1
|
Predicting Conserved Water Molecules in Binding Sites of Proteins Using Machine Learning Methods and Combining Features. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:5104464. [PMID: 36226242 PMCID: PMC9550495 DOI: 10.1155/2022/5104464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022]
Abstract
Water molecules play an important role in many biological processes in terms of stabilizing protein structures, assisting protein folding, and improving binding affinity. It is well known that, due to the impacts of various environmental factors, it is difficult to identify the conserved water molecules (CWMs) from free water molecules (FWMs) directly as CWMs are normally deeply embedded in proteins and form strong hydrogen bonds with surrounding polar groups. To circumvent this difficulty, in this work, the abundance of spatial structure information and physicochemical properties of water molecules in proteins inspires us to adopt machine learning methods for identifying the CWMs. Therefore, in this study, a machine learning framework to identify the CWMs in the binding sites of the proteins was presented. First, by analyzing water molecules' physicochemical properties and spatial structure information, six features (i.e., atom density, hydrophilicity, hydrophobicity, solvent-accessible surface area, temperature B-factors, and mobility) were extracted. Those features were further analyzed and combined to reach a higher CWM identification rate. As a result, an optimal feature combination was determined. Based on this optimal combination, seven different machine learning models (including support vector machine (SVM), K-nearest neighbor (KNN), decision tree (DT), logistic regression (LR), discriminant analysis (DA), naïve Bayes (NB), and ensemble learning (EL)) were evaluated for their abilities in identifying two categories of water molecules, i.e., CWMs and FWMs. It showed that the EL model was the desired prediction model due to its comprehensive advantages. Furthermore, the presented methodology was validated through a case study of crystal 3skh and extensively compared with Dowser++. The prediction performance showed that the optimal feature combination and the desired EL model in our method could achieve satisfactory prediction accuracy in identifying CWMs from FWMs in the proteins' binding sites.
Collapse
|
2
|
Meloche R, Vučković I, Mishra PK, Macura S. Transverse relaxation in fixed tissue: Influence of temperature and resolution on image contrast in magnetic resonance microscopy. NMR IN BIOMEDICINE 2022; 35:e4747. [PMID: 35467776 DOI: 10.1002/nbm.4747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
To describe transverse relaxation of water in fixed tissue, we propose a model of transverse relaxation accelerated by diffusion and exchange (TRADE) that assumes exchange between free (visible) and bound (invisible) water, which relax by the dipole-dipole interaction, chemical exchange, and translation in the field gradient. Depending on the prevailing mechanism, transverse relaxation time (T2 ) of water in fixed tissue could increase (when dipole-dipole interaction prevails) or decrease with temperature (when diffusion in the field gradient prevails). Chemical exchange can make T2 even temperature independent. Also, variation of resolution from 100 to 15 μm/pxl (or less) affects effective transverse relaxation. T2 steadily decreases with increased resolution ( T 2 ∝ ∆ x 2 , ∆ x is the read direction resolution). TRADE can describe all of these observations (semi)quantitatively. The model has been experimentally verified on water phantoms and on formalin-fixed zebrafish, mouse brain, and rabbit larynx tissues. TRADE could help predict optimal scanning parameters for high-resolution MRM from much faster measurements at lower resolution.
Collapse
Affiliation(s)
- Ryan Meloche
- Metabolomics Core, Mayo Clinic, Rochester, Minnesota, USA
| | - Ivan Vučković
- Metabolomics Core, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Slobodan Macura
- Metabolomics Core, Mayo Clinic, Rochester, Minnesota, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
3
|
Kumar SU, Priya Doss CG. Residue interaction networks of K-Ras protein with water molecules identifies the potential role of switch II and P-loop. Comput Biol Med 2021; 135:104597. [PMID: 34237589 DOI: 10.1016/j.compbiomed.2021.104597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/01/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023]
Abstract
The mutant K-Ras with aberrant signaling is the primary cause of several cancers. The proposed study investigated the influence of water molecules in K-Ras crystal structure, where they have a significant function by understanding their residue interaction networks (RINs). We analyzed the RINs of K-Ras with and without water molecules and determined their interaction properties. RINs were developed with the help of StructureViz2 and RINspector; further, the changes in K-Ras backbone flexibility were predicted with the DynaMine. We found that the residues K42, I142, and L159 are the hotspots from water, including the K-Ras-GTP complex with the highest residue centrality analysis (RCA) Z-score. The DynaMine prediction calculated the NMR S2 value for the frequently mutated positions G12, G13, and Q61 showing a minor shift in flexibility, which make up the P-Loop and switch II of the K-Ras protein. This flexibility shift can account for changes in conformational activity and the protein's GTPase activity, making it difficult to recognize by the effectors and exchange factors. Taken together, our study helps in understanding the functional importance of the water molecules in K-Ras protein and the impact of mutation that modulate the conformational state of the protein.
Collapse
Affiliation(s)
- S Udhaya Kumar
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - C George Priya Doss
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
4
|
Blaber M. Conserved buried water molecules enable the β-trefoil architecture. Protein Sci 2020; 29:1794-1802. [PMID: 32542709 DOI: 10.1002/pro.3899] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 12/24/2022]
Abstract
Available high-resolution crystal structures for the family of β-trefoil proteins in the structural databank were queried for buried waters. Such waters were classified as either: (a) unique to a particular domain, family, or superfamily or (b) conserved among all β-trefoil folds. Three buried waters conserved among all β-trefoil folds were identified. These waters are related by the threefold rotational pseudosymmetry characteristic of this protein architecture (representing three instances of an identical structural environment within each repeating trefoil-fold motif). The structural properties of this buried water are remarkable and include: residing in a cavity space no larger than a single water molecule, exhibiting a positional uncertainty (i.e., normalized B-factor) substantially lower than the average Cα atom, providing essentially ideal H-bonding geometry with three solvent-inaccessible main chain groups, simultaneously serving as a bridging H-bond for three different β-strands at a point of secondary structure divergence, and orienting conserved hydrophobic side chains to form a nascent core-packing group. Other published work supports an interpretation that these interactions are key to the formation of an efficient folding nucleus and folded thermostability. The fundamental threefold symmetric structural element of the β-trefoil fold is therefore, surprisingly, a buried water molecule.
