1
|
Haskell SC, Yeats E, Shi J, Hall T, Fowlkes JB, Xu Z, Sukovich JR. Acoustic Cavitation Emissions Predict Near-complete/complete Histotripsy Treatment in Soft Tissues. ULTRASOUND IN MEDICINE & BIOLOGY 2025; 51:909-920. [PMID: 40015999 PMCID: PMC11925334 DOI: 10.1016/j.ultrasmedbio.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 03/01/2025]
Abstract
OBJECTIVE Histotripsy is a non-invasive acoustic ablation technique that leverages cavitation to impart mechanical damage to a viscoelastic medium, such as tissue. Although histotripsy bubbles and lesions can be imaged with a variety of modalities, reliable methods to predict tissue disruption across different tissue-types remain to be determined. APPROACH Several ex-vivo bovine tissues were ablated by intrinsic threshold histotripsy over a range of pulse-per-location acoustic doses. Acoustic Cavitation Emission (ACE) signals were captured following every other therapeutic pulse using transmit-receive capable histotripsy arrays. Final bubble lifespan, lifespan-slope, and percent-reduction were calculated and correlated against histologic necrosis score (0-5: 0=0% necrosis, 5=>95% necrosis) and residual structure score (0-4: 0=none present, 4=intact) to evaluate the ability of features from ACE-signals to predict histotripsy-induced damage. Further, optimal ACE-feature thresholds were determined for binary evaluation of whether a necrosis score equal or greater than 4 had been reached. RESULTS Measured lifespans increased and lifespan-slopes decreased with pulses per location (ppl) and eventually plateaued in all tissue types, in similar trends to those previously observed in tissue phantoms. Necrosis score increased and residual structure decreased with increasing acoustic dose. Bubble lifespan-slope and percent-reduction correlated well with necrosis score. Thresholds able to predict the necrosis score of 4 or greater in brain, liver, and kidney were calculated with high sensitivity/specificity (>80%). The necrosis score of 4 and 5 is expected to correspond to near-complete/complete ablation by histological evaluation. CONCLUSION Features measured from ACE-signals, particularly the lifespan-slope and percent reduction, were used to predict near-complete/complete ablation of large-volume histotripsy treatments in ex vivo bovine liver, kidney, and brain tissues with good accuracy. Tissue heterogeneities were observed to impact the histotripsy damage and corresponding ACE-signals, and thus the predication accuracy.
Collapse
Affiliation(s)
- Scott C Haskell
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | - Ellen Yeats
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jiaqi Shi
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Tim Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - J Brian Fowlkes
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Radiology, University of Michigan, Ann Arbor, MI, USA; Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan R Sukovich
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Gupta D, Kaovasia TP, Komaiha M, Nielsen JF, Allen SP, Hall TL, Noll DC, Xu Z. Transcranial MRI-guided Histotripsy Targeting Using MR-thermometry and MR-ARFI. ULTRASOUND IN MEDICINE & BIOLOGY 2025; 51:330-335. [PMID: 39592380 DOI: 10.1016/j.ultrasmedbio.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024]
Abstract
OBJECTIVE Transcranial magnetic resonance imaging (MRI)-guided histotripsy has been demonstrated to treat various locations in in vivo swine brain through a human skull. To ensure that the histotripsy treatment is delivered to the intended target location, accurate pre-treatment targeting is necessary. In this work, we investigate the feasibility of MR-thermometry and MR-acoustic radiation force imaging (MR-ARFI) to perform pre-treatment targeting of histotripsy in ex vivo bovine brain through a human skull. METHODS A 700 kHz, 128-element MR-compatible histotripsy array was used to generate histotripsy and tone-burst sonications. The array's electronic drivers were modified to also generate low-amplitude tone-burst sonications to perform MR-thermometry and MR-ARFI-based targeting. Twelve ex vivo bovine brains were treated with histotripsy at 35 MPa, 75 MPa and through a skull at 36 MPa. Before treating the tissue, both MR-ARFI and MR-thermometry were used to estimate the lesion location. Finally, the location of the histotripsy lesion was compared with the focus estimated by MR-thermometry and MR-ARFI. RESULTS MR-thermometry and MR-ARFI were able to successfully perform pre-treatment targeting of histotripsy using the modified histotripsy array driver. Histotripsy focus was estimated with mean absolute errors along the transverse/longitudinal axis of 2.06/2.95 mm and 2.13/2.51 mm for MR-ARFI and MR-thermometry, respectively. The presence of the human skull reduced the pressure at the focal region, but it did not compromise the targeting accuracy of either of the two methods with a mean absolute error of 1.10/2.91 mm and 1.29/2.91 mm for MR-ARFI and MR-thermometry, respectively. CONCLUSION This study demonstrated that transcranial histotripsy pre-treatment targeting is feasible with MR-thermometry and MR-ARFI.
Collapse
Affiliation(s)
- Dinank Gupta
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Tarana P Kaovasia
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Mahmoud Komaiha
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jon-Fredrik Nielsen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Steven P Allen
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT, USA
| | - Timothy L Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Douglas C Noll
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Magnier C, Kwiecinski W, Escudero DS, Garcia SA, Vacher E, Delplanque M, Messas E, Pernot M. Self-Sensing Cavitation Detection for Pulsed Cavitational Ultrasound Therapy. IEEE Trans Biomed Eng 2025; 72:435-444. [PMID: 39236142 DOI: 10.1109/tbme.2024.3454798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
OBJECTIVES Monitoring cavitation during ultrasound therapy is crucial for assessing the procedure safety and efficacy. This work aims to develop a self-sensing and low-complexity approach for robust cavitation detection in moving organs such as the heart. METHODS An analog-to-digital converter was connected onto one channel of the therapeutic transducer from a clinical system dedicated to cardiac therapy, allowing to record signals on a computer. Acquisition of successive echoes backscattered by the cavitation cloud on the therapeutic transducer was performed at a high repetition rate. Temporal variations of the backscattered echoes were analyzed with a Singular-Value Decomposition filter to discriminate signals associated to cavitation, based on its stochastic nature. Metrics were derived to classify the filtered backscattered echoes. Classification of raw backscattered echoes was also performed with a machine learning approach. The performances were evaluated on 155 in vitro acquisitions and 110 signals acquired in vivo during transthoracic cardiac ultrasound therapy on 3 swine. RESULTS Cavitation detection was achieved successfully in moving tissues with high signal to noise ratio in vitro (cSNR = 25±5) and in vivo (cSNR = 20±6) and outperformed conventional methods (cSNR = 11±6). Classification methods were validated with spectral analysis of hydrophone measurements. High accuracy was obtained using either the clutter filter-based method (accuracy of 1) or the neural network-based method (accuracy of 0.99). CONCLUSION Robust self-sensing cavitation detection was demonstrated to be possible with a clutter filter-based method and a machine learning approach. SIGNIFICANCE The self-sensing cavitation detection method enables robust, reliable and low complexity cavitation activity monitoring during ultrasound therapy.
Collapse
|
4
|
Ruger L, Langman M, Farrell R, Rossmeisl JH, Prada F, Vlaisavljevich E. Ultrasound-Guided Mechanical High-Intensity Focused Ultrasound (Histotripsy) Through an Acoustically Permeable Polyolefin-Based Cranioplasty Device. IEEE Trans Biomed Eng 2024; 71:2877-2888. [PMID: 38728123 DOI: 10.1109/tbme.2024.3399688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Histotripsy is a non-thermal focused ultrasound therapy in development for the non-invasive ablation of cancerous tumors. Intracranial histotripsy has been limited by significant pressure attenuation through the skull, requiring large, complex array transducers to overcome this effect. OBJECTIVE Recently, a biocompatible, polyolefin-based cranioplasty device was developed to allow ultrasound (US) transmission into the intracranial space with minimal distortion. In this study, we investigated the in vitro feasibility of applying US-guided histotripsy procedures across the prosthesis. METHODS Pressure waveforms and beam profiles were collected for single- and multi-element histotripsy transducers. Then, high-speed optical images of the bubble cloud with and without the prosthesis were collected in water and tissue-mimicking agarose gel phantoms. Finally, red blood cell (RBC) tissue phantom and excised brain tissue experiments were completed to test the ablative efficacy across the prosthesis. RESULTS Single element tests revealed increased pressure loss with increasing transducer frequency and increasing transducer-to-prosthesis angle. Array transducer measurements at 1 MHz showed average pressure losses of >50% across the prosthesis. Aberration correction recovered up to 18% of the pressure lost, and high-speed optical imaging in water, agarose gels, and RBC phantoms demonstrated that histotripsy bubble clouds could be generated across the prosthesis at pulse repetition frequencies of 50-500 Hz. Histologic analysis revealed a complete breakdown of brain tissue treated across the prosthesis. Conclusion & Significance: Overall, the results of this study demonstrate that the cranial prosthesis may be used as an acoustic window through which intracranial histotripsy can be applied under US guidance without the need for large transcranial array transducers.
