1
|
de Castro KKG, da Silva PHL, Lara FA, Mendes MA, Leal-Calvo T, Leal JMP, Moraes MO, Bertho AL, Pinheiro RO, Esquenazi D. The role of cell exhaustion in lepromatous leprosy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf056. [PMID: 40359390 DOI: 10.1093/jimmun/vkaf056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 02/17/2025] [Indexed: 05/15/2025]
Abstract
Leprosy is a neglected chronic infectious disease caused by Mycobacterium leprae or M. lepromatosis, representing a public health concern in several low-income countries. In Brazil, most patients develop lepromatous leprosy, a clinical form characterized by poor bacillary control due to T helper 2 cells, M2 macrophages, and accentuated humoral immunity. Despite extensive studies, the complete mechanism of the disease is not fully understood. The evasion mechanisms used by the pathogen likely involve cellular exhaustion, which can arise from chronic antigen stimulation, leading to dysfunction at immune checkpoints, a progressive loss of T lymphocyte effector function, and low production of proinflammatory cytokines. Our study investigated the contribution of cellular exhaustion to the hyporesponsiveness of lepromatous leprosy patients by evaluating the classical markers PD-1 and LAG-3, their ligands PD-L1 and PD-L2, and the functional activity of cells after PD-1 blockade, using flow cytometry, immunofluorescence, and gene expression analyses in both blood and skin. Our work shows for the first time that LAG-3 is increased in the skin lymphocytes of lepromatous patients, as well as membrane-bound and soluble PD-1. Furthermore, its classical ligands, PD-L1 and PD-L2, are more available for interaction in all monocyte subsets in these patients. We also identified that PD-1 blockade induces an increase in IFN-γ+ and TNF+ T lymphocytes. Taken together, our data suggest that exhaustion markers contribute to the hyporesponsive profile of lepromatous patients, and that PD-1 blockade could contribute to the reestablishment of lymphocyte effector action and potentially become part of multidrug therapy in the future.
Collapse
Affiliation(s)
- Katherine Kelda Gomes de Castro
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Flow Cytometry Cell Sorting Core Facility, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Flávio Alves Lara
- Cellular Microbiology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Mayara Abud Mendes
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Thyago Leal-Calvo
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Milton Ozório Moraes
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Alvaro Luiz Bertho
- Flow Cytometry Cell Sorting Core Facility, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Roberta Olmo Pinheiro
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Danuza Esquenazi
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Department of Pathology and Laboratories, School of Medical Sciences, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Dai Y, Liang Y, Liu C, Liu T, Chen L, Li Y. Can artemisinin and its derivatives treat malaria in a host-directed manner? Biochem Pharmacol 2024; 225:116260. [PMID: 38705539 DOI: 10.1016/j.bcp.2024.116260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/17/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Malaria is caused by an apicomplexan protozoan parasite, Plasmodium, and is transmitted through vectors. It remains a substantial health burden, especially in developing countries, leading to significant socioeconomic losses. Although the World Health Organization (WHO) has approved various antimalarial medications in the past two decades, the increasing resistance to these medications has worsened the situation. The development of drug resistance stems from genetic diversity among Plasmodium strains, impeding eradication efforts. Consequently, exploring innovative technologies and strategies for developing effective medications based on the host is crucial. Artemisinin and its derivatives (artemisinins) have been recommended by the WHO for treating malaria owing to their known effectiveness in killing the parasite. However, their potential to target the host for malaria treatment has not been investigated. This article concisely reviews the application of host-directed therapeutics, potential drug candidates targeting the host for treating malaria, and usage of artemisinins in numerous diseases. It underscores the importance of host-directed interventions for individuals susceptible to malaria, suggests the potential utility of artemisinins in host-directed malaria treatments, and posits that the modulation of host proteins with artemisinins may offer a means of intervening in host-parasite interactions. Further studies focusing on the host-targeting perspective of artemisinins can provide new insights into the mechanisms of artemisinin resistance and offer a unique opportunity for new antimalarial drug discovery.
Collapse
Affiliation(s)
- Yue Dai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yan Liang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chengcheng Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Tuo Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lina Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Yujie Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
3
|
Therapeutic targets and biomarkers of tumor immunotherapy: response versus non-response. Signal Transduct Target Ther 2022; 7:331. [PMID: 36123348 PMCID: PMC9485144 DOI: 10.1038/s41392-022-01136-2] [Citation(s) in RCA: 238] [Impact Index Per Article: 79.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/25/2022] [Accepted: 07/25/2022] [Indexed: 02/05/2023] Open
Abstract
Cancers are highly complex diseases that are characterized by not only the overgrowth of malignant cells but also an altered immune response. The inhibition and reprogramming of the immune system play critical roles in tumor initiation and progression. Immunotherapy aims to reactivate antitumor immune cells and overcome the immune escape mechanisms of tumors. Represented by immune checkpoint blockade and adoptive cell transfer, tumor immunotherapy has seen tremendous success in the clinic, with the capability to induce long-term regression of some tumors that are refractory to all other treatments. Among them, immune checkpoint blocking therapy, represented by PD-1/PD-L1 inhibitors (nivolumab) and CTLA-4 inhibitors (ipilimumab), has shown encouraging therapeutic effects in the treatment of various malignant tumors, such as non-small cell lung cancer (NSCLC) and melanoma. In addition, with the advent of CAR-T, CAR-M and other novel immunotherapy methods, immunotherapy has entered a new era. At present, evidence indicates that the combination of multiple immunotherapy methods may be one way to improve the therapeutic effect. However, the overall clinical response rate of tumor immunotherapy still needs improvement, which warrants the development of novel therapeutic designs as well as the discovery of biomarkers that can guide the prescription of these agents. Learning from the past success and failure of both clinical and basic research is critical for the rational design of studies in the future. In this article, we describe the efforts to manipulate the immune system against cancer and discuss different targets and cell types that can be exploited to promote the antitumor immune response.