Collapse
Affiliation(s)
- Michael Blaber
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
5
|
Lei C, Li M, Zhang M, Wang S, Tian J, Wen J, Li Y. Cloning, molecular characterization, and nutritional regulation of fatty acid-binding protein family genes in gold pompanos (Trachinotus ovatus). Comp Biochem Physiol B Biochem Mol Biol 2020; 246-247:110463. [PMID: 32526355 DOI: 10.1016/j.cbpb.2020.110463] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/05/2020] [Accepted: 05/11/2020] [Indexed: 11/26/2022]
Abstract
Fatty acid-binding protein (Fabp) is an important protein family involved in fatty acid uptake and deposition. Elucidating the function and regulation of fabps could contribute to the efficient production of biologically relevant fatty acids, such as highly unsaturated fatty acids (HUFAs), from fish. Herein, five genes from Trachinotus ovatus named fabp4, fabp6a, fabp6b, fabp7a, and fabp7b coding 133, 127, 118, 132, and 132 amino acid residues were cloned and sequenced. The effect of dietary HUFA on the expression of these genes was also investigated. Multiple protein sequence alignment showed that these Fabps shared high identity to their orthologs from other fish and mammals. Two conserved domains, lipocalin and lipocalin 7, were predicted in the deduced protein sequence of fabp4 and fabp7 paralogs, whereas fabp6 paralogs did not present the lipocalin domain. The adipose tissue, spleen, gill, and intestine showed the highest levels of fabp6b expression. In the brain, fabp6b was weakly expressed, whereas the expression of fabp7a was at its highest. Conversely, fabp7a showed a lower mRNA level than the other fabps in the liver and heart. In the dorsal muscle and kidney, fabp6a was the most abundantly expressed gene. Increasing dietary HUFA from 1.0% to 2.1% increased the gene expression of hepatic fabp4 and fabp6a gene expression but decreased gene expression in the dorsal muscle. Similarly, the expression of fabp7a in the dorsal muscle also declined in the 2.1% HUFA group. This study lays the groundwork for further studies focused on the physiological function and regulation of fish fabps.
Collapse
Affiliation(s)
- Caixia Lei
- College of Marine Sciences of South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Mengmeng Li
- College of Marine Sciences of South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Me Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Shuqi Wang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Jingjing Tian
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Jikai Wen
- College of Life Science of South China Agricultural University, Guangzhou 510642, China.
| | - Yuanyou Li
- College of Marine Sciences of South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
6
|
Ruskamo S, Nieminen T, Kristiansen CK, Vatne GH, Baumann A, Hallin EI, Raasakka A, Joensuu P, Bergmann U, Vattulainen I, Kursula P. Molecular mechanisms of Charcot-Marie-Tooth neuropathy linked to mutations in human myelin protein P2. Sci Rep 2017; 7:6510. [PMID: 28747762 PMCID: PMC5529448 DOI: 10.1038/s41598-017-06781-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/16/2017] [Indexed: 02/06/2023] Open
Abstract
Charcot-Marie-Tooth (CMT) disease is one of the most common inherited neuropathies. Recently, three CMT1-associated point mutations (I43N, T51P, and I52T) were discovered in the abundant peripheral myelin protein P2. These mutations trigger abnormal myelin structure, leading to reduced nerve conduction velocity, muscle weakness, and distal limb atrophy. P2 is a myelin-specific protein expressed by Schwann cells that binds to fatty acids and membranes, contributing to peripheral myelin lipid homeostasis. We studied the molecular basis of the P2 patient mutations. None of the CMT1-associated mutations alter the overall folding of P2 in the crystal state. P2 disease variants show increased aggregation tendency and remarkably reduced stability, T51P being most severe. In addition, P2 disease mutations affect protein dynamics. Both fatty acid binding by P2 and the kinetics of its membrane interactions are affected by the mutations. Experiments and simulations suggest opening of the β barrel in T51P, possibly representing a general mechanism in fatty acid-binding proteins. Our findings demonstrate that altered biophysical properties and functional dynamics of P2 may cause myelin defects in CMT1 patients. At the molecular level, a few malformed hydrogen bonds lead to structural instability and misregulation of conformational changes related to ligand exchange and membrane binding.
Collapse
Affiliation(s)
- Salla Ruskamo
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220, Oulu, Finland
| | - Tuomo Nieminen
- Department of Physics, Tampere University of Technology, 33720, Tampere, Finland
| | | | - Guro H Vatne
- Department of Biomedicine, University of Bergen, 5020, Bergen, Norway
| | - Anne Baumann
- Department of Biomedicine, University of Bergen, 5020, Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, 5021, Bergen, Norway
| | - Erik I Hallin
- Department of Biomedicine, University of Bergen, 5020, Bergen, Norway
| | - Arne Raasakka
- Department of Biomedicine, University of Bergen, 5020, Bergen, Norway
| | - Päivi Joensuu
- Department of Sustainable Chemistry, Technical Faculty, University of Oulu, 90570, Oulu, Finland
| | - Ulrich Bergmann
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220, Oulu, Finland
- Biocenter Oulu, University of Oulu, 90220, Oulu, Finland
| | - Ilpo Vattulainen
- Department of Physics, Tampere University of Technology, 33720, Tampere, Finland
- Department of Physics, University of Helsinki, 00560, Helsinki, Finland
| | - Petri Kursula
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220, Oulu, Finland.
- Department of Biomedicine, University of Bergen, 5020, Bergen, Norway.
| |
Collapse
|
7
|
Hunter NH, Bakula BC, Bruce CD. Molecular dynamics simulations of apo and holo forms of fatty acid binding protein 5 and cellular retinoic acid binding protein II reveal highly mobile protein, retinoic acid ligand, and water molecules. J Biomol Struct Dyn 2017; 36:1893-1907. [PMID: 28566049 DOI: 10.1080/07391102.2017.1337591] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Structural and dynamic properties from a series of 300 ns molecular dynamics, MD, simulations of two intracellular lipid binding proteins, iLBPs, (Fatty Acid Binding Protein 5, FABP5, and Cellular Retinoic Acid Binding Protein II, CRABP-II) in both the apo form and when bound with retinoic acid reveal a high degree of protein and ligand flexibility. The ratio of FABP5 to CRABP-II in a cell may determine whether it undergoes natural apoptosis or unrestricted cell growth in the presence of retinoic acid. As a result, FABP5 is a promising target for cancer therapy. The MD simulations presented here reveal distinct differences in the two proteins and provide insight into the binding mechanism. CRABP-II is a much larger, more flexible protein that closes upon ligand binding, where FABP5 transitions to an open state in the holo form. The traditional understanding obtained from crystal structures of the gap between two β-sheets of the β-barrel common to iLBPs and the α-helix cap that forms the portal to the binding pocket is insufficient for describing protein conformation (open vs. closed) or ligand entry and exit. When the high degree of mobility between multiple conformations of both the ligand and protein are examined via MD simulation, a new mode of ligand motion that improves understanding of binding dynamics is revealed.
Collapse
Affiliation(s)
- Nathanael H Hunter
- a Department of Chemistry , John Carroll University , University Heights , OH , USA
| | - Blair C Bakula
- a Department of Chemistry , John Carroll University , University Heights , OH , USA
| | - Chrystal D Bruce
- a Department of Chemistry , John Carroll University , University Heights , OH , USA
| |
Collapse
|
8
|
Howard EI, Guillot B, Blakeley MP, Haertlein M, Moulin M, Mitschler A, Cousido-Siah A, Fadel F, Valsecchi WM, Tomizaki T, Petrova T, Claudot J, Podjarny A. High-resolution neutron and X-ray diffraction room-temperature studies of an H-FABP-oleic acid complex: study of the internal water cluster and ligand binding by a transferred multipolar electron-density distribution. IUCRJ 2016; 3:115-26. [PMID: 27006775 PMCID: PMC4775160 DOI: 10.1107/s2052252515024161] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 12/16/2015] [Indexed: 05/24/2023]
Abstract
Crystal diffraction data of heart fatty acid binding protein (H-FABP) in complex with oleic acid were measured at room temperature with high-resolution X-ray and neutron protein crystallography (0.98 and 1.90 Å resolution, respectively). These data provided very detailed information about the cluster of water molecules and the bound oleic acid in the H-FABP large internal cavity. The jointly refined X-ray/neutron structure of H-FABP was complemented by a transferred multipolar electron-density distribution using the parameters of the ELMAMII library. The resulting electron density allowed a precise determination of the electrostatic potential in the fatty acid (FA) binding pocket. Bader's quantum theory of atoms in molecules was then used to study interactions involving the internal water molecules, the FA and the protein. This approach showed H⋯H contacts of the FA with highly conserved hydrophobic residues known to play a role in the stabilization of long-chain FAs in the binding cavity. The determination of water hydrogen (deuterium) positions allowed the analysis of the orientation and electrostatic properties of the water molecules in the very ordered cluster. As a result, a significant alignment of the permanent dipoles of the water molecules with the protein electrostatic field was observed. This can be related to the dielectric properties of hydration layers around proteins, where the shielding of electrostatic interactions depends directly on the rotational degrees of freedom of the water molecules in the interface.
