industries, there has been a substantial increase in automated diagnosis systems in healthcare. This work proposes DL as a method for extracting a lesion zone with precision. First, the image is enhanced using Enhanced Super-Resolution Generative Adversarial Networks (ESRGAN) to improve the image's quality. Then, segmentation is used to segment Regions of Interest (ROI) from the full image. We employed data augmentation to rectify the data disparity. The image is then analyzed with a convolutional neural network (CNN) and a modified version of Resnet-50 to classify skin lesions. This analysis utilized an unequal sample of seven kinds of skin cancer from the HAM10000 dataset. With an accuracy of 0.86, a precision of 0.84, a recall of 0.86, and an F-score of 0.86, the proposed CNN-based Model outperformed the earlier study's results by a significant margin. The study culminates with an improved automated method for diagnosing skin cancer that benefits medical professionals and patients.
Collapse
Affiliation(s)
- Ghadah Alwakid
- Department of Computer Science, College of Computer and Information Sciences, Jouf University, Sakaka 72341, Al Jouf, Saudi Arabia
- Correspondence:
| | - Walaa Gouda
- Department of Computer Engineering and Networks, College of Computer and Information Sciences, Jouf University, Sakaka 72341, Al Jouf, Saudi Arabia
| | - Mamoona Humayun
- Department of Information Systems, College of Computer and Information Sciences, Jouf University, Sakaka 72341, Al Jouf, Saudi Arabia
| | - Najm Us Sama
- Faculty of Computer Science and Information Technology, Universiti Malaysia Sarawak, Kota Samarahan 94300, Sarawak, Malaysia
| |
Collapse
|
28
|
Zhang Y, Xie F, Song X, Zhou H, Yang Y, Zhang H, Liu J. A rotation meanout network with invariance for dermoscopy image classification and retrieval. Comput Biol Med 2022; 151:106272. [PMID: 36368111 DOI: 10.1016/j.compbiomed.2022.106272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/07/2022] [Accepted: 10/30/2022] [Indexed: 11/07/2022]
Abstract
The computer-aided diagnosis (CAD) system can provide a reference basis for the clinical diagnosis of skin diseases. Convolutional neural networks (CNNs) can not only extract visual elements such as colors and shapes but also semantic features. As such they have made great improvements in many tasks of dermoscopy images. The imaging of dermoscopy has no principal orientation, indicating that there are a large number of skin lesion rotations in the datasets. However, CNNs lack rotation invariance, which is bound to affect the robustness of CNNs against rotations. To tackle this issue, we propose a rotation meanout (RM) network to extract rotation-invariant features from dermoscopy images. In RM, each set of rotated feature maps corresponds to a set of outputs of the weight-sharing convolutions and they are fused using meanout strategy to obtain the final feature maps. Through theoretical derivation, the proposed RM network is rotation-equivariant and can extract rotation-invariant features when followed by the global average pooling (GAP) operation. The extracted rotation-invariant features can better represent the original data in classification and retrieval tasks for dermoscopy images. The RM is a general operation, which does not change the network structure or increase any parameters, and can be flexibly embedded in any part of CNNs. Extensive experiments are conducted on a dermoscopy image dataset. The results show that our method outperforms other anti-rotation methods and achieves great improvements in skin disease classification and retrieval tasks, indicating the potential of rotation invariance in the field of dermoscopy images.
Collapse
Affiliation(s)
- Yilan Zhang
- Image Processing Center, School of Astronautics, Beihang University, Beijing 100191, China
| | - Fengying Xie
- Image Processing Center, School of Astronautics, Beihang University, Beijing 100191, China.