Collapse
|
4
|
Chocarro L, Bocanegra A, Blanco E, Fernández-Rubio L, Arasanz H, Echaide M, Garnica M, Ramos P, Piñeiro-Hermida S, Vera R, Escors D, Kochan G. Cutting-Edge: Preclinical and Clinical Development of the First Approved Lag-3 Inhibitor. Cells 2022; 11:2351. [PMID: 35954196 PMCID: PMC9367598 DOI: 10.3390/cells11152351] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 12/19/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized medical practice in oncology since the FDA approval of the first ICI 11 years ago. In light of this, Lymphocyte-Activation Gene 3 (LAG-3) is one of the most important next-generation immune checkpoint molecules, playing a similar role as Programmed cell Death protein 1 (PD-1) and Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4). 19 LAG-3 targeting molecules are being evaluated at 108 clinical trials which are demonstrating positive results, including promising bispecific molecules targeting LAG-3 simultaneously with other ICIs. Recently, a new dual anti-PD-1 (Nivolumab) and anti-LAG-3 (Relatimab) treatment developed by Bristol Myers Squibb (Opdualag), was approved by the Food and Drug Administration (FDA) as the first LAG-3 blocking antibody combination for unresectable or metastatic melanoma. This novel immunotherapy combination more than doubled median progression-free survival (PFS) when compared to nivolumab monotherapy (10.1 months versus 4.6 months). Here, we analyze the large clinical trial responsible for this historical approval (RELATIVITY-047), and discuss the preclinical and clinical developments that led to its jump into clinical practice. We will also summarize results achieved by other LAG-3 targeting molecules with promising anti-tumor activities currently under clinical development in phases I, I/II, II, and III. Opdualag will boost the entry of more LAG-3 targeting molecules into clinical practice, supporting the accumulating evidence highlighting the pivotal role of LAG-3 in cancer.
Collapse
Affiliation(s)
- Luisa Chocarro
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31001 Pamplona, Spain; (E.B.); (L.F.-R.); (H.A.); (M.E.); (M.G.); (P.R.); (S.P.-H.); (D.E.); (G.K.)
| | - Ana Bocanegra
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31001 Pamplona, Spain; (E.B.); (L.F.-R.); (H.A.); (M.E.); (M.G.); (P.R.); (S.P.-H.); (D.E.); (G.K.)
| | - Ester Blanco
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31001 Pamplona, Spain; (E.B.); (L.F.-R.); (H.A.); (M.E.); (M.G.); (P.R.); (S.P.-H.); (D.E.); (G.K.)
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdISNA), 31001 Pamplona, Spain
| | - Leticia Fernández-Rubio
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31001 Pamplona, Spain; (E.B.); (L.F.-R.); (H.A.); (M.E.); (M.G.); (P.R.); (S.P.-H.); (D.E.); (G.K.)
| | - Hugo Arasanz
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31001 Pamplona, Spain; (E.B.); (L.F.-R.); (H.A.); (M.E.); (M.G.); (P.R.); (S.P.-H.); (D.E.); (G.K.)
- Medical Oncology Unit, Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31001 Pamplona, Spain;
| | - Miriam Echaide
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31001 Pamplona, Spain; (E.B.); (L.F.-R.); (H.A.); (M.E.); (M.G.); (P.R.); (S.P.-H.); (D.E.); (G.K.)
| | - Maider Garnica
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31001 Pamplona, Spain; (E.B.); (L.F.-R.); (H.A.); (M.E.); (M.G.); (P.R.); (S.P.-H.); (D.E.); (G.K.)
| | - Pablo Ramos
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31001 Pamplona, Spain; (E.B.); (L.F.-R.); (H.A.); (M.E.); (M.G.); (P.R.); (S.P.-H.); (D.E.); (G.K.)
| | - Sergio Piñeiro-Hermida
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31001 Pamplona, Spain; (E.B.); (L.F.-R.); (H.A.); (M.E.); (M.G.); (P.R.); (S.P.-H.); (D.E.); (G.K.)
| | - Ruth Vera
- Medical Oncology Unit, Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31001 Pamplona, Spain;
| | - David Escors
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31001 Pamplona, Spain; (E.B.); (L.F.-R.); (H.A.); (M.E.); (M.G.); (P.R.); (S.P.-H.); (D.E.); (G.K.)
| | - Grazyna Kochan
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31001 Pamplona, Spain; (E.B.); (L.F.-R.); (H.A.); (M.E.); (M.G.); (P.R.); (S.P.-H.); (D.E.); (G.K.)
| |
Collapse
|
5
|
Schulte S, Heide J, Ackermann C, Peine S, Ramharter M, Mackroth MS, Woost R, Jacobs T, Schulze zur Wiesch J. Deciphering the Plasmodium falciparum malaria-specific CD4+ T-cell response: ex vivo detection of high frequencies of PD-1+TIGIT+ EXP1-specific CD4+ T cells using a novel HLA-DR11-restricted MHC class II tetramer. Clin Exp Immunol 2021; 207:227-236. [PMID: 35020841 PMCID: PMC8982981 DOI: 10.1093/cei/uxab027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/12/2021] [Accepted: 12/03/2021] [Indexed: 02/03/2023] Open
Abstract
Relatively little is known about the ex vivo frequency and phenotype of the Plasmodium falciparum-specific CD4+ T-cell response in humans. The exported protein 1 (EXP1) is expressed by plasmodia at both, the liver stage and blood stage, of infection making it a potential target for CD4+ and CD8+ effector T cells. Here, a fluorochrome-labelled HLA-DRB1∗11:01-restriced MHC class II tetramer derived from the P. falciparum EXP1 (aa62-74) was established for ex vivo tetramer analysis and magnetic bead enrichment in 10 patients with acute malaria. EXP1-specific CD4+ T cells were detectable in 9 out of 10 (90%) malaria patients expressing the HLA-DRB1∗11 molecule with an average ex vivo frequency of 0.11% (0-0.22%) of total CD4+ T cells. The phenotype of EXP1-specific CD4+ T cells was further assessed using co-staining with activation (CD38, HLA-DR, CD26), differentiation (CD45RO, CCR7, KLRG1, CD127), senescence (CD57), and co-inhibitory (PD-1, TIGIT, LAG-3, TIM-3) markers as well as the ectonucleotidases CD39 and CD73. EXP1-specific tetramer+ CD4+ T cells had a distinct phenotype compared to bulk CD4+ T cells and displayed a highly activated effector memory phenotype with elevated levels of co-inhibitory receptors and activation markers: EXP1-specific CD4+ T cells universally expressed the co-inhibitory receptors PD-1 and TIGIT as well as the activation marker CD38 and showed elevated frequencies of CD39. These results demonstrate that MHC class II tetramer enrichment is a sensitive approach to investigate ex vivo antigen-specific CD4+ T cells in malaria patients that will aid further analysis of the role of CD4+ T cells during malaria.
