1
|
Das A, Ghosh S, Sing S, Jana G, Basu A. Interaction, inhibition and disruption of lysozyme fibrillar aggregates by the plant alkaloid berberine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 335:125965. [PMID: 40058085 DOI: 10.1016/j.saa.2025.125965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/11/2025] [Accepted: 02/26/2025] [Indexed: 03/24/2025]
Abstract
This study investigated the interaction and impact of berberine, a pharmacologically important natural alkaloid, on lysozyme amyloidosis with the aim to develop effective anti-amyloidogenic agents. Interaction between berberine and lysozyme was analyzed using both theoretical and experimental tools to unleash its anti-amyloidogenic potency. The intrinsic fluorescence of lysozyme was quenched by berberine through static mechanism, indicating the presence of single binding site predominantly involving TRP residues. Complexation with berberine caused microenvironmental and conformational changes in lysozyme as shown by synchronous and 3D fluorescence spectroscopic analysis. Molecular docking and dynamic simulation study revealed the probable binding site and pharmacokinetics involved in lysozyme-berberine complexation. Berberine significantly inhibited lysozyme fibrillation which was confirmed by Thioflavin T, Congo red, Nile red and ANS assays. FTIR and circular dichroism studies revealed that berberine reduced β-sheet content of lysozyme fibrillar samples, indicating inhibition of fibril formation. Additionally, berberine can degrade pathogenic mature fibril as well. Amyloid inhibition and defibrillation was visualised by atomic force microscopy.
Collapse
Affiliation(s)
- Arindam Das
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore 721102, India
| | - Sougata Ghosh
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore 721102, India
| | - Shukdeb Sing
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore 721102, India
| | - Gouranga Jana
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore 721102, India
| | - Anirban Basu
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore 721102, India.
| |
Collapse
|
2
|
Kushwaha P, Hatwar A, Prabhu NP. Stability and Fibrillation of Lysozyme in the Mixtures of Ionic Liquids with Varying Hydrophobicity. Chemphyschem 2025; 26:e202400743. [PMID: 39637317 DOI: 10.1002/cphc.202400743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 12/07/2024]
Abstract
Combinatorial effects of small molecules provide newer avenues to improve protein stability. The combined effect of two different classes of ILs on the stability and fibrillation propensity of lysozyme (Lyz) was investigated. Imidazolium-ILs (an aromatic moiety) with varying alkyl chains, methyl (MIC), butyl (BMIC) and hexyl (HMIC), and pyrrolidinium-IL (alicyclic moiety) with butyl substitution (BPyroBr) were chosen. The fibrillation was delayed by the addition of any of the IL. While added as a mixture with varying molar ratios, the presence of HMIC with MIC or BMIC at the ratio of 2:1 increased the fibrillation time synergistically by increasing lag time and reducing elongation rate. The protein stability was significantly reduced in these conditions compared to lower molar ratios of HMIC with MIC or BMIC. Molecular dynamics simulation studies indicated that upon adding Im-ILs water molecules were reduced around Lyz, whereas BPyroBr slightly increased the water around Lyz. Preferential interaction studies suggest that the preferential binding of HMIC with the protein was the most favored and it synergistically facilitated the preferential binding of MIC. Though BMIC was preferentially binding to the protein, it disfavoured the interaction of MIC. BMIC and BPyroBr had a competitive binding on the surface of Lyz. The results suggested that the mixture of ILs containing the longer alkyl chain destabilizes the protein and delays the fibril formation to a larger extent than the shorter alkyl chain ILs. Further, the effect of aromatic ILs could be greater than alicyclic ILs having the same alkyl chain length.
Collapse
Affiliation(s)
- Pratibha Kushwaha
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046, India
| | - Abhinav Hatwar
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046, India
| | - N Prakash Prabhu
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046, India
| |
Collapse
|
3
|
Kozell A, Solomonov A, Gaidarov R, Benyamin D, Rosenhek-Goldian I, Greenblatt HM, Levy Y, Amir A, Raviv U, Shimanovich U. Sound-mediated nucleation and growth of amyloid fibrils. Proc Natl Acad Sci U S A 2024; 121:e2315510121. [PMID: 39133851 PMCID: PMC11348332 DOI: 10.1073/pnas.2315510121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/26/2024] [Indexed: 08/21/2024] Open
Abstract
Mechanical energy, specifically in the form of ultrasound, can induce pressure variations and temperature fluctuations when applied to an aqueous media. These conditions can both positively and negatively affect protein complexes, consequently altering their stability, folding patterns, and self-assembling behavior. Despite much scientific progress, our current understanding of the effects of ultrasound on the self-assembly of amyloidogenic proteins remains limited. In the present study, we demonstrate that when the amplitude of the delivered ultrasonic energy is sufficiently low, it can induce refolding of specific motifs in protein monomers, which is sufficient for primary nucleation; this has been revealed by MD. These ultrasound-induced structural changes are initiated by pressure perturbations and are accelerated by a temperature factor. Furthermore, the prolonged action of low-amplitude ultrasound enables the elongation of amyloid protein nanofibrils directly from natively folded monomeric lysozyme protein, in a controlled manner, until it reaches a critical length. Using solution X-ray scattering, we determined that nanofibrillar assemblies, formed either under the action of sound or from natively fibrillated lysozyme, share identical structural characteristics. Thus, these results provide insights into the effects of ultrasound on fibrillar protein self-assembly and lay the foundation for the potential use of sound energy in protein chemistry.
Collapse
Affiliation(s)
- Anna Kozell
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 7610001Rehovot, Israel
| | - Aleksei Solomonov
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 7610001Rehovot, Israel
| | - Roman Gaidarov
- Department of Physics of Complex Systems, Weizmann Institute of Science, 7610001Rehovot, Israel
| | - Doron Benyamin
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem9190401, Israel
| | - Irit Rosenhek-Goldian
- Department of Chemical Research Support, Weizmann Institute of Science, 7610001Rehovot, Israel
| | - Harry Mark Greenblatt
- Department of Chemical and Structural Biology, Weizmann Institute of Science, 7610001Rehovot, Israel
| | - Yaakov Levy
- Department of Chemical and Structural Biology, Weizmann Institute of Science, 7610001Rehovot, Israel
| | - Ariel Amir
- Department of Physics of Complex Systems, Weizmann Institute of Science, 7610001Rehovot, Israel
| | - Uri Raviv
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem9190401, Israel
| | - Ulyana Shimanovich
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 7610001Rehovot, Israel
| |
Collapse
|
4
|
Muthu SA, Qureshi A, Sharma R, Bisaria I, Parvez S, Grover S, Ahmad B. Redesigning the kinetics of lysozyme amyloid aggregation by cephalosporin molecules. J Biomol Struct Dyn 2024:1-16. [PMID: 38682862 DOI: 10.1080/07391102.2024.2335304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/20/2024] [Indexed: 05/01/2024]
Abstract
In lysozyme amyloidosis, fibrillar aggregates of lysozyme are associated with severe renal, hepatic, and gastrointestinal manifestations, with no definite therapy. Current drugs are now being tested in amyloidosis clinical trials as aggregation inhibitors to mitigate disease progression. The tetracycline group among antimicrobials in use is in phase II of clinical trials, whereas some macrolides and cephalosporins have shown neuroprotection. In the present study, two cephalosporins, ceftazidime (CZD) and cefotaxime (CXM), and a glycopeptide, vancomycin (VNC), are evaluated for inhibition of amyloid aggregation of hen egg white lysozyme (HEWL) under two conditions (i) 4 M guanidine hydrochloride (GuHCl) at pH 6.5 and 37° C, (ii) At pH 1.5 and 65 °C. Fluorescence quench titration and molecular docking methods report that CZD, CXM, and VNC interact more strongly with the partially folded intermediates (PFI) in comparison to the protein's natural state (N). However, only CZD and CXM proficiently inhibit the aggregation. Transmission electron microscopy, tinctorial assessments, and aggregation kinetics all support oligomer-level inhibition. Transition structures in CZD-HEWL and CXM-HEWL aggregation are shown by circular dichroism (CD). On the other hand, kinetic variables and soluble fraction assays point to a localized association of monomers. Intrinsic fluorescence (IF),1-Anilino 8-naphthalene sulphonic acid, and CD demonstrate structural and conformational modifications redesigning the PFI. GuHCl-induced unfolding and differential scanning fluorimetry suggested that the PFI monomers bound to CZD and CXM exhibited partial stability. Our results present two mechanisms that function in both solution conditions, creating a novel avenue for the screening of putative inhibitors for drug repurposing. We extend our proposed mechanisms in the designing of physical inhibitors of amyloid aggregation considering shorter time frames and foolproof methods.