Collapse
Affiliation(s)
- E. I. Howard
- Department of Integrative Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre de Biologie Intégrative, CNRS, INSERM, UdS, 1 rue Laurent Fries, 67404 Illkirch CEDEX, France
- Instituto de Fisica de Liquidos y Sistemas Biologicos, CONICET, UNLP, Calle 59 No. 789, La Plata, Argentina
| | - B. Guillot
- CNRS and Université de Lorraine, Laboratoire CRM2, UMR 7036, Vandoeuvre-lès-Nancy, F-54506, France
| | - M. P. Blakeley
- Institut Laue–Langevin, 71 avenue des Martyrs, 38000 Grenoble, France
| | - M. Haertlein
- ILL–EMBL Deuteration Laboratory, Partnership for Structural Biology, 71 avenue des Martyrs, Grenoble 38000, France
| | - M. Moulin
- ILL–EMBL Deuteration Laboratory, Partnership for Structural Biology, 71 avenue des Martyrs, Grenoble 38000, France
| | - A. Mitschler
- Department of Integrative Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre de Biologie Intégrative, CNRS, INSERM, UdS, 1 rue Laurent Fries, 67404 Illkirch CEDEX, France
| | - A. Cousido-Siah
- Department of Integrative Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre de Biologie Intégrative, CNRS, INSERM, UdS, 1 rue Laurent Fries, 67404 Illkirch CEDEX, France
| | - F. Fadel
- Department of Integrative Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre de Biologie Intégrative, CNRS, INSERM, UdS, 1 rue Laurent Fries, 67404 Illkirch CEDEX, France
| | - W. M. Valsecchi
- Instituto de Química y Fisicoquímica Biológicas, Universidad de Buenos Aires, Junín 956, C1113AAD, Buenos Aires, Argentina
| | - Takashi Tomizaki
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - T. Petrova
- Institute of Mathematical Problems of Biology, Russian Academy of Sciences, Pushchino 142290, Russian Federation
| | - J. Claudot
- CNRS and Université de Lorraine, Laboratoire CRM2, UMR 7036, Vandoeuvre-lès-Nancy, F-54506, France
| | - A. Podjarny
- Department of Integrative Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre de Biologie Intégrative, CNRS, INSERM, UdS, 1 rue Laurent Fries, 67404 Illkirch CEDEX, France
| |
Collapse
|
9
|
Statistical survey of the buried waters in the Protein Data Bank. Amino Acids 2015; 48:193-202. [PMID: 26315961 DOI: 10.1007/s00726-015-2064-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 07/29/2015] [Indexed: 12/18/2022]
Abstract
The structures of buried water molecules were studied in an ensemble of high-quality and non-redundant protein crystal structures. Buried water molecules were clustered and classified in lake-like clusters, which are completely isolated from the bulk solvent, and bay-like clusters, which are in contact with the bulk solvent through a surface water molecule. Buried water molecules are extremely common: lake-like clusters are found in 89 % of the protein crystal structures and bay-like clusters in 93 %. Clusters with only one water molecule are much more common than larger clusters. Both cluster types incline to be surrounded by loop residues, and to a minor extent by residues in extended secondary structure. Helical residues on the contrary do not tend to surround clusters of buried water molecules. One buried water molecule is found every 30-50 amino acid residues, depending on the secondary structures that are more abundant in the protein. Both main- and side-chain atoms are in contact with buried waters; they form four hydrogen bonds with the first water and 1-1.5 additional hydrogen bond for each additional water in the cluster. Consequently, buried water molecules appear to be firmly packed and rigid like the protein atoms. In this regard, it is remarkable to observe that prolines often surround water molecules buried in the protein interior. Interestingly, clusters of buried water molecules tend to be just beneath the protein surface. Moreover, water molecules tend to form a one-dimensional wire rather than more compact arrangements. This agrees with recent evidence of the mechanisms of solvent exchange between internal cavities and bulk solvent.
Collapse
|
10
|
Kaieda S, Halle B. Time Scales of Conformational Gating in a Lipid-Binding Protein. J Phys Chem B 2015; 119:7957-67. [DOI: 10.1021/acs.jpcb.5b03214] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shuji Kaieda
- Department of Biophysical
Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Bertil Halle
- Department of Biophysical
Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| |
Collapse
|
11
|
Ruskamo S, Yadav RP, Sharma S, Lehtimäki M, Laulumaa S, Aggarwal S, Simons M, Bürck J, Ulrich AS, Juffer AH, Kursula I, Kursula P. Atomic resolution view into the structure-function relationships of the human myelin peripheral membrane protein P2. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:165-76. [PMID: 24419389 PMCID: PMC3919267 DOI: 10.1107/s1399004713027910] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 10/11/2013] [Indexed: 01/03/2023]
Abstract
P2 is a fatty acid-binding protein expressed in vertebrate peripheral nerve myelin, where it may function in bilayer stacking and lipid transport. P2 binds to phospholipid membranes through its positively charged surface and a hydrophobic tip, and accommodates fatty acids inside its barrel structure. The structure of human P2 refined at the ultrahigh resolution of 0.93 Å allows detailed structural analyses, including the full organization of an internal hydrogen-bonding network. The orientation of the bound fatty-acid carboxyl group is linked to the protonation states of two coordinating arginine residues. An anion-binding site in the portal region is suggested to be relevant for membrane interactions and conformational changes. When bound to membrane multilayers, P2 has a preferred orientation and is stabilized, and the repeat distance indicates a single layer of P2 between membranes. Simulations show the formation of a double bilayer in the presence of P2, and in cultured cells wild-type P2 induces membrane-domain formation. Here, the most accurate structural and functional view to date on P2, a major component of peripheral nerve myelin, is presented, showing how it can interact with two membranes simultaneously while going through conformational changes at its portal region enabling ligand transfer.