Collapse
Affiliation(s)
- Sophia Schulte
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Janna Heide
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Christin Ackermann
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sven Peine
- Department of Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Ramharter
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany,Department of Tropical Medicine, Bernhard-Nocht-Institute for Tropical Medicine (BNITM), Hamburg, Germany
| | - Maria Sophia Mackroth
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany,Department of Tropical Medicine, Bernhard-Nocht-Institute for Tropical Medicine (BNITM), Hamburg, Germany,Protozoa Immunology, Bernhard-Nocht-Institute for Tropical Medicine (BNITM), Hamburg, Germany
| | - Robin Woost
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Thomas Jacobs
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany,Protozoa Immunology, Bernhard-Nocht-Institute for Tropical Medicine (BNITM), Hamburg, Germany
| | - Julian Schulze zur Wiesch
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany,Correspondence: Julian Schulze zur Wiesch, Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.
| |
Collapse
|
6
|
Xie T, Wang N, Yao G, Xu S, Wang D, Liu X, Hu L, Lu G, Shi R, Ding Y. PD-1/PDL1 Blockade Exacerbates Pancreatic Damage and Immune Response in a Mouse Model of Acute Pancreatitis. Inflammation 2021; 44:1441-1451. [PMID: 33598777 DOI: 10.1007/s10753-021-01430-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/07/2020] [Accepted: 01/29/2021] [Indexed: 12/27/2022]
Abstract
Programmed necrosis factor 1 (PD-1) is significantly overexpressed in lymphocytes, neutrophils, and macrophages and has been studied in depth in tumors. As a member of the negative costimulatory family of immune regulatory molecules, expression of PD-1 and its primary regulatory pathway are related to immune cells. Recently, PD-1 was demonstrated to be clinically important in inflammatory diseases, such as multiple sclerosis, glomerulonephritis, and inflammatory bowel disease. PD-1, a negative regulator molecule, was recently found to protect tissues from the inflammatory response and inflammatory cell infiltration. Conversely, PD-1 deficiency may contribute to the occurrence of a diverse array of inflammatory diseases. However, whether PD-1 regulates the pathogenesis of acute pancreatitis (AP) is unclear. AP is a noninfectious inflammatory disease with primary pathological manifestations that include edema, inflammatory cell infiltration, and acinar cell necrosis. Among these features, costimulatory molecules including PD-1/PDL1 play a critical role in the regulation of immune response and immune activation. Here, we first found that PD-1 is notably upregulated in neutrophils and macrophages in peripheral blood and pancreatic injury tissue in AP mice. PD-1 gene deficiency exacerbated pancreatic injury in an experimental mouse model of AP. We observed more severe pancreatic injury in PD-1-deficient mice than in control mice, including increased pancreatic edema, inflammatory cells, infiltration, and acinar cell necrosis. We also found that PD-1-deficient mice exhibited higher levels of serum enzymology and inflammatory factors in AP. Furthermore, PD-1/PDL1 neutralizing antibodies significantly aggravated pancreatic and lung injury and increased serum inflammatory cytokine levels. These findings were consistent with those in PD-1-deficient mice. In summary, PD-1 may protect against AP in mice and act as a potential target for the prevention of AP in the future.
Collapse
Affiliation(s)
- Ting Xie
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Ningzhi Wang
- Pancreatic Center, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Guanghuai Yao
- Pancreatic Center, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Songxin Xu
- Pancreatic Center, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Dan Wang
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Xinnong Liu
- Pancreatic Center, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Lianghao Hu
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Guotao Lu
- Pancreatic Center, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ruihua Shi
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing, China.
| | - Yanbing Ding
- Pancreatic Center, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China.
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
7
|
Chocarro L, Blanco E, Zuazo M, Arasanz H, Bocanegra A, Fernández-Rubio L, Morente P, Fernández-Hinojal G, Echaide M, Garnica M, Ramos P, Vera R, Kochan G, Escors D. Understanding LAG-3 Signaling. Int J Mol Sci 2021; 22:ijms22105282. [PMID: 34067904 PMCID: PMC8156499 DOI: 10.3390/ijms22105282] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/14/2022] Open
Abstract
Lymphocyte activation gene 3 (LAG-3) is a cell surface inhibitory receptor with multiple biological activities over T cell activation and effector functions. LAG-3 plays a regulatory role in immunity and emerged some time ago as an inhibitory immune checkpoint molecule comparable to PD-1 and CTLA-4 and a potential target for enhancing anti-cancer immune responses. LAG-3 is the third inhibitory receptor to be exploited in human anti-cancer immunotherapies, and it is considered a potential next-generation cancer immunotherapy target in human therapy, right next to PD-1 and CTLA-4. Unlike PD-1 and CTLA-4, the exact mechanisms of action of LAG-3 and its relationship with other immune checkpoint molecules remain poorly understood. This is partly caused by the presence of non-conventional signaling motifs in its intracellular domain that are different from other conventional immunoregulatory signaling motifs but with similar inhibitory activities. Here we summarize the current understanding of LAG-3 signaling and its role in LAG-3 functions, from its mechanisms of action to clinical applications.