| | - Xuedong Song
- Shanghai Aerospace Control Technology Institute, Shanghai 201109, China
| | - Hangning Zhou
- Image Processing Center, School of Astronautics, Beihang University, Beijing 100191, China
| | - Yiguang Yang
- Image Processing Center, School of Astronautics, Beihang University, Beijing 100191, China
| | - Haopeng Zhang
- Image Processing Center, School of Astronautics, Beihang University, Beijing 100191, China
| | - Jie Liu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
29
|
Nguyen VD, Bui ND, Do HK. Skin Lesion Classification on Imbalanced Data Using Deep Learning with Soft Attention. SENSORS (BASEL, SWITZERLAND) 2022; 22:7530. [PMID: 36236628 PMCID: PMC9572097 DOI: 10.3390/s22197530] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Today, the rapid development of industrial zones leads to an increased incidence of skin diseases because of polluted air. According to a report by the American Cancer Society, it is estimated that in 2022 there will be about 100,000 people suffering from skin cancer and more than 7600 of these people will not survive. In the context that doctors at provincial hospitals and health facilities are overloaded, doctors at lower levels lack experience, and having a tool to support doctors in the process of diagnosing skin diseases quickly and accurately is essential. Along with the strong development of artificial intelligence technologies, many solutions to support the diagnosis of skin diseases have been researched and developed. In this paper, a combination of one Deep Learning model (DenseNet, InceptionNet, ResNet, etc) with Soft-Attention, which unsupervisedly extract a heat map of main skin lesions. Furthermore, personal information including age and gender are also used. It is worth noting that a new loss function that takes into account the data imbalance is also proposed. Experimental results on data set HAM10000 show that using InceptionResNetV2 with Soft-Attention and the new loss function gives 90 percent accuracy, mean of precision, F1-score, recall, and AUC of 0.81, 0.81, 0.82, and 0.99, respectively. Besides, using MobileNetV3Large combined with Soft-Attention and the new loss function, even though the number of parameters is 11 times less and the number of hidden layers is 4 times less, it achieves an accuracy of 0.86 and 30 times faster diagnosis than InceptionResNetV2.
Collapse
Affiliation(s)
- Viet Dung Nguyen
- School of Electrical and Electronic Engineering, Hanoi University of Science and Technology, Dai Co Viet, Ha Noi 100000, Vietnam
| | - Ngoc Dung Bui
- Faculty of Information Technology, University of Transport and Communications, Ha Noi 100000, Vietnam
| | - Hoang Khoi Do
- School of Electrical and Electronic Engineering, Hanoi University of Science and Technology, Dai Co Viet, Ha Noi 100000, Vietnam
| |
Collapse
|
30
|
Li H, Li W, Chang J, Zhou L, Luo J, Guo Y. Dermoscopy lesion classification based on GANs and a fuzzy rank-based ensemble of CNN models. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac8b60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/19/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Background and Objective. Skin lesion classification by using deep learning technologies is still a considerable challenge due to high similarity among classes and large intraclass differences, serious class imbalance in data, and poor classification accuracy with low robustness. Approach. To address these issues, a two-stage framework for dermoscopy lesion classification using adversarial training and a fuzzy rank-based ensemble of multilayer feature fusion convolutional neural network (CNN) models is proposed. In the first stage, dermoscopy dataset augmentation based on generative adversarial networks is proposed to obtain realistic dermoscopy lesion images, enabling significant improvement for balancing the number of lesions in each class. In the second stage, a fuzzy rank-based ensemble of multilayer feature fusion CNN models is proposed to classify skin lesions. In addition, an efficient channel integrating spatial attention module, in which a novel dilated pyramid pooling structure is designed to extract multiscale features from an enlarged receptive field and filter meaningful information of the initial features. Combining the cross-entropy loss function with the focal loss function, a novel united loss function is designed to reduce the intraclass sample distance and to focus on difficult and error-prone samples to improve the recognition accuracy of the proposed model. Main results. In this paper, the common dataset (HAM10000) is selected to conduct simulation experiments to evaluate and verify the effectiveness of the proposed method. The subjective and objective experimental results demonstrate that the proposed method is superior over the state-of-the-art methods for skin lesion classification due to its higher accuracy, specificity and robustness. Significance. The proposed method effectively improves the classification performance of the model for skin diseases, which will help doctors make accurate and efficient diagnoses, reduce the incidence rate and improve the survival rates of patients.
Collapse
|
31
|
An improved transformer network for skin cancer classification. Comput Biol Med 2022; 149:105939. [PMID: 36037629 DOI: 10.1016/j.compbiomed.2022.105939] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Use of artificial intelligence to identify dermoscopic images has brought major breakthroughs in recent years to the early diagnosis and early treatment of skin cancer, the incidence of which is increasing year by year worldwide and poses a great threat to human health. Achievements have been made in the research of skin cancer image classification by using the deep backbone of the convolutional neural network (CNN). This approach, however, only extracts the features of small objects in the image, and cannot locate the important parts. OBJECTIVES As a result, researchers of the paper turn to vision transformers (VIT) which has demonstrated powerful performance in traditional classification tasks. The self-attention is to improve the value of important features and suppress the features that cause noise. Specifically, an improved transformer network named SkinTrans is proposed. INNOVATIONS To verify its efficiency, a three step procedure is followed. Firstly, a VIT network is established to verify the effectiveness of SkinTrans in skin cancer classification. Then multi-scale and overlapping sliding windows are used to serialize the image and multi-scale patch embedding is carried out which pay more attention to multi-scale features. Finally, contrastive learning is used which makes the similar data of skin cancer encode similarly so that the encoding results of different data are as different as possible. MAIN RESULTS The experiment is carried out based on two datasets, namely (1) HAM10000: a large dataset of multi-source dermatoscopic images of common skin cancers; (2)A clinical dataset of skin cancer collected by dermoscopy. The model proposed has achieved 94.3% accuracy on HAM10000 and 94.1% accuracy on our datasets, which verifies the efficiency of SkinTrans. CONCLUSIONS The transformer network has not only achieved good results in natural language but also achieved ideal results in the field of vision, which also lays a good foundation for skin cancer classification based on multimodal data. This paper is convinced that it will be of interest to dermatologists, clinical researchers, computer scientists and researchers in other related fields, and provide greater convenience for patients.
