1
|
Feng J, Li Z. Progress in Noninvasive Low-Intensity Focused Ultrasound Neuromodulation. Stroke 2024; 55:2547-2557. [PMID: 39145391 DOI: 10.1161/strokeaha.124.046679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Low-intensity focused ultrasound represents groundbreaking medical advancements, characterized by its noninvasive feature, safety, precision, and broad neuromodulatory capabilities. This technology operates through mechanisms, for example, acoustic radiation force, cavitation, and thermal effects. Notably, with the evolution of medical technology, ultrasound neuromodulation has been gradually applied in treating central nervous system diseases, especially stroke. Furthermore, burgeoning research areas such as sonogenetics and nanotechnology show promising potential. Despite the benefit of low-intensity focused ultrasound the precise biophysical mechanism of ultrasound neuromodulation still need further exploration. This review discusses the recent and ongoing developments of low-intensity focused ultrasound for neurological regulation, covering the underlying rationale to current utility and the challenges that impede its further development and broader adoption of this promising alternative to noninvasive therapy.
Collapse
Affiliation(s)
- Jinru Feng
- Division of Vascular Neurology, Department of Neurology (J.F., Z.L.), Beijing Tiantan Hospital, Capital Medical University, China
| | - Zixiao Li
- Division of Vascular Neurology, Department of Neurology (J.F., Z.L.), Beijing Tiantan Hospital, Capital Medical University, China
- China National Clinical Research Center for Neurological Diseases (Z.L.), Beijing Tiantan Hospital, Capital Medical University, China
- Chinese Institute for Brain Research, Beijing, China (Z.L.)
| |
Collapse
|
2
|
Wang J, Li Y, Qi L, Mamtilahun M, Liu C, Liu Z, Shi R, Wu S, Yang GY. Advanced rehabilitation in ischaemic stroke research. Stroke Vasc Neurol 2024; 9:328-343. [PMID: 37788912 PMCID: PMC11420926 DOI: 10.1136/svn-2022-002285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/20/2023] [Indexed: 10/05/2023] Open
Abstract
At present, due to the rapid progress of treatment technology in the acute phase of ischaemic stroke, the mortality of patients has been greatly reduced but the number of disabled survivors is increasing, and most of them are elderly patients. Physicians and rehabilitation therapists pay attention to develop all kinds of therapist techniques including physical therapy techniques, robot-assisted technology and artificial intelligence technology, and study the molecular, cellular or synergistic mechanisms of rehabilitation therapies to promote the effect of rehabilitation therapy. Here, we discussed different animal and in vitro models of ischaemic stroke for rehabilitation studies; the compound concept and technology of neurological rehabilitation; all kinds of biological mechanisms of physical therapy; the significance, assessment and efficacy of neurological rehabilitation; the application of brain-computer interface, rehabilitation robotic and non-invasive brain stimulation technology in stroke rehabilitation.
Collapse
Affiliation(s)
- Jixian Wang
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medical, Shanghai, China
| | - Yongfang Li
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medical, Shanghai, China
| | - Lin Qi
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Muyassar Mamtilahun
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chang Liu
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ze Liu
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Rubing Shi
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Shengju Wu
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Yuan Yang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Meng W, Lin Z, Bian T, Chen X, Meng L, Yuan T, Niu L, Zheng H. Ultrasound Deep Brain Stimulation Regulates Food Intake and Body Weight in Mice. IEEE Trans Neural Syst Rehabil Eng 2024; 32:366-377. [PMID: 38194393 DOI: 10.1109/tnsre.2024.3351312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Given the widespread occurrence of obesity, new strategies are urgently needed to prevent, halt and reverse this condition. We proposed a noninvasive neurostimulation tool, ultrasound deep brain stimulation (UDBS), which can specifically modulate the hypothalamus and effectively regulate food intake and body weight in mice. Fifteen-min UDBS of hypothalamus decreased 41.4% food intake within 2 hours. Prolonged 1-hour UDBS significantly decreased daily food intake lasting 4 days. UDBS also effectively restrained body weight gain in leptin-receptor knockout mice (Sham: 96.19%, UDBS: 58.61%). High-fat diet (HFD) mice treated with 4-week UDBS (15 min / 2 days) reduced 28.70% of the body weight compared to the Sham group. Meanwhile, UDBS significantly modulated glucose-lipid metabolism and decreased the body fat. The potential mechanism is that ultrasound actives pro-opiomelanocortin (POMC) neurons in the hypothalamus for reduction of food intake and body weight. These results provide a noninvasive tool for controlling food intake, enabling systematic treatment of obesity.