Collapse
Affiliation(s)
- Salla Ruskamo
- Department of Biochemistry, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Ravi P. Yadav
- Molecular Biology Unit, Institute of Medical Sciences (IMS), Banaras Hindu University, Varanasi, India
- Centre for Structural Systems Biology, Helmholtz Centre for Infection Research (CSSB-HZI), German Electron Synchrotron (DESY), Hamburg, Germany
| | - Satyan Sharma
- Department of Biochemistry, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Mari Lehtimäki
- Department of Biochemistry, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Saara Laulumaa
- Department of Biochemistry, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Centre for Structural Systems Biology, Helmholtz Centre for Infection Research (CSSB-HZI), German Electron Synchrotron (DESY), Hamburg, Germany
| | - Shweta Aggarwal
- Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Mikael Simons
- Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Jochen Bürck
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute for Technology (KIT), Karlsruhe, Germany
| | - Anne S. Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute for Technology (KIT), Karlsruhe, Germany
| | - André H. Juffer
- Department of Biochemistry, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Inari Kursula
- Department of Biochemistry, University of Oulu, Oulu, Finland
- Centre for Structural Systems Biology, Helmholtz Centre for Infection Research (CSSB-HZI), German Electron Synchrotron (DESY), Hamburg, Germany
| | - Petri Kursula
- Department of Biochemistry, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Centre for Structural Systems Biology, Helmholtz Centre for Infection Research (CSSB-HZI), German Electron Synchrotron (DESY), Hamburg, Germany
- Department of Chemistry, University of Hamburg, Hamburg, Germany
| |
Collapse
|
12
|
Insight of Endo-1,4-Xylanase II from Trichoderma reesei: Conserved Water-Mediated H-Bond and Ion Pairs Interactions. Protein J 2013; 32:649-56. [DOI: 10.1007/s10930-013-9528-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Prakash P, Sayyed-Ahmad A, Gorfe AA. The role of conserved waters in conformational transitions of Q61H K-ras. PLoS Comput Biol 2012; 8:e1002394. [PMID: 22359497 PMCID: PMC3280954 DOI: 10.1371/journal.pcbi.1002394] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 01/04/2012] [Indexed: 12/30/2022] Open
Abstract
To investigate the stability and functional role of long-residence water molecules in the Q61H variant of the signaling protein K-ras, we analyzed all available Ras crystal structures and conformers derived from a series of independent explicit solvent molecular dynamics (MD) simulations totaling 1.76 µs. We show that the protein samples a different region of phase space in the presence and absence of several crystallographically conserved and buried water molecules. The dynamics of these waters is coupled with the local as well as the global motions of the protein, in contrast to less buried waters whose exchange with bulk is only loosely coupled with the motion of loops in their vicinity. Aided by two novel reaction coordinates involving the distance (d) between the Cα atoms of G60 at switch 2 and G10 at the P-loop and the N-Cα-C-O dihedral (ξ) of G60, we further show that three water molecules located in lobe1, at the interface between the lobes and at lobe2, are involved in the relative motion of residues at the two lobes of Q61H K-ras. Moreover, a d/ξ plot classifies the available Ras x-ray structures and MD-derived K-ras conformers into active GTP-, intermediate GTP-, inactive GDP-bound, and nucleotide-free conformational states. The population of these states and the transition between them is modulated by water-mediated correlated motions involving the functionally critical switch 2, P-loop and helix 3. These results suggest that water molecules act as allosteric ligands to induce a population shift among distinct switch 2 conformations that differ in effector recognition. K-ras belongs to the Ras family of G-proteins that regulate cell proliferation and development. To execute its function, K-ras adopts different conformational states when it is active and inactive. In addition to these two states, it samples many transient intermediate conformations as it makes the transition from one state to the other. Mutations that affect the population of these states can cause cancer or developmental disorder. Using simulation approaches, here we show that a number of water molecules buried within the structure of an oncogenic K-ras protein modulate the distribution of its conformational states. Moreover, a detailed analysis based on two novel structural parameters revealed the existence of long-range water-mediated interactions that facilitate a dynamic coupling between the two lobes of the protein. These findings pave the way for a dynamics-guided strategy to inhibit abnormal Ras signaling.
Collapse
Affiliation(s)
- Priyanka Prakash
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Abdallah Sayyed-Ahmad
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Alemayehu A. Gorfe
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- Center for Membrane Biology, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
14
|
Dileep KV, Tintu I, Vinod NV, Saliha PP, Sadasivan C. Role of invariant water molecules in retaining the active site geometry of β-lactamase: a molecular dynamics simulation study. MOLECULAR SIMULATION 2011. [DOI: 10.1080/08927022.2011.590984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
15
|
Majava V, Polverini E, Mazzini A, Nanekar R, Knoll W, Peters J, Natali F, Baumgärtel P, Kursula I, Kursula P. Structural and functional characterization of human peripheral nervous system myelin protein P2. PLoS One 2010; 5:e10300. [PMID: 20421974 PMCID: PMC2858655 DOI: 10.1371/journal.pone.0010300] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 03/24/2010] [Indexed: 11/19/2022] Open
Abstract
The myelin sheath is a tightly packed multilayered membrane structure insulating selected axons in the central and the peripheral nervous systems. Myelin is a biochemically unique membrane, containing a specific set of proteins. In this study, we expressed and purified recombinant human myelin P2 protein and determined its crystal structure to a resolution of 1.85 A. A fatty acid molecule, modeled as palmitate based on the electron density, was bound inside the barrel-shaped protein. Solution studies using synchrotron radiation indicate that the crystal structure is similar to the structure of the protein in solution. Docking experiments using the high-resolution crystal structure identified cholesterol, one of the most abundant lipids in myelin, as a possible ligand for P2, a hypothesis that was proven by fluorescence spectroscopy. In addition, electrostatic potential surface calculations supported a structural role for P2 inside the myelin membrane. The potential membrane-binding properties of P2 and a peptide derived from its N terminus were studied. Our results provide an enhanced view into the structure and function of the P2 protein from human myelin, which is able to bind both monomeric lipids inside its cavity and membrane surfaces.
Collapse
Affiliation(s)
- Viivi Majava
- Department of Biochemistry, University of Oulu, Oulu, Finland
| | | | | | - Rahul Nanekar
- Department of Biochemistry, University of Oulu, Oulu, Finland
| | - Wiebke Knoll
- Institut Laue-Langevin, Grenoble, France
- University Joseph Fourier, Grenoble, France
| | - Judith Peters
- Institut Laue-Langevin, Grenoble, France
- University Joseph Fourier, Grenoble, France
- Institut de Biologie Structurale, Grenoble, France
| | - Francesca Natali
- Institut Laue-Langevin, Grenoble, France
- Consiglio Nazionale delle Richerche – Operative Group in Grenoble, Grenoble, France
| | | | - Inari Kursula
- Centre for Structural Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- German Electron Synchrotron, University of Hamburg, Hamburg, Germany
| | - Petri Kursula
- Department of Biochemistry, University of Oulu, Oulu, Finland
- Centre for Structural Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- German Electron Synchrotron, University of Hamburg, Hamburg, Germany
| |
Collapse
|
16
|
Franzoni L, Cavazzini D, Rossi GL, Lücke C. New insights on the protein-ligand interaction differences between the two primary cellular retinol carriers. J Lipid Res 2009; 51:1332-43. [PMID: 19965581 DOI: 10.1194/jlr.m002006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The main retinol carriers in the cytosol are the cellular retinol-binding proteins types I and II (CRBP-I and CRBP-II), which exhibit distinct tissue distributions. They play different roles in the maintenance of vitamin A homeostasis and feature a 100-fold difference in retinol affinity whose origin has not been described in detail. NMR-based hydrogen/deuterium exchange measurements show that, while retinol binding endows both proteins with a more rigid structure, many amide protons exchange much faster in CRBP-II than in CRBP-I in both apo and holo form, despite the conserved three-dimensional fold. The remarkable difference in intrinsic stability between the two homologs appears to modulate their binding properties: the stronger retinol binder CRBP-I displays a reduced flexibility of the backbone structure with respect to CRBP-II. This difference must derive from specific evolution-based amino acid substitutions, resulting in additional stabilization of the CRBP-I scaffold: in fact, we identified a number of potential salt bridges on the protein surface as well as several key interactions inside the binding cavity. Furthermore, our NMR data demonstrate that helix alphaII of the characteristic helix-turn-helix motif in the ligand portal region exists in both apo and holo CRBP-II. Hence, the previously proposed model of retinol binding needs to be revised.
