1
|
Vidkjær NH, Schmidt S, Davie‐Martin CL, Silué KS, Koné NA, Rinnan R, Poulsen M. Volatile Organic Compounds of Diverse Origins and Their Changes Associated With Cultivar Decay in a Fungus-Farming Termite. Environ Microbiol 2025; 27:e70049. [PMID: 39910670 PMCID: PMC11799395 DOI: 10.1111/1462-2920.70049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 12/02/2024] [Accepted: 01/03/2025] [Indexed: 02/07/2025]
Abstract
Fungus-farming termites cultivate a Termitomyces fungus monoculture in enclosed gardens (combs) free of other fungi, except during colony declines, where Pseudoxylaria spp. stowaway fungi appear and take over combs. Here, we determined Volatile Organic Compounds (VOCs) of healthy Macrotermes bellicosus nests in nature and VOC changes associated with comb decay during Pseudoxylaria takeover. We identified 443 VOCs and unique volatilomes across samples and nest volatilomes that were mainly composed of fungus comb VOCs with termite contributions. Few comb VOCs were linked to chemical changes during decay, but longipinocarvone and longiverbenone were only emitted during comb decay. These terpenes may be involved in Termitomyces defence against antagonistic fungi or in fungus-termite signalling of comb state. Both comb and Pseudoxylaria biomass volatilomes contained many VOCs with antimicrobial activity that may serve in maintaining healthy Termitomyces monocultures or aid in the antagonistic takeover by Pseudoxylaria during colony decline. We further observed a series of oxylipins with known functions in the regulation of fungus germination, growth, and secondary metabolite production. Our volatilome map of the fungus-farming termite symbiosis provides new insights into the chemistry regulating complex interactions and serves as a valuable guide for future work on the roles of VOCs in symbioses.
Collapse
Affiliation(s)
- Nanna Hjort Vidkjær
- Section for Ecology and Evolution, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Suzanne Schmidt
- Section for Ecology and Evolution, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Cleo Lisa Davie‐Martin
- Section for Terrestrial Ecology, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | | | - N'golo Abdoulaye Koné
- Department of Natural Sciences (UFR‐SN)Nangui Abrogoua UniversityAbidjanCôte d'Ivoire
- Station de Recherche en Ecologie du Parc National de la ComoéAbidjanCote d'Ivoire
| | - Riikka Rinnan
- Section for Terrestrial Ecology, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
- Center for Volatile Interactions, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Michael Poulsen
- Section for Ecology and Evolution, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
2
|
Ma M, Luo J, Li C, Eleftherianos I, Zhang W, Xu L. A life-and-death struggle: interaction of insects with entomopathogenic fungi across various infection stages. Front Immunol 2024; 14:1329843. [PMID: 38259477 PMCID: PMC10800808 DOI: 10.3389/fimmu.2023.1329843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Insects constitute approximately 75% of the world's recognized fauna, with the majority of species considered as pests. Entomopathogenic fungi (EPF) are parasitic microorganisms capable of efficiently infecting insects, rendering them potent biopesticides. In response to infections, insects have evolved diverse defense mechanisms, prompting EPF to develop a variety of strategies to overcome or circumvent host defenses. While the interaction mechanisms between EPF and insects is well established, recent findings underscore that their interplay is more intricate than previously thought, especially evident across different stages of EPF infection. This review primarily focuses on the interplay between EPF and the insect defense strategies, centered around three infection stages: (1) Early infection stage: involving the pre-contact detection and avoidance behavior of EPF in insects, along with the induction of behavioral responses upon contact with the host cuticle; (2) Penetration and intra-hemolymph growth stage: involving the initiation of intricate cellular and humoral immune functions in insects, while symbiotic microbes can further contribute to host resistance; (3) Host insect's death stage: involving the ultimate confrontation between pathogens and insects. Infected insects strive to separate themselves from the healthy population, while pathogens rely on the infected insects to spread to new hosts. Also, we discuss a novel pest management strategy underlying the cooperation between EPF infection and disturbing the insect immune system. By enhancing our understanding of the intricate interplay between EPF and the insect, this review provides novel perspectives for EPF-mediated pest management and developing effective fungal insecticides.
Collapse
Affiliation(s)
- Meiqi Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Jing Luo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Chong Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Ioannis Eleftherianos
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, Washington, DC, United States
| | - Wei Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering (Ministry of Education), Guizhou University, Guiyang, China
| | - Letian Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
3
|
Senra MVX. In silico characterization of cysteine-stabilized αβ defensins from neglected unicellular microeukaryotes. BMC Microbiol 2023; 23:82. [PMID: 36966312 PMCID: PMC10040121 DOI: 10.1186/s12866-023-02817-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/09/2023] [Indexed: 03/27/2023] Open
Abstract
BACKGROUND The emergence of multi-resistant pathogens have increased dramatically in recent years, becoming a major public-health concern. Among other promising antimicrobial molecules with potential to assist in this worldwide struggle, cysteine-stabilized αβ (CS-αβ) defensins are attracting attention due their efficacy, stability, and broad spectrum against viruses, bacteria, fungi, and protists, including many known human pathogens. RESULTS Here, 23 genomes of ciliated protists were screened and two CS-αβ defensins with a likely antifungal activity were identified and characterized, using bioinformatics, from a culturable freshwater species, Laurentiella sp. (LsAMP-1 and LsAMP-2). Although any potential cellular ligand could be predicted for LsAMP-2; evidences from structural, molecular dynamics, and docking analyses suggest that LsAMP-1 may form stably associations with phosphatidylinositol 4,5-bisphosphates (PIP2), a phospholipid found on many eukaryotic cells, which could, in turn, represent an anchorage mechanism within plasma membrane of targeted cells. CONCLUSION These data stress that more biotechnology-oriented studies should be conducted on neglected protists, such ciliates, which could become valuable sources of novel bioactive molecules for therapeutic uses.
Collapse
|
4
|
Wu CY, Meng J, Merchant A, Zhang YX, Li MW, Zhou XG, Wang Q. Microbial Response to Fungal Infection in a Fungus-Growing Termite, Odontotermes formosanus (Shiraki). Front Microbiol 2021; 12:723508. [PMID: 34880836 PMCID: PMC8645866 DOI: 10.3389/fmicb.2021.723508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
The crosstalk between gut microbiota and host immunity has emerged as one of the research foci of microbiome studies in recent years. The purpose of this study was to determine how gut microbes respond to fungal infection in termites, given their reliance on gut symbionts for food intake as well as maintaining host health. Here, we used Metarhizium robertsii, an entomopathogenic fungus, to infect Odontotermes formosanus, a fungus-growing termite in the family Termitidae, and documented changes in host gut microbiota via a combination of bacterial 16S rDNA sequencing, metagenomic shotgun sequencing, and transmission electron microscopy. Our analyses found that when challenged with Metarhizium, the termite gut showed reduced microbial diversity within the first 12 h of fungal infection and then recovered and even surpassed pre-infection flora levels. These combined results shed light on the role of gut flora in maintaining homeostasis and immune homeostasis in the host, and the impact of gut flora dysbiosis on host susceptibility to infection.
Collapse
Affiliation(s)
- Chen-Yu Wu
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China.,School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Jing Meng
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Austin Merchant
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Yi-Xiang Zhang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Mu-Wang Li
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Xu-Guo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Qian Wang
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
De Mandal S, Panda AK, Murugan C, Xu X, Senthil Kumar N, Jin F. Antimicrobial Peptides: Novel Source and Biological Function With a Special Focus on Entomopathogenic Nematode/Bacterium Symbiotic Complex. Front Microbiol 2021; 12:555022. [PMID: 34335484 PMCID: PMC8318700 DOI: 10.3389/fmicb.2021.555022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/14/2021] [Indexed: 01/05/2023] Open
Abstract
The rapid emergence of multidrug resistant microorganisms has become one of the most critical threats to public health. A decrease in the effectiveness of available antibiotics has led to the failure of infection control, resulting in a high risk of death. Among several alternatives, antimicrobial peptides (AMPs) serve as potential alternatives to antibiotics to resolve the emergence and spread of multidrug-resistant pathogens. These small proteins exhibit potent antimicrobial activity and are also an essential component of the immune system. Although several AMPs have been reported and characterized, studies associated with their potential medical applications are limited. This review highlights the novel sources of AMPs with high antimicrobial activities, including the entomopathogenic nematode/bacterium (EPN/EPB) symbiotic complex. Additionally, the AMPs derived from insects, nematodes, and marine organisms and the design of peptidomimetic antimicrobial agents that can complement the defects of therapeutic peptides have been used as a template.