Collapse
|
5
|
Sandilos G, Butchy MV, Koneru M, Gongalla S, Sensenig R, Hong YK. Histotripsy - hype or hope? Review of innovation and future implications. J Gastrointest Surg 2024; 28:1370-1375. [PMID: 38862075 DOI: 10.1016/j.gassur.2024.05.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/18/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND Histotripsy is a novel, ultrasound-based ablative technique that was recently approved by the Food and Drug Administration for hepatic targets. It has several promising additional theoretical applications that need to be further investigated. Its basis as a nonthermal cavitational technology presents a unique advantage over existing thermal ablation techniques in maximizing local effects while minimizing adjacent tissue destruction. This review discusses the technical basis and current preclinical and clinical data surrounding histotripsy. METHODS This was a comprehensive review of the literature surrounding histotripsy and the clinical landscape of existing ablative techniques using the PubMed database. A technical summary of histotripsy's physics and cellular effect was described. Moreover, data from recent clinical trials, including Hope4Liver, and future implications regarding its application in various benign and malignant conditions were discussed. RESULTS Preclinical data demonstrated the efficacy of histotripsy ablation in various organ systems with minimal tissue destruction when examined at the histologic level. The first prospective clinical trial involving histotripsy in hepatocellular carcinoma and liver metastases, Hope4Liver, demonstrated a primary efficacy of 95.5% with minimal complications (6.8%). This efficacy was replicated in similar trials involving the treatment of benign prostatic hypertrophy. DISCUSSION In addition to the noninvasive ability to ablate lesions in the liver, histotripsy offers additional therapeutic potential. Early data suggest a potential complementary therapeutic effect when combining histotripsy with existing immunologic therapies because of the technology's theoretical ability to sensitize tumors to adaptive immunity. As with most novel therapies, the effect of histotripsy on the oncologic therapeutic landscape remains uncertain.
Collapse
Affiliation(s)
- Georgianna Sandilos
- Division of Surgical Oncology, Department of Surgery, Cooper University Hospital, Cooper University Health Care, Camden, NJ, United States
| | - Margaret Virginia Butchy
- Division of Surgical Oncology, Department of Surgery, Cooper University Hospital, Cooper University Health Care, Camden, NJ, United States
| | - Manisha Koneru
- Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Shivsai Gongalla
- Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Richard Sensenig
- Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Young Ki Hong
- Division of Surgical Oncology, Department of Surgery, Cooper University Hospital, Cooper University Health Care, Camden, NJ, United States.
| |
Collapse
|
6
|
Choi SW, Komaiha M, Choi D, Lu N, Gerhardson TI, Fox A, Chaudhary N, Camelo-Piragua S, Hall TL, Pandey AS, Xu Z, Sukovich JR. Neuronavigation-Guided Transcranial Histotripsy (NaviTH) System. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:1155-1166. [PMID: 38789304 PMCID: PMC11822949 DOI: 10.1016/j.ultrasmedbio.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/19/2024] [Accepted: 04/03/2024] [Indexed: 05/26/2024]
Abstract
OBJECTIVE The goal of the work described here was to develop the first neuronavigation-guided transcranial histotripsy (NaviTH) system and associated workflow for transcranial ablation. METHODS The NaviTH system consists of a 360-element, 700 kHz transmitter-receiver-capable transcranial histotripsy array, a clinical neuronavigation system and associated equipment for patient-to-array co-registration and therapy planning and targeting software systems. A workflow for NaviTH treatments, including pre-treatment aberration correction, was developed. Targeting errors stemming from target registration errors (TREs) during the patient-to-array co-registration process, as well as focal shifts caused by skull-induced aberrations, were investigated and characterized. The NaviTH system was used in treatments of two <96 h post-mortem human cadavers and in experiments in two excised human skullcaps. RESULTS The NaviTH was successfully used to create ablations in the cadaver brains as confirmed in post-treatment magnetic resonance imaging A total of three ablations were created in the cadaver brains, and targeting errors of 9, 3.4 and 4.4 mm were observed in corpus callosum, septum and thalamus targets, respectively. Errors were found to be caused primarily by TREs resulting from transducer tracking instrument design flaws and imperfections in the treatment workflow. Transducer tracking instrument design and workflow improvements reduced TREs to <2 mm, and skull-induced focal shifts, following pre-treatment aberration correction, were 0.3 mm. Total targeting errors of the NaviTH system following the noted improvements were 2.5 mm. CONCLUSIONS The feasibility of using the first NaviTH system in a human cadaver model has been determined. Although accuracy still needs to be improved, the proposed system has the potential to allow for transcranial histotripsy therapies without requiring active magnetic resonance treatment guidance.
Collapse
Affiliation(s)
- Sang Won Choi
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Mahmoud Komaiha
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Dave Choi
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Ning Lu
- Department of Biomedical Engineering, Stanford University, Stanford, CA, USA
| | - Tyler I Gerhardson
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Adam Fox
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Neeraj Chaudhary
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | | | - Timothy L Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Aditya S Pandey
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan R Sukovich
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
7
|
Abstract
Histotripsy is a relatively new therapeutic ultrasound technology to mechanically liquefy tissue into subcellular debris using high-amplitude focused ultrasound pulses. In contrast to conventional high-intensity focused ultrasound thermal therapy, histotripsy has specific clinical advantages: the capacity for real-time monitoring using ultrasound imaging, diminished heat sink effects resulting in lesions with sharp margins, effective removal of the treated tissue, a tissue-selective feature to preserve crucial structures, and immunostimulation. The technology is being evaluated in small and large animal models for treating cancer, thrombosis, hematomas, abscesses, and biofilms; enhancing tumor-specific immune response; and neurological applications. Histotripsy has been recently approved by the US Food and Drug Administration to treat liver tumors, with clinical trials undertaken for benign prostatic hyperplasia and renal tumors. This review outlines the physical principles of various types of histotripsy; presents major parameters of the technology and corresponding hardware and software, imaging methods, and bioeffects; and discusses the most promising preclinical and clinical applications.