Collapse
Affiliation(s)
- Lorella Franzoni
- Department of Experimental Medicine, Section of Chemistry and Structural Biochemistry, University of Parma, Italy
| | | | | | | |
Collapse
|
17
|
Insight into the interaction sites between fatty acid binding proteins and their ligands. J Mol Model 2009; 16:929-38. [DOI: 10.1007/s00894-009-0599-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 09/20/2009] [Indexed: 10/20/2022]
|
18
|
Hajjar E, Dejaegere A, Reuter N. Challenges in pKa Predictions for Proteins: The case of Asp213 in Human Proteinase 3. J Phys Chem A 2009; 113:11783-92. [DOI: 10.1021/jp902930u] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Eric Hajjar
- Department of Physics, University of Cagliari (CA), Italy, Biocomputing Group, IGBMC, Université de Strasbourg, Illkirch, France, and Computational Biology Unit, BCCS, Department of Molecular Biology, University of Bergen, Norway
| | - Annick Dejaegere
- Department of Physics, University of Cagliari (CA), Italy, Biocomputing Group, IGBMC, Université de Strasbourg, Illkirch, France, and Computational Biology Unit, BCCS, Department of Molecular Biology, University of Bergen, Norway
| | - Nathalie Reuter
- Department of Physics, University of Cagliari (CA), Italy, Biocomputing Group, IGBMC, Université de Strasbourg, Illkirch, France, and Computational Biology Unit, BCCS, Department of Molecular Biology, University of Bergen, Norway
| |
Collapse
|
19
|
Grishin AV, Alexeevsky AV, Spirin SA, Karyagina AS. Conserved structural features of ETS domain-DNA complexes. Mol Biol 2009. [DOI: 10.1134/s002689330904013x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Abstract
Globular proteins often contain structurally well-resolved internal water molecules. Previously, we reported results from a molecular dynamics study that suggested that buried water (Wat3) may play a role in modulating the structure of the FK506 binding protein-12 (FKBP12) (Park and Saven, Proteins 2005; 60:450-463). In particular, simulations suggested that disrupting a hydrogen bond to Wat3 by mutating E60 to either A or Q would cause a structural perturbation involving the distant W59 side chain, which rotates to a new conformation in response to the mutation. This effectively remodels the ligand-binding pocket, as the side chain in the new conformation is likely to clash with bound FK506. To test whether the protein structure is in effect modulated by the binding of a buried water in the distance, we determined high-resolution (0.92-1.29 A) structures of wild-type FKBP12 and its two mutants (E60A, E60Q) by X-ray crystallography. The structures of mutant FKBP12 show that the ligand-binding pocket is indeed remodeled as predicted by the substitution at position 60, even though the water molecule does not directly interact with any of the amino acids of the binding pocket. Thus, these structures support the view that buried water molecules constitute an integral, noncovalent component of the protein structure. Additionally, this study provides an example in which predictions from molecular dynamics simulations are experimentally validated with atomic precision, thus showing that the structural features of protein-water interactions can be reliably modeled at a molecular level.
Collapse
Affiliation(s)
- Szilvia Szep
- Department of Biochemistry and Biophysics and Howard Hughes Medical Institute, 242 Anatomy Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| | - Sheldon Park
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104
| | - Eric T. Boder
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, 220 South 33rd Street, Philadelphia, PA 19104
| | - Gregory D. Van Duyne
- Department of Biochemistry and Biophysics and Howard Hughes Medical Institute, 242 Anatomy Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| | - Jeffery G. Saven
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104
| |
Collapse
|
21
|
Levin LBA, Nachliel E, Gutman M, Tsfadia Y. Molecular dynamics study of the interaction between fatty acid binding proteins with palmitate mini-micelles. Mol Cell Biochem 2009; 326:29-33. [DOI: 10.1007/s11010-008-0010-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 06/10/2008] [Indexed: 11/29/2022]
|
22
|
Ricchiuto P, Rocco AG, Gianazza E, Corrada D, Beringhelli T, Eberini I. Structural and dynamic roles of permanent water molecules in ligand molecular recognition by chicken liver bile acid binding protein. J Mol Recognit 2008; 21:348-54. [DOI: 10.1002/jmr.908] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Damjanović A, Schlessman JL, Fitch CA, García AE, García-Moreno E B. Role of flexibility and polarity as determinants of the hydration of internal cavities and pockets in proteins. Biophys J 2007; 93:2791-804. [PMID: 17604315 PMCID: PMC1989710 DOI: 10.1529/biophysj.107.104182] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Molecular dynamics simulations of Staphylococcal nuclease and of 10 variants with internal polar or ionizable groups were performed to investigate systematically the molecular determinants of hydration of internal cavities and pockets in proteins. In contrast to apolar cavities in rigid carbon structures, such as nanotubes or buckeyballs, internal cavities in proteins that are large enough to house a few water molecules will most likely be dehydrated unless they contain a source of polarity. The water content in the protein interior can be modulated by the flexibility of protein elements that interact with water, which can impart positional disorder to water molecules, or bias the pattern of internal hydration that is stabilized. This might explain differences in the patterns of hydration observed in crystal structures obtained at cryogenic and room temperature conditions. The ability of molecular dynamics simulations to determine the most likely sites of water binding in internal pockets and cavities depends on its efficiency in sampling the hydration of internal sites and alternative protein and water conformations. This can be enhanced significantly by performing multiple molecular dynamics simulations as well as simulations started from different initial hydration states.