Collapse
Affiliation(s)
- Surajit De Mandal
- Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
| | | | - Chandran Murugan
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, India
| | - Xiaoxia Xu
- Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
| | | | - Fengliang Jin
- Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
6
|
Aguero CM, Eyer P, Martin JS, Bulmer MS, Vargo EL. Natural variation in colony inbreeding does not influence susceptibility to a fungal pathogen in a termite. Ecol Evol 2021; 11:3072-3083. [PMID: 33841768 PMCID: PMC8019025 DOI: 10.1002/ece3.7233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 01/26/2023] Open
Abstract
Reduced genetic diversity through inbreeding can negatively affect pathogen resistance. This relationship becomes more complicated in social species, such as social insects, since the chance of disease transmission increases with the frequency of interactions among individuals. However, social insects may benefit from social immunity, whereby individual physiological defenses may be bolstered by collective-level immune responses, such as grooming or sharing of antimicrobial substance through trophallaxis. We set out to determine whether differences in genetic diversity between colonies of the subterranean termite, Reticulitermes flavipes, accounts for colony survival against pathogens. We sampled colonies throughout the United States (Texas, North Carolina, Maryland, and Massachusetts) and determined the level of inbreeding of each colony. To assess whether genetically diverse colonies were better able to survive exposure to diverse pathogens, we challenged groups of termite workers with two strains of a pathogenic fungus, one local strain present in the soil surrounding sampled colonies and another naïve strain, collected outside the range of this species. We found natural variation in the level of inbreeding between colonies, but this variation did not explain differences in susceptibility to either pathogen. Although the naïve strain was found to be more hazardous than the local strain, colony resistance was correlated between two strains, meaning that colonies had either relatively high or low susceptibility to both strains regardless of their inbreeding coefficient. Overall, our findings may reflect differential virulence between the strains, immune priming of the colonies via prior exposure to the local strain, or a coevolved resistance toward this strain. They also suggest that colony survival may rely more upon additional factors, such as different behavioral response thresholds or the influence of a specific genetic background, rather than the overall genetic diversity of the colony.
Collapse
Affiliation(s)
- Carlos M. Aguero
- Department of EntomologyTexas A&M UniversityCollege StationTXUSA
| | | | - Jason S. Martin
- Department of Biological SciencesTowson UniversityTowsonMDUSA
| | - Mark S. Bulmer
- Department of Biological SciencesTowson UniversityTowsonMDUSA
| | - Edward L. Vargo
- Department of EntomologyTexas A&M UniversityCollege StationTXUSA
| |
Collapse
|
7
|
Kett S, Pathak A, Turillazzi S, Cavalieri D, Marvasi M. Antifungals, arthropods and antifungal resistance prevention: lessons from ecological interactions. Proc Biol Sci 2021; 288:20202716. [PMID: 33529557 DOI: 10.1098/rspb.2020.2716] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Arthropods can produce a wide range of antifungal compounds, including specialist proteins, cuticular products, venoms and haemolymphs. In spite of this, many arthropod taxa, particularly eusocial insects, make use of additional antifungal compounds derived from their mutualistic association with microbes. Because multiple taxa have evolved such mutualisms, it must be assumed that, under certain ecological circumstances, natural selection has favoured them over those relying upon endogenous antifungal compound production. Further, such associations have been shown to persist versus specific pathogenic fungal antagonists for more than 50 million years, suggesting that compounds employed have retained efficacy in spite of the pathogens' capacity to develop resistance. We provide a brief overview of antifungal compounds in the arthropods' armoury, proposing a conceptual model to suggest why their use remains so successful. Fundamental concepts embedded within such a model may suggest strategies by which to reduce the rise of antifungal resistance within the clinical milieu.
Collapse
Affiliation(s)
- Steve Kett
- Department of Natural Sciences, Middlesex University London, London, UK
| | - Ayush Pathak
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Zurich, Switzerland
| | - Stefano Turillazzi
- Department of Biology, University of Florence, Sesto Fiorentino, Florence, Italy.,Insect Pharma Entomotherapy S.r.l, Sesto Fiorentino, Florence, Italy
| | - Duccio Cavalieri
- Department of Biology, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Massimiliano Marvasi
- Department of Biology, University of Florence, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
8
|
Silva FJ, Muñoz-Benavent M, García-Ferris C, Latorre A. Blattella germanica displays a large arsenal of antimicrobial peptide genes. Sci Rep 2020; 10:21058. [PMID: 33273496 PMCID: PMC7712779 DOI: 10.1038/s41598-020-77982-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/19/2020] [Indexed: 11/09/2022] Open
Abstract
Defence systems against microbial pathogens are present in most living beings. The German cockroach Blattella germanica requires these systems to adapt to unhealthy environments with abundance of pathogenic microbes, in addition to potentially control its symbiotic systems. To handle this situation, four antimicrobial gene families (defensins, termicins, drosomycins and attacins) were expanded in its genome. Remarkably, a new gene family (blattellicins) emerged recently after duplication and fast evolution of an attacin gene, which is now encoding larger proteins with the presence of a long stretch of glutamines and glutamic acids. Phylogenetic reconstruction, within Blattellinae, suggests that this duplication took place before the divergence of Blattella and Episymploce genera. The latter harbours a long attacin gene (pre-blattellicin), but the absence of the encoded Glx-region suggests that this element evolved recently in the Blattella lineage. A screening of AMP gene expression in available transcriptomic SR projects of B. germanica showed that, while some AMPs are expressed during almost the whole development, others are restricted to shorter periods. Blattellicins are highly expressed only in adult females. None of the available SR tissue projects could be associated with blattellicins’ expression, suggesting that it takes place in other tissues, maybe the gut.
Collapse
Affiliation(s)
- Francisco J Silva
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Paterna, Spain. .,Genomics and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research, Valencia, Spain.
| | - Maria Muñoz-Benavent
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Paterna, Spain
| | - Carlos García-Ferris
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Paterna, Spain.,Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| | - Amparo Latorre
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Paterna, Spain.,Genomics and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research, Valencia, Spain
| |
Collapse
|
9
|
Liu Y, Shi J, Tong Z, Jia Y, Yang B, Wang Z. The revitalization of antimicrobial peptides in the resistance era. Pharmacol Res 2020; 163:105276. [PMID: 33161137 DOI: 10.1016/j.phrs.2020.105276] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 01/14/2023]
Abstract
The antibiotic resistance crisis is becoming incredibly thorny due to the indiscriminate employment of antibiotics in agriculture and aquaculture, such as growth promoters, and the emergence of bacteria that are capable of enduring antibiotic treatment in an endless stream. Hence, to reverse this situation, vigorous efforts should be made in the process of identifying other alternative strategies with a lower frequency of resistance. Antimicrobial peptides (AMPs), originated from host defense peptides, are generally produced by a variety of organisms as defensive weapons to protect the host from other pathogenic bacteria. The unique ability of AMPs to control bacterial infections, as well as low propensity to acquire resistance, provides the basis for it to become one of the promising antibacterial substances. Herein, we present new insights into the biological functions, structural properties, distinct mechanisms of action of AMPs and their resistance determinants. Besides, we separately discuss natural and synthetic AMPs, including their source, screening pathway and antibacterial activity. Lastly, challenges and perspectives to identify novel potent AMPs are highlighted, which will expand our understanding of the chemical space of antimicrobials and provide a pipeline for discovering the next-generation of AMPs.
Collapse
Affiliation(s)
- Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, 225009, China.
| | - Jingru Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Ziwen Tong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Yuqian Jia
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Bingqing Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
10
|
Elizalde L, Arbetman M, Arnan X, Eggleton P, Leal IR, Lescano MN, Saez A, Werenkraut V, Pirk GI. The ecosystem services provided by social insects: traits, management tools and knowledge gaps. Biol Rev Camb Philos Soc 2020; 95:1418-1441. [PMID: 32525288 DOI: 10.1111/brv.12616] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 12/16/2022]
Abstract
Social insects, i.e. ants, bees, wasps and termites, are key components of ecological communities, and are important ecosystem services (ESs) providers. Here, we review the literature in order to (i) analyse the particular traits of social insects that make them good suppliers of ESs; (ii) compile and assess management strategies that improve the services provided by social insects; and (iii) detect gaps in our knowledge about the services that social insects provide. Social insects provide at least 10 ESs; however, many of them are poorly understood or valued. Relevant traits of social insects include high biomass and numerical abundance, a diversity of mutualistic associations, the ability to build important biogenic structures, versatile production of chemical defences, the simultaneous delivery of several ESs, the presence of castes and division of labour, efficient communication and cooperation, the capacity to store food, and a long lifespan. All these characteristics enhance social insects as ES providers, highlighting their potential, constancy and efficiency as suppliers of these services. In turn, many of these traits make social insects stress tolerant and easy to manage, so increasing the ESs they provide. We emphasise the need for a conservation approach to the management of the services, as well as the potential use of social insects to help restore habitats degraded by human activities. In addition, we stress the need to evaluate both services and disservices in an integrated way, because some species of social insects are among the most problematic invasive species and native pests. Finally, we propose two areas of research that will lead to a greater and more efficient use of social insects as ES providers, and to a greater appreciation of them by producers and decision-makers.