Collapse
|
32
|
Wu Y, Chen B, Zeng A, Pan D, Wang R, Zhao S. Skin Cancer Classification With Deep Learning: A Systematic Review. Front Oncol 2022; 12:893972. [PMID: 35912265 PMCID: PMC9327733 DOI: 10.3389/fonc.2022.893972] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/16/2022] [Indexed: 01/21/2023] Open
Abstract
Skin cancer is one of the most dangerous diseases in the world. Correctly classifying skin lesions at an early stage could aid clinical decision-making by providing an accurate disease diagnosis, potentially increasing the chances of cure before cancer spreads. However, achieving automatic skin cancer classification is difficult because the majority of skin disease images used for training are imbalanced and in short supply; meanwhile, the model's cross-domain adaptability and robustness are also critical challenges. Recently, many deep learning-based methods have been widely used in skin cancer classification to solve the above issues and achieve satisfactory results. Nonetheless, reviews that include the abovementioned frontier problems in skin cancer classification are still scarce. Therefore, in this article, we provide a comprehensive overview of the latest deep learning-based algorithms for skin cancer classification. We begin with an overview of three types of dermatological images, followed by a list of publicly available datasets relating to skin cancers. After that, we review the successful applications of typical convolutional neural networks for skin cancer classification. As a highlight of this paper, we next summarize several frontier problems, including data imbalance, data limitation, domain adaptation, model robustness, and model efficiency, followed by corresponding solutions in the skin cancer classification task. Finally, by summarizing different deep learning-based methods to solve the frontier challenges in skin cancer classification, we can conclude that the general development direction of these approaches is structured, lightweight, and multimodal. Besides, for readers' convenience, we have summarized our findings in figures and tables. Considering the growing popularity of deep learning, there are still many issues to overcome as well as chances to pursue in the future.
Collapse
Affiliation(s)
- Yinhao Wu
- School of Intelligent Systems Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Bin Chen
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - An Zeng
- School of Computer Science and Technology, Guangdong University of Technology, Guangzhou, China
| | - Dan Pan
- School of Electronics and Information, Guangdong Polytechnic Normal University, Guangzhou, China
| | - Ruixuan Wang
- School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Shen Zhao
- School of Intelligent Systems Engineering, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
33
|
Li S, Wang H, Xiao Y, Zhang M, Yu N, Zeng A, Wang X. A Workflow for Computer-Aided Evaluation of Keloid Based on Laser Speckle Contrast Imaging and Deep Learning. J Pers Med 2022; 12:jpm12060981. [PMID: 35743764 PMCID: PMC9224605 DOI: 10.3390/jpm12060981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/05/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
A keloid results from abnormal wound healing, which has different blood perfusion and growth states among patients. Active monitoring and treatment of actively growing keloids at the initial stage can effectively inhibit keloid enlargement and has important medical and aesthetic implications. LSCI (laser speckle contrast imaging) has been developed to obtain the blood perfusion of the keloid and shows a high relationship with the severity and prognosis. However, the LSCI-based method requires manual annotation and evaluation of the keloid, which is time consuming. Although many studies have designed deep-learning networks for the detection and classification of skin lesions, there are still challenges to the assessment of keloid growth status, especially based on small samples. This retrospective study included 150 untreated keloid patients, intensity images, and blood perfusion images obtained from LSCI. A newly proposed workflow based on cascaded vision transformer architecture was proposed, reaching a dice coefficient value of 0.895 for keloid segmentation by 2% improvement, an error of 8.6 ± 5.4 perfusion units, and a relative error of 7.8% ± 6.6% for blood calculation, and an accuracy of 0.927 for growth state prediction by 1.4% improvement than baseline.
