1
|
Czerniel J, Gostyńska-Stawna A, Sommerfeld-Klatta K, Przybylski T, Krajka-Kuźniak V, Stawny M. Development and Validation of In Vitro Assessment Protocol of Novel Intravenous Nanoemulsions for Parenteral Nutrition. Pharmaceutics 2025; 17:493. [PMID: 40284488 PMCID: PMC12030569 DOI: 10.3390/pharmaceutics17040493] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/27/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Parenteral nutrition (PN) is a lifesaving therapeutic approach for patients unable to meet nutritional needs through oral or enteral routes. Lipid nanoemulsions (NEs), a critical component of PN, provide essential fatty acids and influence the formulation's physicochemical properties. Advances in drug delivery systems have led to novel intravenous NEs with improved stability, purity, or ability for nutrient/active substance delivery. Due to scattered information and the lack of a standardized protocol for testing intravenous lipid NEs, this study aimed to develop a robust assessment method. The protocol focuses on characterizing the physicochemical properties, stability, and biological efficacy of novel NEs while adhering to bioethical standards. Methods: Four NEs were formulated based on fatty acid profile analysis, and to demonstrate the applicability of our protocol, each NE utilized a distinct emulsifier system. A comprehensive in vitro assessment protocol integrating multiple analytical techniques was employed to evaluate their performance. Results: The mean droplet diameter (MDD) of developed NEs ranged from 180.7 to 185.9 nm, significantly smaller than commercial formulations (249.6-335.4 nm). PFAT5 remained below 0.02%, except for ILE-HS (0.12%), and the zeta potential (ZP) was below -29.8 mV. The freeze-thaw stability constant (KF) of developed NEs was in the range of commercial formulation, and the sterilization stability constant (KS) was below 10, except for ILE-HS (23.61 ± 1.65). Injectability tests confirmed that ILE-ELP and ILE-T could be infused at 50 mL/h using an intravenous access with a minimum diameter of 21 G. Hemolytic activity met the strictest criteria (<5%), and MTT assays showed higher cell viability at low concentrations for all NEs except ILE-ELP. Conclusions: The developed five-step protocol provides a unified framework for assessing intravenous lipid NEs, allowing for the selection of NEs with the highest potential for further in vivo assessment.
Collapse
Affiliation(s)
- Joanna Czerniel
- Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (J.C.); (M.S.)
| | - Aleksandra Gostyńska-Stawna
- Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (J.C.); (M.S.)
| | - Karina Sommerfeld-Klatta
- Department of Toxicology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| | - Tomasz Przybylski
- Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (J.C.); (M.S.)
- Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland
| | - Violetta Krajka-Kuźniak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| | - Maciej Stawny
- Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (J.C.); (M.S.)
| |
Collapse
|
2
|
Kurniawan A, Mahendra I, Febrian MB, Utama MS, Gunadi JW, Wahyudianingsih R, Lesmana R, Halimah I, Sriyani ME, Widyasari EM, Wibawa THA, Rizaludin A, Kusumaningrum CE, Syarif DG. Biological evaluation of hydroxyapatite zirconium nanoparticle as a potential radiosensitizer for lung cancer X-ray induced photodynamic therapy. Appl Radiat Isot 2025; 217:111615. [PMID: 39632318 DOI: 10.1016/j.apradiso.2024.111615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/22/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Photodynamic therapy has been recognized as a viable approach for lung cancer treatment. Some photosensitizer agents are known as X-ray sensitive and could improve radiotherapy efficacy. The use of nanoparticles for drug delivery and as photosensitizer agents offers various advantages because of their rapid cellular accumulation and distribution into target organs. On the other hand, several nanoparticles could trigger adverse effects during cancer treatment. In this article, the biological study of hydroxyapatite zirconium nanoparticles (HApZr) as photosensitizer candidates for X-ray-induced photodynamic therapy has been demonstrated in vitro and in vivo. This nanoparticle increased the intracellular reactive oxygen species (ROS) levels after the delivery of ionizing radiation at 5 Gy to a cancer cell line and showed higher cytotoxicity compared to non-irradiated treatment. In vitro cellular uptake based on cell imaging also indicated a promising intake and an ability to kill cancer cells. Subsequently, an in vivo evaluation using orthotopic lung cancer mouse models also showed their good accumulation in target organs, with lower accumulation in normal lung tissue. Moreover, studies of acute toxicity showed that a dose of 50 μg/mL yielded minor pathological changes on histological evaluations, which were supported by a biochemical analysis. In addition, HApZr nanoparticles also increase TNF-α which enhancing the cytotoxic effect after irradiation. Finally, these findings were important for further investigation of the clinical application of these HApZr nanoparticles for the treatment of patients with lung cancer.
Collapse
Affiliation(s)
- Ahmad Kurniawan
- Research Center for Radioisotope, Radiopharmaceuticals and Biodosimetry Technology, National Research and Innovation Agency, Serpong, Indonesia.