Collapse
Affiliation(s)
- Luciana Elizalde
- LIHo - Laboratorio Ecotono, INIBIOMA-CONICET-Universidad Nacional del Comahue, Pasaje Gutiérrez 1125, Bariloche, 8400, Argentina
| | - Marina Arbetman
- Ecopol, INIBIOMA-CONICET - Universidad Nacional del Comahue, Pasaje Gutiérrez 1125, Bariloche, 8400, Argentina
| | - Xavier Arnan
- CREAF, Cerdanyola del Vallès, Catalunya, Barcelona, E-08193, Spain
| | - Paul Eggleton
- Life Sciences Department, The Natural History Museum, London, SW7 5BD, U.K
| | - Inara R Leal
- Departamento de Botânica, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, 50670-901, Brazil
| | - María Natalia Lescano
- LIHo - Laboratorio Ecotono, INIBIOMA-CONICET-Universidad Nacional del Comahue, Pasaje Gutiérrez 1125, Bariloche, 8400, Argentina
| | - Agustín Saez
- Ecopol, INIBIOMA-CONICET - Universidad Nacional del Comahue, Pasaje Gutiérrez 1125, Bariloche, 8400, Argentina
| | - Victoria Werenkraut
- LIHo - Laboratorio Ecotono, INIBIOMA-CONICET-Universidad Nacional del Comahue, Pasaje Gutiérrez 1125, Bariloche, 8400, Argentina
| | - Gabriela I Pirk
- LIHo - Laboratorio Ecotono, INIBIOMA-CONICET-Universidad Nacional del Comahue, Pasaje Gutiérrez 1125, Bariloche, 8400, Argentina
| |
Collapse
|
11
|
Aumer T, Voisin SN, Knobloch T, Landon C, Bulet P. Impact of an Antifungal Insect Defensin on the Proteome of the Phytopathogenic Fungus Botrytis cinerea. J Proteome Res 2020; 19:1131-1146. [DOI: 10.1021/acs.jproteome.9b00638] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Thomas Aumer
- CR Université Grenoble Alpes, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, 38700 La Tronche, France
| | - Sébastien N. Voisin
- Plateforme BioPark d’Archamps, Archamps Technopole, 74166 Saint Julien en Genevois, France
| | - Thomas Knobloch
- Bayer SAS, Bayer CropScience, Centre de Recherche de la Dargoire, 69263 Lyon, France
| | - Céline Landon
- Centre de Biophysique Moléculaire, CNRS UPR 4301, 45071 Orléans, France
| | - Philippe Bulet
- CR Université Grenoble Alpes, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, 38700 La Tronche, France
- Plateforme BioPark d’Archamps, Archamps Technopole, 74166 Saint Julien en Genevois, France
| |
Collapse
|
12
|
Abstract
Fungus-growing termites engage in an obligate mutualistic relationship with Termitomyces fungi, which they maintain in monocultures on specialised fungus comb structures, without apparent problems with infectious diseases. While other fungi have been reported in the symbiosis, detailed comb fungal community analyses have been lacking. Here we use culture-dependent and -independent methods to characterise fungus comb mycobiotas from three fungus-growing termite species (two genera). Internal Transcribed Spacer (ITS) gene analyses using 454 pyrosequencing and Illumina MiSeq showed that non-Termitomyces fungi were essentially absent in fungus combs, and that Termitomyces fungal crops are maintained in monocultures as heterokaryons with two or three abundant ITS variants in a single fungal strain. To explore whether the essential absence of other fungi within fungus combs is potentially due to the production of antifungal metabolites by Termitomyces or comb bacteria, we performed in vitro assays and found that both Termitomyces and chemical extracts of fungus comb material can inhibit potential fungal antagonists. Chemical analyses of fungus comb material point to a highly complex metabolome, including compounds with the potential to play roles in mediating these contaminant-free farming conditions in the termite symbiosis.
Collapse
|
13
|
Qu S, Wang S. Interaction of entomopathogenic fungi with the host immune system. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 83:96-103. [PMID: 29355579 DOI: 10.1016/j.dci.2018.01.010] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/14/2018] [Accepted: 01/15/2018] [Indexed: 06/07/2023]
Abstract
Entomopathogenic fungi can invade wide range of insect hosts in the natural world and have been used as environmentally friendly alternatives to chemical insecticides for pest control. Studies of host-pathogen interactions provide valuable insights into the coevolutionay arms race between fungal pathogens and their hosts. Entomopathogenic fungi have evolved a series of sophisticated strategies to counter insect immune defenses. In response to fungal infection, insect hosts rely on behavior avoidance, physical barrier and innate immune defenses in the fight against invading pathogens. The insect cuticle acts as the first physical barrier against pathogens. It is an inhospitable physiological environment that contains chemicals (e.g., antimicrobial peptides and reactive oxygen species), which inhibit fungal growth. In addition, innate immune responses, including cellular immunity and humoral immunity, play critical roles in preventing fungal infection. In this review, we outline the current state of our knowledge of insect defenses to fungal infection and discuss the strategies by which entomopathogenic fungi counter the host immune system. Increased knowledge regarding the molecular interactions between entomopathogenic fungi and the insect host could provide new strategies for pest management.
Collapse
Affiliation(s)
- Shuang Qu
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Sibao Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
14
|
Yêyinou Loko LE, Orobiyi A, Agre P, Dansi A, Tamò M, Roisin Y. Farmers' perception of termites in agriculture production and their indigenous utilization in Northwest Benin. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2017; 13:64. [PMID: 29157286 PMCID: PMC5697355 DOI: 10.1186/s13002-017-0187-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/11/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Although termites are considered as agricultural pests, they play an important role in maintaining the ecosystem. Therefore, it matters to investigate the farmers' perception of the impacts of the termites on the agriculture and their indigenous utilization. METHODS A semi-structured questionnaire was used to interview 94 farmers through 10 villages of Atacora department, in the northwestern region of Benin, to obtain information for the development of successful strategies of termite management and conservation. Their perceptions on the importance and management of termites along with the indigenous nomenclature and utilization of termite mounds were assessed. Termite species identified by farmers were collected and preserved in 80% alcohol for identification. RESULTS Eight crops were identified by farmers as susceptible to termites with maize, sorghum, and yam as being the most susceptible. According to farmers, the susceptibility to termites of these crops is due to their high-water content and sweet taste. A total of 27 vernacular names of termites were recorded corresponding to 10 species, Amitermes evuncifer, Macrotermes subhyalinus, and Trinervitermes oeconomus being the most damaging termite species. All the names given to termite species had a meaning. The drought was identified by farmers as the main factor favouring termite attacks. Demolition of termite mounds in the fields was the most commonly reported control method. Salt and other pesticides were commonly used by farmers to protect stored farm products. The lack of effective control methods is the main constraint for termite management. In northwestern Benin, farmers reported different purpose utilizations of termite mounds and termites. CONCLUSIONS The study has shown that farmers perceived termites as pests of several agricultural crops and apply various indigenous control practices whose efficiency need to be verified. Utilization of termites and termite mound soil as food and medicinal resources underlines the need for a more focused approach to termite control for the conservation of non-pest termite species. The sensitization of farmers on the importance of termites as well as the development of an integrated control method to combat termite pests proved necessary.
Collapse
Affiliation(s)
- Laura Estelle Yêyinou Loko
- Laboratory of Applied Entomology, Faculty of Sciences and Technology of Dassa, National University of Sciences, Technologies, Engineering and Mathematics of Abomey, BP 14 Dassa, Benin
| | - Azize Orobiyi
- Laboratory of Applied Entomology, Faculty of Sciences and Technology of Dassa, National University of Sciences, Technologies, Engineering and Mathematics of Abomey, BP 14 Dassa, Benin
| | - Paterne Agre
- International Institute of Tropical Agriculture (IITA), PMB 5320, Ibadan, Oyo State Nigeria
| | - Alexandre Dansi
- Laboratory of Biotechnology, Genetic Resources and Plant and Animal Breeding (BIORAVE), Faculty of Sciences and Technology of Dassa, BP 14 Dassa, Benin
| | - Manuele Tamò
- International Institute of Tropical Agriculture, 08 BP 0932, Cotonou, Benin
| | - Yves Roisin
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
15
|
Bondaryk M, Staniszewska M, Zielińska P, Urbańczyk-Lipkowska Z. Natural Antimicrobial Peptides as Inspiration for Design of a New Generation Antifungal Compounds. J Fungi (Basel) 2017; 3:E46. [PMID: 29371563 PMCID: PMC5715947 DOI: 10.3390/jof3030046] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/16/2017] [Accepted: 08/22/2017] [Indexed: 12/16/2022] Open
Abstract
Invasive fungal infections are associated with high mortality rates, despite appropriate antifungal therapy. Limited therapeutic options, resistance development and the high mortality of invasive fungal infections brought about more concern triggering the search for new compounds capable of interfering with fungal viability and virulence. In this context, peptides gained attention as promising candidates for the antimycotics development. Variety of structural and functional characteristics identified for various natural antifungal peptides makes them excellent starting points for design novel drug candidates. Current review provides a brief overview of natural and synthetic antifungal peptides.