Collapse
Affiliation(s)
- Ana Damjanović
- Johns Hopkins University, Department of Biophysics, Baltimore, Maryland, USA.
| | | | | | | | | |
Collapse
|
24
|
Damjanović A, García-Moreno B, Lattman EE, García AE. Molecular dynamics study of water penetration in staphylococcal nuclease. Proteins 2006; 60:433-49. [PMID: 15971206 DOI: 10.1002/prot.20486] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The ionization properties of Lys and Glu residues buried in the hydrophobic core of staphylococcal nuclease (SN) suggest that the interior of this protein behaves as a highly polarizable medium with an apparent dielectric constant near 10. This has been rationalized previously in terms of localized conformational relaxation concomitant with the ionization of the internal residue, and with contributions by internal water molecules. Paradoxically, the crystal structure of the SN V66E variant shows internal water molecules and the structure of the V66K variant does not. To assess the structural and dynamical character of interior water molecules in SN, a series of 10-ns-long molecular dynamics (MD) simulations was performed with wild-type SN, and with the V66E and V66K variants with Glu66 and Lys66 in the neutral form. Internal water molecules were identified based on their coordination state and characterized in terms of their residence times, average location, dipole moment fluctuations, hydrogen bonding interactions, and interaction energies. The locations of the water molecules that have residence times of several nanoseconds and display small mean-square displacements agree well with the locations of crystallographically observed water molecules. Additional, relatively disordered water molecules that are not observed crystallographically were found in internal hydrophobic locations. All of the interior water molecules that were analyzed in detail displayed a distribution of interaction energies with higher mean value and narrower width than a bulk water molecule. This underscores the importance of protein dynamics for hydration of the protein interior. Further analysis of the MD trajectories revealed that the fluctuations in the protein structure (especially the loop elements) can strongly influence protein hydration by changing the patterns or strengths of hydrogen bonding interactions between water molecules and the protein. To investigate the dynamical response of the protein to burial of charged groups in the protein interior, MD simulations were performed with Glu66 and Lys66 in the charged state. Overall, the MD simulations suggest that a conformational change rather than internal water molecules is the dominant determinant of the high apparent polarizability of the protein interior.
Collapse
Affiliation(s)
- Ana Damjanović
- Johns Hopkins University, Department of Biophysics, Baltimore, Maryland 21218, USA.
| | | | | | | |
Collapse
|
25
|
Park S, Saven JG. Statistical and molecular dynamics studies of buried waters in globular proteins. Proteins 2006; 60:450-63. [PMID: 15937899 DOI: 10.1002/prot.20511] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Buried solvent molecules are common in the core of globular proteins and contribute to structural stability. Folding necessitates the burial of polar backbone atoms in the protein core, whose hydrogen-bonding capacities should be satisfied on average. Whereas the residues in alpha-helices and beta-sheets form systematic main-chain hydrogen bonds, the residues in turns, coils and loops often contain polar atoms that fail to form intramolecular hydrogen bonds. The statistical analysis of 842 high resolution protein structures shows that well-resolved, internal water molecules preferentially reside near residues without alpha-helical and beta-sheet secondary structures. These buried waters most often form primary hydrogen bonds to main-chain atoms not involved in intramolecular hydrogen bonds, providing strong evidence that hydrating main-chain atoms is a key structural role of buried water molecules. Additionally, the average B-factor of protein atoms hydrogen-bonded to waters is smaller than that of protein atoms forming intramolecular hydrogen bonds, and the average B-factor of water molecules involved in primary hydrogen bonds with main-chain atoms is smaller than the average B-factor of water molecules involved in secondary hydrogen bonds to protein atoms that form concurrent intramolecular hydrogen bonds. To study the structural coupling between internal waters and buried polar atoms in detail we simulated the dynamics of wild-type FKBP12, in which a buried water, Wat137, forms one side-chain and multiple main-chain hydrogen bonds. We mutated E60, whose side-chain hydrogen bonds with Wat137, to Q, N, S or A, to modulate the multiplicity and geometry of hydrogen bonds to the water. Mutating E60 to a residue that is unable to form a hydrogen bond with Wat137 results in reorientation of the water molecule and leads to a structural readjustment of residues that are both near and distant to the water. We predict that the E60A mutation will result in a significantly reduced affinity of FKBP12 for its ligand FK506. The propensity of internal waters to hydrogen bond to buried polar atoms suggests that ordered water molecules may constitute fundamental structural components of proteins, particularly in regions where alpha-helical or beta-sheet secondary structure is not present.
Collapse
Affiliation(s)
- Sheldon Park
- Makineni Theoretical Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
26
|
Bottoms CA, White TA, Tanner JJ. Exploring structurally conserved solvent sites in protein families. Proteins 2006; 64:404-21. [PMID: 16700049 DOI: 10.1002/prot.21014] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Protein-bound water molecules are important components of protein structure, and therefore, protein function and energetics. Although structural conservation of solvent has been studied in a few protein families, a lack of suitable computational tools has hindered more comprehensive analyses. Herein we present a semiautomated computational approach for identifying solvent sites that are conserved among proteins sharing a common three-dimensional structure. This method is tested on six protein families: (1) monodomain cytochrome c, (2) fatty-acid binding protein, (3) lactate/malate dehydrogenase, (4) parvalbumin, (5) phospholipase A2, and (6) serine protease. For each family, the method successfully identified previously known conserved solvent sites. Moreover, the method discovered 22 novel conserved solvent sites, some of which have higher degrees of conservation than the previously known sites. All six families studied had solvent sites with more than 90% conservation and these sites were invariably located in regions of the protein with very high sequence conservation. These results suggest that highly conserved solvent sites, by virtue of their proximity to conserved residues, should be considered as one of the defining three-dimensional structural characteristics of protein families and folds.
Collapse
Affiliation(s)
- Christopher A Bottoms
- Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | | | | |
Collapse
|
27
|
Friedman R, Nachliel E, Gutman M. Fatty acid binding proteins: same structure but different binding mechanisms? Molecular dynamics simulations of intestinal fatty acid binding protein. Biophys J 2005; 90:1535-45. [PMID: 16361342 PMCID: PMC1367305 DOI: 10.1529/biophysj.105.071571] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fatty acid binding proteins (FABPs) carry fatty acids (FAs) and other lipids in the cellular environment, and are thus involved in processes such as FA uptake, transport, and oxidation. These proteins bind either one or two ligands in a binding site, which appears to be inaccessible from the bulk. Thus, the entry of the substrate necessitates a conformational change, whose nature is still unknown. A possible description of the ligand binding process is given by the portal hypothesis, which suggests that the FA enters the protein through a dynamic area known as the portal region. On the other hand, recent simulations of the adipocyte lipid binding protein (ALBP) suggested a different entry site (the alternative portal). In this article, we discuss molecular dynamics simulations of the apo-intestinal-FABP (I-FABP) in the presence of palmitate molecule(s) in the simulation box. The simulations were carried out to study whether the FA can enter the protein during the simulations (as in the ALBP) and where the ligand entry site is (the portal region, the alternative portal or a different domain). The analysis of the simulations revealed a clear difference between the ALBP and the I-FABP. In the latter case, the palmitate preferentially adsorbed to the portal region, which was more mobile than the rest of the protein. However, no ligand entry was observed in the multi-nanosecond-long simulations, in contrast to ALBP. These findings suggest that, although the main structural motif of the FABPs is common, the fine details of each individual protein structure grossly modulate its reactivity.