| | - Isa Mahendra
- Research Center for Radioisotope, Radiopharmaceuticals and Biodosimetry Technology, National Research and Innovation Agency, Serpong, Indonesia
| | - Muhamad Basit Febrian
- Research Center for Radioisotope, Radiopharmaceuticals and Biodosimetry Technology, National Research and Innovation Agency, Serpong, Indonesia
| | - Marhendra Satria Utama
- Department of Radiology, Faculty of Medicine, Universitas Padjadjaran/Dr. Hasan Sadikin General Hospital, Bandung, Indonesia
| | - Julia Windi Gunadi
- Department of Physiology, Faculty of Medicine, Maranatha Christian University, Bandung, Indonesia
| | - Roro Wahyudianingsih
- Department of Pathological Anatomy, Faculty of Medicine, Maranatha Christian University, Bandung, Indonesia
| | - Ronny Lesmana
- Department of Biomedical Science, Physiology Division, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Iim Halimah
- Research Center for Radioisotope, Radiopharmaceuticals and Biodosimetry Technology, National Research and Innovation Agency, Serpong, Indonesia
| | - Maula Eka Sriyani
- Research Center for Radioisotope, Radiopharmaceuticals and Biodosimetry Technology, National Research and Innovation Agency, Serpong, Indonesia
| | - Eva Maria Widyasari
- Research Center for Radioisotope, Radiopharmaceuticals and Biodosimetry Technology, National Research and Innovation Agency, Serpong, Indonesia
| | - Teguh Hafiz Ambar Wibawa
- Research Center for Radioisotope, Radiopharmaceuticals and Biodosimetry Technology, National Research and Innovation Agency, Serpong, Indonesia
| | - Asep Rizaludin
- Research Center for Radioisotope, Radiopharmaceuticals and Biodosimetry Technology, National Research and Innovation Agency, Serpong, Indonesia
| | - Crhisterra Ellen Kusumaningrum
- Research Center for Radioisotope, Radiopharmaceuticals and Biodosimetry Technology, National Research and Innovation Agency, Serpong, Indonesia
| | - Dani Gustaman Syarif
- Research Center for Radiation Process Technology, National Research and Innovation Agency, Serpong, Indonesia
| |
Collapse
|
3
|
Tanaka SM. Development of a composite using calcined bone powder and silane cross-linked alginate as bone substitute material. J Biomed Mater Res B Appl Biomater 2024; 112:e35457. [PMID: 39032140 DOI: 10.1002/jbm.b.35457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/24/2024] [Accepted: 07/08/2024] [Indexed: 07/22/2024]
Abstract
Calcined bone is an attractive natural material for use as a bone substitute because of its cost-effectiveness and high biocompatibility, which are comparable to that of synthetic hydroxyapatite. However, the calcination process has significantly weakened the mechanical properties. In this study, a composite of calcined bovine bone powder reinforced with silane cross-linked alginate was prepared to assess its biocompatibility, osteoconductivity, and mechanical compatibility as a bone substitute material. Culture studies with osteoblast-like cells (MC3T3-E1) showed no cytotoxicity toward the composite and exhibited general cell proliferative properties in its presence. In contrast, the composite reduced the alkaline phosphatase activity of osteoblasts but led to significant noncellular apatite deposition on the surface. In addition, quasi-static compression tests of the composite revealed mechanical properties comparable to those of human cancellous bone. The mechanical properties remained stable under wet conditions and did not deteriorate significantly even after 2 weeks of immersion in simulated body fluid at 37°C. The results show that this composite, composed of calcined bone powder and silane cross-linked alginate, is a promising bone substitute material with biocompatibility, osteoconductivity, and mechanical compatibility.
Collapse
Grants
- 15H03890 Grant-in-Aid for Scientific Research JSPS KAKENHI from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan
- 24K15696 Grant-in-Aid for Scientific Research JSPS KAKENHI from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan
Collapse
Affiliation(s)
- Shigeo M Tanaka
- Faculty of Frontier Engineering, Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
4
|
de Souza AM, Dantas MRDN, Secundo EL, Silva EDC, Silva PF, Moreira SMG, de Medeiros SRB. Are hydroxyapatite-based biomaterials free of genotoxicity? A systematic review. CHEMOSPHERE 2024; 352:141383. [PMID: 38360416 DOI: 10.1016/j.chemosphere.2024.141383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/26/2023] [Accepted: 02/02/2024] [Indexed: 02/17/2024]
Abstract
Hydroxyapatite (HA) is a biomaterial widely used in clinical applications and pharmaceuticals. The literature on HA-based materials studies is focused on chemical characterization and biocompatibility. Generally, biocompatibility is analyzed through adhesion, proliferation, and differentiation assays. Fewer studies are looking for genotoxic events. Thus, although HA-based biomaterials are widely used as biomedical devices, there is a lack of literature regarding their genotoxicity. This systematic review was carried out following the PRISMA statement. Specific search strategies were developed and performed in four electronic databases (PubMed, Science Direct, Scopus, and Web of Science). The search used "Hydroxyapatite OR Calcium Hydroxyapatite OR durapatite AND genotoxicity OR genotoxic OR DNA damage" and "Hydroxyapatite OR Calcium Hydroxyapatite OR durapatite AND mutagenicity OR mutagenic OR DNA damage" as keywords and articles published from 2000 to 2022, after removing duplicate studies and apply include and exclusion criteria, 53 articles were identified and submitted to a qualitative descriptive analysis. Most of the assays were in vitro and most of the studies did not show genotoxicity. In fact, a protective effect was observed for hydroxyapatites. Only 20 out of 71 tests performed were positive for genotoxicity. However, no point mutation-related mutagenicity was observed. As the genotoxicity of HA-based biomaterials observed was correlated with its nanostructured forms as needles or rods, it is important to follow their effect in chronic exposure to guarantee safe usage in humans.
Collapse
Affiliation(s)
- Augusto Monteiro de Souza
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Estefânia Lins Secundo
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Elisângela da Costa Silva
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Priscila Fernandes Silva
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Susana Margarida Gomes Moreira
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | |
Collapse
|
5
|
Li Y, Jiang W, Nie N, Xu J, Wang X, Zhang J, Guan J, Zhu C, Zhang C, Gu Y, Chen X, Yao S, Yin Z, Wu B, Ouyang H, Zou X. Size- and Dose-Dependent Body-Wide Organ Transcriptomic Responses to Calcium Phosphate Nanomaterials. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38018117 DOI: 10.1021/acsami.3c10301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Nanomaterials are widely used in clinical practice. There are potential risks of body-wide infiltration due to their small size; however, the body-wide reliable risk assessment of nanoparticle infiltration is not fully studied and established. In this study, we demonstrated the size- and dose-dependent body-wide organ transcriptomic responses to calcium phosphate nanomaterials in vivo. In a mice model, a calcium phosphate nanocluster (amorphous calcium phosphate, ACP, ∼1 nm in diameter) and its crystallization product (ACP-M, ∼10 nm in diameter) in a series of doses was administrated systematically; multiorgan transcriptomics were then performed with tissues of heart, liver, spleen, lung, kidney, and brain to investigate the systematic effect of dose and size of nanomaterials on the whole body. The results presented gene expression trajectories correlated with the dose of the nanomaterials and tissue-specific risk effects in all detected tissues. For the dose-dependent tissue-specific risk effects, lung tissue exhibited the most significant risk signatures related to apoptosis, cell proliferation, and cell stress. The spleen showed the second most significant risk signatures associated with immune response and DNA damage. For the size-dependent tissue-specific risk effects, ACP nanomaterials could increase most of the tissue-specific risk effects of nanomaterials in multiple organs than larger calcium phosphate nanoparticles. Finally, we used the size- and dose-dependent body-wide organ transcriptomic responses/risks to nanomaterials as the standards and built up a risk prediction model to evaluate the risk of the local nanomaterials delivery. Thus, our findings could provide a size- and dose- dependent risk assessment scale of nanoparticles in the transcriptomic level. It could be useful for risk assessment of nanomaterials in the future.