Collapse
Affiliation(s)
- Luisa Chocarro
- Oncoimmunology Group, Navarrabiomed-Public University of Navarre, IdISNA, 31008 Pamplona, Navarra, Spain; (L.C.); (E.B.); (M.Z.); (H.A.); (A.B.); (L.F.-R.); (P.M.); (G.F.-H.); (M.E.); (M.G.); (P.R.)
| | - Ester Blanco
- Oncoimmunology Group, Navarrabiomed-Public University of Navarre, IdISNA, 31008 Pamplona, Navarra, Spain; (L.C.); (E.B.); (M.Z.); (H.A.); (A.B.); (L.F.-R.); (P.M.); (G.F.-H.); (M.E.); (M.G.); (P.R.)
| | - Miren Zuazo
- Oncoimmunology Group, Navarrabiomed-Public University of Navarre, IdISNA, 31008 Pamplona, Navarra, Spain; (L.C.); (E.B.); (M.Z.); (H.A.); (A.B.); (L.F.-R.); (P.M.); (G.F.-H.); (M.E.); (M.G.); (P.R.)
| | - Hugo Arasanz
- Oncoimmunology Group, Navarrabiomed-Public University of Navarre, IdISNA, 31008 Pamplona, Navarra, Spain; (L.C.); (E.B.); (M.Z.); (H.A.); (A.B.); (L.F.-R.); (P.M.); (G.F.-H.); (M.E.); (M.G.); (P.R.)
- Department of Medical Oncology, Complejo Hospitalario de Navarra CHN-IdISNA, 31008 Pamplona, Navarra, Spain;
| | - Ana Bocanegra
- Oncoimmunology Group, Navarrabiomed-Public University of Navarre, IdISNA, 31008 Pamplona, Navarra, Spain; (L.C.); (E.B.); (M.Z.); (H.A.); (A.B.); (L.F.-R.); (P.M.); (G.F.-H.); (M.E.); (M.G.); (P.R.)
| | - Leticia Fernández-Rubio
- Oncoimmunology Group, Navarrabiomed-Public University of Navarre, IdISNA, 31008 Pamplona, Navarra, Spain; (L.C.); (E.B.); (M.Z.); (H.A.); (A.B.); (L.F.-R.); (P.M.); (G.F.-H.); (M.E.); (M.G.); (P.R.)
| | - Pilar Morente
- Oncoimmunology Group, Navarrabiomed-Public University of Navarre, IdISNA, 31008 Pamplona, Navarra, Spain; (L.C.); (E.B.); (M.Z.); (H.A.); (A.B.); (L.F.-R.); (P.M.); (G.F.-H.); (M.E.); (M.G.); (P.R.)
| | - Gonzalo Fernández-Hinojal
- Oncoimmunology Group, Navarrabiomed-Public University of Navarre, IdISNA, 31008 Pamplona, Navarra, Spain; (L.C.); (E.B.); (M.Z.); (H.A.); (A.B.); (L.F.-R.); (P.M.); (G.F.-H.); (M.E.); (M.G.); (P.R.)
- Department of Medical Oncology, Complejo Hospitalario de Navarra CHN-IdISNA, 31008 Pamplona, Navarra, Spain;
| | - Miriam Echaide
- Oncoimmunology Group, Navarrabiomed-Public University of Navarre, IdISNA, 31008 Pamplona, Navarra, Spain; (L.C.); (E.B.); (M.Z.); (H.A.); (A.B.); (L.F.-R.); (P.M.); (G.F.-H.); (M.E.); (M.G.); (P.R.)
| | - Maider Garnica
- Oncoimmunology Group, Navarrabiomed-Public University of Navarre, IdISNA, 31008 Pamplona, Navarra, Spain; (L.C.); (E.B.); (M.Z.); (H.A.); (A.B.); (L.F.-R.); (P.M.); (G.F.-H.); (M.E.); (M.G.); (P.R.)
| | - Pablo Ramos
- Oncoimmunology Group, Navarrabiomed-Public University of Navarre, IdISNA, 31008 Pamplona, Navarra, Spain; (L.C.); (E.B.); (M.Z.); (H.A.); (A.B.); (L.F.-R.); (P.M.); (G.F.-H.); (M.E.); (M.G.); (P.R.)
| | - Ruth Vera
- Department of Medical Oncology, Complejo Hospitalario de Navarra CHN-IdISNA, 31008 Pamplona, Navarra, Spain;
| | - Grazyna Kochan
- Oncoimmunology Group, Navarrabiomed-Public University of Navarre, IdISNA, 31008 Pamplona, Navarra, Spain; (L.C.); (E.B.); (M.Z.); (H.A.); (A.B.); (L.F.-R.); (P.M.); (G.F.-H.); (M.E.); (M.G.); (P.R.)
- Correspondence: (G.K.); (D.E.)
| | - David Escors
- Oncoimmunology Group, Navarrabiomed-Public University of Navarre, IdISNA, 31008 Pamplona, Navarra, Spain; (L.C.); (E.B.); (M.Z.); (H.A.); (A.B.); (L.F.-R.); (P.M.); (G.F.-H.); (M.E.); (M.G.); (P.R.)
- Correspondence: (G.K.); (D.E.)