Collapse
Affiliation(s)
- Shivani A Muthu
- Protein Assembly Laboratory, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
- Department of Molecular Medicine, School of Interdisciplinary Studies, Jamia Hamdard, New Delhi, India
| | - Afnaan Qureshi
- Protein Assembly Laboratory, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Rahul Sharma
- Department of Molecular Medicine, School of Interdisciplinary Studies, Jamia Hamdard, New Delhi, India
| | - Ishita Bisaria
- Protein Assembly Laboratory, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Sonam Grover
- Department of Molecular Medicine, School of Interdisciplinary Studies, Jamia Hamdard, New Delhi, India
| | - Basir Ahmad
- Protein Assembly Laboratory, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| |
Collapse
|
5
|
Kozell A, Solomonov A, Gaidarov R, Benyamin D, Rosenhek-Goldian I, Greenblatt HM, Levy Y, Amir A, Raviv U, Shimanovich U. Sound-mediated nucleation and growth of amyloid fibrils. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.16.558053. [PMID: 37745331 PMCID: PMC10516038 DOI: 10.1101/2023.09.16.558053] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Mechanical energy, specifically in the form of ultrasound, can induce pressure variations and temperature fluctuations when applied to an aqueous media. These conditions can both positively and negatively affect protein complexes, consequently altering their stability, folding patterns, and self-assembling behavior. Despite much scientific progress, our current understanding of the effects of ultrasound on the self-assembly of amyloidogenic proteins remains limited. In the present study, we demonstrate that when the amplitude of the delivered ultrasonic energy is sufficiently low, it can induce refolding of specific motifs in protein monomers, which is sufficient for primary nucleation; this has been revealed by MD. These ultrasound-induced structural changes are initiated by pressure perturbations and are accelerated by a temperature factor. Furthermore, the prolonged action of low-amplitude ultrasound enables the elongation of amyloid protein nanofibrils directly from natively folded monomeric lysozyme protein, in a controlled manner, until it reaches a critical length. Using solution X-ray scattering, we determined that nanofibrillar assemblies, formed either under the action of sound or from natively fibrillated lysozyme, share identical structural characteristics. Thus, these results provide insights into the effects of ultrasound on fibrillar protein self-assembly and lay the foundation for the potential use of sound energy in protein chemistry. Significance Statement Understanding how and why proteins form amyloid fibrils is crucial for research into various diseases, including neurodegeneration. Ultrasound is routinely used in research settings as a tool for generating amyloid seeds (nucleation sites) from mature fibrils, which accelerate the rate of fibril growth. However, ultrasound can have various effects on aqueous media including temperature, extreme shear, and free radicals. Here we show that when the ultrasound parameters are precisely adjusted, they can be utilized as a tool for amyloid growth directly from the natively folded monomers. Thus, it is possible to induce minor changes in the folding of proteins, which trigger nucleation and accelerate amyloid growth. This knowledge lays the foundation for the potential use of sound in protein chemistry.
Collapse
|
6
|
Rodriguez A, Ali A, Holman AP, Dou T, Zhaliazka K, Kurouski D. Nanoscale structural characterization of transthyretin aggregates formed at different time points of protein aggregation using atomic force microscopy-infrared spectroscopy. Protein Sci 2023; 32:e4838. [PMID: 37967043 PMCID: PMC10683371 DOI: 10.1002/pro.4838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/25/2023] [Accepted: 11/12/2023] [Indexed: 11/17/2023]
Abstract
Transthyretin (TTR) amyloidosis is a progressive disease characterized by an abrupt aggregation of misfolded protein in multiple organs and tissues TTR is a tetrameric protein expressed in the liver and choroid plexus. Protein misfolding triggers monomerization of TTR tetramers. Next, monomers assemble forming oligomers and fibrils. Although the secondary structure of TTR fibrils is well understood, there is very little if anything is known about the structural organization of TTR oligomers. To end this, we used nano-infrared spectroscopy, also known as atomic force microscopy infrared (AFM-IR) spectroscopy. This emerging technique can be used to determine the secondary structure of individual amyloid oligomers and fibrils. Using AFM-IR, we examined the secondary structure of TTR oligomers formed at the early (3-6 h), middle (9-12 h), and late (28 h) of protein aggregation. We found that aggregating, TTR formed oligomers (Type 1) that were dominated by α-helix (40%) and β-sheet (~30%) together with unordered protein (30%). Our results showed that fibril formation was triggered by another type of TTR oligomers (Type 2) that appeared at 9 h. These new oligomers were primarily composed of parallel β-sheet (55%), with a small amount of antiparallel β-sheet, α-helix, and unordered protein. We also found that Type 1 oligomers were not toxic to cells, whereas TTR fibrils formed at the late stages of protein aggregation were highly cytotoxic. These results show the complexity of protein aggregation and highlight the drastic difference in the protein oligomers that can be formed during such processes.
Collapse
Affiliation(s)
- Axell Rodriguez
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexasUSA
| | - Abid Ali
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexasUSA
| | - Aidan P. Holman
- Department of EntomologyTexas A&M UniversityCollege StationTexasUSA
| | - Tianyi Dou
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexasUSA
| | - Kiryl Zhaliazka
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexasUSA
| | - Dmitry Kurouski
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexasUSA
- Department of Biomedical EngineeringTexas A&M UniversityCollege StationTexasUSA
| |
Collapse
|
7
|
Zhaliazka K, Serada V, Matveyenka M, Rizevsky S, Kurouski D. Protein-to-lipid ratio uniquely changes the rate of lysozyme aggregation but does not significantly alter toxicity of mature protein aggregates. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159305. [PMID: 36907244 PMCID: PMC10405292 DOI: 10.1016/j.bbalip.2023.159305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/09/2023] [Accepted: 03/01/2023] [Indexed: 03/13/2023]
Abstract
Irreversible aggregation of misfolded proteins is the underlying molecular cause of numerous pathologies, including diabetes type 2, Alzheimer's, and Parkinson's diseases. Such an abrupt protein aggregation results in the formation of small oligomers that can propagate into amyloid fibrils. A growing body of evidence suggests that protein aggregation can be uniquely altered by lipids. However, the role of the protein-to-lipid (P:L) ratio on the rate of protein aggregation, as well as the structure and toxicity of corresponding protein aggregates remains poorly understood. In this study, we investigate the role of the P:L ratio of five different phospho- and sphingolipids on the rate of lysozyme aggregation. We observed significantly different rates of lysozyme aggregation at 1:1, 1:5, and 1:10 P:L ratios of all analyzed lipids except phosphatidylcholine (PC). However, we found that at those P:L ratios, structurally and morphologically similar fibrils were formed. As a result, for all studies of lipids except PC, mature lysozyme aggregates exerted insignificantly different cell toxicity. These results demonstrate that the P:L ratio directly determines the rate of protein aggregation, however, has very little if any effect on the secondary structure of mature lysozyme aggregates. Furthermore, our results point to the lack of a direct relationship between the rate of protein aggregation, secondary structure, and toxicity of mature fibrils.