Collapse
Affiliation(s)
- Yu Li
- Clinical Research Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P. R. China
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
- Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, Zhejiang 310058, P. R. China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regeneration Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P. R. China
| | - Wei Jiang
- Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, Zhejiang 310058, P. R. China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regeneration Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P. R. China
| | - Nanfang Nie
- Clinical Research Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P. R. China
- Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, Zhejiang 310058, P. R. China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regeneration Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P. R. China
| | - Jiaqi Xu
- Clinical Research Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P. R. China
- Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, Zhejiang 310058, P. R. China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regeneration Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P. R. China
| | - Xiaozhao Wang
- Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, Zhejiang 310058, P. R. China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regeneration Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P. R. China
- Zhejiang University-University of Edinburgh Institute, Hangzhou 310058, P. R. China
| | - Junwen Zhang
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| | - Jiahuan Guan
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| | - Chengcheng Zhu
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| | - Cheng Zhang
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| | - Ying Gu
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| | - Xiaoyi Chen
- Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, Zhejiang 310058, P. R. China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regeneration Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P. R. China
| | - Shasha Yao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Zi Yin
- Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, Zhejiang 310058, P. R. China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regeneration Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P. R. China
| | - Bingbing Wu
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
- Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, Zhejiang 310058, P. R. China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regeneration Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P. R. China
| | - Hongwei Ouyang
- Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, Zhejiang 310058, P. R. China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regeneration Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P. R. China
- Zhejiang University-University of Edinburgh Institute, Hangzhou 310058, P. R. China
| | - Xiaohui Zou
- Clinical Research Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P. R. China
- Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, Zhejiang 310058, P. R. China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regeneration Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P. R. China
| |
Collapse
|
6
|
Shamszadeh S, Akrami M, Asgary S. Size-dependent bioactivity of electrosprayed core-shell chitosan-alginate particles for protein delivery. Sci Rep 2022; 12:20097. [PMID: 36418917 PMCID: PMC9684514 DOI: 10.1038/s41598-022-24389-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022] Open
Abstract
Nano-bio interactions are size-dependent. The present study investigates whether core-shell chitosan-alginate particle size governs biological activities as well as protein release profile. A coaxial electrospraying was used to fabricate bovine serum albumin (BSA)-loaded core-shell micro/nanoparticles and were fully characterized. The bio/hemocompatibility of the particles was assessed using MTT and hemolytic assays, respectively, followed by the uptake assessment using flow cytometry. Finally, protein absorption was investigated using SDS-PAGE. The SEM size of the microparticles, the hydrodynamic, and the actual sizes of the nanoparticles were 1.2 μm, 90.49 nm, and 50 nm, respectively. Interactions among two polymers and BSA were observed using DSC analysis. BET analysis showed a more surface area for nanoparticles. A sustained release trend of BSA was observed after 14- and 10-day for microparticles and nanoparticles, respectively. Microparticles exhibited excellent hemocompatibility (< 5% hemolysis) and cell viability (at least > 70%) in all concentrations. However, acceptable hemolytic activity and cell viability were observed for nanoparticles in concentrations below 250 μg/mL. Furthermore, nanoparticles showed greater cellular uptake (~ 4 folds) and protein absorption (~ 1.61 folds) than microparticles. Overall, the developed core-shell chitosan-alginate particles in the micro/nanoscale can be promising candidates for biomedical application and regenerative medicine regarding their effects on above mentioned biological activities.
Collapse
Affiliation(s)
- Sayna Shamszadeh
- grid.411600.2Iranian Center for Endodontic Research, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, 1983963113 Iran
| | - Mohammad Akrami
- grid.411705.60000 0001 0166 0922Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411 Iran ,grid.411705.60000 0001 0166 0922Institute of Biomaterials, University of Tehran and Tehran University of Medical Sciences (IBUTUMS), Tehran, Iran
| | - Saeed Asgary
- grid.411600.2Iranian Center for Endodontic Research, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, 1983963113 Iran
| |
Collapse
|
7
|
Petersen LL, Baas J, Sørensen M, Bechtold JE, Søballe K, Barckman J. Accelerated bone growth, but impaired implant fixation in allograft bone mixed with nano-hydroxyapatite - an experimental study in 12 canines. J Exp Orthop 2022; 9:35. [PMID: 35460390 PMCID: PMC9035200 DOI: 10.1186/s40634-022-00465-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/11/2022] [Indexed: 11/10/2022] Open
Affiliation(s)
- Lau Lind Petersen
- Department of Orthopedics, Aarhus University Hospital Skejby, Palle Juul-Jensens Boulevard, 99 8200, Aarhus N, Denmark.
| | - Jørgen Baas
- Department of Orthopedics, Aarhus University Hospital Skejby, Palle Juul-Jensens Boulevard, 99 8200, Aarhus N, Denmark
| | - Mette Sørensen
- Department of Orthopedics, Aarhus University Hospital Skejby, Palle Juul-Jensens Boulevard, 99 8200, Aarhus N, Denmark
| | - Joan E Bechtold
- Departments of Orthopaedic Surgery and Biomedical Engineering, University of Minnesota Life Sciences, Building 700 South 10th Avenue, Minneapolis, MN, 55415, USA
| | - Kjeld Søballe
- Department of Orthopedics, Aarhus University Hospital Skejby, Palle Juul-Jensens Boulevard, 99 8200, Aarhus N, Denmark
| | - Jeppe Barckman
- Department of Orthopedics, Aarhus University Hospital Skejby, Palle Juul-Jensens Boulevard, 99 8200, Aarhus N, Denmark
| |
Collapse
|
8
|
Arsenijevic N, Selakovic D, Katanic Stankovic JS, Mihailovic V, Mitrovic S, Milenkovic J, Milanovic P, Vasovic M, Markovic SD, Zivanovic M, Grujic J, Jovicic N, Rosic G. The Beneficial Role of Filipendula ulmaria Extract in Prevention of Prodepressant Effect and Cognitive Impairment Induced by Nanoparticles of Calcium Phosphates in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6670135. [PMID: 33628375 PMCID: PMC7895592 DOI: 10.1155/2021/6670135] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022]
Abstract
Mineral components of dental composites are used in many medical and dental applications, including preventive, restorative, and regenerative dentistry. To evaluate the behavioural alterations induced by nanosized particles of novel dental composites, by means of depressive level and cognitive functions, experimental groups of rats were chronically administered with nanosized hydroxyapatite (HA), tricalcium phosphate (TCP), and amorphous calcium phosphate (ACP) with or without simultaneous application of Filipendula ulmaria L. (FU) methanolic extract. The significant prodepressant action was observed in groups solely treated with HA and ACP. Besides, prolonged treatment with ACP also resulted in a significant decline in cognitive functions estimated in the novel object recognition test. The adverse impact of calcium phosphates on estimated behavioural functions was accompanied by increased oxidative damage and apoptotic markers in the prefrontal cortex, as well as diminished specific neurotrophin (BDNF) and gabaergic expression. The results of our investigation showed that simultaneous antioxidant supplementation with FU extract prevented calcium phosphate-induced behavioural disturbances, as well as prooxidative and apoptotic actions, with the simultaneous restoration of BDNF and GABA-A receptors in the prefrontal cortex. These findings suggest that FU may be useful in the prevention of prodepressant impact and cognitive decline as early as the manifestation of calcium phosphate-induced neurotoxicity.