| |
Collapse
|
8
|
Herrmann M, Schulte S, Wildner NH, Wittner M, Brehm TT, Ramharter M, Woost R, Lohse AW, Jacobs T, Schulze zur Wiesch J. Analysis of Co-inhibitory Receptor Expression in COVID-19 Infection Compared to Acute Plasmodium falciparum Malaria: LAG-3 and TIM-3 Correlate With T Cell Activation and Course of Disease. Front Immunol 2020; 11:1870. [PMID: 32983106 PMCID: PMC7479337 DOI: 10.3389/fimmu.2020.01870] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) which is caused by the novel SARS-CoV-2 virus is a severe flu-like illness which is associated with hyperinflammation and immune dysfunction. The virus induces a strong T and B cell response but little is known about the immune pathology of this viral infection. Acute Plasmodium falciparum malaria also causes acute clinical illness and is characterized by hyperinflammation due to the strong production of pro-inflammatory cytokines and a massive activation of T cells. In malaria, T cells express a variety of co-inhibitory receptors which might be a consequence of their activation but also might limit their overwhelming function. Thus, T cells are implicated in protection as well as in pathology. The outcome of malaria is thought to be a consequence of the balance between co-activation and co-inhibition of T cells. Following the hypothesis that T cells in COVID-19 might have a similar, dual function, we comprehensively characterized the differentiation (CCR7, CD45RO) and activation status (HLA-DR, CD38, CD69, CD226), the co-expression of co-inhibitory molecules (PD1, TIM-3, LAG-3, BTLA, TIGIT), as well as the expression pattern of the transcription factors T-bet and eomes of CD8+ and CD4+ T cells of PBMC of n = 20 SARS-CoV-2 patients compared to n = 10 P. falciparum infected patients and n = 13 healthy controls. Overall, acute COVID-19 and malaria infection resulted in a comparably elevated activation and altered differentiation status of the CD8+ and CD4+ T cell populations. T effector cells of COVID-19 and malaria patients showed higher frequencies of the inhibitory receptors T-cell immunoglobulin mucin-3 (TIM-3) and Lymphocyte-activation gene-3 (LAG-3) which was linked to increased activation levels and an upregulation of the transcription factors T-bet and eomes. COVID-19 patients with a more severe disease course showed higher levels of LAG-3 and TIM-3 than patients with a mild disease course. During recovery, a rapid normalization of these inhibitory receptors could be observed. In summary, comparing the expression of different co-inhibitory molecules in CD8+ and CD4+ T cells in COVID-19 vs. malaria, there is a transient increase of the expression of certain inhibitory receptors like LAG-3 and TIM-3 in COVID-19 in the overall context of acute immune activation.
Collapse
Affiliation(s)
- Marissa Herrmann
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Sophia Schulte
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nils H. Wildner
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Melanie Wittner
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Thomas Theo Brehm
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Michael Ramharter
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- Department of Tropical Medicine, Bernhard-Nocht-Institute for Tropical Medicine (BNITM), Hamburg, Germany
| | - Robin Woost
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Ansgar W. Lohse
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Thomas Jacobs
- Protozoa Immunology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
| | - Julian Schulze zur Wiesch
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| |
Collapse
|
9
|
Hu S, Liu X, Li T, Li Z, Hu F. LAG3 (CD223) and autoimmunity: Emerging evidence. J Autoimmun 2020; 112:102504. [PMID: 32576412 DOI: 10.1016/j.jaut.2020.102504] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/07/2020] [Accepted: 06/10/2020] [Indexed: 12/31/2022]
Abstract
Immune checkpoint molecules play pivotal roles in maintaining the immune homeostasis. Targeting these molecules, such as the classical Cytotoxic T-Lymphocyte Antigen 4 (CTLA4) and Programmed Cell Death Protein 1 (PD1), achieves great success in treating cancers. However, not all the patients respond well. This urges the immunologists to identify novel immune checkpoint molecules. Lymphocyte activation gene-3 (LAG3; CD223) is a newly identified inhibitory receptor. It is expressed on a variety of immune cells, including CD4+ T cells, CD8+ T cells, Tregs, B cells, and NK cells. Its unique intracellular domains, signaling patterns as well as the striking synergy observed in its targeted therapy with anti-PD1 indicate the important role of LAG3 in maintaining immune tolerance. Currently, a variety of agents targeting LAG3 are in clinical trials, revealing great perspectives in the future immunotherapy. In this review, we briefly summarize the studies on LAG3, including its structure, isoforms, ligands, signaling, function, roles in multiple diseases, as well as the latest targeted therapeutic advances, with particular concern on the potential association of LAG3 with autoimmune diseases.
Collapse
Affiliation(s)
- Suiyuan Hu
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Xu Liu
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Tianding Li
- Software Center, Bank of China, Beijing, China
| | - Zhanguo Li
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Fanlei Hu
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| |
Collapse
|
10
|
Pan Y, Sun X, Li D, Zhao Y, Jin F, Cao Y. PD-1 blockade promotes immune memory following Plasmodium berghei ANKA reinfection. Int Immunopharmacol 2020; 80:106186. [PMID: 31931371 DOI: 10.1016/j.intimp.2020.106186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/27/2019] [Accepted: 01/01/2020] [Indexed: 01/22/2023]
Abstract
The establishment of malaria immune memory is slow, incomplete, and short-lived. The mechanisms underpinning the generation and maintenance of anti-malarial immune memory remain unclear. This study evaluated the possible role of programmed cell death-1 (PD-1) in the establishment of malaria immune memory. Following infection by Plasmodium berghei ANKA (Pb ANKA) we compared natural immunity, acquired immunity, and immune memory between WT and mice lacking PD-1 via monoclonal antibody treatment. We found that parasitemia levels were significantly lower in the PD-1 knockdown group. After PD-1 elimination, dendritic cells, Th1, and T-follicular helper cells increased significantly. In addition, memory T, long-lived plasma cells, and serum antibody production also increased significantly. Therefore, PD-1 elimination induced stronger natural and acquired immune responses and enhanced immune memory against the parasite.
Collapse
Affiliation(s)
- Yanyan Pan
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang 110013, China; Department of Central Laboratory, Dalian Municipal Central Hospital, Dalian 116033, China
| | - Xiaodan Sun
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang 110013, China
| | - Danni Li
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang 110013, China
| | - Yan Zhao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang 110013, China
| | - Feng Jin
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110001,China
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang 110013, China.