Collapse
Affiliation(s)
- Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA;
| | - Tatiana D Khokhlova
- Applied Physics Laboratory, University of Washington, Seattle, Washington, USA
| | - Clifford S Cho
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Vera A Khokhlova
- Department of Acoustics, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
8
|
Kisting MA, White JK, Periyasamy S, Kutlu AZ, Kisting AL, Zhang X, Mao L, Laeseke PF, Wagner MG, Vlaisavljevich E, Lee FT, Ziemlewicz TJ. Safety and efficacy of histotripsy delivery through overlying gas-filled small bowel in an ex vivo swine model. Int J Hyperthermia 2024; 41:2369305. [PMID: 38897626 PMCID: PMC11224713 DOI: 10.1080/02656736.2024.2369305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024] Open
Abstract
PURPOSE To evaluate the safety and efficacy of performing histotripsy through overlying gas-filled bowel in an ex vivo swine model. METHODS An ex vivo model was created to simulate histotripsy treatment of solid organs through gas-filled bowel. Spherical 2.5 cm histotripsy treatments were performed in agar phantoms for each of five treatment groups: 1) control with no overlying bowel (n = 6), 2) bowel 0 cm above phantom (n = 6), 3) bowel 1 cm above phantom (n = 6), 4) bowel 2 cm above phantom (n = 6), and 5) bowel 0 cm above the phantom with increased treatment amplitude (n = 6). Bowel was inspected for gross and microscopic damage, and treatment zones were measured. A ray-tracing simulation estimated the percentage of therapeutic beam path blockage by bowel in each scenario. RESULTS All histotripsy treatments through partial blockage were successful (24/24). No visible or microscopic damage was observed to intervening bowel. Partial blockage resulted in a small increase in treatment volume compared to controls (p = 0.002 and p = 0.036 for groups with bowel 0 cm above the phantom, p > 0.3 for bowel 1 cm and 2 cm above the phantom). Gas-filled bowel was estimated to have blocked 49.6%, 35.0%, and 27.3% of the therapeutic beam at 0, 1, and 2 cm, respectively. CONCLUSION Histotripsy has the potential to be applied through partial gas blockage of the therapeutic beam path, as shown by this ex vivo small bowel model. Further work in an in vivo survival model appears indicated.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaofei Zhang
- New York University Long Island School of Medicine Department of Pathology
| | - Lu Mao
- University of Wisconsin Department of Biostatistics
| | - Paul F. Laeseke
- University of Wisconsin Department of Radiology
- University of Wisconsin Department of Biomedical Engineering
| | | | | | - Fred T. Lee
- University of Wisconsin Department of Radiology
- University of Wisconsin Department of Biomedical Engineering
- University of Wisconsin Department of Urology
| | | |
Collapse
|
9
|
Landry TG, Brown JA. Ultrasound imaging guided precision histotripsy: Effects of pulse settings on ablation properties in rat brain. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 155:2860-2874. [PMID: 38682916 PMCID: PMC11175660 DOI: 10.1121/10.0025832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/27/2024] [Accepted: 04/10/2024] [Indexed: 05/01/2024]
Abstract
A high-frequency 6 MHz miniature handheld histotripsy device with an endoscopic form factor and co-registered high-resolution ultrasound imaging was developed. This device could allow precision histotripsy ablation during minimally invasive brain tumor surgeries with real-time image guidance. This study characterized the outcome of acute histotripsy in the normal in vivo rat brain using the device with a range of histotripsy pulse settings, including number of cycles, pulse repetition frequency, and pressure, as well as other experimental factors. The stability and shape of the bubble cloud were measured during ablations, as well as the post-histotripsy ablation shape in ultrasound B-mode and histology. The results were compared between histological images and the ultrasound imaging data to determine how well ultrasound data reflected observable damage in histology. The results indicated that while pulse settings can have some influence on ablation shape, sample-to-sample variation had a larger influence on ablation shape. This suggests that real-time ablation monitoring is essential for accurate knowledge of outcomes. Ultrasound imaging provided an accurate real-time indication of ablation shape both during ablation and post-ablation.
Collapse
Affiliation(s)
- Thomas G Landry
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
- Division of Surgery, Nova Scotia Health, Halifax, Nova Scotia, Canada
| | - Jeremy A Brown
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
- Division of Surgery, Nova Scotia Health, Halifax, Nova Scotia, Canada
| |
Collapse
|
10
|
Verma Y, Perera Molligoda Arachchige AS. Revolutionizing brain interventions: the multifaceted potential of histotripsy. Neurosurg Rev 2024; 47:124. [PMID: 38509320 DOI: 10.1007/s10143-024-02353-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/26/2024] [Accepted: 03/12/2024] [Indexed: 03/22/2024]
Abstract
Histotripsy, a non-thermal ultrasound technique, holds significant promise in various applications within the realm of brain interventions. While its use for treating brain tumors is somewhat limited, focused ultrasound technology has been extensively investigated for a wide range of purposes within the brain, including disrupting the blood-brain barrier, supporting immunotherapy, addressing conditions like essential tremor, Parkinson's disease, Alzheimer's disease, epilepsy, and neuropathic pain. Research findings indicate that histotripsy can reduce tumor cells with fewer pulses, minimizing the risk of bleeding and cellular injury. The use of MRI sequences such as T2 and T2* enhances the evaluation of the effects of histotripsy treatment, facilitating non-invasive assessment of treated areas. Furthermore, histotripsy displays promise in creating precise brain lesions with minimal edema and inflammation, particularly in porcine models, suggesting considerable progress in the treatment of brain lesions. Moreover, studies confirm its feasibility, safety, and effectiveness in treating intracerebral hemorrhage by safely liquefying clots without causing significant harm to surrounding brain tissue., opening exciting possibilities for clinical applications. The development of transcranial MR-guided focused ultrasound systems based on histotripsy represents a significant breakthrough in overcoming the limitations associated with thermal ablation techniques. Histotripsy's ability to efficiently liquefy clots, minimize skull heating, and target shallow lesions near the skull establishes it as a promising alternative for various brain treatments. In conclusion, histotripsy offers diverse potential in the field of brain interventions, encompassing applications ranging from tumor treatment to the management of intracerebral hemorrhage. While challenges such as accurate monitoring and differentiation of treatment effects persist, ongoing research efforts and technological advancements continue to expand the role of histotripsy in both neurology and neurosurgery.
Collapse
Affiliation(s)
- Yash Verma
- Norfolk and Norwich University Hospital, Norwich, UK
| | | |
Collapse
|
11
|
Gray MD, Spiers L, Coussios CC. Sound speed and attenuation of human pancreas and pancreatic tumors and their influence on focused ultrasound thermal and mechanical therapies. Med Phys 2024; 51:809-825. [PMID: 37477551 DOI: 10.1002/mp.16622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 06/06/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND There is increasing interest in using ultrasound for thermal ablation, histotripsy, and thermal or cavitational enhancement of drug delivery for the treatment of pancreatic cancer. Ultrasonic and thermal modelling conducted as part of the treatment planning process requires acoustic property values for all constituent tissues, but the literature contains no data for the human pancreas. PURPOSE This study presents the first acoustic property measurements of human pancreatic samples and provides examples of how these properties impact a broad range of ultrasound therapies. METHODS Data were collected on human pancreatic tissue samples at physiological temperature from 23 consented patients in cooperation with a hospital pathology laboratory. Propagation of ultrasound over the 2.1-4.5 MHz frequency range through samples of various thicknesses and pathologies was measured using a set of custom-built ultrasonic calipers, with the data processed to estimate sound speed and attenuation. The results were used in acoustic and thermal simulations to illustrate the impacts on extracorporeal ultrasound therapies for mild hyperthermia, thermal ablation, and histotripsy implemented with a CE-marked clinical system operating at 0.96 MHz. RESULTS The mean sound speed and attenuation coefficient values for human samples were well below the range of values in the literature for non-human pancreata, while the human attenuation power law exponents were substantially higher. The simulated impacts on ultrasound mediated therapies for the pancreas indicated that when using the human data instead of the literature average, there was a 30% reduction in median temperature elevation in the treatment volume for mild hyperthermia and 43% smaller volume within a 60°C contour for thermal ablation, all driven by attenuation. By comparison, impacts on boiling and intrinsic threshold histotripsy were minor, with peak pressures changing by less than 15% (positive) and 1% (negative) as a consequence of the counteracting effects of attenuation and sound speed. CONCLUSION This study provides the most complete set of speed of sound and attenuation data available for the human pancreas, and it reiterates the importance of acoustic material properties in the planning and conduct of ultrasound-mediated procedures, particularly thermal therapies.