Collapse
Affiliation(s)
- Natalija Arsenijevic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Dragica Selakovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Jelena S. Katanic Stankovic
- Department of Science, Institute for Information Technologies Kragujevac, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Vladimir Mihailovic
- Department of Chemistry, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Slobodanka Mitrovic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Jovana Milenkovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Pavle Milanovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Miroslav Vasovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Snezana D. Markovic
- Department for Biology and Ecology, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Marko Zivanovic
- Department of Science, Institute for Information Technologies Kragujevac, University of Kragujevac, 34000 Kragujevac, Serbia
- BioIRC, Bioengineering R&D Center, 34000 Kragujevac, Serbia
| | - Jelena Grujic
- Department of Science, Institute for Information Technologies Kragujevac, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Nemanja Jovicic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Gvozden Rosic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| |
Collapse
|
9
|
Kupikowska-Stobba B, Kasprzak M. Fabrication of nanoparticles for bone regeneration: new insight into applications of nanoemulsion technology. J Mater Chem B 2021; 9:5221-5244. [PMID: 34142690 DOI: 10.1039/d1tb00559f] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introducing synthetic bone substitutes into the clinic was a major breakthrough in the regenerative medicine of bone. Despite many advantages of currently available bone implant materials such as biocompatiblity and osteoconductivity, they still suffer from relatively poor bioactivity, osteoinductivity and osteointegration. These properties can be effectively enhanced by functionalization of implant materials with nanoparticles such as osteoinductive hydroxyapatite nanocrystals, resembling inorganic part of the bone, or bioactive polymer nanoparticles providing sustained delivery of pro-osteogenic agents directly at implantation site. One of the most widespread techniques for fabrication of nanoparticles for bone regeneration applications is nanoemulsification. It allows manufacturing of nanoscale particles (<100 nm) that are injectable, 3D-printable, offer high surface-area-to-volume-ratio and minimal mass transport limitations. Nanoparticles obtained by this technique are of particular interest for biomedical engineering due to fabrication procedures requiring low surfactant concentrations, which translates into reduced risk of surfactant-related in vivo adverse effects and improved biocompatibility of the product. This review discusses nanoemulsion technology and its current uses in manufacturing of nanoparticles for bone regeneration applications. In the first section, we introduce basic concepts of nanoemulsification including nanoemulsion formation, properties and preparation methods. In the next sections, we focus on applications of nanoemulsions in fabrication of nanoparticles used for delivery of drugs/biomolecules facilitating osteogenesis and functionalization of bone implants with special emphasis on biomimetic hydroxyapatite nanoparticles, synthetic polymer nanoparticles loaded with bioactive compounds and bone-targeting nanoparticles. We also highlight key challenges in formulation of nanoparticles via nanoemulsification and outline potential further improvements in this field.
Collapse
Affiliation(s)
- Barbara Kupikowska-Stobba
- ŁUKASIEWICZ Research Network - Institute of Ceramics and Building Materials, Ceramic and Concrete Division in Warsaw, Department of Biomaterials, Postępu 9, 02-677, Warsaw, Poland.
| | - Mirosław Kasprzak
- ŁUKASIEWICZ Research Network - Institute of Ceramics and Building Materials, Ceramic and Concrete Division in Warsaw, Department of Biomaterials, Postępu 9, 02-677, Warsaw, Poland.
| |
Collapse
|
10
|
Affiliation(s)
- Masanori Horie
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Japan
| | - Yosuke Tabei
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Japan
| |
Collapse
|
11
|
Ghiasi B, Sefidbakht Y, Mozaffari-Jovin S, Gharehcheloo B, Mehrarya M, Khodadadi A, Rezaei M, Ranaei Siadat SO, Uskoković V. Hydroxyapatite as a biomaterial - a gift that keeps on giving. Drug Dev Ind Pharm 2020; 46:1035-1062. [PMID: 32476496 DOI: 10.1080/03639045.2020.1776321] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The synthetic analogue to biogenic apatite, hydroxyapatite (HA) has a number of physicochemical properties that make it an attractive candidate for diagnosis, treatment of disease and augmentation of biological tissues. Here we describe some of the recent studies on HA, which may provide bases for a number of new medical applications. The content of this review is divided to different medical application modes utilizing HA, including tissue engineering, medical implants, controlled drug delivery, gene therapies, cancer therapies and bioimaging. A number of advantages of HA over other biomaterials emerge from this discourse, including (i) biocompatibility, (ii) bioactivity, (iii) relatively simple synthesis protocols for the fabrication of nanoparticles with specific sizes and shapes, (iv) smart response to environmental stimuli, (v) facile functionalization and surface modification through noncovalent interactions, and (vi) the capacity for being simultaneously loaded with a wide range of therapeutic agents and switched to bioimaging modalities for uses in theranostics. A special section is dedicated to analysis of the safety of particulate HA as a component of parenterally administrable medications. It is concluded that despite the fact that many benefits come with the usage of HA, its deficiencies and potential side effects must be addressed before the translation to the clinical domain is pursued. Although HA has been known in the biomaterials world as the exemplar of safety, this safety proves to be the function of size, morphology, surface ligands and other structural and compositional parameters defining the particles. For this reason, each HA, especially when it comes in a novel structural form, must be treated anew from the safety research angle before being allowed to enter the clinical stage.