Collapse
Affiliation(s)
- Kiryl Zhaliazka
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, United States
| | - Valeryia Serada
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, United States
| | - Mikhail Matveyenka
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, United States
| | - Stanislav Rizevsky
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, United States; Department of Biotechnology, Binh Duong University, Thu Dau Mot 820000, Viet Nam
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, United States; Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, United States.
| |
Collapse
|
8
|
Jamuna NA, Kamalakshan A, Dandekar BR, Chittilappilly Devassy AM, Mondal J, Mandal S. Mechanistic Insight into the Amyloid Fibrillation Inhibition of Hen Egg White Lysozyme by Three Different Bile Acids. J Phys Chem B 2023; 127:2198-2213. [PMID: 36861956 DOI: 10.1021/acs.jpcb.3c00274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Amyloid aggregation of protein is linked to many neurodegenerative diseases. Identification of small molecules capable of targeting amyloidogenic proteins has gained significant importance. Introduction of hydrophobic and hydrogen bonding interactions through site-specific binding of small molecular ligand to protein can effectively modulate the protein aggregation pathway. Here, we investigate the possible roles of three different bile acids, cholic acid (CA), taurocholic acid (TCA), and lithocholic acid (LCA) with varying hydrophobic and hydrogen bonding properties in inhibiting protein fibrillation. Bile acids are an important class of steroid compounds that are synthesized in the liver from cholesterol. Increasing evidence suggests that altered taurine transport, cholesterol metabolism, and bile acid synthesis have strong implications in Alzheimer's disease. We find that the hydrophilic bile acids, CA and TCA (taurine conjugated form of CA), are substantially more efficient inhibitors of lysozyme fibrillation than the most hydrophobic secondary bile acid LCA. Although LCA binds more strongly with the protein and masks the Trp residues more prominently through hydrophobic interactions, the lesser extent of hydrogen bonding interactions at the active site has made LCA a relatively weaker inhibitor of HEWL aggregation than CA and TCA. The introduction of a greater number of hydrogen bonding channels by CA and TCA with several key amino acid residues which are prone to form oligomers and fibrils has weakened the protein's internal hydrogen bonding capabilities for undergoing amyloid aggregation.
Collapse
Affiliation(s)
- Nidhi Anilkumar Jamuna
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India
| | - Adithya Kamalakshan
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India
| | | | | | | | - Sarthak Mandal
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India
| |
Collapse
|
9
|
Nagata K, Ashikaga R, Mori W, Zako T, Shimazaki Y. Analysis of the enzymatic degradation of lysozyme fibrils using a combination method of non-denaturing gel electrophoresis and double staining with Coomassie Brilliant Blue G-250 and R-250 dyes. ANAL SCI 2023; 39:267-274. [PMID: 36451064 DOI: 10.1007/s44211-022-00229-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022]
Abstract
The Amyloid fibrils of proteins are involved in various diseases, such as Alzheimer's disease. To suppress such amyloid fibrils, it is essential to develop methods to elucidate their enzymatic degradation process. Lysozyme in egg white has been well studied as a model protein of amyloid fibrils. Here, we establish a method for separating and evaluating both lysozyme fibrils and their enzymatic degradation products by combining non-denaturing gel electrophoresis and anionic dye staining with Congo red and two Coomassie brilliant blue (CBB) dyes. By combining non-denaturing gel electrophoresis and amyloid-specific Congo red staining, the separation site of lysozyme fibril was stained explicitly by Congo red and identified on the gel, and the amount of lysozyme fibrils decreased following the enzymatic degradation of lysozyme fibrils. Both lysozyme fibrils and their enzymatic degradation products were separated and examined by combining non-denaturing gel electrophoresis and double staining with CBB G-250 and R-250 dyes. Protein stained with negatively charged colloidal CBB G-250 could migrate to the anode side of electrophoresis. Following gel electrophoresis, noncolloidal CBB R-250 was used to detect lysozyme fibrils and the enzymatic degradation products. This method can be applied to investigate the enzymatic degradation process of amyloid fibrils.
Collapse
Affiliation(s)
| | - Ryo Ashikaga
- Faculty of Science, Ehime University, Matsuyama, Japan
| | - Wakako Mori
- Department of Chemistry and Biology, Graduate School of Science and Engineering, Ehime University, Matsuyama, 790-8577, Japan
| | - Tamotsu Zako
- Department of Chemistry and Biology, Graduate School of Science and Engineering, Ehime University, Matsuyama, 790-8577, Japan
- Faculty of Science, Ehime University, Matsuyama, Japan
| | - Youji Shimazaki
- Department of Chemistry and Biology, Graduate School of Science and Engineering, Ehime University, Matsuyama, 790-8577, Japan.
- Faculty of Science, Ehime University, Matsuyama, Japan.
| |
Collapse
|
10
|
Wawer J, Kaczkowska E, Karczewski J, Augustin-Nowacka D, Krakowiak J. Influence of stabilizing osmolytes on hen egg white lysozyme fibrillation. J Biomol Struct Dyn 2022; 40:13346-13353. [PMID: 34623219 DOI: 10.1080/07391102.2021.1984990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jarosław Wawer
- Department of Physical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Emilia Kaczkowska
- Department of Physical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Jakub Karczewski
- Institute of Nanotechnology and Materials Science, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Gdańsk, Poland
| | | | - Joanna Krakowiak
- Department of Physical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| |
Collapse
|
11
|
Matveyenka M, Zhaliazka K, Rizevsky S, Kurouski D. Lipids uniquely alter secondary structure and toxicity of lysozyme aggregates. FASEB J 2022; 36:e22543. [PMID: 36094052 PMCID: PMC10427241 DOI: 10.1096/fj.202200841r] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/03/2022] [Accepted: 08/29/2022] [Indexed: 08/17/2023]
Abstract
Abrupt aggregation of misfolded proteins is a hallmark of the large group of amyloid pathologies that include diabetes type 2, Alzheimer and Parkinson's diseases. Protein aggregation yields oligomers and fibrils, β-sheet-rich structures that exert cell toxicity. Microscopic examination of amyloid deposits reveals the presence of lipids membranes, which suggests that lipids can be involved in the process of pathogenic protein assembly. In this study, we show that lipids can uniquely alter the aggregation rates of lysozyme, a protein that is associated with systemic amyloidosis. Specifically, cardiolipin (CL), ceramide (CER), and sphingomyelin (SM) accelerate, phosphatidylcholine (PC) strongly inhibits, whereas phosphatidylserine (PS) has no effect on the rate of protein aggregation. Furthermore, lipids uniquely alter the secondary structure of lysozyme aggregates. Furthermore, we found that lysozyme aggregates grown in the presence of CL, CER, SM, PS, and CL:PC mixtures exert significantly lower production of reactive oxygen species and mitochondrial dysfunction compared to lysozyme:PC aggregates and lysozyme fibrils grown in the lipid-free environment. These findings suggest that a change in the lipid composition of cell membranes, which is taken place upon neurodegeneration, may trigger the formation of toxic protein species that otherwise would not be formed.
Collapse
Affiliation(s)
- Mikhail Matveyenka
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Kiryl Zhaliazka
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Stanislav Rizevsky
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
- Department of Biotechnology, Binh Duong University, Thu Dau Mot, Vietnam
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
12
|
Capocefalo A, Deckert-Gaudig T, Brasili F, Postorino P, Deckert V. Unveiling the interaction of protein fibrils with gold nanoparticles by plasmon enhanced nano-spectroscopy. NANOSCALE 2021; 13:14469-14479. [PMID: 34473176 DOI: 10.1039/d1nr03190b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The development of various degenerative diseases is suggested to be triggered by the uncontrolled organisation and aggregation of proteins into amyloid fibrils. For this reason, there are ongoing efforts to develop novel agents and approaches, including metal nanoparticle-based colloids, that dissolve amyloid structures and prevent pathogenic protein aggregation. In this contribution, the role of gold nanoparticles (AuNPs) in degrading amyloid fibrils of the model protein lysozyme is investigated. The amino acid composition of fibril surfaces before and after the incubation with AuNPs is determined at the single fibril level by exploiting the high spatial resolution and sensitivity provided by tip-enhanced and surface-enhanced Raman spectroscopies. This combined spectroscopic approach allows to reveal the molecular mechanisms driving the interaction between fibrils and AuNPs. Our results provide an important input for the understanding of amyloid fibrils and could have a potential translational impact on the development of strategies for the prevention and treatment of amyloid-related diseases.
Collapse
Affiliation(s)
- Angela Capocefalo
- Dipartimento di Fisica, Sapienza Università di Roma, P. le Aldo Moro 5, Roma, Italy
- CNR-ISC, Istituto dei Sistemi Complessi, c/o Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Roma, Italy
| | - Tanja Deckert-Gaudig
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany.