Collapse
Affiliation(s)
- Małgorzata Bondaryk
- National Institute of Public Health-National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland.
| | - Monika Staniszewska
- National Institute of Public Health-National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland.
| | - Paulina Zielińska
- Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland.
| | | |
Collapse
|
16
|
Koehbach J. Structure-Activity Relationships of Insect Defensins. Front Chem 2017; 5:45. [PMID: 28748179 PMCID: PMC5506212 DOI: 10.3389/fchem.2017.00045] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/12/2017] [Indexed: 11/13/2022] Open
Abstract
Insects make up the largest and most diverse group of organisms on earth with several million species to exist in total. Considering the sheer number of insect species and the vast variety of ways they interact with their environment through chemistry, it is clear that they have significant potential as a source of new lead molecules. They have adapted to a range of ecological habitats and exhibit a symbiotic lifestyle with various microbes such as bacteria and fungi. Accordingly, numerous antimicrobial compounds have been identified including for example defensin peptides. Insect defensins were found to have broad-spectrum activity against various gram-positive/negative bacteria as well as fungi. They exhibit a unique structural topology involving the complex arrangement of three disulfide bonds as well as an alpha helix and beta sheets, which is known as cysteine-stabilized αβ motif. Their stability and amenability to peptide engineering make them promising candidates for the development of novel antibiotics lead molecules. This review highlights the current knowledge regarding the structure-activity relationships of insect defensin peptides and provides basis for future studies focusing on the rational design of novel cysteine-rich antimicrobial peptides.
Collapse
Affiliation(s)
- Johannes Koehbach
- School of Biomedical Sciences, University of QueenslandSt. Lucia, QLD, Australia
| |
Collapse
|
17
|
|
18
|
Velenovsky JF, Kalisch J, Bulmer MS. Selective sweeps in Cryptocercus woodroach antifungal proteins. Genetica 2016; 144:547-552. [DOI: 10.1007/s10709-016-9923-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/08/2016] [Indexed: 10/21/2022]
|
19
|
Al Souhail Q, Hiromasa Y, Rahnamaeian M, Giraldo MC, Takahashi D, Valent B, Vilcinskas A, Kanost MR. Characterization and regulation of expression of an antifungal peptide from hemolymph of an insect, Manduca sexta. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 61:258-68. [PMID: 26976231 PMCID: PMC4866881 DOI: 10.1016/j.dci.2016.03.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 03/08/2016] [Accepted: 03/08/2016] [Indexed: 05/07/2023]
Abstract
Insects secrete antimicrobial peptides as part of the innate immune response. Most antimicrobial peptides from insects have antibacterial but not antifungal activity. We have characterized an antifungal peptide, diapausin-1 from hemolymph of a lepidopteran insect, Manduca sexta (tobacco hornworm). Diapausin-1 was isolated by size exclusion chromatography from hemolymph plasma of larvae that were previously injected with a yeast, Saccharomyces cerevisiae. Fractions containing activity against S. cerevisiae were analyzed by SDS-PAGE and MALDI-TOF MS/MS and found to contain a 45-residue peptide that was encoded by sequences identified in M. sexta transcriptome and genome databases. A cDNA for diapausin-1 was cloned from cDNA prepared from fat body RNA. Diapausin-1 is a member of the diapausin family of peptides, which includes members known to have antifungal activity. The M. sexta genome contains 14 genes with high similarity to diapausin-1, each with 6 conserved Cys residues. Diapausin-1 was produced as a recombinant protein in Escherichia coli. Purified recombinant diapausin-1 was active against S. cerevisiae, with IC50 of 12 μM, but had no detectable activity against bacteria. Spores of some plant fungal pathogens treated with diapausin-1 had curled germination tubes or reduced and branched hyphal growth. Diapausin-1 mRNA level in fat body strongly increased after larvae were injected with yeast or with Micrococcus luteus. In addition, diapausin-1 mRNA levels increased in midgut and fat body at the wandering larval stage prior to pupation, suggesting developmental regulation of the gene. Our results indicate that synthesis of diapausin-1 is part of an antifungal innate immune response to infection in M. sexta.
Collapse
Affiliation(s)
- Qasim Al Souhail
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Yasuaki Hiromasa
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Mohammad Rahnamaeian
- LOEWE Center for Insect Biotechnology and Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen Winchesterstrasse 2, 35394 Giessen, Germany
| | - Martha C Giraldo
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Daisuke Takahashi
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Barbara Valent
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Andreas Vilcinskas
- LOEWE Center for Insect Biotechnology and Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen Winchesterstrasse 2, 35394 Giessen, Germany; Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 39592 Giessen, Germany
| | - Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
20
|
Balandin SV, Ovchinnikova TV. Antimicrobial peptides of invertebrates. Part 1. structure, biosynthesis, and evolution. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2016. [DOI: 10.1134/s1068162016030055] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
21
|
Faruck MO, Yusof F, Chowdhury S. An overview of antifungal peptides derived from insect. Peptides 2016; 80:80-88. [PMID: 26093218 DOI: 10.1016/j.peptides.2015.06.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 06/02/2015] [Accepted: 06/05/2015] [Indexed: 12/29/2022]
Abstract
Fungi are not classified as plants or animals. They resemble plants in many ways but do not produce chlorophyll or make their own food photosynthetically like plants. Fungi are useful for the production of beer, bread, medicine, etc. More complex than viruses or bacteria; fungi can be destructive human pathogens responsible for various diseases in humans. Most people have a strong natural immunity against fungal infection. However, fungi can cause diseases when this immunity breaks down. In the last few years, fungal infection has increased strikingly and has been accompanied by a rise in the number of deaths of cancer patients, transplant recipients, and acquired immunodeficiency syndrome (AIDS) patients owing to fungal infections. The growth rate of fungi is very slow and quite difficult to identify. A series of molecules with antifungal activity against different strains of fungi have been found in insects, which can be of great importance to tackle human diseases. Insects secrete such compounds, which can be peptides, as a part of their immune defense reactions. Active antifungal peptides developed by insects to rapidly eliminate infectious pathogens are considered a component of the defense munitions. This review focuses on naturally occurring antifungal peptides from insects and their challenges to be used as armaments against human diseases.
Collapse
Affiliation(s)
- Mohammad Omer Faruck
- Department of Biotechnology Engineering, Kulliyah of Engineering, International Islamic University Malaysia, P.O. Box 10, 50728 Kuala Lumpur, Malaysia
| | - Faridah Yusof
- Department of Biotechnology Engineering, Kulliyah of Engineering, International Islamic University Malaysia, P.O. Box 10, 50728 Kuala Lumpur, Malaysia.
| | - Silvia Chowdhury
- Department of Mechatronics Engineering, Kulliyah of Engineering, International Islamic University Malaysia, P.O. Box 10, 50728 Kuala Lumpur, Malaysia
| |
Collapse
|
22
|
Liu Z, Yuan K, Zhang R, Ren X, Liu X, Zhao S, Wang D. Cloning and purification of the first termicin-like peptide from the cockroach Eupolyphaga sinensis. J Venom Anim Toxins Incl Trop Dis 2016; 22:5. [PMID: 26823660 PMCID: PMC4730610 DOI: 10.1186/s40409-016-0058-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 01/13/2016] [Indexed: 11/16/2022] Open
Abstract
Background Termicin is an antimicrobial peptide with six cysteines forming three disulfide bridges that was firstly isolated from the salivary glands and hemocytes of the termite Pseudacanthotermes spiniger. In contrast to many broad-spectrum antimicrobial peptides, termicin is most active against filamentous fungi. Although more than one hundred complementary DNAs (cDNAs) encoding termicin-like peptides have been reported to date, all these termicin-like peptides were obtained from Isoptera insects. Methods The cDNA was cloned by combination of cDNA library construction kit and DNA sequencing. The polypeptide was purified by gel filtration and reversed-phase high performance liquid chromatography (RP-HPLC). Its amino acid sequence was determined by Edman degradation and mass spectrometry. Antimicrobial activity was tested against several bacterial and fungal strains. The minimum inhibitory concentration (MIC) was determined by microdilution tests. Results A novel termicin-like peptide with primary structure ACDFQQCWVTCQRQYSINFISARCNGDSCVCTFRT was purified from extracts of the cockroach Eupolyphaga sinensis (Insecta: Blattodea). The cDNA encoding Es-termicin was cloned by cDNA library screening. This cDNA encoded a 60 amino acid precursor which included a 25 amino acid signal peptide. Amino acid sequence deduced from the cDNA matched well with the result of protein Edman degradation. Susceptibility test indicated that Es-termicin showed strong ability to kill fungi with a MIC of 25 μg/mL against Candida albicans ATCC 90028. It only showed limited potency to affect the growth of Gram-positive bacteria with a MIC of 200 μg/mL against Enterococcus faecalis ATCC 29212. It was inactive against gram-negative bacteria at the highest concentration tested (400 μg/mL). Es-termicin showed high sequence similarity with termicins from many species of termites (Insecta: Isoptera). Conclusions This is the first report of a termicin-like peptide isolated from E. sinensis that belongs to the insect order Blattodea. Our results demonstrate the diversity of termicin-like peptides, as well as antimicrobial peptides in insects.