Collapse
Affiliation(s)
- Behrad Ghiasi
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Yahya Sefidbakht
- Protein Research Center, Shahid Beheshti University, Tehran, Iran.,Nanobiotechnology Laboratory, The Faculty of New Technologies Engineering (NTE), Shahid Beheshti University, Tehran, Iran
| | - Sina Mozaffari-Jovin
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Arash Khodadadi
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Science, Kerman, Iran
| | - Maryam Rezaei
- Institute of Biochemistry and Biophysics (IBB), Tehran University, Tehran, Iran
| | - Seyed Omid Ranaei Siadat
- Protein Research Center, Shahid Beheshti University, Tehran, Iran.,Nanobiotechnology Laboratory, The Faculty of New Technologies Engineering (NTE), Shahid Beheshti University, Tehran, Iran
| | - Vuk Uskoković
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA, USA
| |
Collapse
|
12
|
Kollenda SA, Klose J, Knuschke T, Sokolova V, Schmitz J, Staniszewska M, Costa PF, Herrmann K, Westendorf AM, Fendler WP, Epple M. In vivo biodistribution of calcium phosphate nanoparticles after intravascular, intramuscular, intratumoral, and soft tissue administration in mice investigated by small animal PET/CT. Acta Biomater 2020; 109:244-253. [PMID: 32251787 DOI: 10.1016/j.actbio.2020.03.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/13/2020] [Accepted: 03/24/2020] [Indexed: 12/15/2022]
Abstract
Calcium phosphate nanoparticles were covalently surface-functionalized with the ligand DOTA and loaded with the radioisotope 68Ga. The biodistribution of such 68Ga-labelled nanoparticles was followed in vivo in mice by positron emission tomography in combination with computer tomography (PET-CT). The biodistribution of 68Ga-labelled nanoparticles was compared for different application routes: intravenous, intramuscular, intratumoral, and into soft tissue. The particle distribution was measured in vivo by PET-CT after 5 min, 15 min, 30 min, 1 h, 2 h, and 4 h, and ex vivo after 5 h. After intravenous injection (tail vein), the nanoparticles rapidly entered the lungs with later redistribution into liver and spleen. The nanoparticles remained mostly at the injection site following intramuscular, intratumoral, or soft tissue application, with less than 10 percent being mobilized into the blood stream. STATEMENT OF SIGNIFICANCE: The in vivo biodistribution of DOTA-terminated calcium phosphate nanoparticles was followed by PET/CT. To our knowledge, this is the first study of this kind. Four different application routes of clinical relevance were pursued: Intravascular, intramuscular, intratumoral, and into soft tissue. Given the high importance of calcium phosphate as biomaterial and for nanoparticular drug delivery and immunization, this is most important to assess the biofate of calcium phosphate nanoparticles for therapeutic application and also judge biodistribution of nanoscopic calcium phosphate ceramics, including debris from endoprostheses and related implants.
Collapse
Affiliation(s)
- Sebastian A Kollenda
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| | - Jasmin Klose
- Department of Nuclear Medicine, University Hospital and German Cancer Consortium (DKTK) Partner Site Essen, University of Duisburg-Essen, Essen, Germany
| | - Torben Knuschke
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Viktoriya Sokolova
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| | - Jochen Schmitz
- Department of Radiopharmacy and Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Magdalena Staniszewska
- Department of Nuclear Medicine, University Hospital and German Cancer Consortium (DKTK) Partner Site Essen, University of Duisburg-Essen, Essen, Germany
| | - Pedro Fragoso Costa
- Department of Nuclear Medicine, University Hospital and German Cancer Consortium (DKTK) Partner Site Essen, University of Duisburg-Essen, Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital and German Cancer Consortium (DKTK) Partner Site Essen, University of Duisburg-Essen, Essen, Germany
| | - Astrid M Westendorf
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, University Hospital and German Cancer Consortium (DKTK) Partner Site Essen, University of Duisburg-Essen, Essen, Germany.
| | - Matthias Epple
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
13
|
Alfranca G, Beola L, Liu Y, Gutiérrez L, Zhang A, Artiga A, Cui D, de la Fuente JM. In vivo comparison of the biodistribution and long-term fate of colloids – gold nanoprisms and nanorods – with minimum surface modification. Nanomedicine (Lond) 2019; 14:3035-3055. [DOI: 10.2217/nnm-2019-0253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: To study the difference in biodistribution of gold nanoprisms (NPr) and nanorods (NR), PEGylated to ensure colloidal stability. Materials & methods: Surface changes were studied for nanoparticles in different media, while the biodistribution was quantified and imaged in vivo. Results: Upon interaction with the mouse serum, NR showed more abrupt changes in surface properties than NPr. In the in vivo tests, while NPr accumulated similarly in the spleen and liver, NR showed much higher gold presence in the spleen than in liver; together with some accumulation in kidneys, which was nonexistent in NPr. NPr were cleared from the tissues 2 months after administration, while NR were more persistent. Conclusion: The results suggest that the differential biodistribution is caused by size-/shape-dependent interactions with the serum.
Collapse
Affiliation(s)
- Gabriel Alfranca
- Department of Instrument Science & Engineering, School of Electronic Information & Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis & Treatment Instrument, Institute of Nano Biomedicine & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai 200240, China
- Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC/Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Lilianne Beola
- Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC/Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Yanlei Liu
- Department of Instrument Science & Engineering, School of Electronic Information & Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis & Treatment Instrument, Institute of Nano Biomedicine & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai 200240, China
| | - Lucía Gutiérrez
- Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC/Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 50018 Madrid, Spain
- Department of Analytical Chemistry, Instituto Universitario de Nanociencia de Aragón (INA), Universidad de Zaragoza, Edificio I+D, Mariano Esquillor Gómez, 50018 Zaragoza, Spain
| | - Amin Zhang
- Department of Instrument Science & Engineering, School of Electronic Information & Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis & Treatment Instrument, Institute of Nano Biomedicine & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai 200240, China
| | - Alvaro Artiga
- Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC/Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 50018 Madrid, Spain
| | - Daxiang Cui
- Department of Instrument Science & Engineering, School of Electronic Information & Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis & Treatment Instrument, Institute of Nano Biomedicine & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai 200240, China
| | - Jesús M de la Fuente
- Department of Instrument Science & Engineering, School of Electronic Information & Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis & Treatment Instrument, Institute of Nano Biomedicine & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai 200240, China
- Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC/Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 50018 Madrid, Spain
| |
Collapse
|
14
|
Review of potential health risks associated with nanoscopic calcium phosphate. Acta Biomater 2018; 77:1-14. [PMID: 30031162 DOI: 10.1016/j.actbio.2018.07.036] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/15/2018] [Accepted: 07/17/2018] [Indexed: 02/07/2023]
Abstract
Calcium phosphate is applied in many products in biomedicine, but also in toothpastes and cosmetics. In some cases, it is present in nanoparticulate form, either on purpose or after degradation or mechanical abrasion. Possible concerns are related to the biological effect of such nanoparticles. A thorough literature review shows that calcium phosphate nanoparticles as such have no inherent toxicity but can lead to an increase of the intracellular calcium concentration after endosomal uptake and lysosomal degradation. However, cells are able to clear the calcium from the cytoplasm within a few hours, unless very high doses of calcium phosphate are applied. The observed cytotoxicity in some cell culture studies, mainly for unfunctionalized particles, is probably due to particle agglomeration and subsequent sedimentation onto the cell layer, leading to a very high local particle concentration, a high particle uptake, and subsequent cell death. There is no risk from an oral uptake of calcium phosphate nanoparticles due to their rapid dissolution in the stomach. The risk from dermal or mucosal uptake is very low. Calcium phosphate nanoparticles can enter the bloodstream by inhalation, but no adverse effects have been observed, except for a prolonged exposition to high particle doses. Calcium phosphate nanoparticles inside the body (e.g. after implantation or due to abrasion) do not pose a risk as they are typically resorbed and dissolved by osteoclasts and macrophages. There is no indication for a significant influence of the calcium phosphate phase or the particle shape (e.g. spherical or rod-like) on the biological response. In summary, the risk associated with an exposition to nanoparticulate calcium phosphate in doses that are usually applied in biomedicine, health care products, and cosmetics is very low and most likely not present at all. STATEMENT OF SIGNIFICANCE Calcium phosphate is a well-established biomaterial. However, there are occasions when it occurs in a nanoparticulate form (e.g. as nanoparticle or as nanoparticulate bone substitution material) or after abrasion from a calcium phosphate-coated metal implant. In the light of the current discussion on the safety of nanoparticles, there have been concerns about potential adverse effects of nano-calcium phosphate, e.g. in a statement of a EU study group from 2016 about possible dangers associated with non-spherical nano-hydroxyapatite in cosmetics. In the US, there was a discussion in 2016 about the dangers of nano-calcium phosphate in babyfood. In this review, the potential exposition routes for nano-calcium phosphate are reviewed, with special emphasis on its application as biomaterial.