Collapse
|
4
|
Liu T, Shi J, Fu Y, Zhang Y, Bai Y, He S, Deng W, Jin Q, Chen Y, Fang L, He L, Li Y, Yang Y, Zhang L, Lv Q, Wang J, Xie M. New trends in non-pharmacological approaches for cardiovascular disease: Therapeutic ultrasound. Trends Cardiovasc Med 2023; 33:431-440. [PMID: 35461990 DOI: 10.1016/j.tcm.2022.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/05/2022] [Accepted: 04/19/2022] [Indexed: 11/30/2022]
Abstract
Significant advances in application of therapeutic ultrasound have been reported in the past decades. Therapeutic ultrasound is an emerging non-invasive stimulation technique. This approach has shown high potential for treatment of various disease including cardiovascular disease. In this review, application principle and significance of the basic parameters of therapeutic ultrasound are summarized. The effects of therapeutic ultrasound in myocardial ischemia, heart failure, myocarditis, arrhythmias, and hypertension are explored, with key focus on the underlying mechanism. Further, the limitations and challenges of ultrasound therapy on clinical translation are evaluated to promote application of the novel strategy in cardiovascular diseases.
Collapse
Affiliation(s)
- Tianshu Liu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Jiawei Shi
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yanan Fu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yichan Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Ying Bai
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Shukun He
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Wenhui Deng
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Qiaofeng Jin
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yihan Chen
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Lingyun Fang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Lin He
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yuman Li
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yali Yang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Li Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Qing Lv
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Jing Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| | - Mingxing Xie
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| |
Collapse
|
5
|
Xu RS, Wu XM, Xiong ZQ. Low-intensity ultrasound directly modulates neural activity of the cerebellar cortex. Brain Stimul 2023; 16:918-926. [PMID: 37245844 DOI: 10.1016/j.brs.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/30/2023] Open
Abstract
BACKGROUND Low-intensity ultrasound is a noninvasive neuromodulation technique with the potential to focally manipulate deep brain activity at millimeter-scale resolution. However, there have been controversies over the direct influence of ultrasound on neurons, due to an indirect auditory activation. Besides, the capacity of ultrasound to stimulate the cerebellum remains underestimated. OBJECTIVE To validate the direct neuromodulation effects of ultrasound on the cerebellar cortex from both cellular and behavioral levels. METHODS Two-photon calcium imaging were used to measure the neuronal responses of cerebellar granule cells (GrCs) and Purkinje cells (PCs) to ultrasound application in awake mice. And a mouse model of paroxysmal kinesigenic dyskinesia (PKD), in which direct activation of the cerebellar cortex leads to dyskinetic movements, was used to assess the ultrasound-induced behavioral responses. RESULTS Low-intensity ultrasound stimulus (0.1 W/cm2) evoked rapidly increased and sustained neural activity in GrCs and PCs at targeted region, while no significant changes in calcium signals were observed responding to off-target stimulus. The efficacy of ultrasonic neuromodulation relies on acoustic dose modified by ultrasonic duration and intensity. In addition, transcranial ultrasound reliably triggered dyskinesia attacks in proline-rich transmembrane protein 2 (Prrt2) mutant mice, suggesting that the intact cerebellar cortex were activated by ultrasound. CONCLUSION Low-intensity ultrasound directly activates the cerebellar cortex in a dose-dependent manner, and thus serves as a promising tool for cerebellar manipulation.
Collapse
Affiliation(s)
- Ruo-Shui Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 200031, Shanghai, China; University of Chinese Academy of Sciences, 100049, Beijing, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Xue-Mei Wu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 200031, Shanghai, China; University of Chinese Academy of Sciences, 100049, Beijing, China; School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Zhi-Qi Xiong
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 200031, Shanghai, China; University of Chinese Academy of Sciences, 100049, Beijing, China; School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, 201210, Shanghai, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Domínguez-Oliva A, Hernández-Ávalos I, Martínez-Burnes J, Olmos-Hernández A, Verduzco-Mendoza A, Mota-Rojas D. The Importance of Animal Models in Biomedical Research: Current Insights and Applications. Animals (Basel) 2023; 13:ani13071223. [PMID: 37048478 PMCID: PMC10093480 DOI: 10.3390/ani13071223] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/19/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
Animal research is considered a key element in advance of biomedical science. Although its use is controversial and raises ethical challenges, the contribution of animal models in medicine is essential for understanding the physiopathology and novel treatment alternatives for several animal and human diseases. Current pandemics’ pathology, such as the 2019 Coronavirus disease, has been studied in primate, rodent, and porcine models to recognize infection routes and develop therapeutic protocols. Worldwide issues such as diabetes, obesity, neurological disorders, pain, rehabilitation medicine, and surgical techniques require studying the process in different animal species before testing them on humans. Due to their relevance, this article aims to discuss the importance of animal models in diverse lines of biomedical research by analyzing the contributions of the various species utilized in science over the past five years about key topics concerning human and animal health.