Collapse
Affiliation(s)
- Michael D Gray
- Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Laura Spiers
- Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | | |
Collapse
|
12
|
Worlikar T, Hall T, Zhang M, Mendiratta-Lala M, Green M, Cho CS, Xu Z. Insights from in vivo preclinical cancer studies with histotripsy. Int J Hyperthermia 2024; 41:2297650. [PMID: 38214171 PMCID: PMC11102041 DOI: 10.1080/02656736.2023.2297650] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/13/2024] Open
Abstract
Histotripsy is the first noninvasive, non-ionizing, and non-thermal ablation technique that mechanically fractionates target tissue into acellular homogenate via controlled acoustic cavitation. Histotripsy has been evaluated for various preclinical applications requiring noninvasive tissue removal including cancer, brain surgery, blood clot and hematoma liquefaction, and correction of neonatal congenital heart defects. Promising preclinical results including local tumor suppression, improved survival outcomes, local and systemic anti-tumor immune responses, and histotripsy-induced abscopal effects have been reported in various animal tumor models. Histotripsy is also being investigated in veterinary patients with spontaneously arising tumors. Research is underway to combine histotripsy with immunotherapy and chemotherapy to improve therapeutic outcomes. In addition to preclinical cancer research, human clinical trials are ongoing for the treatment of liver tumors and renal tumors. Histotripsy has been recently approved by the FDA for noninvasive treatment of liver tumors. This review highlights key learnings from in vivo shock-scattering histotripsy, intrinsic threshold histotripsy, and boiling histotripsy cancer studies treating cancers of different anatomic locations and discusses the major considerations in planning in vivo histotripsy studies regarding instrumentation, tumor model, study design, treatment dose, and post-treatment tumor monitoring.
Collapse
Affiliation(s)
- Tejaswi Worlikar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Timothy Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Man Zhang
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Michael Green
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
- Radiation Oncology, Ann Arbor VA Healthcare, Ann Arbor, Michigan, USA
| | - Clifford S. Cho
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Research Service, Ann Arbor VA Healthcare, Ann Arbor, Michigan, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
13
|
Edsall C, Fergusson A, Davis RM, Meyer CH, Allen SP, Vlaisavljevich E. Probability of Cavitation in a Custom Iron-Based Coupling Medium for Transcranial Magnetic Resonance-Guided Focused Ultrasound Procedures. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:2519-2526. [PMID: 37730478 PMCID: PMC10591864 DOI: 10.1016/j.ultrasmedbio.2023.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/13/2023] [Accepted: 08/16/2023] [Indexed: 09/22/2023]
Abstract
OBJECTIVE A coupling bath of circulating, chilled, degassed water is essential to safe and precise acoustic transmittance during transcranial magnetic resonance-guided focused ultrasound (tMRgFUS) procedures, but the circulating water impairs the critical real-time magnetic resonance imaging (MRI). An iron-based coupling medium (IBCM) using iron oxide nanoparticles previously developed by our group increased the relaxivity of the coupling bath such that it appears to be invisible on MRI compared with degassed water. However, the nanoparticles also reduced the pressure threshold for cavitation. To address this concern for prefocal cavitation, our group recently developed an IBCM of electrosterically stabilized and aggregation-resistant poly(methacrylic acid)-coated iron oxide nanoparticles (PMAA-FeOX) with a similar capability to reduce the MR signal of degassed water. This study examines the effect of the PMAA-FeOX IBCM on the cavitation threshold. METHODS Increasing concentrations of PMAA-FeOX nanoparticles in degassed, deionized water were placed at the focus of two different transducers to assess low and high duty-cycle pulsing parameters which are representative of two modes of focused ultrasound being investigated for tMRgFUS. Passive cavitation detection and high-speed optical imaging were used to measure cavitation threshold pressures. RESULTS The mean cavitation threshold was determined in both cases to be indistinguishable from the degassed water control, between 6-8 MPa for high duty-cycle pulsing (CW) and between 25.5-26.5 MPa for very low duty-cycle pulsing. CONCLUSION The findings of this study indicate that an IBCM of PMAA-FeOX nanoparticles is a possible solution to reducing MRI interference from the coupling bath without increasing the risk of prefocal cavitation.
Collapse
Affiliation(s)
- Connor Edsall
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Austin Fergusson
- Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Richey M Davis
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Craig H Meyer
- Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Steven P Allen
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT, USA
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; ICTAS Center for Engineered Health, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
14
|
Lyons B, Balkaran JPR, Dunn-Lawless D, Lucian V, Keller SB, O’Reilly CS, Hu L, Rubasingham J, Nair M, Carlisle R, Stride E, Gray M, Coussios C. Sonosensitive Cavitation Nuclei-A Customisable Platform Technology for Enhanced Therapeutic Delivery. Molecules 2023; 28:7733. [PMID: 38067464 PMCID: PMC10708135 DOI: 10.3390/molecules28237733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Ultrasound-mediated cavitation shows great promise for improving targeted drug delivery across a range of clinical applications. Cavitation nuclei-sound-sensitive constructs that enhance cavitation activity at lower pressures-have become a powerful adjuvant to ultrasound-based treatments, and more recently emerged as a drug delivery vehicle in their own right. The unique combination of physical, biological, and chemical effects that occur around these structures, as well as their varied compositions and morphologies, make cavitation nuclei an attractive platform for creating delivery systems tuned to particular therapeutics. In this review, we describe the structure and function of cavitation nuclei, approaches to their functionalization and customization, various clinical applications, progress toward real-world translation, and future directions for the field.
Collapse
Affiliation(s)
- Brian Lyons
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Joel P. R. Balkaran
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Darcy Dunn-Lawless
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Veronica Lucian
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Sara B. Keller
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Colm S. O’Reilly
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford OX1 3PJ, UK;
| | - Luna Hu
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Jeffrey Rubasingham
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Malavika Nair
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Robert Carlisle
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Eleanor Stride
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Michael Gray
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Constantin Coussios
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| |
Collapse
|
15
|
Hay AN, Ruger L, Hsueh A, Vickers E, Klahn S, Vlaisavljevich E, Tuohy J. A review of the development of histotripsy for extremity tumor ablation with a canine comparative oncology model to inform human treatments. Int J Hyperthermia 2023; 40:2274802. [PMID: 37994796 PMCID: PMC10669778 DOI: 10.1080/02656736.2023.2274802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/19/2023] [Indexed: 11/24/2023] Open
Abstract
Cancer is a devasting disease resulting in millions of deaths worldwide in both humans and companion animals, including dogs. Treatment of cancer is complex and challenging and therefore often multifaceted, as in the case of osteosarcoma (OS) and soft tissue sarcoma (STS). OS predominantly involves the appendicular skeleton and STS commonly develops in the extremities, resulting in treatment challenges due to the need to balance wide-margin resections to achieve local oncological control against the functional outcomes for the patient. To achieve wide tumor resection, invasive limb salvage surgery is often required, and the patient is at risk for numerous complications which can ultimately lead to impaired limb function and mobility. The advent of tumor ablation techniques offers the exciting potential of developing noninvasive or minimally invasive treatment options for extremity tumors. One promising innovative tumor ablation technique with strong potential to serve as a noninvasive limb salvage treatment for extremity tumor patients is histotripsy. Histotripsy is a novel, noninvasive, non-thermal, and non-ionizing focused ultrasound technique which uses controlled acoustic cavitation to mechanically disintegrate tissue with high precision. In this review, we present the ongoing development of histotripsy as a non-surgical alternative for extremity tumors and highlight the value of spontaneously occurring OS and STS in the pet dog as a comparative oncology research model to advance this field of histotripsy research.