Collapse
|
15
|
Zhang W, Song Y, Eldi P, Guo X, Hayball JD, Garg S, Albrecht H. Targeting prostate cancer cells with hybrid elastin-like polypeptide/liposome nanoparticles. Int J Nanomedicine 2018; 13:293-305. [PMID: 29391790 PMCID: PMC5768422 DOI: 10.2147/ijn.s152485] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Prostate cancer cells frequently overexpress the gastrin-releasing peptide receptor, and various strategies have been applied in preclinical settings to target this receptor for the specific delivery of anticancer compounds. Recently, elastin-like polypeptide (ELP)-based self-assembling micelles with tethered GRP on the surface have been suggested to actively target prostate cancer cells. Poorly soluble chemotherapeutics such as docetaxel (DTX) can be loaded into the hydrophobic cores of ELP micelles, but only limited drug retention times have been achieved. Herein, we report the generation of hybrid ELP/liposome nanoparticles which self-assembled rapidly in response to temperature change, encapsulated DTX at high concentrations with slow release, displayed the GRP ligand on the surface, and specifically bound to GRP receptor expressing PC-3 cells as demonstrated by flow cytometry. This novel type of drug nanocarrier was successfully used to reduce cell viability of prostate cancer cells in vitro through the specific delivery of DTX.
Collapse
Affiliation(s)
- Wei Zhang
- Centre for Pharmaceutical Innovation and Development, Centre for Drug Discovery and Development, Experimental Therapeutics Laboratory, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Yunmei Song
- Centre for Pharmaceutical Innovation and Development, Centre for Drug Discovery and Development, Experimental Therapeutics Laboratory, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Preethi Eldi
- Centre for Pharmaceutical Innovation and Development, Centre for Drug Discovery and Development, Experimental Therapeutics Laboratory, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Xiuli Guo
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - John D Hayball
- Centre for Pharmaceutical Innovation and Development, Centre for Drug Discovery and Development, Experimental Therapeutics Laboratory, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia.,Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Sanjay Garg
- Centre for Pharmaceutical Innovation and Development, Centre for Drug Discovery and Development, Experimental Therapeutics Laboratory, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Hugo Albrecht
- Centre for Pharmaceutical Innovation and Development, Centre for Drug Discovery and Development, Experimental Therapeutics Laboratory, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
16
|
Hruschka V, Tangl S, Ryabenkova Y, Heimel P, Barnewitz D, Möbus G, Keibl C, Ferguson J, Quadros P, Miller C, Goodchild R, Austin W, Redl H, Nau T. Comparison of nanoparticular hydroxyapatite pastes of different particle content and size in a novel scapula defect model. Sci Rep 2017; 7:43425. [PMID: 28233833 PMCID: PMC5324075 DOI: 10.1038/srep43425] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/24/2017] [Indexed: 11/09/2022] Open
Abstract
Nanocrystalline hydroxyapatite (HA) has good biocompatibility and the potential to support bone formation. It represents a promising alternative to autologous bone grafting, which is considered the current gold standard for the treatment of low weight bearing bone defects. The purpose of this study was to compare three bone substitute pastes of different HA content and particle size with autologous bone and empty defects, at two time points (6 and 12 months) in an ovine scapula drillhole model using micro-CT, histology and histomorphometry evaluation. The nHA-LC (38% HA content) paste supported bone formation with a high defect bridging-rate. Compared to nHA-LC, Ostim® (35% HA content) showed less and smaller particle agglomerates but also a reduced defect bridging-rate due to its fast degradation The highly concentrated nHA-HC paste (48% HA content) formed oversized particle agglomerates which supported the defect bridging but left little space for bone formation in the defect site. Interestingly, the gold standard treatment of the defect site with autologous bone tissue did not improve bone formation or defect bridging compared to the empty control. We concluded that the material resorption and bone formation was highly impacted by the particle-specific agglomeration behaviour in this study.
Collapse
Affiliation(s)
- Veronika Hruschka
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Centre, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Stefan Tangl
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, Department of Oral Surgery, Medical University of Vienna, Vienna, Austria
| | - Yulia Ryabenkova
- Department of Materials Science and Engineering, The University of Sheffield, Sheffield, United Kingdom
| | - Patrick Heimel
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Centre, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, Department of Oral Surgery, Medical University of Vienna, Vienna, Austria
| | - Dirk Barnewitz
- Research Center for Medical Technology and Biotechnology, Bad Langensalza, Germany
| | - Günter Möbus
- Department of Materials Science and Engineering, The University of Sheffield, Sheffield, United Kingdom
| | - Claudia Keibl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Centre, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - James Ferguson
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Centre, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | | | - Cheryl Miller
- The School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
| | | | | | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Centre, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Thomas Nau
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Centre, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
17
|
Cui X, Liang T, Liu C, Yuan Y, Qian J. Correlation of particle properties with cytotoxicity and cellular uptake of hydroxyapatite nanoparticles in human gastric cancer cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 67:453-460. [DOI: 10.1016/j.msec.2016.05.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 04/19/2016] [Accepted: 05/06/2016] [Indexed: 02/07/2023]
|
18
|
Calasans-Maia MD, Melo BRD, Alves ATNN, Resende RFDB, Louro RS, Sartoretto SC, Granjeiro JM, Alves GG. Cytocompatibility and biocompatibility of nanostructured carbonated hydroxyapatite spheres for bone repair. J Appl Oral Sci 2016; 23:599-608. [PMID: 26814461 PMCID: PMC4716697 DOI: 10.1590/1678-775720150122] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 09/01/2015] [Indexed: 12/17/2022] Open
Abstract
Objective The aim of this study was to investigate the in vitro and in vivo biological responses to nanostructured carbonated hydroxyapatite/calcium alginate (CHA) microspheres used for alveolar bone repair, compared to sintered hydroxyapatite (HA). Material and Methods The maxillary central incisors of 45 Wistar rats were extracted, and the dental sockets were filled with HA, CHA, and blood clot (control group) (n=5/period/group). After 7, 21 and 42 days, the samples of bone with the biomaterials were obtained for histological and histomorphometric analysis, and the plasma levels of RANKL and OPG were determined via immunoassay. Statistical analysis was performed by Two-Way ANOVA with post-hoc Tukey test at 95% level of significance. Results The CHA and HA microspheres were cytocompatible with both human and murine cells on an in vitro assay. Histological analysis showed the time-dependent increase of newly formed bone in control group characterized by an intense osteoblast activity. In HA and CHA groups, the presence of a slight granulation reaction around the spheres was observed after seven days, which was reduced by the 42nd day. A considerable amount of newly formed bone was observed surrounding the CHA spheres and the biomaterials particles at 42-day time point compared with HA. Histomorphometric analysis showed a significant increase of newly formed bone in CHA group compared with HA after 21 and 42 days from surgery, moreover, CHA showed almost 2-fold greater biosorption than HA at 42 days (two-way ANOVA, p<0.05) indicating greater biosorption. An increase in the RANKL/OPG ratio was observed in the CHA group on the 7th day. Conclusion CHA spheres were osteoconductive and presented earlier biosorption, inducing early increases in the levels of proteins involved in resorption.