Collapse
Affiliation(s)
- Adriana Domínguez-Oliva
- Master’s Program in Agricultural and Livestock Sciences [Maestría en Ciencias Agropecuarias], Xochimilco Campus, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Ismael Hernández-Ávalos
- Clinical Pharmacology and Veterinary Anesthesia, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán 54714, Mexico
| | - Julio Martínez-Burnes
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Victoria City 87000, Mexico
| | - Adriana Olmos-Hernández
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis, Guillermo Ibarra Ibarra (INR-LGII), Mexico City 14389, Mexico
| | - Antonio Verduzco-Mendoza
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis, Guillermo Ibarra Ibarra (INR-LGII), Mexico City 14389, Mexico
| | - Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
- Correspondence:
| |
Collapse
|
7
|
Liu L, Zhang Z, Zhou Y, Pu Y, Liu D, Tian J. Brain symmetry index predicts 3-month mortality in patients with acute large hemispheric infarction. Medicine (Baltimore) 2022; 101:e31620. [PMID: 36451383 PMCID: PMC9704942 DOI: 10.1097/md.0000000000031620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Quantitative electroencephalography data are helpful to predict outcomes of cerebral infarction patients. The study was performed to evaluate the value of brain symmetry index by quantitative electroencephalography in predicting 3-month mortality of large hemispheric infarction. We studied a prospective, consecutive series of patients with large supratentorial cerebral infarction confirmed within 3 days from the onset in 2 intensive care units from August 2017 to February 2020. The electroencephalography was recorded once admission. The brain symmetry index (BSI) which is divided into BSIfast and BSIslow were calculated for each electrodes pair. The outcome was mortality at 3 months after the onset. A total of 38 patients were included. The subjects were divided into the mortality group (15 patients) and survival group (23 patients). Of the BSIfast and BSIslow at each electrodes pair, higher BSIfastC3-C4, higher BSIslowC3-C4, and higher BSIslowO1-O2 were noticed in the mortality group than that in the survival group at 3 months (P = .001; P = .010; P = .009). Multivariable analysis indicated that BSIfastC3-C4 was an independent predictor of 3-month mortality (odds ratio = 1.059, 95%CI 1.003, 1.119, P = .039). BSIfastC3-C4 could significant predict 3-month mortality (area under curve = 0.805, P = .005). And when we combined BSIfastC3-C4, Glasgow Coma Scale and infarct volume together to predict the 3-month mortality, the predicted value increased (area under curve = 0.840, P = .002). BSIfastC3-C4 could independently predict the 3-month mortality of large hemispheric infarction. The combination marker which includes Glasgow Coma Scale, infarct volume, and BSIfastC3-C4 has a better diagnostic value. Further clinical trials with a large sample size are still needed.
Collapse
Affiliation(s)
- Lidou Liu
- Neurocritical care unit, Department of Neurology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, China
| | - Zhe Zhang
- Neurocritical care unit, Department of neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yi Zhou
- Neurocritical care unit, Department of Neurology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yuehua Pu
- Neurocritical care unit, Department of neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Dacheng Liu
- Neurocritical care unit, Department of neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jia Tian
- Neurocritical care unit, Department of Neurology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, China
- * Correspondence: Jia Tian, Neurocritical care unit, Department of Neurology, the Second Hospital of Hebei Medical University, 215 Heping West Road, Xinhua District, Shijiazhuang 050000, Hebei, China (e-mail: )
| |
Collapse
|
8
|
Kim E, Kum J, Lee SH, Kim H. Development of a wireless ultrasonic brain stimulation system for concurrent bilateral neuromodulation in freely moving rodents. Front Neurosci 2022; 16:1011699. [PMID: 36213731 PMCID: PMC9539445 DOI: 10.3389/fnins.2022.1011699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Bilateral brain stimulation is an important modality used to investigate brain circuits and treat neurological conditions. Recently, low-intensity pulsed ultrasound (LIPUS) received significant attention as a novel non-invasive neurostimulation technique with high spatial specificity. Despite the growing interest, the typical ultrasound brain stimulation study, especially for small animals, is limited to a single target of sonication. The constraint is associated with the complexity and the cost of the hardware system required to achieve multi-regional sonication. This work presented the development of a low-cost LIPUS system with a pair of single-element ultrasound transducers to address the above problem. The system was built with a multicore processor with an RF amplifier circuit. In addition, LIPUS device was incorporated with a wireless module (bluetooth low energy) and powered by a single 3.7 V battery. As a result, we achieved an ultrasound transmission with a central frequency of 380 kHz and a peak-to-peak pressure of 480 kPa from each ultrasound transducer. The developed system was further applied to anesthetized rats to investigate the difference between uni- and bilateral stimulation. A significant difference in cortical power density extracted from electroencephalogram signals was observed between uni- and bilateral LIPUS stimulation. The developed device provides an affordable solution to investigate the effects of LIPUS on functional interhemispheric connection.