Collapse
Affiliation(s)
- Alayna N. Hay
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA
- Virginia Tech Animal Cancer Care and Research Center, Virginia-Maryland College of Veterinary Medicine, Roanoke, VA
| | - Lauren Ruger
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Andy Hsueh
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA
- Virginia Tech Animal Cancer Care and Research Center, Virginia-Maryland College of Veterinary Medicine, Roanoke, VA
| | - Elliana Vickers
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA
- Virginia Tech Animal Cancer Care and Research Center, Virginia-Maryland College of Veterinary Medicine, Roanoke, VA
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA
- Graduate program in Translation Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA
| | - Shawna Klahn
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA
- Virginia Tech Animal Cancer Care and Research Center, Virginia-Maryland College of Veterinary Medicine, Roanoke, VA
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Joanne Tuohy
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA
- Virginia Tech Animal Cancer Care and Research Center, Virginia-Maryland College of Veterinary Medicine, Roanoke, VA
| |
Collapse
|
16
|
Yeats E, Hall TL. Aberration correction in abdominal histotripsy. Int J Hyperthermia 2023; 40:2266594. [PMID: 37813397 PMCID: PMC10637766 DOI: 10.1080/02656736.2023.2266594] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023] Open
Abstract
In transabdominal histotripsy, ultrasound pulses are focused on the body to noninvasively destroy soft tissues via cavitation. However, the ability to focus is limited by phase aberration, or decorrelation of the ultrasound pulses due to spatial variation in the speed of sound throughout heterogeneous tissue. Phase aberration shifts, broadens, and weakens the focus, thereby reducing the safety and efficacy of histotripsy therapy. This paper reviews and discusses aberration effects in histotripsy and in related therapeutic ultrasound techniques (e.g., high intensity focused ultrasound), with an emphasis on aberration by soft tissues. Methods for aberration correction are reviewed and can be classified into two groups: model-based methods, which use segmented images of the tissue as input to an acoustic propagation model to predict and compensate phase differences, and signal-based methods, which use a receive-capable therapy array to detect phase differences by sensing acoustic signals backpropagating from the focus. The relative advantages and disadvantages of both groups of methods are discussed. Importantly, model-based methods can correct focal shift, while signal-based methods can restore substantial focal pressure, suggesting that both methods should be combined in a 2-step approach. Aberration correction will be critical to improving histotripsy treatments and expanding the histotripsy treatment envelope to enable non-invasive, non-thermal histotripsy therapy for more patients.
Collapse
Affiliation(s)
- Ellen Yeats
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States
| | - Timothy L. Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
17
|
Choi SW, Duclos S, Camelo-Piragua S, Chaudhary N, Sukovich J, Hall T, Pandey A, Xu Z. Histotripsy Treatment of Murine Brain and Glioma: Temporal Profile of Magnetic Resonance Imaging and Histological Characteristics Post-treatment. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1882-1891. [PMID: 37277304 DOI: 10.1016/j.ultrasmedbio.2023.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 06/07/2023]
Abstract
OBJECTIVE Currently, there is a knowledge gap in our understanding of the magnetic resonance imaging (MRI) characteristics of brain tumors treated with histotripsy to evaluate treatment response as well as treatment-related injuries. Our aim was to bridge this gap by investigating and correlating MRI with histological analysis after histotripsy treatment of mouse brain with and without brain tumors and evaluating the evolution of the histotripsy ablation zone on MRI over time. METHODS An eight-element, 1 MHz histotripsy transducer with a focal distance of 32.5 mm was used to treat orthotopic glioma-bearing mice and normal mice. The tumor burden at the time of treatment was ∼5 mm3. T2, T2*, T1 and T1-gadolinium (Gd) MR images and histology of the brain were acquired on days 0, 2 and 7 for tumor-bearing mice and days 0, 2, 7, 14, 21 and 28 post-histotripsy for normal mice. RESULTS T2 and T2* sequences most accurately correlated with histotripsy treatment zone. The treatment-induced blood products, T1 along with T2, revealed blood product evolution from oxygenated, de-oxygenated blood and methemoglobin to hemosiderin. And T1-Gd revealed the state of the blood-brain barrier arising from the tumor or histotripsy ablation. Histotripsy leads to minor localized bleeding, which resolves within the first 7 d as evident on hematoxylin and eosin staining. By day 14, the ablation zone could be distinguished only by the macrophage-laden hemosiderin, which resides around the ablation zone, rendering the treated zone hypo-intense on all MR sequences. CONCLUSION These results provide a library of radiological features on MRI sequences correlated to histology, thus allowing for non-invasive evaluation of histotripsy treatment effects in in vivo experiments.
Collapse
Affiliation(s)
- Sang Won Choi
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | - Sarah Duclos
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | - Neeraj Chaudhary
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan Sukovich
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Timothy Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Aditya Pandey
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
18
|
Yeats E, Lu N, Sukovich JR, Xu Z, Hall TL. Soft Tissue Aberration Correction for Histotripsy Using Acoustic Emissions From Cavitation Cloud Nucleation and Collapse. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1182-1193. [PMID: 36759271 PMCID: PMC10082475 DOI: 10.1016/j.ultrasmedbio.2023.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/01/2022] [Accepted: 01/03/2023] [Indexed: 05/11/2023]
Abstract
OBJECTIVE Phase aberration from soft tissue limits the efficacy of histotripsy, a therapeutic ultrasound technique based on acoustic cavitation. Previous work has shown that the acoustic emissions from cavitation can serve as "point sources" for aberration correction (AC). This study compared the efficacy of soft tissue AC for histotripsy using acoustic cavitation emissions (ACE) from bubble cloud nucleation and collapse. METHODS A 750-kHz, receive-capable histotripsy array was pulsed to generate cavitation in ex vivo porcine liver through an intervening abdominal wall. Received ACE signals were used to determine the arrival time differences to the focus and compute corrective delays. Corrections from single pulses and from the median of multiple pulses were tested. DISCUSSION On average, ACE AC obtained 96% ± 3% of the pressure amplitude obtained by hydrophone-based correction (compared with 71% ± 5% without AC). Both nucleation- and collapse-based corrections obtained >96% of the hydrophone-corrected pressure when using medians of ≥10 pulses. When using single-pulse corrections, nucleation obtained a range of 49%-99% of the hydrophone-corrected pressure, while collapse obtained 95%-99%. CONCLUSION The results suggest that (i) ACE AC can recover nearly all pressure amplitude lost owing to soft tissue aberration and that (ii) the collapse signal permits robust AC using a small number of pulses.
Collapse
Affiliation(s)
- Ellen Yeats
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | - Ning Lu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan R Sukovich
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Timothy L Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
19
|
Wagner MG, Periyasamy S, Kutlu AZ, Pieper AA, Swietlik JF, Ziemlewicz TJ, Hall TL, Xu Z, Speidel MA, Jr FTL, Laeseke PF. An X-Ray C-Arm Guided Automatic Targeting System for Histotripsy. IEEE Trans Biomed Eng 2023; 70:592-602. [PMID: 35984807 PMCID: PMC9929026 DOI: 10.1109/tbme.2022.3198600] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Histotripsy is an emerging noninvasive, nonionizing and nonthermal focal cancer therapy that is highly precise and can create a treatment zone of virtually any size and shape. Current histotripsy systems rely on ultrasound imaging to target lesions. However, deep or isoechoic targets obstructed by bowel gas or bone can often not be treated safely using ultrasound imaging alone. This work presents an alternative x-ray C-arm based targeting approach and a fully automated robotic targeting system. METHODS The approach uses conventional cone beam CT (CBCT) images to localize the target lesion and 2D fluoroscopy to determine the 3D position and orientation of the histotripsy transducer relative to the C-arm. The proposed pose estimation uses a digital model and deep learning-based feature segmentation to estimate the transducer focal point relative to the CBCT coordinate system. Additionally, the integrated robotic arm was calibrated to the C-arm by estimating the transducer pose for four preprogrammed transducer orientations and positions. The calibrated system can then automatically position the transducer such that the focal point aligns with any target selected in a CBCT image. RESULTS The accuracy of the proposed targeting approach was evaluated in phantom studies, where the selected target location was compared to the center of the spherical ablation zones in post-treatment CBCTs. The mean and standard deviation of the Euclidean distance was 1.4 ±0.5 mm. The mean absolute error of the predicted treatment radius was 0.5 ±0.5 mm. CONCLUSION CBCT-based histotripsy targeting enables accurate and fully automated treatment without ultrasound guidance. SIGNIFICANCE The proposed approach could considerably decrease operator dependency and enable treatment of tumors not visible under ultrasound.