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University, Jena Helmholtzweg 4, 07743 Jena, Germany
| | - Francesco Brasili
- Dipartimento di Fisica, Sapienza Università di Roma, P. le Aldo Moro 5, Roma, Italy
| | - Paolo Postorino
- Dipartimento di Fisica, Sapienza Università di Roma, P. le Aldo Moro 5, Roma, Italy
| | - Volker Deckert
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany.
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University, Jena Helmholtzweg 4, 07743 Jena, Germany
- Institute of Quantum Science and Engineering, Texas A&M University, College Station, TX 77843-4242, USA
| |
Collapse
|
13
|
Eze FN, Jayeoye TJ. Chromolaena odorata (Siam weed): A natural reservoir of bioactive compounds with potent anti-fibrillogenic, antioxidative, and cytocompatible properties. Biomed Pharmacother 2021; 141:111811. [PMID: 34153847 DOI: 10.1016/j.biopha.2021.111811] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/20/2021] [Accepted: 06/07/2021] [Indexed: 12/13/2022] Open
Abstract
Protein fibrillation and oxidative damage are closely associated with the development of many chronic diseases such as Alzheimer's disease, Parkinson's disease and transthyretin amyloidoses. This work aimed at evaluating the fibrillogenic, antioxidant, anti-oxidative, hemolytic and cytotoxic activities of phenolic-rich extract from Chromolaena odorata (L) R.M. King & H. Rob aerial parts (COPE). As revealed by Thioflavin-T fluorescence, transmission electron microscopy, NBT redox cycling and ANS fluorescence analyses, COPE suppressed the fibril formation of hen egg-white lysozyme by directly binding to the protein and preventing surface exposure its of hydrophobic clusters. In addition, COPE demonstrated potent radical scavenging activities against DPPH˙ and ABTS˙+, chelated ferrous ions, and inhibited metal-catalyzed oxidation of bovine serum albumin. The observed effects could be explained by the high content of flavonoids (22.82 QE/g) and phenolics (190 mg GAE/g) present in COPE. UHPLC-ESI-QTOF-MS/MS analysis of COPE in negative ionization mode revealed that the predominant compounds were phenolics and terpenoids. Furthermore, COPE was found to exert very minimal cytotoxic effects against human red blood cells (≤ 5% hemolysis) and human embryonic kidney (HEK-293) cells (≥ 80% viability). These findings suggested that with further investigations, phenolic-rich extract from C odorata could be effectively valorized for pharmacological applications against protein fibrillogenic and oxidative damage related conditions.
Collapse
Affiliation(s)
- Fredrick Nwude Eze
- Drug Delivery Systems Excellence Center, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110 Thailand.
| | - Titilope John Jayeoye
- Department of Chemistry, Faculty of Physical Sciences, Alex-Ekwueme Federal University, Ndufu-Alike Ikwo, Ebonyi State, Nigeria.
| |
Collapse
|
14
|
Temperature dependent aggregation mechanism and pathway of lysozyme: By all atom and coarse grained molecular dynamics simulation. J Mol Graph Model 2020; 103:107816. [PMID: 33291026 DOI: 10.1016/j.jmgm.2020.107816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 11/21/2022]
Abstract
Aggregation of protein causes various diseases including Alzheimer's disease, Parkinson's disease, and type II diabetes. It was found that aggregation of protein depends on many factors like temperature, pH, salt type, salt concentration, ionic strength, protein concentration, co solutes. Here we have tried to capture the aggregation mechanism and pathway of hen egg white lysozyme using molecular dynamics simulations at two different temperatures; 300 K and 340 K. Along with the all atom simulations to get the atomistic details of aggregation mechanism, we have used coarse grained simulation with MARTINI force field to monitor the aggregation for longer duration. Our results suggest that due to the aggregation, changes in the conformation of lysozyme are more at 340 K than at 300 K. The change in the conformation of the lysozyme at 300 K is mainly due to aggregation where at 340 K change in conformation of lysozyme is due to both aggregation and temperature. Also, a more compact aggregated system is formed at 340 K.
Collapse
|
15
|
Restriction of microwave-induced amyloid fibrillar growth by gold nanoparticles. Int J Biol Macromol 2020; 151:212-219. [DOI: 10.1016/j.ijbiomac.2020.02.128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 12/15/2022]
|
16
|
Identification of Novel 1,3,5-Triphenylbenzene Derivative Compounds as Inhibitors of Hen Lysozyme Amyloid Fibril Formation. Int J Mol Sci 2019; 20:ijms20225558. [PMID: 31703381 PMCID: PMC6888386 DOI: 10.3390/ijms20225558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/02/2019] [Indexed: 11/16/2022] Open
Abstract
Deposition of soluble proteins as insoluble amyloid fibrils is associated with a number of pathological states. There is a growing interest in the identification of small molecules that can prevent proteins from undergoing amyloid fibril formation. In the present study, a series of small aromatic compounds with different substitutions of 1,3,5-triphenylbenzene have been synthesized and their possible effects on amyloid fibril formation by hen egg white lysozyme (HEWL), a model protein for amyloid formation, and of their resulting toxicity were examined. The inhibitory effect of the compounds against HEWL amyloid formation was analyzed using thioflavin T and Congo red binding assays, atomic force microscopy, Fourier-transform infrared spectroscopy, and cytotoxicity assays, such as the 3-(4,5-Dimethylthiazol)-2,5-Diphenyltetrazolium Bromide (MTT) reduction assay and caspase-3 activity measurements. We found that all compounds in our screen were efficient inhibitors of HEWL fibril formation and their associated toxicity. We showed that electron-withdrawing substituents such as –F and –NO2 potentiated the inhibitory potential of 1,3,5-triphenylbenzene, whereas electron-donating groups such as –OH, –OCH3, and –CH3 lowered it. These results may ultimately find applications in the development of potential inhibitors against amyloid fibril formation and its biologically adverse effects.
Collapse
|
17
|
Jansens KJA, Lambrecht MA, Rombouts I, Monge Morera M, Brijs K, Rousseau F, Schymkowitz J, Delcour JA. Conditions Governing Food Protein Amyloid Fibril Formation-Part I: Egg and Cereal Proteins. Compr Rev Food Sci Food Saf 2019; 18:1256-1276. [PMID: 33336994 DOI: 10.1111/1541-4337.12462] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/26/2019] [Accepted: 05/13/2019] [Indexed: 12/18/2022]
Abstract
Conditions including heating mode, time, temperature, pH, moisture and protein concentration, shear, and the presence of alcohols, chaotropic/reducing agents, enzymes, and/or salt influence amyloid fibril (AF) formation as they can affect the accessibility of amino acid sequences prone to aggregate. As some conditions applied on model protein resemble conditions in food processing unit operations, we here hypothesize that food processing can lead to formation of protein AFs with a compact cross β-sheet structure. This paper reviews conditions and food constituents that affect amyloid fibrillation of egg and cereal proteins. While egg and cereal proteins often coexist in food products, their impact on each other's fibrillation remains unknown. Hen egg ovalbumin and lysozyme form AFs when subjected to moderate heating at acidic pH separately. AFs can also be formed at higher pH, especially in the presence of alcohols or chaotropic/reducing agents. Tryptic wheat gluten digests can form fibrillar structures at neutral pH and maize and rice proteins do so in aqueous ethanol or at acidic pH, respectively.