Collapse
Affiliation(s)
- Zichao Liu
- Key Laboratory of Special Biological Resource Development and Utilization of Universities in Yunnan Province, Key Lab of Aquatic Ecological Restoration of Dianchi Lake in Kunming, Department of Biological Science and Technology, Kunming University, Kunming, 650214 China
| | - Kehua Yuan
- Department of Oncology, Yan'an Hospital of Kunming City; Yunnan, Cardiovascular Hospital; and Yan'an Hospital of Kunming Medical University, Kunming, 650051 China
| | - Ruopeng Zhang
- Department of Obstetrics and Gynecology, Shenzhen Maternal and Child Health Care Hospital, Affiliated to Southern Medical University, Shenzhen, 518028 China
| | - Xuchen Ren
- Key Laboratory of Special Biological Resource Development and Utilization of Universities in Yunnan Province, Key Lab of Aquatic Ecological Restoration of Dianchi Lake in Kunming, Department of Biological Science and Technology, Kunming University, Kunming, 650214 China
| | - Xiaolong Liu
- Key Laboratory of Special Biological Resource Development and Utilization of Universities in Yunnan Province, Key Lab of Aquatic Ecological Restoration of Dianchi Lake in Kunming, Department of Biological Science and Technology, Kunming University, Kunming, 650214 China
| | - Shuhua Zhao
- Yunnan Key Laboratory of Fertility Regulation and Minority Eugenics, Yunnan Population and Family Planning Research Institute, Kunming, 650021 China.,First Affiliated Hospital of Kunming Medical University, Xichang Road 295#, Kunming, Yunnan 650032 China
| | - Dingkang Wang
- Key Laboratory of Special Biological Resource Development and Utilization of Universities in Yunnan Province, Key Lab of Aquatic Ecological Restoration of Dianchi Lake in Kunming, Department of Biological Science and Technology, Kunming University, Kunming, 650214 China.,Kunming University, Puxin Road 2#, Kunming, Yunnan 650214 China
| |
Collapse
|
23
|
Poiani SB, Costa-Leonardo AM. Dehiscent organs used for defensive behavior of kamikaze termites of the genus Ruptitermes (Termitidae, Apicotermitinae) are not glands. Micron 2016; 82:63-73. [PMID: 26774748 DOI: 10.1016/j.micron.2015.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 12/22/2015] [Accepted: 12/28/2015] [Indexed: 10/22/2022]
Abstract
During Isoptera evolution, the caste of soldiers disappeared in some Apicotermitinae termites as in the Neotropical Ruptitermes. Paired dorsolateral structures located between the metathorax and abdomen of foraging workers of Ruptitermes were previously denominated dehiscent glands, and are responsible for releasing an adhesive secretion that immobilizes enemies, causing their death. In this study, we investigated the morphology of dehiscent organs of workers of Ruptitermes reconditus, Ruptitermes xanthochiton, and Ruptitermes pitan and also second instar larvae of R. reconditus using light, laser scanning confocal, and transmission electron microscopy. Additionally, we performed a preliminary protein analysis using SDS-PAGE to further characterize the secretion of Ruptitermes dehiscent organs. Our results showed that the dehiscent organs do not exhibit the typical characteristics of the exocrine glandular cells class I, II or III of insects, suggesting that they constitute a new type of defensive organ. Thus, the denomination dehiscent gland was not used but dehiscent organ. Dehiscent organs in larvae are formed by fat body cells. In workers, dehiscent organs are composed by compact masses of cells that accumulate a defensive secretion and are poor in organelles related to the production of secretion. Since the dehiscent organs are not glands, we hypothesize that the dehiscent organs originate from larval fat body. The defensive secretion may have been produced at younger developmental stages of worker or the defensive compounds were absorbed from food and accumulated in the worker fat body. Histochemical techniques and SDS-PAGE revealed that the secretion of Ruptitermes dehiscent organs is constituted mainly by a protein of high molecular weight (200 kDa). In conclusion, the dehiscent organs are extremely different from the exocrine glands of termites and other insects described until now. In fact, they seem to be a specialized fat body that is peculiar and exclusive of Ruptitermes termites.
Collapse
Affiliation(s)
- Silvana B Poiani
- Departamento de Biologia, Instituto de Biociências de Rio Claro, Universidade Estadual Paulista-UNESP, Av. 24A, 1515, Bela Vista, 13.506-900 Rio Claro, SP, Brazil.
| | - Ana M Costa-Leonardo
- Departamento de Biologia, Instituto de Biociências de Rio Claro, Universidade Estadual Paulista-UNESP, Av. 24A, 1515, Bela Vista, 13.506-900 Rio Claro, SP, Brazil
| |
Collapse
|
24
|
Lu HL, St. Leger R. Insect Immunity to Entomopathogenic Fungi. GENETICS AND MOLECULAR BIOLOGY OF ENTOMOPATHOGENIC FUNGI 2016; 94:251-85. [DOI: 10.1016/bs.adgen.2015.11.002] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
25
|
Dias RDO, Franco OL. Cysteine-stabilized αβ defensins: From a common fold to antibacterial activity. Peptides 2015; 72:64-72. [PMID: 25929172 DOI: 10.1016/j.peptides.2015.04.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/15/2015] [Accepted: 04/15/2015] [Indexed: 11/27/2022]
Abstract
Antimicrobial peptides (AMPs) seem to be promising alternatives to common antibiotics, which are facing increasing bacterial resistance. Among them are the cysteine-stabilized αβ defensins. These peptides are small, with a length ranging from 34 to 54 amino acid residues, cysteine-rich and extremely stable, normally composed of an α-helix and three β-strands stabilized by three or four disulfide bonds and commonly found in several organisms. Moreover, animal and plant CSαβ defensins present different specificities, the first being mainly active against bacteria and the second against fungi. The role of the CSαβ-motif remains unknown, but a common antibacterial mechanism of action, based on the inhibition of the cell-wall formation, has already been observed in some fungal and invertebrate defensins. In this context, the present work aims to group the data about CSαβ defensins, highlighting their evolution, conservation, structural characteristics, antibacterial activity and biotechnological perspectives.
Collapse
Affiliation(s)
- Renata de Oliveira Dias
- S-Inova, Programa de Pós Graduação em Biotecnologia, Universidade Católica Dom Bosco, 79117-900 Campo Grande, MS, Brazil.
| | - Octavio Luiz Franco
- S-Inova, Programa de Pós Graduação em Biotecnologia, Universidade Católica Dom Bosco, 79117-900 Campo Grande, MS, Brazil; Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, 70719-100 Brasília, DF, Brazil.
| |
Collapse
|
26
|
Negulescu H, Guo Y, Garner TP, Goodwin OY, Henderson G, Laine RA, Macnaughtan MA. A Kazal-Type Serine Protease Inhibitor from the Defense Gland Secretion of the Subterranean Termite Coptotermes formosanus Shiraki. PLoS One 2015; 10:e0125376. [PMID: 25978745 PMCID: PMC4433142 DOI: 10.1371/journal.pone.0125376] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 03/24/2015] [Indexed: 11/28/2022] Open
Abstract
Coptotermes formosanus is an imported, subterranean termite species with the largest economic impact in the United States. The frontal glands of the soldier caste termites comprising one third of the body mass, contain a secretion expelled through a foramen in defense. The small molecule composition of the frontal gland secretion is well-characterized, but the proteins remain to be identified. Herein is reported the structure and function of one of several proteins found in the termite defense gland secretion. TFP4 is a 6.9 kDa, non-classical group 1 Kazal-type serine protease inhibitor with activity towards chymotrypsin and elastase, but not trypsin. The 3-dimensional solution structure of TFP4 was solved with nuclear magnetic resonance spectroscopy, and represents the first structure from the taxonomic family, Rhinotermitidae. Based on the structure of TFP4, the protease inhibitor active loop (Cys8 to Cys16) was identified.