Collapse
Affiliation(s)
- Evgenii Kim
- Biomedical Research Division, Bionics Research Center, Korea Institute of Science and Technology, Seoul, South Korea
| | - Jeungeun Kum
- Biomedical Research Division, Bionics Research Center, Korea Institute of Science and Technology, Seoul, South Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, South Korea
| | - Seung Hyun Lee
- Biomedical Research Division, Bionics Research Center, Korea Institute of Science and Technology, Seoul, South Korea
| | - Hyungmin Kim
- Biomedical Research Division, Bionics Research Center, Korea Institute of Science and Technology, Seoul, South Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, South Korea
- *Correspondence: Hyungmin Kim,
| |
Collapse
|
9
|
Xie Z, Yan J, Dong S, Ji H, Yuan Y. Phase-locked closed-loop ultrasound stimulation modulates theta and gamma rhythms in the mouse hippocampus. Front Neurosci 2022; 16:994570. [PMID: 36161160 PMCID: PMC9493179 DOI: 10.3389/fnins.2022.994570] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Previous studies have demonstrated that open-loop transcranial ultrasound stimulation (TUS) can modulate theta and gamma rhythms of the local field potentials (LFPs) in the mouse hippocampus; however, the manner in which closed-loop TUS with different pressures based on phase-locking of theta rhythms modulates theta and gamma rhythm remains unclear. In this study, we established a closed-loop TUS system, which can perform closed-loop TUS by predicting the peaks and troughs of the theta rhythm. Comparison of the power, sample entropy and complexity, and phase-amplitude coupling (PAC) between the theta and gamma rhythms under peak and trough stimulation of the theta rhythm revealed the following: (1) the variation in the absolute power of the gamma rhythm and the relative power of the theta rhythm under TUS at 0.6–0.8 MPa differ between peak and trough stimulation; (2) the relationship of the sample entropy of the theta and gamma rhythms with ultrasound pressure depends on peak and trough stimulation; and (3) peak and trough stimulation affect the PAC strength between the theta and gamma rhythm as a function of ultrasound pressure. These results demonstrate that the modulation of the theta and gamma rhythms by ultrasound pressure depends on peak and trough stimulation of the theta rhythm in the mouse hippocampus.
Collapse
Affiliation(s)
- Zhenyu Xie
- School of Electrical Engineering, Yanshan University, Qinhuangdao, China
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao, China
| | - Jiaqing Yan
- College of Electrical and Control Engineering, North China University of Technology, Beijing, China
| | - Shuxun Dong
- School of Electrical Engineering, Yanshan University, Qinhuangdao, China
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao, China
| | - Hui Ji
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Hui Ji,
| | - Yi Yuan
- School of Electrical Engineering, Yanshan University, Qinhuangdao, China
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao, China
- Yi Yuan,
| |
Collapse
|
10
|
Yao L, Chen R, Ji H, Wang X, Zhang X, Yuan Y. Preventive and Therapeutic Effects of Low-Intensity Ultrasound Stimulation on Migraine in Rats. IEEE Trans Neural Syst Rehabil Eng 2022; 30:2332-2340. [PMID: 35981071 DOI: 10.1109/tnsre.2022.3199813] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study sought to systematically evaluate the prophylactic and therapeutic effects of low-intensity transcranial ultrasound stimulation on migraine in rats. We used video recordings to assess the head scratching behavior and laser speckle contrast imaging to record the changes in cerebral blood flow velocity of freely moving rats in a healthy group, migraine group, migraine group with ultrasound prevention, and migraine group with ultrasound therapy. Results demonstrated that (1) head scratching during migraine attacks in rats was accompanied by an decrease in cerebral blood flow; (2) both ultrasound prevention and therapy significantly reduced the number of head scratches but did not reduce the cerebral blood flow velocity; and (3) the number of head scratches in the ultrasound stimulation groups was not affected by the auditory effect. These results reveal that low-intensity ultrasound has the potential to be used clinically in the prevention and therapeutic treatment of migraine.
Collapse
|
11
|
Pang N, Meng W, Zhong Y, Liu X, Lin Z, Guo T, Zhou H, Qi L, Meng L, Xu L, Niu L. Ultrasound Deep Brain Stimulation Modulates Body Temperature in Mice. IEEE Trans Neural Syst Rehabil Eng 2022; 30:1851-1857. [PMID: 35788458 DOI: 10.1109/tnsre.2022.3188516] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Body temperature plays a critical role in rehabilitation, and numerous studies proved that the regulation of body temperature contributes to the sensorimotor recovery of patients with brain diseases such as stroke. The hypothalamus plays a key role in thermoregulation. Ultrasound deep brain stimulation (UDBS) can noninvasively modulate deep brain nuclei and have potential applications in the treatment of Parkinson's disease, Alzheimer's disease, and depression, among others. The purpose of this study was to investigate whether ultrasound stimulation of the hypothalamus could regulate body temperature in free-moving mice. Results showed that thermoregulation was related to ultrasonic parameters (pulse repetition frequency (PRF), duty cycle, total time, and acoustic pressure). UDBS of the preoptic area of the anterior hypothalamus at 500 Hz PRF could significantly reduce body temperature ( [Formula: see text] at t = 5 min, [Formula: see text] at t = 10 min, [Formula: see text] at t = 15 min). Meanwhile, UDBS of the dorsomedial hypothalamus at 10 Hz PRF triggered a significant increase in body temperature ( [Formula: see text] at t = 5 min, [Formula: see text] at t = 10 min). These results suggest that UDBS, as a noninvasive neuromodulation tool, may play a key role in the future clinical treatment of malignant hyperthermia and hypothermia.