Collapse
Affiliation(s)
- Koen J A Jansens
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium.,Nutrex NV, Achterstenhoek 5, B-2275, Lille, Belgium
| | - Marlies A Lambrecht
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - Ine Rombouts
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium.,KU Leuven, ECOVO, Kasteelpark Arenberg 21, B-3001, Leuven, Belgium
| | - Margarita Monge Morera
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - Kristof Brijs
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB, and Dept. of Cellular and Molecular Medicine, KU Leuven, B-3000, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB, and Dept. of Cellular and Molecular Medicine, KU Leuven, B-3000, Leuven, Belgium
| | - Jan A Delcour
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| |
Collapse
|
18
|
Double-edged effects of aluminium ions on amyloid fibrillation of hen egg-white lysozyme. Int J Biol Macromol 2019; 132:929-938. [PMID: 30954597 DOI: 10.1016/j.ijbiomac.2019.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/30/2019] [Accepted: 04/02/2019] [Indexed: 12/14/2022]
Abstract
Elucidating the effects of Al(III) ions on amyloid fibrillation is important to understand the association between metal ions and Alzheimer's disease. Here, Raman spectroscopy was applied to investigate amyloid fibrillation of hen egg-white lysozymes during thermal incubation with Al(III) ions or acids, combined with atomic force microscopy and thioflavin T fluorescence assays. Kinetics of conformational changes in lysozymes were assessed by monitoring six characteristic Raman spectral markers. The peak of Phe residues at 1003 cm-1 and two bands of Trp residues at 759 cm-1 and 1340-1360 cm-1 corresponded to the lysozyme tertiary structure, whereas two NCαC stretching vibrations at 899 cm-1 and 935 cm-1 and an amide I band were associated with the lysozyme skeleton. There may be a four-stage transformation mechanism underlying the kinetics of amyloid fibrillation of lysozymes with the thermal/Al(III) treatment. Comparison of kinetics under thermal/Al(III) and thermal/acid conditions revealed double-edged roles of Al(III) ions in amyloid fibrillation of lysozymes. Specifically, in addition to postponing α-helix degradation, Al(III) ions accelerated conformational transformations from α-helices to organized β-sheets. The present investigation sheds light on the controversial effects of Al(III) ions on amyloid fibrillation of lysozymes.
Collapse
|
19
|
Ramshini H, Moghaddasi AS, Mollania N, Khodarahmi R. Diverse antithetical effects of the bio-compatible Ag-NPs on the hen egg lysozyme amyloid aggregation: from an efficient inhibitor to obscure inducer. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1478-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Secondary structure assessment of formulated bevacizumab in the presence of SDS by deep ultraviolet resonance Raman (DUVRR) spectroscopy. Anal Biochem 2018; 555:26-32. [DOI: 10.1016/j.ab.2018.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/14/2018] [Accepted: 06/04/2018] [Indexed: 12/15/2022]
|
21
|
Abstract
UV resonance Raman (UVRR) spectroscopy is a powerful tool for investigating the structure of biological molecules, such as proteins. Numerous UVRR spectroscopic markers that provide information on the structure and environment of the protein backbone and of amino acid side chains have recently been discovered. Combining these UVRR markers with hydrogen-deuterium exchange and advanced statistics is a powerful tool for studying protein systems, including the structure and formation mechanism of protein aggregates and amyloid fibrils. These techniques allow crucial new insights into the structure and dynamics of proteins, such as polyglutamine peptides, which are associated with 10 different neurodegenerative diseases. Here we summarize the spectroscopic structural markers recently developed and the important insights they provide.
Collapse
|
22
|
Ramshini H, Mannini B, Khodayari K, Ebrahim-Habibi A, Moghaddasi AS, Tayebee R, Chiti F. Bis(indolyl)phenylmethane derivatives are effective small molecules for inhibition of amyloid fibril formation by hen lysozyme. Eur J Med Chem 2016; 124:361-371. [DOI: 10.1016/j.ejmech.2016.08.056] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 08/22/2016] [Accepted: 08/24/2016] [Indexed: 12/31/2022]
|
23
|
Production of lysozyme nanofibers using deep eutectic solvent aqueous solutions. Colloids Surf B Biointerfaces 2016; 147:36-44. [PMID: 27478961 DOI: 10.1016/j.colsurfb.2016.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/23/2016] [Accepted: 07/03/2016] [Indexed: 12/30/2022]
Abstract
Amyloid fibrils have recently gained a lot of attention due to their morphology, functionality and mechanical strength, allowing for their application in nanofiber-based materials, biosensors, bioactive membranes and tissue engineering scaffolds. The in vitro production of amyloid fibrils is still a slow process, thus hampering the massive production of nanofibers and its consequent use. This work presents a new and faster (2-3h) fibrillation method for hen egg white lysozyme (HEWL) using a deep eutectic solvent based on cholinium chloride and acetic acid. Nanofibers with dimensions of 0.5-1μm in length and 0.02-0.1μm in thickness were obtained. Experimental variables such as temperature and pH were also studied, unveiling their influence in fibrillation time and nanofibers morphology. These results open a new scope for protein fibrillation into nanofibers with applications ranging from medicine to soft matter and nanotechnology.
Collapse
|
24
|
Vasilescu A, Purcarea C, Popa E, Zamfir M, Mihai I, Litescu S, David S, Gaspar S, Gheorghiu M, Jean-Louis Marty. Versatile SPR aptasensor for detection of lysozyme dimer in oligomeric and aggregated mixtures. Biosens Bioelectron 2016; 83:353-60. [PMID: 27135941 DOI: 10.1016/j.bios.2016.04.080] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/13/2016] [Accepted: 04/23/2016] [Indexed: 12/16/2022]
Abstract
A Surface Plasmon Resonance (SPR) sensor for the quantitation of lysozyme dimer in monomer-dimer mixtures, reaching a detection limit of 1.4nM dimer, has been developed. The sensor is based on an aptamer which, although developed for the monomeric form, binds also the dimeric form but with a strikingly different kinetics. The aptasensor was calibrated using a dimer obtained by cross-linking. Sensorgrams acquired with the aptasensor in monomer-dimer mixtures were analysed using Principal Components Analysis and Multiple Regression to establish correlations with the dimer content in the mixtures. The method allows the detection of 0.1-1% dimer in monomer solutions without any separation. As an application, the aptasensor was used to qualitatively observe the initial stages of aggregation of lysozyme solutions at 60°C and pH 2, through the variations in lysozyme dimer amounts. Several other methods were used to characterize the lysozyme dimer obtained by cross-linking and confirm the SPR results. This work highlights the versatility of the aptasensor, which can be used, by simply tuning the experimental conditions, for the sensitive detection of either the monomer or the dimer and for the observation of the aggregation process of lysozyme.
Collapse
Affiliation(s)
- Alina Vasilescu
- International Centre of Biodynamics, 1 B Intrarea Portocalelor, 060101 Bucharest, Romania.
| | - Cristina Purcarea
- Institute of Biology of the Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest, Romania
| | - Elena Popa
- Institute of Biology of the Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest, Romania
| | - Medana Zamfir
- Institute of Biology of the Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest, Romania
| | - Iuliana Mihai
- University of Bucharest, Faculty of Chemistry, Department of Analytical Chemistry, 4-12 Blvd. Regina Elisabeta, 030018 Bucharest, Romania
| | - Simona Litescu
- National Institute for Research and Development in Biological Sciences, Bioanalysis Center, 296 Splaiul Independentei, Bucharest, Romania
| | - Sorin David
- International Centre of Biodynamics, 1 B Intrarea Portocalelor, 060101 Bucharest, Romania
| | - Szilveszter Gaspar
- International Centre of Biodynamics, 1 B Intrarea Portocalelor, 060101 Bucharest, Romania
| | - Mihaela Gheorghiu
- International Centre of Biodynamics, 1 B Intrarea Portocalelor, 060101 Bucharest, Romania
| | - Jean-Louis Marty
- BAE: Biocapteurs-Analyses-Environnement, Universite de Perpignan Via Domitia, 52 Avenue Paul Alduy, Perpignan Cedex 66860, France.
| |
Collapse
|
25
|
Punihaole D, Workman RJ, Hong Z, Madura JD, Asher SA. Polyglutamine Fibrils: New Insights into Antiparallel β-Sheet Conformational Preference and Side Chain Structure. J Phys Chem B 2016; 120:3012-26. [PMID: 26947327 DOI: 10.1021/acs.jpcb.5b11380] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding the structure of polyglutamine (polyQ) amyloid-like fibril aggregates is crucial to gaining insights into the etiology of at least ten neurodegenerative disorders, including Huntington's disease. Here, we determine the structure of D2Q10K2 (Q10) fibrils using ultraviolet resonance Raman (UVRR) spectroscopy and molecular dynamics (MD). Using UVRR, we determine the fibril peptide backbone Ψ and glutamine (Gln) side chain χ3 dihedral angles. We find that most of the fibril peptide bonds adopt antiparallel β-sheet conformations; however, a small population of peptide bonds exist in parallel β-sheet structures. Using MD, we simulate three different potential fibril structural models that consist of either β-strands or β-hairpins. Comparing the experimentally measured Ψ and χ3 angle distributions to those obtained from the MD simulated models, we conclude that the basic structural motif of Q10 fibrils is an extended β-strand structure. Importantly, we determine from our MD simulations that Q10 fibril antiparallel β-sheets are thermodynamically more stable than parallel β-sheets. This accounts for why polyQ fibrils preferentially adopt antiparallel β-sheet conformations instead of in-register parallel β-sheets like most amyloidogenic peptides. In addition, we directly determine, for the first time, the structures of Gln side chains. Our structural data give new insights into the role that the Gln side chains play in the stabilization of polyQ fibrils. Finally, our work demonstrates the synergistic power and utility of combining UVRR measurements and MD modeling to determine the structure of amyloid-like fibrils.