Collapse
Affiliation(s)
- Ran Friedman
- Laser Laboratory for Fast Reactions in Biology, Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | | | | |
Collapse
|
28
|
Prévost M. Dynamics of water molecules buried in cavities of apolipoprotein E studied by molecular dynamics simulations and continuum electrostatic calculations. Biopolymers 2004; 75:196-207. [PMID: 15356873 DOI: 10.1002/bip.20116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Molecular dynamics (MD) simulations of several nanoseconds each were used to monitor the dynamic behavior of the five crystal water molecules buried in the interior of the N-terminal domain of apolipoprotein E. These crystal water molecules are fairly well conserved in several apolipoprotein E structures, suggesting that they are not an artifact of the crystal and that they may have a structural and/or functional role for the protein. All five buried crystal water molecules leave the protein interior in the course of the longest simulations and exchange with water molecules from the bulk. The free energies of binding evaluated from the electrostatic binding free energy computed using a continuum model and estimates of the binding entropy changes represent shallow minima. The corresponding calculated residence times of the buried water molecules range from tens of picoseconds to hundreds of nanoseconds, which denote rather short times as for buried water molecules. Several water exchanges monitored in the simulations show that water molecules along the exit/entrance pathway use a relay of H bonds primarily formed with charged residues which helps either the exit or the entrance from or into the buried site. The exit/entrance of water molecules from/into the sites is permitted essentially by local motions of, at most, two side chains, indicating that, in these cases, complex correlated atomic motions are not needed to open the buried site toward the surface of the protein. This provides a possible explanation for the short residence times.
Collapse
Affiliation(s)
- Martine Prévost
- Bioinformatique génomique et structurale, Université Libre de Bruxelles, CP 165/64, Av. F. Roosevelt, B-1050 Bruxelles, Belgium.
| |
Collapse
|
29
|
Modig K, Kurian E, Prendergast FG, Halle B. Water and urea interactions with the native and unfolded forms of a beta-barrel protein. Protein Sci 2004; 12:2768-81. [PMID: 14627737 PMCID: PMC2366985 DOI: 10.1110/ps.03262603] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A fundamental understanding of protein stability and the mechanism of denaturant action must ultimately rest on detailed knowledge about the structure, solvation, and energetics of the denatured state. Here, we use (17)O and (2)H magnetic relaxation dispersion (MRD) to study urea-induced denaturation of intestinal fatty acid-binding protein (I-FABP). MRD is among the few methods that can provide molecular-level information about protein solvation in native as well as denatured states, and it is used here to simultaneously monitor the interactions of urea and water with the unfolding protein. Whereas CD shows an apparently two-state transition, MRD reveals a more complex process involving at least two intermediates. At least one water molecule binds persistently (with residence time >10 nsec) to the protein even in 7.5 M urea, where the large internal binding cavity is disrupted and CD indicates a fully denatured protein. This may be the water molecule buried near the small hydrophobic folding core at the D-E turn in the native protein. The MRD data also provide insights about transient (residence time <1 nsec) interactions of urea and water with the native and denatured protein. In the denatured state, both water and urea rotation is much more retarded than for a fully solvated polypeptide. The MRD results support a picture of the denatured state where solvent penetrates relatively compact clusters of polypeptide segments.
Collapse
Affiliation(s)
- Kristofer Modig
- Department of Biophysical Chemistry, Lund University, SE-22100 Lund, Sweden
| | | | | | | |
Collapse
|
30
|
Modig K, Rademacher M, Lücke C, Halle B. Water dynamics in the large cavity of three lipid-binding proteins monitored by (17)O magnetic relaxation dispersion. J Mol Biol 2003; 332:965-77. [PMID: 12972265 DOI: 10.1016/s0022-2836(03)00968-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Intracellular lipid-binding proteins contain a large binding cavity filled with water molecules. The role played by these water molecules in ligand binding is not well understood, but their energetic and dynamic properties must be important for protein function. Here, we use the magnetic relaxation dispersion (MRD) of the water 17O resonance to investigate the water molecules in the binding cavity of three different lipid-binding proteins: heart fatty acid-binding protein (H-FABP), ileal lipid-binding protein (I-LBP) and intestinal fatty acid-binding protein (I-FABP). Whereas about half of the crystallographically visible water molecules appear to be expelled by the ligand, we find that ligand binding actually increases the number of water molecules within the cavity. At 300 K, the water molecules in the cavity exchange positions on a time-scale of about 1ns and exchange with external water on longer time-scales (0.01-1 micros). Exchange of water molecules among hydration sites within the cavity should be strongly coupled to ligand motion. Whereas a recent MD simulation indicates that the structure of the cavity water resembles a bulk water droplet, the present MRD results show that its dynamics is more than two orders of magnitude slower than in the bulk. These findings may have significant implications for the strength, specificity and kinetics of lipid binding.
Collapse
Affiliation(s)
- Kristofer Modig
- Department of Biophysical Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | | | | | | |
Collapse
|
31
|
Jakobsson E, Alvite G, Bergfors T, Esteves A, Kleywegt GJ. The crystal structure of Echinococcus granulosus fatty-acid-binding protein 1. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1649:40-50. [PMID: 12818189 DOI: 10.1016/s1570-9639(03)00151-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe the 1.6 A crystal structure of the fatty-acid-binding protein EgFABP1 from the parasitic platyhelminth Echinococcus granulosus. E. granulosus causes hydatid disease, which is a major zoonosis. EgFABP1 has been implicated in the acquisition, storage, and transport of lipids, and may be important to the organism since it is incapable of synthesising most of its lipids de novo. Moreover, EgFABP1 is a promising candidate for a vaccine against hydatid disease. The crystal structure reveals that EgFABP1 has the expected 10-stranded beta-barrel fold typical of the family of intracellular lipid-binding proteins, and that it is structurally most similar to P2 myelin protein. We describe the comparison of the crystal structure of EgFABP1 with these proteins and with an older homology model for EgFABP1. The electron density reveals the presence of a bound ligand inside the cavity, which we have interpreted as palmitic acid. The carboxylate group of the fatty acid interacts with the protein's P2 motif, consisting of a conserved triad R em leader R-x-Y. The hydrophobic tail of the ligand assumes a fairly flat, U-shaped conformation and has relatively few interactions with the protein.We discuss some of the structural implications of the crystal structure of EgFABP1 for related platyhelminthic FABPs.
Collapse
Affiliation(s)
- Emma Jakobsson
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Centre, Box 596, SE-751 24, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
32
|
Falconi M, Brunelli M, Pesce A, Ferrario M, Bolognesi M, Desideri A. Static and dynamic water molecules in Cu,Zn superoxide dismutase. Proteins 2003; 51:607-15. [PMID: 12784219 DOI: 10.1002/prot.10377] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Understanding protein hydration is a crucial, and often underestimated issue, in unraveling protein function. Molecular dynamics (MD) computer simulation can provide a microscopic description of the water behavior. We have applied such a simulative approach to dimeric Photobacterium leiognathi Cu,Zn superoxide dismutase, comparing the water molecule sites determined using 1.0 ns MD simulation with those detected by X-ray crystallography. Of the water molecules detected by the two techniques, 20% fall at common sites. These are evenly distributed over the protein surface and located around crevices, which represent the preferred hydration sites. The water mean residence time, estimated by means of a survival probability function on a given protein hydration shell, is relatively short and increases for low accessibility sites constituted by polar atoms. Water molecules trapped in the dimeric protein intersubunit cavity, as identified in the crystal structure, display a trajectory mainly confined within the cavity. The simulation shows that these water molecules are characterized by relatively short residence times, because they continuously change from one site to another within the cavity, thus hinting at the absence of any relationship between spatial and temporal order for solvent molecules in proximity of protein surface.