Collapse
|
12
|
Kaloss AM, Arnold LN, Soliman E, Langman M, Groot N, Vlaisavljevich E, Theus MH. Noninvasive Low-Intensity Focused Ultrasound Mediates Tissue Protection following Ischemic Stroke. BME FRONTIERS 2022; 2022:9864910. [PMID: 37850177 PMCID: PMC10521672 DOI: 10.34133/2022/9864910] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 05/25/2022] [Indexed: 10/19/2023] Open
Abstract
Objective and Impact Statement. This study examined the efficacy and safety of pulsed, low-intensity focused ultrasound (LIFU) and determined its ability to provide neuroprotection in a murine permanent middle cerebral artery occlusion (pMCAO) model. Introduction. Focused ultrasound (FUS) has emerged as a new therapeutic strategy for the treatment of ischemic stroke; however, its nonthrombolytic properties remain ill-defined. Therefore, we examined how LIFU influenced neuroprotection and vascular changes following stroke. Due to the critical role of leptomeningeal anastomoses or pial collateral vessels, in cerebral blood flow restoration and tissue protection following ischemic stroke, we also investigated their growth and remodeling. Methods. Mice were exposed to transcranial LIFU (fundamental frequency: 1.1 MHz, sonication duration: 300 ms, interstimulus interval: 3 s, pulse repetition frequency: 1 kHz, duty cycle per pulse: 50%, and peak negative pressure: -2.0 MPa) for 30 minutes following induction of pMCAO and then evaluated for infarct volume, blood-brain barrier (BBB) disruption, and pial collateral remodeling at 24 hrs post-pMCAO. Results. We found significant neuroprotection in mice exposed to LIFU compared to mock treatment. These findings correlated with a reduced area of IgG deposition in the cerebral cortex, suggesting attenuation of BBB breakdown under LIFU conditions. We also observed increased diameter of CD31-postive microvessels in the ischemic cortex. We observed no significant difference in pial collateral vessel size between FUS and mock treatment at 24 hrs post-pMCAO. Conclusion. Our data suggests that therapeutic use of LIFU may induce protection through microvascular remodeling that is not related to its thrombolytic activity.
Collapse
Affiliation(s)
- Alexandra M. Kaloss
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA 24061, USA
| | - Lauren N. Arnold
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg VA 24061, USA
| | - Eman Soliman
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA 24061, USA
| | - Maya Langman
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg VA 24061, USA
| | - Nathalie Groot
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA 24061, USA
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg VA 24061, USA
- Center for Engineered Health, Virginia Tech, Blacksburg Virginia 24061, USA
| | - Michelle H. Theus
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Engineered Health, Virginia Tech, Blacksburg Virginia 24061, USA
| |
Collapse
|
13
|
Wang L, Huang G, Zhang L, Yang J, Ren C, Liang C, Shen Y, Su B. Effects of the Intermittent Theta Burst Stimulation of the Cerebellar Vermis on Balance Recovery After Stroke: A Study Protocol for a Randomized Controlled Trial. Front Aging Neurosci 2022; 14:881311. [PMID: 35572148 PMCID: PMC9099377 DOI: 10.3389/fnagi.2022.881311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/28/2022] [Indexed: 12/04/2022] Open
Abstract
Background The recovery of balance function is a critical segment in the rehabilitation treatment of stroke. The cerebellum is considered as the key structure involved in balance and motor control. The cerebellar vermis plays an important role in integrating vision, proprioception, and sensory skin input and may be a candidate stimulation target for regulating the motor network related with balance. However, evidence that the intermittent theta burst stimulation (iTBS) of cerebellar vermis can promote the recovery of balance function after stroke remains insufficient. Therefore, this study aims to explore the efficacy of the cerebellar vermis iTBS for the treatment of balance function in patients with stroke. Methods and Analysis Forty patients with stroke will be recruited in this prospective, randomized, sham-controlled trial. Participants will be randomized in a 1:1 ratio to receive either 15 sessions of cerebellar vermis iTBS (600 pulses) or sham stimulation. Additionally, a routine rehabilitation therapy follows the intervention. The primary outcome is the Berg Balance Scale, and the secondary outcomes are the Fugl–Meyer assessment of the lower extremity and modified Barthel index. The above outcomes will be assessed before intervention and at the end of each week. Pre- and post-iTBS resting-state functional magnetic resonance imaging (rs-fMRI) will be acquired, and the regional homogeneity, fractional amplitude of low-frequency fluctuation and functional connectivity will be calculated and analyzed. Discussion This protocol holds promise as a potential method to improve balance function in patients with stroke. If the outcomes of patients improve after the intervention, the study will provide new insights into improving balance function. Ethics and Dissemination This study has been approved by the Medical Research Ethics Committee of Wuxi Mental Health Center (Wuxi Tongren Rehabilitation Hospital). Results will be disseminated through (open-access) peer-reviewed publications, networks of scientists, professionals, and the public and presented at conferences. Clinical Trial Registration Number www.chictr.org.cn, identifier ChiCTR2100052590.