Collapse
Affiliation(s)
- Shuo Li
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (S.L.); (Y.X.); (M.Z.); (N.Y.); (A.Z.)
| | - He Wang
- Department of Neurological Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China;
| | - Yiding Xiao
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (S.L.); (Y.X.); (M.Z.); (N.Y.); (A.Z.)
| | - Mingzi Zhang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (S.L.); (Y.X.); (M.Z.); (N.Y.); (A.Z.)
| | - Nanze Yu
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (S.L.); (Y.X.); (M.Z.); (N.Y.); (A.Z.)
| | - Ang Zeng
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (S.L.); (Y.X.); (M.Z.); (N.Y.); (A.Z.)
| | - Xiaojun Wang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (S.L.); (Y.X.); (M.Z.); (N.Y.); (A.Z.)
- Correspondence:
| |
Collapse
|
34
|
Deep Learning Model Based on 3D Optical Coherence Tomography Images for the Automated Detection of Pathologic Myopia. Diagnostics (Basel) 2022; 12:diagnostics12030742. [PMID: 35328292 PMCID: PMC8947335 DOI: 10.3390/diagnostics12030742] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 12/20/2022] Open
Abstract
Pathologic myopia causes vision impairment and blindness, and therefore, necessitates a prompt diagnosis. However, there is no standardized definition of pathologic myopia, and its interpretation by 3D optical coherence tomography images is subjective, requiring considerable time and money. Therefore, there is a need for a diagnostic tool that can automatically and quickly diagnose pathologic myopia in patients. This study aimed to develop an algorithm that uses 3D optical coherence tomography volumetric images (C-scan) to automatically diagnose patients with pathologic myopia. The study was conducted using 367 eyes of patients who underwent optical coherence tomography tests at the Ophthalmology Department of Incheon St. Mary’s Hospital and Seoul St. Mary’s Hospital from January 2012 to May 2020. To automatically diagnose pathologic myopia, a deep learning model was developed using 3D optical coherence tomography images. The model was developed using transfer learning based on four pre-trained convolutional neural networks (ResNet18, ResNext50, EfficientNetB0, EfficientNetB4). Grad-CAM was used to visualize features affecting the detection of pathologic myopia. The performance of each model was evaluated and compared based on accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUROC). The model based on EfficientNetB4 showed the best performance (95% accuracy, 93% sensitivity, 96% specificity, and 98% AUROC) in identifying pathologic myopia.
Collapse
|
35
|
Afza F, Sharif M, Khan MA, Tariq U, Yong HS, Cha J. Multiclass Skin Lesion Classification Using Hybrid Deep Features Selection and Extreme Learning Machine. SENSORS (BASEL, SWITZERLAND) 2022; 22:799. [PMID: 35161553 PMCID: PMC8838278 DOI: 10.3390/s22030799] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 01/27/2023]
Abstract
The variation in skin textures and injuries, as well as the detection and classification of skin cancer, is a difficult task. Manually detecting skin lesions from dermoscopy images is a difficult and time-consuming process. Recent advancements in the domains of the internet of things (IoT) and artificial intelligence for medical applications demonstrated improvements in both accuracy and computational time. In this paper, a new method for multiclass skin lesion classification using best deep learning feature fusion and an extreme learning machine is proposed. The proposed method includes five primary steps: image acquisition and contrast enhancement; deep learning feature extraction using transfer learning; best feature selection using hybrid whale optimization and entropy-mutual information (EMI) approach; fusion of selected features using a modified canonical correlation based approach; and, finally, extreme learning machine based classification. The feature selection step improves the system's computational efficiency and accuracy. The experiment is carried out on two publicly available datasets, HAM10000 and ISIC2018. The achieved accuracy on both datasets is 93.40 and 94.36 percent. When compared to state-of-the-art (SOTA) techniques, the proposed method's accuracy is improved. Furthermore, the proposed method is computationally efficient.
Collapse
Affiliation(s)
- Farhat Afza
- Department of Computer Science, Wah Campus, COMSATS University Islamabad, Wah Cantt 47040, Pakistan;
| | - Muhammad Sharif
- Department of Computer Science, Wah Campus, COMSATS University Islamabad, Wah Cantt 47040, Pakistan;
| | | | - Usman Tariq
- College of Computer Engineering and Science, Prince Sattam Bin Abdulaziz University, Al-Kharaj 11942, Saudi Arabia;
| | - Hwan-Seung Yong
- Department of Computer Science & Engineering, Ewha Womans University, Seoul 03760, Korea;
| | - Jaehyuk Cha
- Department of Computer Science, Hanyang University, Seoul 04763, Korea;
| |
Collapse
|