Collapse
Affiliation(s)
- M Falconi
- INFM (National Institute for the Physics of the Matter) and Department of Biology University of Rome Tor Vergata, Rome, Italy
| | | | | | | | | | | |
Collapse
|
33
|
Rigden DJ, Lamani E, Mello LV, Littlejohn JE, Jedrzejas MJ. Insights into the catalytic mechanism of cofactor-independent phosphoglycerate mutase from X-ray crystallography, simulated dynamics and molecular modeling. J Mol Biol 2003; 328:909-20. [PMID: 12729763 DOI: 10.1016/s0022-2836(03)00350-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Phosphoglycerate mutases catalyze the isomerization of 2 and 3-phosphoglycerates, and are essential for glucose metabolism in most organisms. Here, we further characterize the 2,3-bisphosphoglycerate-independent phosphoglycerate mutase (iPGM) from Bacillus stearothermophilus by determination of a high-resolution (1.4A) crystal structure of the wild-type enzyme and the crystal structure of its S62A mutant. The mutant structure surprisingly showed the replacement of one of the two catalytically essential manganese ions with a water molecule, offering an additional possible explanation for its lack of catalytic activity. Crystal structures invariably show substrate phosphoglycerate to be entirely buried in a deep cleft between the two iPGM domains. Flexibility analyses were therefore employed to reveal the likely route of substrate access to the catalytic site through an aperture created in the enzyme's surface during certain stages of the catalytic process. Several conserved residues lining this aperture may contribute to orientation of the substrate as it enters. Factors responsible for the retention of glycerate within the phosphoenzyme structure in the proposed mechanism are identified by molecular modeling of the glycerate complex of the phosphoenzyme. Taken together, these results allow for a better understanding of the mechanism of action of iPGMs. Many of the results are relevant to a series of evolutionarily related enzymes. These studies will facilitate the development of iPGM inhibitors which, due to the demonstrated importance of this enzyme in many bacteria, would be of great potential clinical significance.
Collapse
Affiliation(s)
- Daniel J Rigden
- National Centre of Genetic Resources and Biotechnology, Cenargen/Embrapa, S.A.I.N. Parque Rural, Final W5, Asa Norte, 70770-900 Brasília, Brazil
| | | | | | | | | |
Collapse
|
34
|
Lücke C, Huang S, Rademacher M, Rüterjans H. New insights into intracellular lipid binding proteins: The role of buried water. Protein Sci 2002; 11:2382-92. [PMID: 12237460 PMCID: PMC2373707 DOI: 10.1110/ps.0212902] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The crystal structures of most intracellular lipid binding proteins (LBPs) show between 5 and 20 internally bound water molecules, depending on the presence or the absence of ligand inside the protein cavity. The structural and functional significance of these waters has been discussed for several LBPs based on studies that used various biophysical techniques. The present work focuses on two very different LBPs, heart-type fatty acid binding protein (H-FABP) and ileal lipid binding protein (ILBP). Using high-resolution nuclear magnetic resonance spectroscopy, certain resonances belonging to side-chain protons that are located inside the water-filled lipid binding cavity were observed. In the case of H-FABP, the pH- and temperature-dependent behavior of selected side-chain resonances (Ser82 OgH and the imidazole ring protons of His93) indicated an unusually slow exchange with the solvent, implying that the intricate hydrogen-bonding network of amino-acid side-chains and water molecules in the protein interior is very rigid. In addition, holo H-FABP appeared to display a reversible self-aggregation at physiological pH. For ILBP, on the other hand, a more solvent-accessible protein cavity was deduced based on the pH titration behavior of its histidine residues. Comparison with data from other LBPs implies that the evolutionary specialization of LBPs for certain ligand types was not only because of mutations of residues directly involved in ligand binding but also to a refinement of the internal water scaffold.
Collapse
Affiliation(s)
- Christian Lücke
- Institut für Biophysikalische Chemie, Johann Wolfgang Goethe-Universität Frankfurt, D-60439 Frankfurt am Main, Germany.
| | | | | | | |
Collapse
|
35
|
Bottoms CA, Smith PE, Tanner JJ. A structurally conserved water molecule in Rossmann dinucleotide-binding domains. Protein Sci 2002; 11:2125-37. [PMID: 12192068 PMCID: PMC2373605 DOI: 10.1110/ps.0213502] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A computational comparison of 102 high-resolution (</=1.90 A) enzyme-dinucleotide (NAD, NADP, FAD) complexes was performed to investigate the role of solvent in dinucleotide recognition by Rossmann fold domains. The typical binding site contains about 9-12 water molecules, and about 30% of the hydrogen bonds between the protein and the dinucleotide are water mediated. Detailed inspection of the structures reveals a structurally conserved water molecule bridging dinucleotides with the well-known glycine-rich phosphate-binding loop. This water molecule displays a conserved hydrogen-bonding pattern. It forms hydrogen bonds to the dinucleotide pyrophosphate, two of the three conserved glycine residues of the phosphate-binding loop, and a residue at the C-terminus of strand four of the Rossmann fold. The conserved water molecule is also present in high-resolution structures of apo enzymes. However, the water molecule is not present in structures displaying significant deviations from the classic Rossmann fold motif, such as having nonstandard topology, containing a very short phosphate-binding loop, or having alpha-helix "A" oriented perpendicular to the beta-sheet. Thus, the conserved water molecule appears to be an inherent structural feature of the classic Rossmann dinucleotide-binding domain.
Collapse
|
36
|
Bakowies D, van Gunsteren WF. Simulations of apo and holo-fatty acid binding protein: structure and dynamics of protein, ligand and internal water. J Mol Biol 2002; 315:713-36. [PMID: 11812142 DOI: 10.1006/jmbi.2001.5202] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two molecular dynamics simulations of 5 ns each have been carried out for rat intestinal fatty acid binding protein, in apo-form and with bound palmitate. The fatty acid and a number of water molecules are encapsulated in a large interior cavity of the barrel-shaped protein. The simulations are compared to experimental data and analyzed in terms of root mean square deviations, atomic B-factors, secondary structure elements, hydrogen bond patterns, and distance constraints derived from nuclear Overhauser experiments. Excellent agreement is found between simulated and experimental solution structures of holo-FABP, but a number of differences are observed for the apo-form. The ligand in holo-FABP shows considerable displacement after about 1.5 ns and displays significant configurational entropy. A novel computational approach has been employed to identify internal water and to capture exchange pathways. Orifices in the portal and gap regions of the protein, discussed in the experimental literature, have been confirmed as major openings for solvent exchange between the internal cavity and bulk water. A third opening on the opposite side of the barrel experiences significant exchange but it does not provide a pathway for further passage to the central cavity. Internal water is characterized in terms of density distributions, interaction energies, mobility, protein contact times, and water molecule coordination. A number of differences are observed between the apo and holo-forms and related to differences in the protein structure. Solvent inside apo-FABP, for example, shows characteristics of a water droplet, while solvent in holo-FABP benefits from interactions with the ligand headgroup and slightly stronger interactions with protein residues.
Collapse
Affiliation(s)
- Dirk Bakowies
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, Zürich, 8093, Switzerland.
| | | |
Collapse
|