Collapse
|
20
|
Ruger LN, Hay AN, Vickers ER, Coutermarsh-Ott SL, Gannon JM, Covell HS, Daniel GB, Laeseke PF, Ziemlewicz TJ, Kierski KR, Ciepluch BJ, Vlaisavljevich E, Tuohy JL. Characterizing the Ablative Effects of Histotripsy for Osteosarcoma: In Vivo Study in Dogs. Cancers (Basel) 2023; 15:741. [PMID: 36765700 PMCID: PMC9913343 DOI: 10.3390/cancers15030741] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Osteosarcoma (OS) is a malignant bone tumor treated by limb amputation or limb salvage surgeries and chemotherapy. Histotripsy is a non-thermal, non-invasive focused ultrasound therapy using controlled acoustic cavitation to mechanically disintegrate tissue. Recent ex vivo and in vivo pilot studies have demonstrated the ability of histotripsy for ablating OS but were limited in scope. This study expands on these initial findings to more fully characterize the effects of histotripsy for bone tumors, particularly in tumors with different compositions. A prototype 500 kHz histotripsy system was used to treat ten dogs with suspected OS at an intermediate treatment dose of 1000 pulses per location. One day after histotripsy, treated tumors were resected via limb amputation, and radiologic and histopathologic analyses were conducted to determine the effects of histotripsy for each patient. The results of this study demonstrated that histotripsy ablation is safe and feasible in canine patients with spontaneous OS, while offering new insights into the characteristics of the achieved ablation zone. More extensive tissue destruction was observed after histotripsy compared to that in previous reports, and radiographic changes in tumor size and contrast uptake following histotripsy were reported for the first time. Overall, this study significantly expands our understanding of histotripsy bone tumor ablation and informs future studies for this application.
Collapse
Affiliation(s)
- Lauren N. Ruger
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24016, USA
| | - Alayna N. Hay
- Department of Small Animal Clinical Sciences, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA 24016, USA
- Virginia Tech Animal Cancer Care and Research Center, Virginia-Maryland Regional College of Veterinary Medicine, Roanoke, VA 24016, USA
| | - Elliana R. Vickers
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24016, USA
- Virginia Tech Animal Cancer Care and Research Center, Virginia-Maryland Regional College of Veterinary Medicine, Roanoke, VA 24016, USA
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA 24016, USA
| | - Sheryl L. Coutermarsh-Ott
- Department of Biological Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24016, USA
| | - Jessica M. Gannon
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24016, USA
| | - Hannah S. Covell
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24016, USA
| | - Gregory B. Daniel
- Department of Small Animal Clinical Sciences, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA 24016, USA
- Virginia Tech Animal Cancer Care and Research Center, Virginia-Maryland Regional College of Veterinary Medicine, Roanoke, VA 24016, USA
| | - Paul F. Laeseke
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - Katharine R. Kierski
- Department of Small Animal Clinical Sciences, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA 24016, USA
- Virginia Tech Animal Cancer Care and Research Center, Virginia-Maryland Regional College of Veterinary Medicine, Roanoke, VA 24016, USA
| | - Brittany J. Ciepluch
- Department of Small Animal Clinical Sciences, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA 24016, USA
- Virginia Tech Animal Cancer Care and Research Center, Virginia-Maryland Regional College of Veterinary Medicine, Roanoke, VA 24016, USA
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24016, USA
| | - Joanne L. Tuohy
- Department of Small Animal Clinical Sciences, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA 24016, USA
- Virginia Tech Animal Cancer Care and Research Center, Virginia-Maryland Regional College of Veterinary Medicine, Roanoke, VA 24016, USA
| |
Collapse
|
21
|
Williams RP, Simon JC, Khokhlova VA, Sapozhnikov OA, Khokhlova TD. The histotripsy spectrum: differences and similarities in techniques and instrumentation. Int J Hyperthermia 2023; 40:2233720. [PMID: 37460101 PMCID: PMC10479943 DOI: 10.1080/02656736.2023.2233720] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/15/2023] [Accepted: 07/02/2023] [Indexed: 07/20/2023] Open
Abstract
Since its inception about two decades ago, histotripsy - a non-thermal mechanical tissue ablation technique - has evolved into a spectrum of methods, each with distinct potentiating physical mechanisms: intrinsic threshold histotripsy, shock-scattering histotripsy, hybrid histotripsy, and boiling histotripsy. All methods utilize short, high-amplitude pulses of focused ultrasound delivered at a low duty cycle, and all involve excitation of violent bubble activity and acoustic streaming at the focus to fractionate tissue down to the subcellular level. The main differences are in pulse duration, which spans microseconds to milliseconds, and ultrasound waveform shape and corresponding peak acoustic pressures required to achieve the desired type of bubble activity. In addition, most types of histotripsy rely on the presence of high-amplitude shocks that develop in the pressure profile at the focus due to nonlinear propagation effects. Those requirements, in turn, dictate aspects of the instrument design, both in terms of driving electronics, transducer dimensions and intensity limitations at surface, shape (primarily, the F-number) and frequency. The combination of the optimized instrumentation and the bio-effects from bubble activity and streaming on different tissues, lead to target clinical applications for each histotripsy method. Here, the differences and similarities in the physical mechanisms and resulting bioeffects of each method are reviewed and tied to optimal instrumentation and clinical applications.
Collapse
Affiliation(s)
- Randall P Williams
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA, USA
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| | - Julianna C Simon
- Graduate Program in Acoustics, The Pennsylvania State University, University Park, PA, USA
| | - Vera A Khokhlova
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
- Department of Acoustics, Physics Faculty, Moscow State University, Moscow, Russia
| | - Oleg A Sapozhnikov
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
- Department of Acoustics, Physics Faculty, Moscow State University, Moscow, Russia
| | - Tatiana D Khokhlova
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA, USA
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| |
Collapse
|
22
|
Gannon J, Imran KM, Hendricks-Wenger A, Edwards M, Covell H, Ruger L, Singh N, Nagai-Singer M, Tintera B, Eden K, Mendiratta-Lala M, Vidal-Jove J, Luyimbazi D, Larson M, Clark-Deener S, Coutermarsh-Ott S, Allen IC, Vlaisavljevich E. Ultrasound-guided noninvasive pancreas ablation using histotripsy: feasibility study in an in vivo porcine model. Int J Hyperthermia 2023; 40:2247187. [PMID: 37643768 PMCID: PMC10839746 DOI: 10.1080/02656736.2023.2247187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/21/2023] [Accepted: 08/07/2023] [Indexed: 08/31/2023] Open
Abstract
Pancreatic cancer is a malignant disease associated with poor survival and nearly 80% present with unresectable tumors. Treatments such as chemotherapy and radiation therapy have shown overall improved survival benefits, albeit limited. Histotripsy is a noninvasive, non-ionizing, and non-thermal focused ultrasound ablation modality that has shown efficacy in treating hepatic tumors and other malignancies. In this novel study, we investigate histotripsy for noninvasive pancreas ablation in a pig model. In two studies, histotripsy was applied to the healthy pancreas in 11 pigs using a custom 32-element, 500 kHz histotripsy transducer attached to a clinical histotripsy system, with treatments guided by real-time ultrasound imaging. A pilot study was conducted in 3 fasted pigs with histotripsy applied at a pulse repetition frequency (PRF) of 500 Hz. Results showed no pancreas visualization on coaxial ultrasound imaging due to overlying intestinal gas, resulting in off-target injury and no pancreas damage. To minimize gas, a second group of pigs (n = 8) were fed a custard diet containing simethicone and bisacodyl. Pigs were euthanized immediately (n = 4) or survived for 1 week (n = 4) post-treatment. Damage to the pancreas and surrounding tissue was characterized using gross morphology, histological analysis, and CT imaging. Results showed histotripsy bubble clouds were generated inside pancreases that were visually maintained on coaxial ultrasound (n = 4), with 2 pigs exhibiting off-target damage. For chronic animals, results showed the treatments were well-tolerated with no complication signs or changes in blood markers. This study provides initial evidence suggesting histotripsy's potential for noninvasive pancreas ablation and warrants further evaluation in more comprehensive studies.