Collapse
Affiliation(s)
- Mônica Diuana Calasans-Maia
- Departamento de Cirurgia Oral, Faculdade de Odontologia, Universidade Federal Fluminense, Niteroi, RJ, Brazil
| | | | | | | | - Rafael Seabra Louro
- Departamento de Cirurgia Oral, Faculdade de Odontologia, Universidade Federal Fluminense, Niteroi, RJ, Brazil
| | | | - José Mauro Granjeiro
- Instituto Nacional de Metrologia, Qualidade e Tecnologia, Duque de Caxias, Rio de Janeiro, Brazil
| | - Gutemberg Gomes Alves
- Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niteroi, RJ, Brazil
| |
Collapse
|
19
|
Adverse Biological Effect of TiO₂ and Hydroxyapatite Nanoparticles Used in Bone Repair and Replacement. Int J Mol Sci 2016; 17:ijms17060798. [PMID: 27231896 PMCID: PMC4926332 DOI: 10.3390/ijms17060798] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/06/2016] [Accepted: 05/19/2016] [Indexed: 12/18/2022] Open
Abstract
The adverse biological effect of nanoparticles is an unavoidable scientific problem because of their small size and high surface activity. In this review, we focus on nano-hydroxyapatite and TiO₂ nanoparticles (NPs) to clarify the potential systemic toxicological effect and cytotoxic response of wear nanoparticles because they are attractive materials for bone implants and are widely investigated to promote the repair and reconstruction of bone. The wear nanoparticles would be prone to binding with proteins to form protein-particle complexes, to interacting with visible components in the blood including erythrocytes, leukocytes, and platelets, and to being phagocytosed by macrophages or fibroblasts to deposit in the local tissue, leading to the formation of fibrous local pseudocapsules. These particles would also be translocated to and disseminated into the main organs such as the lung, liver and spleen via blood circulation. The inflammatory response, oxidative stress, and signaling pathway are elaborated to analyze the potential toxicological mechanism. Inhibition of the oxidative stress response and signaling transduction may be a new therapeutic strategy for wear debris-mediated osteolysis. Developing biomimetic materials with better biocompatibility is our goal for orthopedic implants.
Collapse
|
20
|
Zhao Z, Espanol M, Guillem-Marti J, Kempf D, Diez-Escudero A, Ginebra MP. Ion-doping as a strategy to modulate hydroxyapatite nanoparticle internalization. NANOSCALE 2016; 8:1595-1607. [PMID: 26690499 DOI: 10.1039/c5nr05262a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Although it is widely acknowledged that ionic substitutions on bulk hydroxyapatite substrates have a strong impact on their biological performance, little is known of their effect on nanoparticles (NPs) especially when used for gene transfection or drug delivery. The fact that NPs would be internalized poses many questions but also opens up many new possibilities. The objective of the present work is to synthesize and assess the effect of a series of hydroxyapatite-like (HA) NPs doped with various ions on cell behavior, i.e. carbonate, magnesium and co-addition. We synthesized NPs under similar conditions to allow comparison of results and different aspects in addition to assessing the effect of the doping ion(s) were investigated: (1) the effect of performing the cell culture study on citrate-dispersed NPs and on agglomerated NPs, (2) the effect of adding/excluding 10% of foetal bovine serum (FBS) in the cell culture media and (3) the type of cell, i.e. MG-63 versus rat mesenchymal stem cells (rMSCs). The results clearly demonstrated that Mg-doping had a major effect on MG-63 cells with high cytotoxicity but not to rMSCs. This was a very important finding because it proved that doping could be a tool to modify NP internalization. The results also suggest that NP surface charge had a large impact on MG-63 cells and prevents their internalization if it is too negative-this effect was less critical for rMSCs.
Collapse
Affiliation(s)
- Z Zhao
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Technical University of Catalonia, Av. Diagonal 647, Barcelona 08028, Spain. and Centre for Research in Nanoengineering, Technical University of Catalonia, Pascual i Vila 15, Barcelona 08028, Spain
| | - M Espanol
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Technical University of Catalonia, Av. Diagonal 647, Barcelona 08028, Spain. and Centre for Research in Nanoengineering, Technical University of Catalonia, Pascual i Vila 15, Barcelona 08028, Spain
| | - J Guillem-Marti
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Technical University of Catalonia, Av. Diagonal 647, Barcelona 08028, Spain. and Centre for Research in Nanoengineering, Technical University of Catalonia, Pascual i Vila 15, Barcelona 08028, Spain
| | - D Kempf
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Technical University of Catalonia, Av. Diagonal 647, Barcelona 08028, Spain.