| |
Collapse
|
11
|
Pro-Cellular Exhaustion Markers are Associated with Splenic Microarchitecture Disorganization and Parasite Load in Dogs with Visceral Leishmaniasis. Sci Rep 2019; 9:12962. [PMID: 31506501 PMCID: PMC6736856 DOI: 10.1038/s41598-019-49344-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 08/23/2019] [Indexed: 11/30/2022] Open
Abstract
In canine visceral leishmaniasis (CVL), splenic white pulp (SWP) disorganization has been associated with disease progression, reduced cytokine and chemokine expression and failure to control the parasite load. This profile is compatible with the cellular exhaustion previously shown in human visceral leishmaniasis. The present study aimed to evaluate the in situ expression of cellular exhaustion markers and their relation to clinical signs, SWP disorganization and parasite load. Forty dogs naturally infected by Leishmania infantum were grouped according to levels of SWP organization and parasite load. SWP disorganization was associated with reductions in the periarteriolar lymphatic sheath and lymphoid follicles/mm2 and worsening of the disease. Apoptotic cells expressing CTLA-4+ increased in dogs with disorganized SWP and a high parasite load. In the same group, PD-L1 and LAG-3 gene expression were reduced. A higher number of CD21+TIM-3+ B cells was detected in disorganized spleens than in organized spleens. Apoptosis is involved in periarteriolar lymphatic sheath reduction and lymphoid follicle atrophy and is associated with CTLA-4+ cell reductions in the splenic tissue of dogs with visceral leishmaniasis (VL). Failure to control the parasite load was observed, suggesting that cell exhaustion followed by T and B cell apoptosis plays a role in the immunosuppression observed in CVL.
Collapse
|
12
|
Abstract
Parasitic infections are responsible for significant morbidity and mortality throughout the world. Management strategies rely primarily on antiparasitic drugs that have side effects and risk of drug resistance. Therefore, novel strategies are needed for treatment of parasitic infections. Host-directed therapy (HDT) is a viable alternative, which targets host pathways responsible for parasite invasion/survival/pathogenicity. Recent innovative combinations of genomics, proteomics and computational biology approaches have led to discovery of several host pathways that could be promising targets for HDT for treating parasitic infections. Herein, we review major advances in HDT for parasitic disease with regard to core regulatory pathways and their interactions.
Collapse
|
13
|
Niu B, Zhou F, Su Y, Wang L, Xu Y, Yi Z, Wu Y, Du H, Ren G. Different Expression Characteristics of LAG3 and PD-1 in Sepsis and Their Synergistic Effect on T Cell Exhaustion: A New Strategy for Immune Checkpoint Blockade. Front Immunol 2019; 10:1888. [PMID: 31440257 PMCID: PMC6693426 DOI: 10.3389/fimmu.2019.01888] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/25/2019] [Indexed: 12/14/2022] Open
Abstract
The impairment of immunity characterized by T cell exhaustion is the main cause of death in patients with sepsis after the acute phase. Although PD-1 blockade is highly touted as a promising treatment for improving prognosis, the role of PD-1 plays in sepsis and particularly its different roles in different periods are still very limited. A recent study revealed LAG3 can resist the therapeutic effect of PD-1 blockade in tumor, which inspired us to understand their role in sepsis. We enrolled 26 patients with acute sepsis from 422 candidates using strict inclusion criteria. Follow-up analysis revealed that the expression levels of PD-1 were rapidly increased in the early stage of sepsis but did not change significantly as infection continued (P < 0.05). However, the expression of LAG3 was contrary to that of PD-1. Compared with LAG3 or PD-1 single-positive T cells, T cells coexpressing LAG3 and PD-1 were significantly exhausted (P < 0.05). The proportion of coexpressing T cells was negatively correlated with the total number of lymphocytes (r = −0.653, P = 0.0003) and positively correlated with the SOFA score (r = 0.712, P < 0.0001). In addition, the higher the proportion of coexpressing T cells was, the longer the hospital stay and the higher the mortality. These results showed that LAG3 and PD-1 had a potential synergistic effect in regulating the gradual exhaustion of T cells in sepsis, which seriously affected the clinical prognosis of patients. Therefore, LAG3 and PD-1 double-positive T cells are an important indicator for immunity detection and prognostic evaluation. In the future, precision therapy may pay more attention to the different expression patterns of these two molecules.
Collapse
Affiliation(s)
- Bailin Niu
- Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Intensive Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fachun Zhou
- Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Intensive Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yanxin Su
- Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Intensive Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Long Wang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuanyuan Xu
- Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Intensive Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ziying Yi
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yushen Wu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huimin Du
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
14
|
Shankar EM, Vignesh R, Dash AP. Recent advances on T-cell exhaustion in malaria infection. Med Microbiol Immunol 2018; 207:167-174. [PMID: 29936565 DOI: 10.1007/s00430-018-0547-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/19/2018] [Indexed: 12/12/2022]
Abstract
T-cell exhaustion reportedly leads to dysfunctional immune responses of antigen-specific T cells. Investigations have revealed that T cells expand into functionally defective phenotypes with poor recall/memory abilities to parasitic antigens. The exploitation of co-inhibitory pathways represent a highly viable area of translational research that has very well been utilized against certain cancerous conditions. Malaria, at times, evolve into a sustained chronic state where T cells express several co-inhibitory molecules (negative immune checkpoints) facilitating parasite escape and sub-optimal protective responses. Experimental evidence suggests that blockade of co-inhibitory molecules on T cells in malaria could result in the sustenance of protective responses together with dramatic parasite clearance. The role of several co-inhibitory molecules in malaria infection largely remain unclear, and here we discussed the potential applicability of co-inhibitory molecules in the management of malaria with a view to harness protective host responses against chronic disease and associated consequences.
Collapse
Affiliation(s)
- Esaki M Shankar
- Division of Infection Biology and Medical Microbiology, Department of Life Sciences (DLS), School of Basic and Applied Sciences, Central University of Tamil Nadu (CUTN), Thiruvarur, Tamilnadu, 610 005, India.