Collapse
Affiliation(s)
- Jessica Gannon
- Department of Biomedical Engineering and Mechanics, VA Tech, Blacksburg, VA, USA
| | - Khan Mohammad Imran
- Department of Biomedical Sciences and Pathobiology, Virginia-MD College of Veterinary Medicine, Blacksburg, VA, USA
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, USA
| | - Alissa Hendricks-Wenger
- Department of Biomedical Engineering and Mechanics, VA Tech, Blacksburg, VA, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-MD College of Veterinary Medicine, Blacksburg, VA, USA
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, USA
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN, USA
| | - Michael Edwards
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, US
| | - Hannah Covell
- Department of Biomedical Engineering and Mechanics, VA Tech, Blacksburg, VA, USA
| | - Lauren Ruger
- Department of Biomedical Engineering and Mechanics, VA Tech, Blacksburg, VA, USA
| | - Neha Singh
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | - Margaret Nagai-Singer
- Department of Biomedical Sciences and Pathobiology, Virginia-MD College of Veterinary Medicine, Blacksburg, VA, USA
| | - Benjamin Tintera
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | - Kristin Eden
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | | | - Joan Vidal-Jove
- Interventional Oncology Institute Khuab, Comprehensive Tumor Center, Barcelona, Spain
| | - David Luyimbazi
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
- Department of Surgery, Carilion Clinic, Roanoke, VA, USA
| | - Martha Larson
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Sherrie Clark-Deener
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Sheryl Coutermarsh-Ott
- Department of Biomedical Sciences and Pathobiology, Virginia-MD College of Veterinary Medicine, Blacksburg, VA, USA
| | - Irving C. Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-MD College of Veterinary Medicine, Blacksburg, VA, USA
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, USA
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
- ICTAS Center for Engineering Health, Virginia Tech, Blacksburg, VA
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering and Mechanics, VA Tech, Blacksburg, VA, USA
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, USA
- ICTAS Center for Engineering Health, Virginia Tech, Blacksburg, VA
| |
Collapse
|
23
|
Hu Z, Yang Y, Xu L, Hao Y, Chen H. Binary acoustic metasurfaces for dynamic focusing of transcranial ultrasound. Front Neurosci 2022; 16:984953. [PMID: 36117633 PMCID: PMC9475195 DOI: 10.3389/fnins.2022.984953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022] Open
Abstract
Transcranial focused ultrasound (tFUS) is a promising technique for non-invasive and spatially targeted neuromodulation and treatment of brain diseases. Acoustic lenses were designed to correct the skull-induced beam aberration, but these designs could only generate static focused ultrasound beams inside the brain. Here, we designed and 3D printed binary acoustic metasurfaces (BAMs) for skull aberration correction and dynamic ultrasound beam focusing. BAMs were designed by binarizing the phase distribution at the surface of the metasurfaces. The phase distribution was calculated based on time reversal to correct the skull-induced phase aberration. The binarization enabled the ultrasound beam to be dynamically steered along wave propagation direction by adjusting the operation frequency of the incident ultrasound wave. The designed BAMs were manufactured by 3D printing with two coding bits, a polylactic acid unit for bit "1" and a water unit for bit "0." BAMs for single- and multi-point focusing through the human skull were designed, 3D printed, and validated numerically and experimentally. The proposed BAMs with subwavelength scale in thickness are simple to design, easy to fabric, and capable of correcting skull aberration and achieving dynamic beam steering.
Collapse
Affiliation(s)
- Zhongtao Hu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, United States
| | - Yaoheng Yang
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, United States
| | - Lu Xu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, United States
| | - Yao Hao
- Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, MO, United States
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, United States
- Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
24
|
Ruger LN, Hay AN, Gannon JM, Sheppard HO, Coutermarsh-Ott SL, Daniel GB, Kierski KR, Ciepluch BJ, Vlaisavljevich E, Tuohy JL. Histotripsy Ablation of Spontaneously Occurring Canine Bone Tumors In Vivo. IEEE Trans Biomed Eng 2022; PP:10.1109/TBME.2022.3191069. [PMID: 35834467 PMCID: PMC9921194 DOI: 10.1109/tbme.2022.3191069] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Osteosarcoma (OS) is a devastating primary bone tumor in dogs and humans with limited non-surgical treatment options. As the first completely non-invasive and non-thermal ablation technique, histotripsy has the potential to significantly improve the standard of care for patients with primary bone tumors. INTRODUCTION Standard of care treatment for primary appendicular OS involves surgical resection via either limb amputation or limb-salvage surgery for suitable candidates. Biological similarities between canine and human OS make the dog an informative comparative oncology research model to advance treatment options for primary OS. Evaluating histotripsy for ablating spontaneous canine primary OS will build a foundation upon which histotripsy can be translated clinically into a standard of care therapy for canine and human OS. METHODS Five dogs with suspected spontaneous OS were treated with a 500 kHz histotripsy system guided by real-time ultrasound image guidance. Spherical ablation volumes within each tumor (1.25-3 cm in diameter) were treated with single cycle histotripsy pulses applied at a pulse repetition frequency of 500 Hz and a dose of 500 pulses/point. RESULTS Tumor ablation was successfully identified grossly and histologically within the targeted treatment regions of all subjects. Histotripsy treatments were well-tolerated amongst all patients with no significant clinical adverse effects. Conclusion & Significance: Histotripsy safely and effectively ablated the targeted treatment volumes in all subjects, demonstrating its potential to serve as a non-invasive treatment modality for primary bone tumors.
Collapse
|
25
|
Lu N, Hall TL, Sukovich JR, Choi SW, Snell J, McDannold N, Xu Z. Two-step aberration correction: application to transcranial histotripsy. Phys Med Biol 2022; 67:10.1088/1361-6560/ac72ed. [PMID: 35609619 PMCID: PMC9234948 DOI: 10.1088/1361-6560/ac72ed] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/24/2022] [Indexed: 11/11/2022]
Abstract
Objective: Phase aberration correction is essential in transcranial histotripsy to compensate for focal distortion caused by the heterogeneity of the intact skull bone. This paper improves the 2-step aberration correction (AC) method that has been previously presented and develops an AC workflow that fits in the clinical environment, in which the computed tomography (CT)-based analytical approach was first implemented, followed by a cavitation-based approach using the shockwaves from the acoustic cavitation emission (ACE).Approach:A 700 kHz, 360-element hemispherical transducer array capable of transmit-and-receive on all channels was used to transcranially generate histotripsy-induced cavitation and acquire ACE shockwaves. For CT-AC, two ray-tracing models were investigated: a forward ray-tracing model (transducer-to-focus) in the open-source software Kranion, and an in-house backward ray-tracing model (focus-to-transducer) accounting for refraction and the sound speed variation in skulls. Co-registration was achieved by aligning the skull CT data to the skull surface map reconstructed using the acoustic pulse-echo method. For ACE-AC, the ACE signals from the collapses of generated bubbles were aligned by cross-correlation to estimate the corresponding time delays.Main results:The performance of the 2-step method was tested with 3 excised human calvariums placed at 2 different locations in the transducer array. Results showed that the 2-step AC achieved 90 ± 7% peak focal pressure compared to the gold standard hydrophone correction. It also reduced the focal shift from 0.84 to 0.30 mm and the focal volume from 10.6 to 2.0 mm3on average compared to the no AC cases.Significance:The 2-step AC yielded better refocusing compared to either CT-AC or ACE-AC alone and can be implemented in real-time for transcranial histotripsy brain therapy.
Collapse
Affiliation(s)
- Ning Lu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, United States of America
| | - Timothy L Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, United States of America
| | - Jonathan R Sukovich
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, United States of America
| | - Sang Won Choi
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, United States of America
| | - John Snell
- Focused Ultrasound Foundation, Charlottesville, United States of America
| | - Nathan McDannold
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, United States of America
| |
Collapse
|
26
|
Arnold L, Hendricks-Wenger A, Coutermarsh-Ott S, Gannon J, Hay AN, Dervisis N, Klahn S, Allen IC, Tuohy J, Vlaisavljevich E. Histotripsy Ablation of Bone Tumors: Feasibility Study in Excised Canine Osteosarcoma Tumors. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:3435-3446. [PMID: 34462159 PMCID: PMC8578360 DOI: 10.1016/j.ultrasmedbio.2021.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/27/2021] [Accepted: 08/04/2021] [Indexed: 05/29/2023]
Abstract
Osteosarcoma (OS) is a primary bone tumor affecting both dogs and humans. Histotripsy is a non-thermal, non-invasive focused ultrasound method using controlled acoustic cavitation to mechanically disintegrate tissue. In this study, we investigated the feasibility of treating primary OS tumors with histotripsy using a 500-kHz transducer on excised canine OS samples harvested after surgery at the Veterinary Teaching Hospital at Virginia Tech. Samples were embedded in gelatin tissue phantoms and treated with the 500-kHz histotripsy system using one- or two-cycle pulses at a pulse repetition frequency of 250 Hz and a dosage of 4000 pulses/point. Separate experiments also assessed histotripsy effects on normal canine bone and nerve using the same pulsing parameters. After treatment, histopathological evaluation of the samples was completed. To determine the feasibility of treating OS through intact skin/soft tissue, additional histotripsy experiments assessed OS with overlying tissues. Generation of bubble clouds was achieved at the focus in all tumor samples at peak negative pressures of 26.2 ± 4.5 MPa. Histopathology revealed effective cell ablation in treated areas for OS tumors, with no evidence of cell death or tissue damage in normal tissues. Treatment through tissue/skin resulted in generation of well-confined bubble clouds and ablation zones inside OS tumors. Results illustrate the feasibility of treating OS tumors with histotripsy.