Collapse
Affiliation(s)
- Lin Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Guilan Huang
- Department of Rehabilitation, Wuxi Tongren Rehabilitation Hospital, Wuxi, China
| | - Li Zhang
- Department of Rehabilitation, Wuxi Tongren Rehabilitation Hospital, Wuxi, China
| | - Jinyu Yang
- Department of Rehabilitation, Wuxi Tongren Rehabilitation Hospital, Wuxi, China
| | - Caili Ren
- Department of Neurorehabilitation, Wuxi Tongren Rehabilitation Hospital, Wuxi, China
| | - Chengpan Liang
- Department of Rehabilitation, Wuxi Tongren Rehabilitation Hospital, Wuxi, China
| | - Ying Shen
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Ying Shen,
| | - Bin Su
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation, Wuxi Tongren Rehabilitation Hospital, Wuxi, China
- Bin Su,
| |
Collapse
|
14
|
Xie P, Hao Y, Chen X, Jin Z, Cheng S, Li X, Liu L, Yuan Y, Li X. Enhancement of functional corticomuscular coupling after transcranial ultrasound stimulation in mice. J Neural Eng 2022; 19. [PMID: 35272276 DOI: 10.1088/1741-2552/ac5c8b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/10/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Transcranial ultrasound stimulation (TUS), a large penetration depth and high spatial resolution technology, has developed rapidly in recent years. This study aimed to explore and evaluate the neuromodulation effects of TUS on mouse motor neural circuits under different parameters. APPROACH Our study used functional corticomuscular coupling (FCMC) as an index to explore the modulation mechanism for movement control under different TUS parameters (intensity [Isppa] and stimulation duration [SD]). We collected local field potential (LFP) and tail electromyographic (EMG) data under TUS in healthy mice and then introduced the time-frequency coherence method to analyze the FCMC before and after TUS in the time-frequency domain. After that, we defined the relative coherence area (RCA) to quantify the coherence between LFP and EMG under TUS. MAIN RESULTS The FCMC at theta, alpha, beta, and gamma bands was enhanced after TUS, and the neuromodulation efficacy mainly occurred in the lower frequency band (theta and alpha band). After TUS with different parameters, the FCMC in all selected frequency bands showed a tendency of increasing first and then decreasing. Further analysis showed that the maximum coupling value of theta band appeared from 0.2 to 0.4 s, and that the maximum coupling value in alpha and gamma band appeared from 0 to 0.2 s. SIGNIFICANCE The aforementioned results demonstrate that FCMC in the motor cortex could be modulated by TUS. We provide a theoretical basis for further exploring the modulation mechanism of TUS parameters and clinical application.
Collapse
Affiliation(s)
- Ping Xie
- Yanshan University, Yanshan University, Qinhuangdao, Hebei, China, Qinhuangdao, 066004, CHINA
| | - Yingying Hao
- Yanshan University School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei, China, Qinhuangdao, Hebei, 066004, CHINA
| | - Xiaoling Chen
- Yanshan University, Yanshan University, Qinhuangdao, Hebei, China, Qinhuangdao, 066004, CHINA
| | - Ziqiang Jin
- Yanshan University, Yanshan University, Qinhuangdao, Hebei, China, Qinhuangdao, Hebei, 066004, CHINA
| | - Shengcui Cheng
- Yanshan University, Yanshan University, Qinhuangdao, Hebei, China, Qinhuangdao, Hebei, 066004, CHINA
| | - Xin Li
- Yanshan University, Yanshan University, Qinhuangdao, Hebei, China, Qinhuangdao, 066004, CHINA
| | - Lanxiang Liu
- People's Hospital, Qinhuangdao, People's Hospital, Qinhuangdao, Hebei, China, Qinhuangdao, 066004, CHINA
| | - Yi Yuan
- Yanshan University School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei, China, Qinhuangdao, Hebei, 066004, CHINA
| | - Xiaoli Li
- Beijing Normal University, Beijing Normal University, Beijing, China, Beijing, 100000, CHINA
| |
Collapse
|
15
|
Collier C, Muzzio N, Thevi Guntnur R, Gomez A, Redondo C, Zurbano R, Schuller IK, Monton C, Morales R, Romero G. Wireless Force-Inducing Neuronal Stimulation Mediated by High Magnetic Moment Microdiscs. Adv Healthc Mater 2022; 11:e2101826. [PMID: 34890130 PMCID: PMC9583708 DOI: 10.1002/adhm.202101826] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/24/2021] [Indexed: 01/03/2023]
Abstract
Noninvasive manipulation of cell signaling is critical in basic neuroscience research and in developing therapies for neurological disorders and psychiatric conditions. Here, the wireless force-induced stimulation of primary neuronal circuits through mechanotransduction mediated by magnetic microdiscs (MMDs) under applied low-intensity and low-frequency alternating magnetic fields (AMFs), is described. MMDs are fabricated by top-down lithography techniques that allow for cost-effective mass production of biocompatible MMDs with high saturation and zero magnetic magnetic moment at remanence. MMDs are utilized as transducers of AMFs into mechanical forces. When MMDs are exposed to primary rat neuronal circuits, their magneto-mechanical actuation triggers the response of specific mechanosensitive ion channels expressed on the cell membranes activating ≈50% of hippocampal and ≈90% of cortical neurons subjected to the treatment. Mechanotransduction is confirmed by the inhibition of mechanosensitive transmembrane channels with Gd3+ . Mechanotransduction mediated by MMDs cause no cytotoxic effect to neuronal cultures. This technology fulfills the requirements of cell-type specificity and weak magnetic fields, two limiting factors in the development of noninvasive neuromodulation therapies and clinical equipment design. Moreover, high efficiency and long-lasting stimulations are successfully achieved. This research represents a fundamental step forward for magneto-mechanical control of neural activity using disc-shaped micromaterials with tailored magnetic properties.