| | - R Vignesh
- Laboratory-Based Department, Universiti Kuala Lumpur Royal College of Medicine Perak (UniKL-RCMP), Ipoh, Malaysia
| | - A P Dash
- Central University of Tamil Nadu (CUTN), Thiruvarur, Tamilnadu, 610 005, India
| |
Collapse
|
15
|
Jogdand GM, Sengupta S, Bhattacharya G, Singh SK, Barik PK, Devadas S. Inducible Costimulator Expressing T Cells Promote Parasitic Growth During Blood Stage Plasmodium berghei ANKA Infection. Front Immunol 2018; 9:1041. [PMID: 29892278 PMCID: PMC5985291 DOI: 10.3389/fimmu.2018.01041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/26/2018] [Indexed: 12/14/2022] Open
Abstract
The lethality of blood stage Plasmodium berghei ANKA (PbA) infection is associated with the expression of T-bet and production of cytokine IFN-γ. Expression of inducible costimulator (ICOS) and its downstream signaling has been shown to play a critical role in the T-bet expression and IFN-γ production. Although earlier studies have examined the role of ICOS in the control of acute blood-stage infection of Plasmodium chabaudi chabaudi AS (a non-lethal model of malaria infection), its significance in the lethal blood-stage of PbA infection remains unclear. Thus, to address the seminal role of ICOS in lethal blood-stage of PbA infection, we treated PbA-infected mice with anti-ICOS antibody and observed that these mice survived longer than their infected counterparts with significantly lower parasitemia. Anti-ICOS treatment notably depleted ICOS expressing CD4+ and CD8+ T cells with a concurrent reduction in plasma IFN-γ, which strongly indicated that ICOS expressing T cells are major IFN-γ producers. Interestingly, we observed that while ICOS expressing CD4+ and CD8+ T cells produced IFN-γ, ICOS-CD8+ T cells were also found to be producers of IFN-γ. However, we report that ICOS+CD8+ T cells were higher producers of IFN-γ than ICOS-CD8+ T cells. Moreover, correlation of ICOS expression with IFN-γ production in ICOS+IFN-γ+ T cell population (CD4+ and CD8+ T cells) suggested that ICOS and IFN-γ could positively regulate each other. Further, master transcription factor T-bet importantly involved in regulating IFN-γ production was also found to be expressed by ICOS expressing CD4+ and CD8+ T cells during PbA infection. As noted above with IFN-γ and ICOS, a positive correlation of expression of ICOS with the transcription factor T-bet suggested that both of them could regulate each other. Taken together, our results depicted the importance of ICOS expressing CD4+ and CD8+ T cells in malaria parasite growth and lethality through IFN-γ production and T-bet expression.
Collapse
Affiliation(s)
- Gajendra M Jogdand
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Soumya Sengupta
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | | | | | | | - Satish Devadas
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| |
Collapse
|
16
|
James KR, Soon MSF, Sebina I, Fernandez-Ruiz D, Davey G, Liligeto UN, Nair AS, Fogg LG, Edwards CL, Best SE, Lansink LIM, Schroder K, Wilson JAC, Austin R, Suhrbier A, Lane SW, Hill GR, Engwerda CR, Heath WR, Haque A. IFN Regulatory Factor 3 Balances Th1 and T Follicular Helper Immunity during Nonlethal Blood-Stage Plasmodium Infection. THE JOURNAL OF IMMUNOLOGY 2018; 200:1443-1456. [PMID: 29321276 DOI: 10.4049/jimmunol.1700782] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 12/12/2017] [Indexed: 11/19/2022]
Abstract
Differentiation of CD4+ Th cells is critical for immunity to malaria. Several innate immune signaling pathways have been implicated in the detection of blood-stage Plasmodium parasites, yet their influence over Th cell immunity remains unclear. In this study, we used Plasmodium-reactive TCR transgenic CD4+ T cells, termed PbTII cells, during nonlethal P. chabaudi chabaudi AS and P. yoelii 17XNL infection in mice, to examine Th cell development in vivo. We found no role for caspase1/11, stimulator of IFN genes, or mitochondrial antiviral-signaling protein, and only modest roles for MyD88 and TRIF-dependent signaling in controlling PbTII cell expansion. In contrast, IFN regulatory factor 3 (IRF3) was important for supporting PbTII expansion, promoting Th1 over T follicular helper (Tfh) differentiation, and controlling parasites during the first week of infection. IRF3 was not required for early priming by conventional dendritic cells, but was essential for promoting CXCL9 and MHC class II expression by inflammatory monocytes that supported PbTII responses in the spleen. Thereafter, IRF3-deficiency boosted Tfh responses, germinal center B cell and memory B cell development, parasite-specific Ab production, and resolution of infection. We also noted a B cell-intrinsic role for IRF3 in regulating humoral immune responses. Thus, we revealed roles for IRF3 in balancing Th1- and Tfh-dependent immunity during nonlethal infection with blood-stage Plasmodium parasites.