Collapse
Affiliation(s)
- Horia Negulescu
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, Louisiana State University and A&M College, Baton Rouge, LA 70803, United States of America
| | - Youzhong Guo
- Currently at the Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, United States of America
| | - Thomas P Garner
- Currently at the Department of Biochemistry, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, United States of America
| | - Octavia Y Goodwin
- Department of Chemistry, Louisiana State University and A&M College, Baton Rouge, LA 70803, United States of America
| | - Gregg Henderson
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, United States of America
| | - Roger A Laine
- Department of Chemistry, Louisiana State University and A&M College, Baton Rouge, LA 70803, United States of America; Department of Biological Sciences, Division of Biochemistry and Molecular Biology, Louisiana State University and A&M College, Baton Rouge, LA 70803, United States of America
| | - Megan A Macnaughtan
- Department of Chemistry, Louisiana State University and A&M College, Baton Rouge, LA 70803, United States of America
| |
Collapse
|
27
|
Yi HY, Chowdhury M, Huang YD, Yu XQ. Insect antimicrobial peptides and their applications. Appl Microbiol Biotechnol 2014; 98:5807-22. [PMID: 24811407 DOI: 10.1007/s00253-014-5792-6] [Citation(s) in RCA: 393] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/21/2014] [Accepted: 04/23/2014] [Indexed: 10/25/2022]
Abstract
Insects are one of the major sources of antimicrobial peptides/proteins (AMPs). Since observation of antimicrobial activity in the hemolymph of pupae from the giant silk moths Samia Cynthia and Hyalophora cecropia in 1974 and purification of first insect AMP (cecropin) from H. cecropia pupae in 1980, over 150 insect AMPs have been purified or identified. Most insect AMPs are small and cationic, and they show activities against bacteria and/or fungi, as well as some parasites and viruses. Insect AMPs can be classified into four families based on their structures or unique sequences: the α-helical peptides (cecropin and moricin), cysteine-rich peptides (insect defensin and drosomycin), proline-rich peptides (apidaecin, drosocin, and lebocin), and glycine-rich peptides/proteins (attacin and gloverin). Among insect AMPs, defensins, cecropins, proline-rich peptides, and attacins are common, while gloverins and moricins have been identified only in Lepidoptera. Most active AMPs are small peptides of 20-50 residues, which are generated from larger inactive precursor proteins or pro-proteins, but gloverins (~14 kDa) and attacins (~20 kDa) are large antimicrobial proteins. In this mini-review, we will discuss current knowledge and recent progress in several classes of insect AMPs, including insect defensins, cecropins, attacins, lebocins and other proline-rich peptides, gloverins, and moricins, with a focus on structural-functional relationships and their potential applications.
Collapse
Affiliation(s)
- Hui-Yu Yi
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | | | | | | |
Collapse
|
28
|
Kurtböke DI, French JRJ, Hayes RA, Quinn RJ. Eco-taxonomic insights into actinomycete symbionts of termites for discovery of novel bioactive compounds. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 147:111-35. [PMID: 24817085 DOI: 10.1007/10_2014_270] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Termites play a major role in foraging and degradation of plant biomass as well as cultivating bioactive microorganisms for their defense. Current advances in "omics" sciences are revealing insights into function-related presence of these symbionts, and their related biosynthetic activities and genes identified in gut symbiotic bacteria might offer a significant potential for biotechnology and biodiscovery. Actinomycetes have been the major producers of bioactive compounds with an extraordinary range of biological activities. These metabolites have been in use as anticancer agents, immune suppressants, and most notably, as antibiotics. Insect-associated actinomycetes have also been reported to produce a range of antibiotics such as dentigerumycin and mycangimycin. Advances in genomics targeting a single species of the unculturable microbial members are currently aiding an improved understanding of the symbiotic interrelationships among the gut microorganisms as well as revealing the taxonomical identity and functions of the complex multilayered symbiotic actinofloral layers. If combined with target-directed approaches, these molecular advances can provide guidance towards the design of highly selective culturing methods to generate further information related to the physiology and growth requirements of these bioactive actinomycetes associated with the termite guts. This chapter provides an overview on the termite gut symbiotic actinoflora in the light of current advances in the "omics" science, with examples of their detection and selective isolation from the guts of the Sunshine Coast regional termite Coptotermes lacteus in Queensland, Australia.
Collapse
Affiliation(s)
- D Ipek Kurtböke
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD, 4558, Australia,
| | | | | | | |
Collapse
|
29
|
van der Weerden NL, Bleackley MR, Anderson MA. Properties and mechanisms of action of naturally occurring antifungal peptides. Cell Mol Life Sci 2013; 70:3545-70. [PMID: 23381653 PMCID: PMC11114075 DOI: 10.1007/s00018-013-1260-1] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 12/11/2012] [Accepted: 01/03/2013] [Indexed: 01/06/2023]
Abstract
Antimicrobial peptides are a vital component of the innate immune system of all eukaryotic organisms and many of these peptides have potent antifungal activity. They have potential application in the control of fungal pathogens that are a serious threat to both human health and food security. Development of antifungal peptides as therapeutics requires an understanding of their mechanism of action on fungal cells. To date, most research on antimicrobial peptides has focused on their activity against bacteria. Several antimicrobial peptides specifically target fungal cells and are not active against bacteria. Others with broader specificity often have different mechanisms of action against bacteria and fungi. This review focuses on the mechanism of action of naturally occurring antifungal peptides from a diverse range of sources including plants, mammals, amphibians, insects, crabs, spiders, and fungi. While antimicrobial peptides were originally proposed to act via membrane permeabilization, the mechanism of antifungal activity for these peptides is generally more complex and often involves entry of the peptide into the cell.
Collapse
|
30
|
Yi HY, Deng XJ, Yang WY, Zhou CZ, Cao Y, Yu XQ. Gloverins of the silkworm Bombyx mori: structural and binding properties and activities. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:612-25. [PMID: 23567591 PMCID: PMC3760519 DOI: 10.1016/j.ibmb.2013.03.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/21/2013] [Accepted: 03/26/2013] [Indexed: 05/12/2023]
Abstract
Gloverins are basic, glycine-rich and heat-stable antibacterial proteins (∼14- kDa) in lepidopteran insects with activity against Escherichia coli, Gram-positive bacteria, fungi and a virus. Hyalophora gloveri gloverin adopts a random coil structure in aqueous solution but has α-helical structure in membrane-like environment, and it may interact with the lipid A moiety of lipopolysaccharide (LPS). Manduca sexta gloverin binds to the O-specific antigen and outer core carbohydrate of LPS. In the silkworm Bombyx mori, there are four gloverins with slightly acidic to neutral isoelectric points. In this study, we investigate structural and binding properties and activities of B. mori gloverins (BmGlvs), as well as correlations between structure, binding property and activity. Recombinant BmGlv1-4 were expressed in bacteria and purified. Circular dichroism (CD) spectra showed that all four BmGlvs mainly adopted random coli structure (>50%) in aqueous solution in regardless of pH, but contained α-helical structure in the presence of 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), smooth and rough mutants (Ra, Rc and Re) of LPS and lipid A. Plate ELISA assay showed that BmGlvs at pH 5.0 bound to rough mutants of LPS and lipid A but not to smooth LPS. Antibacterial activity assay showed that positively charged BmGlvs (at pH 5.0) were active against E. coli mutant strains containing rough LPS but inactive against E. coli with smooth LPS. Our results suggest that binding to rough LPS is the prerequisite for the activity of BmGlvs against E. coli.
Collapse
Affiliation(s)
- Hui-Yu Yi
- Laboratory of Insect Molecular Biology and Biotechnology, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, 5007 Rockhill Road, Kansas City, MO 64110, USA
| | - Xiao-Juan Deng
- Laboratory of Insect Molecular Biology and Biotechnology, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Wan-Ying Yang
- Laboratory of Insect Molecular Biology and Biotechnology, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Cong-Zhao Zhou
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yang Cao
- Laboratory of Insect Molecular Biology and Biotechnology, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Corresponding author. (Y. Cao),
| | - Xiao-Qiang Yu
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, 5007 Rockhill Road, Kansas City, MO 64110, USA
- Corresponding author. Tel.: +1 816 235 6379; fax: +1 816 235 1503. (X.-Q. Yu)
| |
Collapse
|
31
|
Oeemig JS, Lynggaard C, Knudsen DH, Hansen FT, Nørgaard KD, Schneider T, Vad BS, Sandvang DH, Nielsen LA, Neve S, Kristensen HH, Sahl HG, Otzen DE, Wimmer R. Eurocin, a new fungal defensin: structure, lipid binding, and its mode of action. J Biol Chem 2012; 287:42361-72. [PMID: 23093408 DOI: 10.1074/jbc.m112.382028] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Antimicrobial peptides are a new class of antibiotics that are promising for pharmaceutical applications because they have retained efficacy throughout evolution. One class of antimicrobial peptides are the defensins, which have been found in different species. Here we describe a new fungal defensin, eurocin. Eurocin acts against a range of Gram-positive human pathogens but not against Gram-negative bacteria. Eurocin consists of 42 amino acids, forming a cysteine-stabilized α/β-fold. The thermal denaturation data point shows the disulfide bridges being responsible for the stability of the fold. Eurocin does not form pores in cell membranes at physiologically relevant concentrations; it does, however, lead to limited leakage of a fluorophore from small unilamellar vesicles. Eurocin interacts with detergent micelles, and it inhibits the synthesis of cell walls by binding equimolarly to the cell wall precursor lipid II.