| | - A Diez-Escudero
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Technical University of Catalonia, Av. Diagonal 647, Barcelona 08028, Spain. and Centre for Research in Nanoengineering, Technical University of Catalonia, Pascual i Vila 15, Barcelona 08028, Spain
| | - M-P Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Technical University of Catalonia, Av. Diagonal 647, Barcelona 08028, Spain. and Centre for Research in Nanoengineering, Technical University of Catalonia, Pascual i Vila 15, Barcelona 08028, Spain
| |
Collapse
|
21
|
Ogawa K, Miyaji H, Kato A, Kosen Y, Momose T, Yoshida T, Nishida E, Miyata S, Murakami S, Takita H, Fugetsu B, Sugaya T, Kawanami M. Periodontal tissue engineering by nano beta-tricalcium phosphate scaffold and fibroblast growth factor-2 in one-wall infrabony defects of dogs. J Periodontal Res 2016; 51:758-767. [PMID: 27870141 DOI: 10.1111/jre.12352] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND OBJECTIVE Nanoparticle bioceramics are being investigated for biomedical applications. We fabricated a regenerative scaffold comprising type I collagen and beta-tricalcium phosphate (β-TCP) nanoparticles. Fibroblast growth factor-2 (FGF-2) is a bioeffective signaling molecule that stimulates cell proliferation and wound healing. This study examined the effects, on bioactivity, of a nano-β-TCP/collagen scaffold loaded with FGF-2, particularly on periodontal tissue wound healing. MATERIAL AND METHODS Beta-tricalcium phosphate was pulverized into nanosize particles (84 nm) and was then dispersed. A nano-β-TCP scaffold was prepared by coating the surface of a collagen scaffold with a nanosize β-TCP dispersion. Scaffolds were characterized using scanning electron microscopy, compressive testing, cell seeding and rat subcutaneous implant testing. Then, nano-β-TCP scaffold, nano-β-TCP scaffold loaded with FGF-2 and noncoated collagen scaffold were implanted into a dog one-wall infrabony defect model. Histological observations were made at 10 d and 4 wk postsurgery. RESULTS Scanning electron microscopy images show that TCP nanoparticles were attached to collagen fibers. The nano-β-TCP scaffold showed higher compressive strength and cytocompatibility compared with the noncoated collagen scaffold. Rat subcutaneous implant tests showed that the DNA contents of infiltrating cells in the nano-β-TCP scaffold and the FGF-2-loaded scaffold were approximately 2.8-fold and 3.7-fold greater, respectively, than in the collagen scaffold. Histological samples from the periodontal defect model showed about five-fold greater periodontal tissue repair following implantation of the nano-β-TCP scaffold loaded with FGF-2 compared with the collagen scaffold. CONCLUSION The β-TCP nanoparticle coating strongly improved the collagen scaffold bioactivity. Nano-β-TCP scaffolds containing FGF-2 are anticipated for use in periodontal tissue engineering.
Collapse
Affiliation(s)
- K Ogawa
- Department of Periodontology and Endodontology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - H Miyaji
- Department of Periodontology and Endodontology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - A Kato
- Department of Periodontology and Endodontology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Y Kosen
- Department of Periodontology and Endodontology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - T Momose
- Department of Periodontology and Endodontology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - T Yoshida
- Department of Periodontology and Endodontology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - E Nishida
- Department of Periodontology and Endodontology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - S Miyata
- Department of Periodontology and Endodontology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - S Murakami
- Department of Periodontology and Endodontology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - H Takita
- Support Section for Education and Research, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - B Fugetsu
- Nano-Agri Lab, Policy Alternatives Research Institute, The University of Tokyo, Tokyo, Japan
| | - T Sugaya
- Department of Periodontology and Endodontology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - M Kawanami
- Department of Periodontology and Endodontology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| |
Collapse
|
22
|
Dubey AK, Thrivikraman G, Basu B. Absence of systemic toxicity in mouse model towards BaTiO3 nanoparticulate based eluate treatment. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:103. [PMID: 25655497 DOI: 10.1007/s10856-015-5414-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 10/24/2014] [Indexed: 06/04/2023]
Abstract
One of the existing issues in implant failure of orthopedic biomaterials is the toxicity induced by the fine particles released during long term use in vivo, leading to acute inflammatory response. In developing a new class of piezobiocomposite to mimic the integrated electrical and mechanical properties of bone, bone-mimicking physical properties as well as in vitro cytocompatibility properties have been achieved with spark plasma sintered hydroxyapatite (HA)-barium titanate (BaTiO3) composites. However, the presence of BaTiO3 remains a concern towards the potential toxicity effect. To address this issue, present work reports the first result to conclusively confirm the non-toxic effect of HA-BaTiO3 piezobiocomposite nanoparticulates, in vivo. Twenty BALB/c mice were intra-articularly injected at their right knee joints with different concentrations of HA-BaTiO3 composite of up to 25 mg/ml. The histopathological examination confirmed the absence of any trace of injected particles or any sign of inflammatory reaction in the vital organs, such as heart, spleen, kidney and liver at 7 days post-exposure period. Rather, the injected nanoparticulates were found to be agglomerated in the vicinity of the knee joint, surrounded by macrophages. Importantly, the absence of any systemic toxicity response in any of the vital organs in the treated mouse model, other than a mild local response at the site of delivery, was recorded. The serum biochemical analyses using proinflammatory cytokines (TNF-α and IL-1β) also complimented to the non-immunogenic response to injected particulates. Altogether, the absence of any inflammatory/adverse reaction will open up myriad of opportunities for BaTiO3 based piezoelectric implantable devices in biomedical applications.
Collapse
Affiliation(s)
- Ashutosh Kumar Dubey
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India
| | | | | |
Collapse
|
23
|
A systematic in-vivo toxicity evaluation of nanophosphor particles via zebrafish models. Biomaterials 2014; 35:440-9. [DOI: 10.1016/j.biomaterials.2013.09.054] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 09/16/2013] [Indexed: 11/18/2022]
|
24
|
Turkez H, Yousef MI, Sönmez E, Togar B, Bakan F, Sozio P, Stefano AD. Evaluation of cytotoxic, oxidative stress and genotoxic responses of hydroxyapatite nanoparticles on human blood cells. J Appl Toxicol 2013; 34:373-9. [DOI: 10.1002/jat.2958] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 09/09/2013] [Accepted: 09/30/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Hasan Turkez
- Department of Molecular Biology and Genetics, Faculty of Science; Erzurum Technical University; Erzurum Turkey
| | - Mokhtar I. Yousef
- Department of Environmental Studies, Institute of Graduate Studies and Research; Alexandria University; 21526 Alexandria Egypt
| | - Erdal Sönmez
- Department of Physics, K. K. Education Faculty; Atatürk University; Erzurum Turkey
- Department of Nanoscience & Nanoengineering, Advanced Materials Research Laboratory, Graduate School of Natural and Applied Sciences; Atatürk University; Erzurum Turkey
| | - Başak Togar
- Department of Biology, Faculty of Science; Atatürk University; Erzurum Turkey
| | - Feray Bakan
- SUNUM; Sabanci University; Tuzla Istanbul Turkey
| | - Piera Sozio
- Dipartimento di Farmacia; Università “G. D'Annunzio”; Chieti Italy
| | | |
Collapse
|