Collapse
Affiliation(s)
- Claudia Collier
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Nicolas Muzzio
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Rohini Thevi Guntnur
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Amanda Gomez
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Carolina Redondo
- Department of Physical Chemistry, University of the Basque Country UPV/EHU, Leioa, 48940, Spain
| | - Raquel Zurbano
- Department of Physical Chemistry, University of the Basque Country UPV/EHU, Leioa, 48940, Spain
| | - Ivan K Schuller
- Center for Advanced Nanoscience and Department of Physics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Carlos Monton
- General Atomics, PO Box 85608, San Diego, CA, 92186, USA
| | - Rafael Morales
- Department of Physical Chemistry & BCMaterials, University of the Basque Country UPV/EHU, Leioa, 48940, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, 48011, Spain
| | - Gabriela Romero
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| |
Collapse
|
16
|
Liu X, Qiu F, Hou L, Wang X. Review of Noninvasive or Minimally Invasive Deep Brain Stimulation. Front Behav Neurosci 2022; 15:820017. [PMID: 35145384 PMCID: PMC8823253 DOI: 10.3389/fnbeh.2021.820017] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/27/2021] [Indexed: 12/11/2022] Open
Abstract
Brain stimulation is a critical technique in neuroscience research and clinical application. Traditional transcranial brain stimulation techniques, such as transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), and deep brain stimulation (DBS) have been widely investigated in neuroscience for decades. However, TMS and tDCS have poor spatial resolution and penetration depth, and DBS requires electrode implantation in deep brain structures. These disadvantages have limited the clinical applications of these techniques. Owing to developments in science and technology, substantial advances in noninvasive and precise deep stimulation have been achieved by neuromodulation studies. Second-generation brain stimulation techniques that mainly rely on acoustic, electronic, optical, and magnetic signals, such as focused ultrasound, temporal interference, near-infrared optogenetic, and nanomaterial-enabled magnetic stimulation, offer great prospects for neuromodulation. This review summarized the mechanisms, development, applications, and strengths of these techniques and the prospects and challenges in their development. We believe that these second-generation brain stimulation techniques pave the way for brain disorder therapy.
Collapse
Affiliation(s)
- Xiaodong Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Fang Qiu
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Lijuan Hou
- College of Physical Education and Sports, Beijing Normal University, Beijing, China
- *Correspondence: Lijuan Hou Xiaohui Wang
| | - Xiaohui Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- *Correspondence: Lijuan Hou Xiaohui Wang
| |
Collapse
|
17
|
Yi SS, Zou JJ, Meng L, Chen HM, Hong ZQ, Liu XF, Farooq U, Chen MX, Lin ZR, Zhou W, Ao LJ, Hu XQ, Niu LL. Ultrasound Stimulation of Prefrontal Cortex Improves Lipopolysaccharide-Induced Depressive-Like Behaviors in Mice. Front Psychiatry 2022; 13:864481. [PMID: 35573384 PMCID: PMC9099414 DOI: 10.3389/fpsyt.2022.864481] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/05/2022] [Indexed: 11/15/2022] Open
Abstract
Increasing evidence indicates that inflammatory responses may influence brain neurochemical pathways, inducing depressive-like behaviors. Ultrasound stimulation (US) is a promising non-invasive treatment for neuropsychiatric diseases. We investigated whether US can suppress inflammation and improve depressive-like behaviors. Mice were intraperitoneally injected with lipopolysaccharide to induce depressive-like behaviors. Ultrasound wave was delivered into the prefrontal cortex (PFC) for 30 min. Depressive- and anxiety-like behaviors were evaluated through the forced swimming test (FST), tail suspension test (TST), and elevated plus maze (EPM). Biochemical analyses were performed to assess the expression of inflammatory cytokines in the PFC and serum. The results indicated that US of the PFC significantly improved depressive-like behaviors in the TST (p < 0.05) and FST (p < 0.05). Anxiety-like behaviors also improved in the EPM (p < 0.05). Furthermore, the lipopolysaccharide-mediated upregulation of IL-6, IL-1β, and TNF-α in the PFC was significantly reduced (p < 0.05) by US. In addition, no tissue damage was observed. Overall, US of PFC can effectively improve lipopolysaccharide-induced depressive-like behaviors, possibly through the downregulation of inflammatory cytokines in the PFC. US may be a safe and promising tool for improvement of depression.