Collapse
Affiliation(s)
- Jesper S Oeemig
- Department of Biotechnology, Chemistry, and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Xu P, Shi M, Lai R, Chen XX. Differences in numbers of termicins expressed in two termite species affected by fungal contamination of their environments. GENETICS AND MOLECULAR RESEARCH 2012; 11:2247-57. [PMID: 22614454 DOI: 10.4238/2012.may.10.2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Termicin is a defensin-like antimicrobial peptide of termites that has strong antifungal activity. Fifty-six different termicin mRNAs encoding 46 different peptides were amplified and identified from Odontotermes formosanus (Termitidae), a species that inhabits environments with a large variety of microbial fauna. In contrast, only 38 different termicin mRNAs encoding 21 different peptides were amplified and identified from Reticulitermes chinensis (Rhinotermitidae). All mRNAs were amplified by reverse transcript PCR, with primers designed from reported termicin mRNA sequences. All of these genes showed high intraspecific sequence identity and were found to be highly homologous with other reported termicin genes. These two termite species live in different environments; the latter encounters relatively fewer pathogens in its habitat. We conclude that differences in microenvironmental pressure can affect the number of termicin genes expressed in termite species.
Collapse
Affiliation(s)
- P Xu
- Ministry of Agriculture, Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | | | | | | |
Collapse
|
33
|
Hamilton C, Bulmer MS. Molecular antifungal defenses in subterranean termites: RNA interference reveals in vivo roles of termicins and GNBPs against a naturally encountered pathogen. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 36:372-377. [PMID: 21824492 DOI: 10.1016/j.dci.2011.07.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 07/22/2011] [Accepted: 07/22/2011] [Indexed: 05/27/2023]
Abstract
Subterranean termites face strong pathogenic pressures from the ubiquitous soil fungus Metarhizium anisopliae, and rely on innate humoral and cellular, as well as behavioral immune defenses for protection. Reticulitermes termites secrete antifungal enzymes that exhibit strong β-1,3-glucanase activity associated with Gram-negative bacteria binding proteins (GNBPs), which prevent M. anisopliae from invading the hemocoel where it can evade immune responses. Molecular evolutionary studies of Reticulitermes termicin genes, which code for defensin-like antifungal peptides, suggest that these proteins may be important effector molecules in antifungal defenses. In this study we show that the RNAi knockdown of termicin and GNBP2 expression via the ingestion of dsRNA significantly increases mortality in termites exposed to a naturally encountered strain of M. anisopliae. Termicin and GNBP2 knockdown also decrease external cuticular antifungal activity, indicating a direct role for these proteins in an external antifungal defense strategy that depends on the active dissemination of antifungal secretions among nestmates.
Collapse
Affiliation(s)
- Casey Hamilton
- Department of Biological Sciences, Towson University, Towson, MD 21252, USA.
| | | |
Collapse
|
34
|
Sonthi M, Toubiana M, Pallavicini A, Venier P, Roch P. Diversity of coding sequences and gene structures of the antifungal peptide mytimycin (MytM) from the Mediterranean mussel, Mytilus galloprovincialis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2011; 13:857-867. [PMID: 21246236 DOI: 10.1007/s10126-010-9345-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 11/30/2010] [Indexed: 05/30/2023]
Abstract
Knowledge on antifungal biomolecules is limited compared to antibacterial peptides. A strictly antifungal peptide from the blue mussel, Mytilus edulis named mytimycin (MytM) was reported in 1996 as partial NH(2) 33 amino acid sequence. Using back-translations of the previous sequence, MytM-related nucleotide sequences were identified from a normalized Mytilus galloprovincialis expressed sequence tag library. Primers designed from a consensus sequence have been used to obtain a fragment of 560 nucleotides, including the complete coding sequence of 456 nucleotides. Precursor is constituted by a signal peptide of 23 amino acids, followed by MytM of 54 amino acids (6.2-6.3 kDa, 12 cysteines) and C-terminal extension of 75 amino acids. Only two major amino acid precursor sequences emerged, one shared by M. galloprovincialis from Venice and Vigo, the other belonging to M. galloprovincialis from Palavas, with nine amino acid differences between the two MytM. Predicted disulfide bonds suggested the presence of two constrained domains joined by amino acidic NIFG track. Intriguing was the presence of conserved canonical EF hand-motif located in the C-terminus extension of the precursor. The MytM gene was found interrupted by two introns. Intron 2 existed in two forms, a long (1,112 nucleotides) and a short (716 nucleotides) one resulting from the removal of the central part of the long one. Both the short (GenBank FJ804479) and the long (GenBank FJ804478) genes are simultaneously present in the mussel genome.
Collapse
Affiliation(s)
- Molruedee Sonthi
- Ecosystèmes Lagunaires, CNRS-Université Montpellier 2, cc093, place E. Bataillon, 34095, Montpellier, Cedex 05, France
| | | | | | | | | |
Collapse
|
35
|
Hamilton C, Lay F, Bulmer MS. Subterranean termite prophylactic secretions and external antifungal defenses. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:1259-1266. [PMID: 21708164 DOI: 10.1016/j.jinsphys.2011.05.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 05/25/2011] [Accepted: 05/27/2011] [Indexed: 05/27/2023]
Abstract
Termites exploit environments that make them susceptible to infection and rapid disease transmission. Gram-negative bacteria binding proteins (GNBPs) signal the presence of microbes and in some insects directly damage fungal pathogens with β-1,3-glucanase activity. The subterranean termites Reticulitermes flavipes and Reticulitermes virginicus encounter soil entomopathogenic fungi such as Metarhizium anisopliae, which can evade host immune responses after penetrating the cuticle. An external defense that prevents invasion of fungal pathogens could be crucial in termites, allowing them to thrive under high pathogenic pressures. We investigated the role of secreted β-1,3-glucanases in Reticulitermes defenses against M. anisopliae. Our results show that these termites secrete antifungal β-1,3-glucanases on the cuticle, and the specific inhibition of GNBP associated β-1,3-glucanase activity with d-δ-gluconolactone (GDL) reduces this activity and can cause significant increases in mortality after exposure to M. anisopliae. Secreted β-1,3-glucanases appear to be essential in preventing infection by breaking down fungi externally.
Collapse
Affiliation(s)
- Casey Hamilton
- Department of Biological Sciences, Towson University, 8000 York Road, Towson, MD 21252, USA.
| | | | | |
Collapse
|
36
|
Tian C, Gao B, Fang Q, Ye G, Zhu S. Antimicrobial peptide-like genes in Nasonia vitripennis: a genomic perspective. BMC Genomics 2010; 11:187. [PMID: 20302637 PMCID: PMC2853521 DOI: 10.1186/1471-2164-11-187] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 03/19/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Antimicrobial peptides (AMPs) are an essential component of innate immunity which can rapidly respond to diverse microbial pathogens. Insects, as a rich source of AMPs, attract great attention of scientists in both understanding of the basic biology of the immune system and searching molecular templates for anti-infective drug design. Despite a large number of AMPs have been identified from different insect species, little information in terms of these peptides is available from parasitic insects. RESULTS By using integrated computational approaches to systemically mining the Hymenopteran parasitic wasp Nasonia vitripennis genome, we establish the first AMP repertoire whose members exhibit extensive sequence and structural diversity and can be distinguished into multiple molecular types, including insect and fungal defensin-like peptides (DLPs) with the cysteine-stabilized alpha-helical and beta-sheet (CSalphabeta) fold; Pro- or Gly-rich abaecins and hymenoptaecins; horseshoe crab tachystatin-type AMPs with the inhibitor cystine knot (ICK) fold; and a linear alpha-helical peptide. Inducible expression pattern of seven N. vitripennis AMP genes were verified, and two representative peptides were synthesized and functionally identified to be antibacterial. In comparison with Apis mellifera (Hymenoptera) and several non-Hymenopteran model insects, N. vitripennis has evolved a complex antimicrobial immune system with more genes and larger protein precursors. Three classical strategies that are likely responsible for the complexity increase have been recognized: 1) Gene duplication; 2) Exon duplication; and 3) Exon-shuffling. CONCLUSION The present study established the N. vitripennis peptidome associated with antimicrobial immunity by using a combined computational and experimental strategy. As the first AMP repertoire of a parasitic wasp, our results offer a basic platform for further studying the immunological and evolutionary significances of these newly discovered AMP-like genes in this class of insects.
Collapse
Affiliation(s)
- Caihuan Tian
- Group of Animal Innate Immunity, State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | | | | | | | | |
Collapse
|
37
|
Targeting an antimicrobial effector function in insect immunity as a pest control strategy. Proc Natl Acad Sci U S A 2009; 106:12652-7. [PMID: 19506247 DOI: 10.1073/pnas.0904063106] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Insect pests such as termites cause damages to crops and man-made structures estimated at over $30 billion per year, imposing a global challenge for the human economy. Here, we report a strategy for compromising insect immunity that might lead to the development of nontoxic, sustainable pest control methods. Gram-negative bacteria binding proteins (GNBPs) are critical for sensing pathogenic infection and triggering effector responses. We report that termite GNBP-2 (tGNBP-2) shows beta(1,3)-glucanase effector activity previously unknown in animal immunity and is a pleiotropic pattern recognition receptor and an antimicrobial effector protein. Termites incorporate this protein into the nest building material, where it functions as a nest-embedded sensor that cleaves and releases pathogenic components, priming termites for improved antimicrobial defense. By means of rational design, we present an inexpensive, nontoxic small molecule glycomimetic that blocks tGNBP-2, thus exposing termites in vivo to accelerated infection and death from specific and opportunistic pathogens. Such a molecule, introduced into building materials and agricultural methods, could protect valuable assets from insect pests.