Collapse
Affiliation(s)
- David Punihaole
- Department of Chemistry, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| | - Riley J Workman
- Department of Chemistry and Biochemistry, Center for Computational Sciences, Duquesne University , Pittsburgh, Pennsylvania 15282, United States
| | - Zhenmin Hong
- Department of Chemistry, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| | - Jeffry D Madura
- Department of Chemistry and Biochemistry, Center for Computational Sciences, Duquesne University , Pittsburgh, Pennsylvania 15282, United States
| | - Sanford A Asher
- Department of Chemistry, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
26
|
Giugliarelli A, Tarpani L, Latterini L, Morresi A, Paolantoni M, Sassi P. Spectroscopic and Microscopic Studies of Aggregation and Fibrillation of Lysozyme in Water/Ethanol Solutions. J Phys Chem B 2015; 119:13009-17. [DOI: 10.1021/acs.jpcb.5b07487] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Alessandra Giugliarelli
- Dipartimento di Chimica, Biologia e Biotecnologie and ‡Dipartimento di
Chimica, Biologia
e Biotecnologie and Centro di Eccellenza Materiali Innovativi Nanostrutturati
CEMIN, Università di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Luigi Tarpani
- Dipartimento di Chimica, Biologia e Biotecnologie and ‡Dipartimento di
Chimica, Biologia
e Biotecnologie and Centro di Eccellenza Materiali Innovativi Nanostrutturati
CEMIN, Università di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Loredana Latterini
- Dipartimento di Chimica, Biologia e Biotecnologie and ‡Dipartimento di
Chimica, Biologia
e Biotecnologie and Centro di Eccellenza Materiali Innovativi Nanostrutturati
CEMIN, Università di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Assunta Morresi
- Dipartimento di Chimica, Biologia e Biotecnologie and ‡Dipartimento di
Chimica, Biologia
e Biotecnologie and Centro di Eccellenza Materiali Innovativi Nanostrutturati
CEMIN, Università di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Marco Paolantoni
- Dipartimento di Chimica, Biologia e Biotecnologie and ‡Dipartimento di
Chimica, Biologia
e Biotecnologie and Centro di Eccellenza Materiali Innovativi Nanostrutturati
CEMIN, Università di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Paola Sassi
- Dipartimento di Chimica, Biologia e Biotecnologie and ‡Dipartimento di
Chimica, Biologia
e Biotecnologie and Centro di Eccellenza Materiali Innovativi Nanostrutturati
CEMIN, Università di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| |
Collapse
|
27
|
Tiwari PB, Astudillo L, Miksovska J, Wang X, Li W, Darici Y, He J. Quantitative study of protein-protein interactions by quartz nanopipettes. NANOSCALE 2014; 6:10255-10263. [PMID: 25060094 DOI: 10.1039/c4nr02964j] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In this report, protein-modified quartz nanopipettes were used to quantitatively study protein-protein interactions in attoliter sensing volumes. As shown by numerical simulations, the ionic current through the conical-shaped nanopipette is very sensitive to the surface charge variation near the pore mouth. With the appropriate modification of negatively charged human neuroglobin (hNgb) onto the inner surface of a nanopipette, we were able to detect concentration-dependent current change when the hNgb-modified nanopipette tip was exposed to positively charged cytochrome c (Cyt c) with a series of concentrations in the bath solution. Such current change is due to the adsorption of Cyt c to the inner surface of the nanopipette through specific interactions with hNgb. In contrast, a smaller current change with weak concentration dependence was observed when Cyt c was replaced with lysozyme, which does not specifically bind to hNgb. The equilibrium dissociation constant (KD) for the Cyt c-hNgb complex formation was derived and the value matched very well with the result from surface plasmon resonance measurement. This is the first quantitative study of protein-protein interactions by a conical-shaped nanopore based on charge sensing. Our results demonstrate that nanopipettes can potentially be used as a label-free analytical tool to quantitatively characterize protein-protein interactions.
Collapse
|
28
|
Alvarez de Eulate E, Qiao L, Scanlon MD, Girault HH, Arrigan DWM. Fingerprinting the tertiary structure of electroadsorbed lysozyme at soft interfaces by electrostatic spray ionization mass spectrometry. Chem Commun (Camb) 2014; 50:11829-32. [DOI: 10.1039/c4cc05545d] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
29
|
Kurouski D, Sorci M, Postiglione T, Belfort G, Lednev IK. Detection and structural characterization of insulin prefibrilar oligomers using surface enhanced Raman spectroscopy. Biotechnol Prog 2014; 30:488-95. [PMID: 24376182 DOI: 10.1002/btpr.1852] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 12/01/2013] [Indexed: 12/31/2022]
Abstract
In vitro fibril formation typically exhibits a lag phase followed by a rapid elongation phase. Soluble prefibrilar oligomers form as multiple assembly states occur during the lag phase and, after forming a nucleus, rapidly propagate into amyloid aggregates and fibrils. The structure and morphology of amyloid fibrils have been extensively characterized over the last decades, while little is known about the structural organization of the prefibrilar oligomers or their multiple assembly states. The main difficulty in structural characterization of prefibrilar aggregates is their low concentration (pmolar) and their continual reactive conversion. Herein we overcome these difficulties by utilizing Surface-Enhanced Raman Spectroscopy (SERS) with a model amyloid peptide, insulin. SERS is a powerful analytic tool that is able to provide detection of small molecules down to a single-molecule level. Using SERS we found that during the 3 lag phase before the onset of insulin fibril formation, the amount of insulin oligomers increased more than twice after the first hour of incubation under fibrillation conditions (pH 1.6, 65°C) and then slowly decreased with time. The latter finding is kinetically linked to the conversion of the prefibrilar oligomers into fibril species. This study provides valuable new information about the time-dependent structural organization of insulin oligomers and demonstrates the power and potential of SERS for detection and structural characterization of biological specimens present at low concentrations.
Collapse
Affiliation(s)
- Dmitry Kurouski
- Department of Chemistry, University at Albany, State University of New York, Albany, NY, 12222
| | | | | | | | | |
Collapse
|
30
|
Sikirzhytskaya A, Sikirzhytski V, Lednev IK. Raman spectroscopy coupled with advanced statistics for differentiating menstrual and peripheral blood. JOURNAL OF BIOPHOTONICS 2014; 7:59-67. [PMID: 23175461 DOI: 10.1002/jbio.201200191] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 10/15/2012] [Accepted: 10/16/2012] [Indexed: 05/06/2023]
Abstract
Body fluids are a common and important type of forensic evidence. In particular, the identification of menstrual blood stains is often a key step during the investigation of rape cases. Here, we report on the application of near-infrared Raman microspectroscopy for differentiating menstrual blood from peripheral blood. We observed that the menstrual and peripheral blood samples have similar but distinct Raman spectra. Advanced statistical analysis of the multiple Raman spectra that were automatically (Raman mapping) acquired from the 40 dried blood stains (20 donors for each group) allowed us to build classification model with maximum (100%) sensitivity and specificity. We also demonstrated that despite certain common constituents, menstrual blood can be readily distinguished from vaginal fluid. All of the classification models were verified using cross-validation methods. The proposed method overcomes the problems associated with currently used biochemical methods, which are destructive, time consuming and expensive.