Collapse
Affiliation(s)
- Lauren Arnold
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, USA
| | - Alissa Hendricks-Wenger
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, USA; Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, USA; Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, Virginia, USA
| | - Sheryl Coutermarsh-Ott
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, USA
| | - Jessica Gannon
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, USA; Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia, USA
| | - Alayna N Hay
- Department of Small Animal Clinical Sciences, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, Virginia, USA
| | - Nikolaos Dervisis
- Department of Small Animal Clinical Sciences, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, Virginia, USA; ICTAS Center for Engineered Health, Virginia Tech, Kelly Hall, Blacksburg, Virginia, USA; Department of Internal Medicine, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| | - Shawna Klahn
- Department of Small Animal Clinical Sciences, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, Virginia, USA
| | - Irving C Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, USA; Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, Virginia, USA; ICTAS Center for Engineered Health, Virginia Tech, Kelly Hall, Blacksburg, Virginia, USA
| | - Joanne Tuohy
- Department of Small Animal Clinical Sciences, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, Virginia, USA
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, USA; ICTAS Center for Engineered Health, Virginia Tech, Kelly Hall, Blacksburg, Virginia, USA.
| |
Collapse
|
27
|
Hu Z, Xu L, Chien CY, Yang Y, Gong Y, Ye D, Pacia CP, Chen H. 3-D Transcranial Microbubble Cavitation Localization by Four Sensors. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:3336-3346. [PMID: 34166187 PMCID: PMC8808337 DOI: 10.1109/tuffc.2021.3091950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cavitation is the fundamental physical mechanism of various focused ultrasound (FUS)-mediated therapies in the brain. Accurately knowing the three-dimensional (3-D) location of cavitation in real-time can improve the targeting accuracy and avoid off-target tissue damage. Existing techniques for 3-D passive transcranial cavitation detection require the use of expensive and complicated hemispherical phased arrays with 128 or 256 elements. The objective of this study was to investigate the feasibility of using four sensors for transcranial 3-D localization of cavitation. Differential microbubble cavitation detection combined with the time difference of arrival algorithm was developed for the localization using the four sensors. Numerical simulation using k-Wave toolbox was performed to validate the proposed method for transcranial cavitation source localization. The sensors with a center frequency of 2.25 MHz and a 6 dB bandwidth of 1.39 MHz were used to locate cavitation generated by FUS (500 kHz) sonication of microbubbles that were injected into a tube positioned inside an ex vivo human skullcap. Cavitation emissions from the microbubbles were detected transcranially using the four sensors. Both simulation and experimental studies found that the proposed method achieved accurate 3-D cavitation localization. When the cavitation source was located within 30 mm from the geometric center of the sensor network, the accuracy of the localization method with the skull was measured to be 1.9±1.0 mm, which was not significantly different from that without the skull (1.7 ± 0.5 mm). The accuracy decreased as the cavitation source was away from the geometric center of the sensor network. It also decreased as the pulse length increased. Its accuracy was not significantly affected by the sensor position relative to the skull. In summary, four sensors combined with the proposed localization algorithm offer a simple approach for 3-D transcranial cavitation localization.
Collapse
|
28
|
Jing B, Lindsey BD. Effect of Skull Porous Trabecular Structure on Transcranial Ultrasound Imaging in the Presence of Elastic Wave Mode Conversion at Varying Incidence Angle. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:2734-2748. [PMID: 34140169 DOI: 10.1016/j.ultrasmedbio.2021.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
With the advancement of aberration correction techniques, transcranial ultrasound imaging has exhibited great potential in applications such as imaging neurological function and guiding therapeutic ultrasound. However, the feasibility of transcranial imaging varies among individuals because of the differences in skull acoustic properties. To better understand the fundamental mechanisms underlying the variation in imaging performance, the effect of the structure of the porous trabecular bone on transcranial imaging performance (i.e., target localization errors and resolution) was investigated for the first time through the use of elastic wave simulations and experiments. Simulation studies using high-resolution computed tomography data from ex vivo skull samples revealed that imaging at large incidence angles reduced the target localization error for skulls having low porosity; however, as skull porosity increased, large angles of incidence resulted in degradation of resolution and increased target localization errors. Experimental results indicate that imaging at normal incidence introduced a localization error of 1.85 ± 0.10 mm, while imaging at a large incidence angle (40°) resulted in an increased localization error of 6.54 ± 1.33 mm and caused a single point target to no longer appear as a single, coherent target in the resulting image, which is consistent with simulation results. This first investigation of the effects of skull microstructure on transcranial ultrasound imaging indicates that imaging performance is highly dependent on the porosity of the skull, particularly at non-normal angles of incidence.
Collapse
Affiliation(s)
- Bowen Jing
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Brooks D Lindsey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA; School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA.
| |
Collapse
|
29
|
Emerging Therapeutic Strategies for Brain Tumors. Neuromolecular Med 2021; 24:23-34. [PMID: 34406634 DOI: 10.1007/s12017-021-08681-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/10/2021] [Indexed: 12/14/2022]
Abstract
Nearly thirty thousand incidences of primary and 300 thousand incidences of metastatic brain cancer are diagnosed in the USA each year. It has a high mortality rate and is often unresponsive to the standard of care, which includes surgical resection, radiation, and chemotherapy. These treatment strategies are also hindered by their invasiveness and toxic effects on healthy cells and tissues. Furthermore, the blood-brain/tumor barrier severely limits delivery of anti-cancer therapeutics administered intravenously to brain tumors, resulting in poor tumor response to the treatment. There is a critical need to develop new approaches to brain cancer therapy that can overcome these limitations. Focused ultrasound has emerged as a modality that addresses many of these limitations and has the potential to alter the treatment paradigm for brain cancer. Ultrasound transmitted through the skull can be focused on tumors and used for targeted ablation or opening the vascular barriers for drug delivery. This review provides insight on the current status of these unique ultrasound techniques, different strategies of using this technique for brain cancer, experience in preclinical models, and potential for clinical translation. We also debate the safety perspective of these techniques and discuss potential avenues for future work in noninvasive planning, monitoring, and evaluation of the ultrasonic neurointervention.
Collapse
|
30
|
Sun T, Dasgupta A, Zhao Z, Nurunnabi M, Mitragotri S. Physical triggering strategies for drug delivery. Adv Drug Deliv Rev 2020; 158:36-62. [PMID: 32589905 DOI: 10.1016/j.addr.2020.06.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/06/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022]
Abstract
Physically triggered systems hold promise for improving drug delivery by enhancing the controllability of drug accumulation and release, lowering non-specific toxicity, and facilitating clinical translation. Several external physical stimuli including ultrasound, light, electric fields and magnetic fields have been used to control drug delivery and they share some common features such as spatial targeting, spatiotemporal control, and minimal invasiveness. At the same time, they possess several distinctive features in terms of interactions with biological entities and/or the extent of stimulus response. Here, we review the key advances of such systems with a focus on discussing their physical mechanisms, the design rationales, and translational challenges.
Collapse
Affiliation(s)
- Tao Sun
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Anshuman Dasgupta
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Zongmin Zhao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, TX 79902, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|