Collapse
|
38
|
Viljakainen L, Pamilo P. Selection on an antimicrobial peptide defensin in ants. J Mol Evol 2009; 67:643-52. [PMID: 18956133 DOI: 10.1007/s00239-008-9173-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Accepted: 10/06/2008] [Indexed: 11/26/2022]
Abstract
Ants live in crowded nests with interacting individuals, which makes them particularly prone to infectious diseases. The question is, how do ants cope with the increased risk of pathogen transmission due to sociality? We have studied the molecular evolution of defensin, a gene encoding an antimicrobial protein, in ants. Defensin sequences from several ant species were analyzed with maximum likelihood models of codon substitution to infer selection. Positive selection was detected in the mature region of defensin, whereas the signal and pro regions seem to be evolving neutrally. We also found a significantly higher rate of nonsynonymous substitutions in some phylogenetic lineages, as well as dN/dS >1, suggesting varying selection pressures in different lineages. Earlier studies on the molecular evolution of insect antimicrobial peptide genes have focused on termites and dipteran species, and detected positive selection only in duplicated termicin genes in termites. These findings, together with our present results, provide an indication that the immune systems of social insects (ants and termites) and dipteran insects may have responded differently to the selection pressure caused by microbial pathogens.
Collapse
Affiliation(s)
- Lumi Viljakainen
- Department of Biology and Biocenter Oulu, University of Oulu, P.O. Box 3000, Oulu 90014, Finland.
| | | |
Collapse
|
39
|
Yount NY, Yeaman MR. Structural congruence among membrane-active host defense polypeptides of diverse phylogeny. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:1373-86. [PMID: 16725105 DOI: 10.1016/j.bbamem.2006.03.027] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2006] [Revised: 03/08/2006] [Accepted: 03/15/2006] [Indexed: 11/17/2022]
Abstract
A requisite for efficacious host defense against pathogens and predators has prioritized evolution of effector molecules thereof. A recent multidimensional analysis of physicochemical properties revealed a novel, unifying structural signature among virtually all classes of cysteine-containing antimicrobial peptides. This motif, termed the gamma-core, is seen in host defense peptides from organisms spanning more than 2.6 billion years of evolution. Interestingly, many toxins possess the gamma-core signature, consistent with discoveries of their direct antimicrobial activity. Many microbicidal chemokines (kinocidins) likewise contain iterations of the gamma-core motif, reconciling their antimicrobial efficacy. Importantly, these polypeptide classes have evolved to target and modulate biomembranes in protecting respective hosts against unfavorable interactions with potential pathogens or predators. Extending on this concept, the current report addresses the hypothesis that antimicrobial peptides, kinocidins, and polypeptide toxins are structurally congruent and share a remarkably close phylogenetic relationship, paralleling their roles in host-pathogen relationships. Analyses of their mature amino acid sequences demonstrated that cysteine-stabilized antimicrobial peptides, kinocidins, and toxins share ancient evolutionary relatedness stemming from early precursors of the gamma-core signature. Moreover, comparative 3-D structure analysis revealed recurring iterations of antimicrobial peptide gamma-core motifs within kinocidins and toxins. However, despite such congruence in gamma-core motifs, the kinocidins diverged in overall homology from microbicidal peptides or toxins. These findings are consistent with observations that chemokines are not toxic to mammalian cells, in contrast to many antimicrobial peptides and toxins. Thus, specific functions of these molecular effectors may be governed by specific configurations of structural modules associated with a common gamma-core motif. These concepts are consistent with the hypothesis that the gamma-core is an archetype determinant in polypeptides that target or regulate with biological membranes, with specific iterations optimized to unique or cognate host defense contexts. Quantitative and qualitative data suggest these protein families emerged through both parallel and divergent processes of modular evolution. Taken together, the current and prior findings imply that the gamma-core motif contributes to conserved structures and functions of host defense polypeptides. The presence of this unifying molecular signature in otherwise diverse categories of membrane-active host defense peptides implies an ancient and essential role for such a motif in effector molecules governing host-pathogen relationships.
Collapse
Affiliation(s)
- Nannette Y Yount
- Division of Infectious Diseases, LAC-Harbor UCLA Medical Center, Torrance, CA 90509, USA
| | | |
Collapse
|
40
|
Gueguen Y, Herpin A, Aumelas A, Garnier J, Fievet J, Escoubas JM, Bulet P, Gonzalez M, Lelong C, Favrel P, Bachère E. Characterization of a defensin from the oyster Crassostrea gigas. Recombinant production, folding, solution structure, antimicrobial activities, and gene expression. J Biol Chem 2005; 281:313-23. [PMID: 16246846 DOI: 10.1074/jbc.m510850200] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In invertebrates, defensins were found in arthropods and in the mussels. Here, we report for the first time the identification and characterization of a defensin (Cg-Def) from an oyster. Cg-def mRNA was isolated from Crassostrea gigas mantle using an expressed sequence tag approach. To gain insight into potential roles of Cg-Def in oyster immunity, we produced the recombinant peptide in Escherichia coli, characterized its antimicrobial activities, determined its solution structure by NMR spectroscopy, and quantified its gene expression in vivo following bacterial challenge of oysters. Recombinant Cg-Def was active in vitro against Gram-positive bacteria but showed no or limited activities against Gram-negative bacteria and fungi. The activity of Cg-Def was retained in vitro at a salt concentration similar to that of seawater. The Cg-Def structure shares the so-called cystine-stabilized alpha-beta motif (CS-alphabeta) with arthropod defensins but is characterized by the presence of an additional disulfide bond, as previously observed in the mussel defensin (MGD-1). Nevertheless, despite a similar global fold, the Cg-Def and MGD-1 structures mainly differ by the size of their loops and by the presence of two aspartic residues in Cg-Def. Distribution of Cg-def mRNA in various oyster tissues revealed that Cg-def is mainly expressed in mantle edge where it was detected by mass spectrometry analyses. Furthermore, we observed that the Cg-def messenger concentration was unchanged after bacterial challenge. Our results suggest that Cg-def gene is continuously expressed in the mantle and would play a key role in oyster by providing a first line of defense against pathogen colonization.
Collapse
Affiliation(s)
- Yannick Gueguen
- Ifremer, CNRS, Université de Montpellier II, UMR 5171, Génome Populations Interactions Adaptation, 2 Place E. Bataillon, CC80, F-34095 Montpellier cedex 5, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Landon C, Barbault F, Legrain M, Menin L, Guenneugues M, Schott V, Vovelle F, Dimarcq JL. Lead optimization of antifungal peptides with 3D NMR structures analysis. Protein Sci 2004; 13:703-13. [PMID: 14978308 PMCID: PMC2286723 DOI: 10.1110/ps.03404404] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Antimicrobial peptides are key components of the innate immune response in most multicellular organisms. These molecules are considered as one of the most innovative class of anti-infective agents that have been discovered over the last two decades, and therefore, as a source of inspiration for novel drug design. Insect cystine-rich antimicrobial peptides with the CS alpha beta scaffold (an alpha-helix linked to a beta-sheet by two disulfide bridges) represent particularly attractive templates for the development of systemic agents owing to their remarkable resistance to protease degradation. We have selected heliomicin, a broad spectrum antifungal CS alpha beta peptide from Lepidoptera as the starting point of a lead optimization program based on phylogenic exploration and fine tuned mutagenesis. We report here the characterization, biological activity, and 3D structure of heliomicin improved analogs, namely the peptides ARD1, ETD-135, and ETD-151. The ARD1 peptide was initially purified from the immune hemolymph of the caterpillars of Archeoprepona demophoon. Although it differs from heliomicin by only two residues, it was found to be more active against the human pathogens Aspergillus fumigatus and Candida albicans. The peptides ETD-135 and ETD-151 were engineered by site-directed mutagenesis of ARD1 in either cationic or hydrophobic regions. ETD-135 and ETD-151 demonstrated an improved antifungal activity over the native peptides, heliomicin and ARD1. A comparative analysis of the 3D structure of the four molecules highlighted the direct impact of the modification of the amphipathic properties on the molecule potency. In addition, it allowed to characterize an optimal organization of cationic and hydrophobic regions to achieve best antifungal activity.
Collapse
Affiliation(s)
- Céline Landon
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique Unite Propre de Recherche 4301, Orléans University, rue C. Sadron, 45071 Orléans cedex2, France.
| | | | | | | | | | | | | | | |
Collapse
|