Collapse
|
31
|
Ow SY, Dunstan DE. The effect of concentration, temperature and stirring on hen egg white lysozyme amyloid formation. SOFT MATTER 2013; 9:9692-701. [PMID: 26029778 DOI: 10.1039/c3sm51671g] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Lysozyme is associated with hereditary systemic amyloidosis in humans. Hen egg white lysozyme (HEWL) has been extensively studied as an amyloid forming protein. In this study, we investigated HEWL amyloid formation over a range of temperatures at two stirring speeds and at low concentrations to avoid gel formation. The amyloid fibril formation was found to follow first order kinetics with the rate determining step being the unfolding of the lysozyme. Both the rate of formation and final amount of amyloid formed show maxima with temperature at approximately at 65 °C. CD measurements show that the lysozyme is unfolded by 55 °C. The decrease in amyloid formation at temperatures above 65 °C is attributed to competing amorphous aggregation. The majority of the non-fibrillar aggregates are small and uniform in size with a few larger amorphous aggregates observed in the AFM images.
Collapse
Affiliation(s)
- Sian-Yang Ow
- Department of chemical and biomolecular engineering, The University of Melbourne, Vic. 3010, Australia
| | | |
Collapse
|
32
|
Bhattacharya S, Ghosh S, Dasgupta S, Roy A. Structural differences between native Hen egg white lysozyme and its fibrils under different environmental conditions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 114:368-376. [PMID: 23786978 DOI: 10.1016/j.saa.2013.05.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 05/14/2013] [Accepted: 05/17/2013] [Indexed: 06/02/2023]
Abstract
The difference in molecular structure of native HEWL and its fibrils, grown at a pH value near physiological pH 7.4 and at a pH value just above the pI, 10.7 in presence and absence of Cu(II) ions, is discussed. We focus on differences between the molecular structure of the native protein and fibrils using principal component analysis of their Raman spectra. The overlap areas of the scores of each species are used to quantify the difference in the structure of the native HEWL and fibrils in different environments. The overall molecular structures are significantly different for fibrils grown at two pH values. However, in presence of Cu(II) ions, the fibrils have similarities in their molecular structures at these pH environments. Spectral variation within each species, as obtained from the standard deviations of the scores in PCA plots, reveals the variability in the structure within a particular species.
Collapse
|
33
|
Ghosh S, Pandey NK, Sen S, Tripathy DR, Dasgupta S. Binding of hen egg white lysozyme fibrils with nucleic acids. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 127:52-60. [DOI: 10.1016/j.jphotobiol.2013.07.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/09/2013] [Accepted: 07/11/2013] [Indexed: 10/26/2022]
|
34
|
Tokunaga Y, Sakakibara Y, Kamada Y, Watanabe KI, Sugimoto Y. Analysis of core region from egg white lysozyme forming amyloid fibrils. Int J Biol Sci 2013; 9:219-27. [PMID: 23459392 PMCID: PMC3584918 DOI: 10.7150/ijbs.5380] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Accepted: 12/21/2012] [Indexed: 12/30/2022] Open
Abstract
Some of the lysozyme mutants in humans cause systemic amyloidosis. Hen egg white lysozyme (HEWL) has been well studied as a model protein of amyloid fibrils formation. We previously identified an amyloid core region consisting of nine amino acids (designated as the K peptide), which is present at 54-62 in HEWL. The K peptide, with tryptophan at its C- terminus, has the ability of self-aggregation. In the present work we focused on its structural properties in relation to the formation of fibrils. The K peptide alone formed definite fibrils having β-sheet structures by incubation of 7 days under acidic conditions at 37°C. A substantial number of fibrils were generated under this pH condition and incubation period. Deletion and substitution of tryptophan in the K peptide resulted in no formation of fibrils. Tryptophan 62 in lysozyme was suggested to be especially crucial to forming amyloid fibrils. We also show that amyloid fibrils formation of the K peptide requires not only tryptophan 62 but also a certain length containing hydrophobic amino acids. A core region is involved in the significant formation of amyloid fibrils of lysozyme.
Collapse
Affiliation(s)
- Yuhei Tokunaga
- Laboratory of Biochemistry and Bioscience The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065 Japan
| | | | | | | | | |
Collapse
|
35
|
Disulfide bridges remain intact while native insulin converts into amyloid fibrils. PLoS One 2012; 7:e36989. [PMID: 22675475 PMCID: PMC3365881 DOI: 10.1371/journal.pone.0036989] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Accepted: 04/11/2012] [Indexed: 11/19/2022] Open
Abstract
Amyloid fibrils are β-sheet-rich protein aggregates commonly found in the organs and tissues of patients with various amyloid-associated diseases. Understanding the structural organization of amyloid fibrils can be beneficial for the search of drugs to successfully treat diseases associated with protein misfolding. The structure of insulin fibrils was characterized by deep ultraviolet resonance Raman (DUVRR) and Nuclear Magnetic Resonance (NMR) spectroscopy combined with hydrogen-deuterium exchange. The compositions of the fibril core and unordered parts were determined at single amino acid residue resolution. All three disulfide bonds of native insulin remained intact during the aggregation process, withstanding scrambling. Three out of four tyrosine residues were packed into the fibril core, and another aromatic amino acid, phenylalanine, was located in the unordered parts of insulin fibrils. In addition, using all-atom MD simulations, the disulfide bonds were confirmed to remain intact in the insulin dimer, which mimics the fibrillar form of insulin.
Collapse
|
36
|
Oladepo SA, Xiong K, Hong Z, Asher SA, Handen J, Lednev IK. UV resonance Raman investigations of peptide and protein structure and dynamics. Chem Rev 2012; 112:2604-28. [PMID: 22335827 PMCID: PMC3349015 DOI: 10.1021/cr200198a] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
| | - Kan Xiong
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Zhenmin Hong
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Sanford A. Asher
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Joseph Handen
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Ave., Albany, NY 12222
| | - Igor K. Lednev
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Ave., Albany, NY 12222
| |
Collapse
|
37
|
Sikirzhytski V, Topilina NI, Takor GA, Higashiya S, Welch JT, Uversky VN, Lednev IK. Fibrillation mechanism of a model intrinsically disordered protein revealed by 2D correlation deep UV resonance Raman spectroscopy. Biomacromolecules 2012; 13:1503-9. [PMID: 22515261 DOI: 10.1021/bm300193f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Understanding of numerous biological functions of intrinsically disordered proteins (IDPs) is of significant interest to modern life science research. A large variety of serious debilitating diseases are associated with the malfunction of IDPs including neurodegenerative disorders and systemic amyloidosis. Here we report on the molecular mechanism of amyloid fibrillation of a model IDP (YE8) using 2D correlation deep UV resonance Raman spectroscopy. YE8 is a genetically engineered polypeptide, which is completely unordered at neutral pH yet exhibits all properties of a fibrillogenic protein at low pH. The very first step of the fibrillation process involves structural rearrangements of YE8 at the global structure level without the detectable appearance of secondary structural elements. The formation of β-sheet species follows the global structural changes and proceeds via the simultaneous formation of turns and β-strands. The kinetic mechanism revealed is an important new contribution to understanding of the general fibrillation mechanism proposed for IDP.