Collapse
Affiliation(s)
- Sha-Sha Yi
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,School of Rehabilitation, Kunming Medical University, Kunming, China
| | - Jun-Jie Zou
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Long Meng
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hou-Minji Chen
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhong-Qiu Hong
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiu-Fang Liu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Umar Farooq
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Mo-Xian Chen
- School of Rehabilitation, Kunming Medical University, Kunming, China
| | - Zheng-Rong Lin
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Zhou
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Li-Juan Ao
- School of Rehabilitation, Kunming Medical University, Kunming, China
| | - Xi-Quan Hu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li-Li Niu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
18
|
Storch S, Samantzis M, Balbi M. Driving Oscillatory Dynamics: Neuromodulation for Recovery After Stroke. Front Syst Neurosci 2021; 15:712664. [PMID: 34366801 PMCID: PMC8339272 DOI: 10.3389/fnsys.2021.712664] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/21/2021] [Indexed: 12/18/2022] Open
Abstract
Stroke is a leading cause of death and disability worldwide, with limited treatments being available. However, advances in optic methods in neuroscience are providing new insights into the damaged brain and potential avenues for recovery. Direct brain stimulation has revealed close associations between mental states and neuroprotective processes in health and disease, and activity-dependent calcium indicators are being used to decode brain dynamics to understand the mechanisms underlying these associations. Evoked neural oscillations have recently shown the ability to restore and maintain intrinsic homeostatic processes in the brain and could be rapidly deployed during emergency care or shortly after admission into the clinic, making them a promising, non-invasive therapeutic option. We present an overview of the most relevant descriptions of brain injury after stroke, with a focus on disruptions to neural oscillations. We discuss the optical technologies that are currently used and lay out a roadmap for future studies needed to inform the next generation of strategies to promote functional recovery after stroke.
Collapse
Affiliation(s)
- Sven Storch
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Montana Samantzis
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Matilde Balbi
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
19
|
New Horizons on Non-invasive Brain Stimulation of the Social and Affective Cerebellum. THE CEREBELLUM 2021; 21:482-496. [PMID: 34270081 DOI: 10.1007/s12311-021-01300-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/22/2021] [Indexed: 10/20/2022]
Abstract
The cerebellum is increasingly attracting scientists interested in basic and clinical research of neuromodulation. Here, we review available studies that used either transcranial magnetic stimulation (TMS) or transcranial direct current stimulation (tDCS) to examine the role of the posterior cerebellum in different aspects of social and affective cognition, from mood regulation to emotion discrimination, and from the ability to identify biological motion to higher-level social inferences (mentalizing). We discuss how at the functional level the role of the posterior cerebellum in these different processes may be explained by a generic prediction mechanism and how the posterior cerebellum may exert this function within different cortico-cerebellar and cerebellar limbic networks involved in social cognition. Furthermore, we suggest to deepen our understanding of the cerebro-cerebellar circuits involved in different aspects of social cognition by employing promising stimulation approaches that have so far been primarily used to study cortical functions and networks, such as paired-pulse TMS, frequency-tuned stimulation, state-dependent protocols, and chronometric TMS. The ability to modulate cerebro-cerebellar connectivity opens up possible clinical applications for improving impairments in social and affective skills associated with cerebellar abnormalities.
Collapse
|
20
|
Asan AS, Kang Q, Oralkan Ö, Sahin M. Entrainment of cerebellar Purkinje cell spiking activity using pulsed ultrasound stimulation. Brain Stimul 2021; 14:598-606. [PMID: 33774207 PMCID: PMC8164992 DOI: 10.1016/j.brs.2021.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Focused ultrasound (FUS) has excellent characteristics over other non-invasive stimulation methods in terms of spatial resolution and steering capability of the target. FUS has not been tested in the cerebellar cortex and cellular effects of FUS are not fully understood. OBJECTIVE/HYPOTHESIS To investigate how the activity of cerebellar Purkinje cells (PCs) is modulated by FUS with varying pulse durations and pulse repetition frequencies. METHODS A glass microelectrode was inserted into the cerebellar vermis lobule 6 from the dorsal side to extracellularly record single unit activity of the PCs in anesthetized rats. Ultrasonic stimulation (500 kHz) was applied through a coupling cone, filled with degassed water, from the posterior side to target the recording area with varying pulse durations and frequencies. RESULTS Simple spike (SS) activity of PCs was entrained by the FUS pattern where the probability of spike occurrences peaked at around 1 ms following the onset of the stimulus regardless of its duration (0.5, 1, or 2 ms). The level of entrainment was stronger with shorter pulse durations at 50-Hz pulse repetition frequency (PRF), however, peri-event histograms spread wider and the peaks delayed slightly at 100-Hz PRF, suggesting involvement of a long-lasting inhibitory mechanism. There was no significant difference between the average firing rates in the baseline and stimulation periods. CONCLUSION FUS can entrain spiking activity of single cells on a spike-by-spike basis as demonstrated here in the rat cerebellar cortex. The observed modulation potentially results from the aggregate of excitatory and inhibitory effects of FUS on the entire cortical network rather than on the PCs alone.
Collapse
Affiliation(s)
- Ahmet S Asan
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Qi Kang
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Ömer Oralkan
- Department of Electrical and Computer Engineering, NC State University, Raleigh, NC, USA
| | - Mesut Sahin
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA.
| |
Collapse
|