Collapse
Affiliation(s)
- Vitali Sikirzhytski
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Avenue, Albany, New York 12222, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Sikirzhytskaya A, Sikirzhytski V, Lednev IK. Raman spectroscopic signature of vaginal fluid and its potential application in forensic body fluid identification. Forensic Sci Int 2012; 216:44-8. [DOI: 10.1016/j.forsciint.2011.08.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Revised: 07/18/2011] [Accepted: 08/16/2011] [Indexed: 10/17/2022]
|
39
|
Roach CA, Simpson JV, JiJi RD. Evolution of quantitative methods in protein secondary structure determination via deep-ultraviolet resonance Raman spectroscopy. Analyst 2012; 137:555-62. [DOI: 10.1039/c1an15755h] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
40
|
Mangialardo S, Gontrani L, Leonelli F, Caminiti R, Postorino P. Role of ionic liquids in protein refolding: native/fibrillar versus treated lysozyme. RSC Adv 2012. [DOI: 10.1039/c2ra21593d] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
41
|
Wang M, JiJi RD. Resolution of localized small molecule–Aβ interactions by deep-ultraviolet resonance Raman spectroscopy. Biophys Chem 2011; 158:96-103. [DOI: 10.1016/j.bpc.2011.05.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 05/19/2011] [Accepted: 05/19/2011] [Indexed: 01/13/2023]
|
42
|
Won A, Pripotnev S, Ruscito A, Ianoul A. Effect of Point Mutations on the Secondary Structure and Membrane Interaction of Antimicrobial Peptide Anoplin. J Phys Chem B 2011; 115:2371-9. [DOI: 10.1021/jp108343g] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Amy Won
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Stahs Pripotnev
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Annamaria Ruscito
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Anatoli Ianoul
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
43
|
Shashilov VA, Lednev IK. Advanced statistical and numerical methods for spectroscopic characterization of protein structural evolution. Chem Rev 2011; 110:5692-713. [PMID: 20593900 DOI: 10.1021/cr900152h] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Victor A Shashilov
- Aegis Analytical Corporation, 1380 Forest Park Circle, Suite 200, Lafayette, Colorado 80026, USA
| | | |
Collapse
|
44
|
Kurouski D, Lednev IK. The impact of protein disulfide bonds on the amyloid fibril morphology. ACTA ACUST UNITED AC 2011; 2:167-176. [PMID: 24693331 DOI: 10.1504/ijbnn.2011.041000] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amyloid fibrils are associated with many neurodegenerative diseases. Being formed from more than 20 different proteins that are functionally or structurally unrelated, amyloid fibrils share a common cross-β core structure. It is a well-accepted hypothesis that fibril biological activity and the associated toxicity vary with their morphology. Partial denaturation of a native protein usually precedes the initial stage of fibrillation, namely the nucleation process. Low pH and elevated temperature, typical conditions of amyloid fibril formation in vitro, resulted in partial denaturation of the proteins. Cleavage of disulfide bonds results typically in significant disruption of protein native structure and in the formation of the molten global state. Herein we report on a comparative investigation of fibril formation by apo-α-lactalbumin and its analog that contains only one of the four original disulfide bonds using deep UV resonance and non-resonance Raman spectroscopy and atomic force microscopy. Significant differences in the aggregation mechanism and the resulting fibril morphology were found.
Collapse
Affiliation(s)
- Dmitry Kurouski
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY 12222, USA
| | - Igor K Lednev
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY 12222, USA
| |
Collapse
|
45
|
Topilina NI, Ermolenkov VV, Sikirzhytski V, Higashiya S, Lednev IK, Welch JT. A de novo designed 11 kDa polypeptide: model for amyloidogenic intrinsically disordered proteins. Biopolymers 2010; 93:607-18. [PMID: 20162724 DOI: 10.1002/bip.21412] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A de novo polypeptide GH(6)[(GA)(3)GY(GA)(3)GE](8)GAH(6) (YE8) has a significant number of identical weakly interacting beta-strands with the turns and termini functionalized by charged amino acids to control polypeptide folding and aggregation. YE8 exists in a soluble, disordered form at neutral pH but is responsive to changes in pH and ionic strength. The evolution of YE8 secondary structure has been successfully quantified during all stages of polypeptide fibrillation by deep UV resonance Raman (DUVRR) spectroscopy combined with other morphological, structural, spectral, and tinctorial characterization. The YE8 folding kinetics at pH 3.5 are strongly dependent on polypeptide concentration with a lag phase that can be eliminated by seeding with a solution of folded fibrillar YE8. The lag phase of polypeptide folding is concentration dependent leading to the conclusion that beta-sheet folding of the 11-kDa amyloidogenic polypeptide is completely aggregation driven.
Collapse
Affiliation(s)
- Natalya I Topilina
- Department of Chemistry, State University of New York, Albany, NY 12222, USA
| | | | | | | | | | | |
Collapse
|
46
|
Shashilov VA, Sikirzhytski V, Popova LA, Lednev IK. Quantitative methods for structural characterization of proteins based on deep UV resonance Raman spectroscopy. Methods 2010; 52:23-37. [PMID: 20580825 DOI: 10.1016/j.ymeth.2010.05.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2010] [Revised: 05/12/2010] [Accepted: 05/19/2010] [Indexed: 11/25/2022] Open
Abstract
Here we report on novel quantitative approaches for protein structural characterization using deep UV resonance Raman (DUVRR) spectroscopy. Specifically, we propose a new method combining hydrogen-deuterium (HD) exchange and Bayesian source separation for extracting the DUVRR signatures of various structural elements of aggregated proteins including the cross-beta core and unordered parts of amyloid fibrils. The proposed method is demonstrated using the set of DUVRR spectra of hen egg white lysozyme acquired at various stages of HD exchange. Prior information about the concentration matrix and the spectral features of the individual components was incorporated into the Bayesian equation to eliminate the ill-conditioning of the problem caused by 100% correlation of the concentration profiles of protonated and deuterated species. Secondary structure fractions obtained by partial least squares (PLS) and least squares support vector machines (LS-SVMs) were used as the initial guess for the Bayessian source separation. Advantages of the PLS and LS-SVMs methods over the classical least squares calibration (CLSC) are discussed and illustrated using the DUVRR data of the prion protein in its native and aggregated forms.
Collapse
Affiliation(s)
- Victor A Shashilov
- Aegis Analytical Corporation, 1380 Forest Park Circle, Suite 200, Lafayette, CO 80026, USA
| | | | | | | |
Collapse
|
47
|
Sikirzhytski V, Virkler K, Lednev IK. Discriminant analysis of Raman spectra for body fluid identification for forensic purposes. SENSORS 2010; 10:2869-84. [PMID: 22319277 PMCID: PMC3274205 DOI: 10.3390/s100402869] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 03/13/2010] [Accepted: 03/23/2010] [Indexed: 11/16/2022]
Abstract
Detection and identification of blood, semen and saliva stains, the most common body fluids encountered at a crime scene, are very important aspects of forensic science today. This study targets the development of a nondestructive, confirmatory method for body fluid identification based on Raman spectroscopy coupled with advanced statistical analysis. Dry traces of blood, semen and saliva obtained from multiple donors were probed using a confocal Raman microscope with a 785-nm excitation wavelength under controlled laboratory conditions. Results demonstrated the capability of Raman spectroscopy to identify an unknown substance to be semen, blood or saliva with high confidence.
Collapse
Affiliation(s)
| | | | - Igor K. Lednev
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-518-591-8863
| |
Collapse
|
48
|
Virkler K, Lednev IK. Forensic body fluid identification: The Raman spectroscopic signature of saliva. Analyst 2010; 135:512-7. [DOI: 10.1039/b919393f] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
49
|
Virkler K, Lednev IK. Blood species identification for forensic purposes using Raman spectroscopy combined with advanced statistical analysis. Anal Chem 2009; 81:7773-7. [PMID: 19670872 DOI: 10.1021/ac901350a] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Forensic analysis has become one of the most growing areas of analytical chemistry in recent years. The ability to determine the species of origin of a body fluid sample is a very important and crucial part of a forensic investigation. We introduce here a new technique which utilizes a modern analytical method based on the combination of Raman spectroscopy and advanced statistics to analyze the composition of blood traces from different species. Near-infrared Raman spectroscopy (NIR) was used to analyze multiple dry samples of human, canine, and feline blood for the ultimate application to forensic species identification. All of the spectra were combined into a single data matrix, and the number of principle components that described the system was determined using multiple statistical methods such as significant factor analysis (SFA), principle component analysis (PCA), and several cross-validation methods. Of the six principle components that were determined to be present, the first three, which contributed over 90% to the spectral data of the system, were used to form a three-dimensional scores plot that clearly showed significant separation between the three groups of species. Ellipsoids representing a 99% confidence interval surrounding each species group showed no overlap. This technique using Raman spectroscopy is nondestructive and quick and can potentially be performed at the scene of a crime.
Collapse
Affiliation(s)
- Kelly Virkler
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, USA
| | | |
Collapse
|
50
|
Investigating the influences of redox buffer compositions on the amyloid fibrillogenesis of hen egg-white lysozyme. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1663-72. [DOI: 10.1016/j.bbapap.2009.07.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 07/30/2009] [Accepted: 07/30/2009] [Indexed: 11/27/2022]
|