Collapse
Affiliation(s)
- Kylie R James
- Malaria Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia.,Ph.D. Program, School of Medicine, University of Queensland, Herston, Queensland 4006, Australia
| | - Megan S F Soon
- Malaria Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia.,Ph.D. Program, School of Medicine, University of Queensland, Herston, Queensland 4006, Australia
| | - Ismail Sebina
- Malaria Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia.,Ph.D. Program, School of Medicine, University of Queensland, Herston, Queensland 4006, Australia
| | - Daniel Fernandez-Ruiz
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria 8008, Australia
| | - Gayle Davey
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria 8008, Australia
| | - Urijah N Liligeto
- Malaria Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - Arya Sheela Nair
- Malaria Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - Lily G Fogg
- Malaria Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - Chelsea L Edwards
- Malaria Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia.,Ph.D. Program, School of Medicine, University of Queensland, Herston, Queensland 4006, Australia
| | - Shannon E Best
- Malaria Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - Lianne I M Lansink
- Malaria Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - Kate Schroder
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia.,Australian Infectious Diseases Research Centre, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jane A C Wilson
- Inflammation Biology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - Rebecca Austin
- Gordon and Jesse Gilmour Leukaemia Research Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - Andreas Suhrbier
- Inflammation Biology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - Steven W Lane
- Gordon and Jesse Gilmour Leukaemia Research Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - Geoffrey R Hill
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia; and
| | - Christian R Engwerda
- Australian Infectious Diseases Research Centre, University of Queensland, St. Lucia, Queensland 4072, Australia.,Immunology and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - William R Heath
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria 8008, Australia
| | - Ashraful Haque
- Malaria Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia; .,Australian Infectious Diseases Research Centre, University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
17
|
Lima HR, Gasparoto TH, de Souza Malaspina TS, Marques VR, Vicente MJ, Marcos EC, Souza FC, Nogueira MRS, Barreto JA, Garlet GP, da Silva JS, Brito-de-Souza VN, Campanelli AP. Immune Checkpoints in Leprosy: Immunotherapy As a Feasible Approach to Control Disease Progression. Front Immunol 2017; 8:1724. [PMID: 29312289 PMCID: PMC5732247 DOI: 10.3389/fimmu.2017.01724] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/22/2017] [Indexed: 01/09/2023] Open
Abstract
Leprosy remains a health problem in several countries. Current management of patients with leprosy is complex and requires multidrug therapy. Nonetheless, antibiotic treatment is insufficient to prevent nerve disabilities and control Mycobacterium leprae. Successful infectious disease treatment demands an understanding of the host immune response against a pathogen. Immune-based therapy is an effective treatment option for malignancies and infectious diseases. A promising therapeutic approach to improve the clinical outcome of malignancies is the blockade of immune checkpoints. Immune checkpoints refer to a wide range of inhibitory or regulatory pathways that are critical for maintaining self-tolerance and modulating the immune response. Programmed cell-death protein-1 (PD-1), programmed cell death ligand-1 (PD-L1), cytotoxic T-lymphocyte-associated protein 4, and lymphocyte-activation gene-3 are the most important immune checkpoint molecules. Several pathogens, including M. leprae, are supposed to utilize these mechanisms to evade the host immune response. Regulatory T cells and expression of co-inhibitory molecules on lymphocytes induce specific T-cell anergy/exhaustion, leading to disseminated and progressive disease. From this perspective, we outline how the co-inhibitory molecules PD-1, PD-L1, and Th1/Th17 versus Th2/Treg cells are balanced, how antigen-presenting cell maturation acts at different levels to inhibit T cells and modulate the development of leprosy, and how new interventions interfere with leprosy development.
Collapse
Affiliation(s)
- Hayana Ramos Lima
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Thaís Helena Gasparoto
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | | | - Vinícius Rizzo Marques
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Marina Jurado Vicente
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | | | | | | | | | | | - João Santana da Silva
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Ana Paula Campanelli
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| |
Collapse
|
18
|
Dyck L, Mills KHG. Immune checkpoints and their inhibition in cancer and infectious diseases. Eur J Immunol 2017; 47:765-779. [PMID: 28393361 DOI: 10.1002/eji.201646875] [Citation(s) in RCA: 397] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/01/2017] [Accepted: 04/05/2017] [Indexed: 12/12/2022]
Abstract
The development of chronic infections and cancer is facilitated by a variety of immune subversion mechanisms, such as the production of anti-inflammatory cytokines, induction of regulatory T (Treg) cells, and expression of immune checkpoint molecules, including CTLA-4 and PD-1. CTLA-4, expressed on T cells, interacts with CD80/CD86, thereby limiting T-cell activation and leading to anergy. PD-1 is predominantly expressed on T cells and its interaction with PD-L1 and PD-L2 expressed on antigen-presenting cells (APCs) and tumors sends a negative signal to T cells, which can lead to T-cell exhaustion. Given their role in suppressing effector T-cell responses, immune checkpoints are being targeted for the treatment of cancer. Indeed, antibodies binding to CTLA-4, PD-1, or PD-L1 have shown remarkable efficacy, especially in combination therapies, for a number of cancers and have been licensed for the treatment of melanoma, nonsmall cell lung cancer, and renal and bladder cancers. Moreover, immune checkpoint inhibitors have been shown to enhance ex vivo effector T-cell responses from patients with chronic viral, bacterial, or parasitic infection, including HIV, tuberculosis, and malaria. Although the data from clinical trials in infectious diseases are still sparse, these inhibitors have great potential for treating chronic infections, especially when combined with therapeutic vaccines.
Collapse
Affiliation(s)
- Lydia Dyck
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Kingston H G Mills
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
19
|
Fujio K, Yamamoto K, Okamura T. Overview of LAG-3-Expressing, IL-10-Producing Regulatory T Cells. Curr Top Microbiol Immunol 2017; 410:29-45. [PMID: 28929191 DOI: 10.1007/82_2017_59] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Regulatory T cells (Treg cells) play crucial roles in the induction of peripheral tolerance to self- and foreign-antigens. IL-10-producing regulatory T cells (IL-10-producing Treg cells) constitute a Treg cell subset characterized by the production of high amounts of IL-10, cytokine-mediated immunosuppressive capabilities, and independence of Foxp3 expression for their suppressive activity. In the past decade, identifying naturally occurring IL-10-producing Treg cells was difficult due to the lack of suitable surface markers. More recently, lymphocyte activation gene 3 (LAG-3) is a CD4 homologue that has been identified as a marker for IL-10-producing Treg cells. CD4+CD25-LAG3+ T cells produce large amounts of IL-10 and suppress colitis in a mouse model. These CD4+CD25-LAG3+ Treg cells also exhibit suppressive activity in murine models of lupus and humoral immunity in a TGF-β3-dependent manner. Moreover, the combined expression of LAG-3 and CD49b identifies IL-10-producing Treg cells in mice and humans more specifically. Recently, LAG-3 has gained more attention in the context of immune checkpoints because it believed to be related to T cell tolerance and exhausted T cells that infiltrate the tumor microenvironment. Tumors and the tumor microenvironment promote development of IL-10-producing Treg cells and foster tumor growth. This response might interfere with protective immune responses. Understanding LAG-3-expressing IL-10-producing Treg cells may contribute to the development of novel therapeutic strategies in immune-mediated diseases.
Collapse
Affiliation(s)
- Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.
| | - Kazuhiko Yamamoto
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Tomohisa Okamura
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
20
|
Kang SJ, Jin HM, Won EJ, Cho YN, Jung HJ, Kwon YS, Kee HJ, Ju JK, Kim JC, Kim UJ, Jang HC, Jung SI, Kee SJ, Park YW. Activation, Impaired Tumor Necrosis Factor-α Production, and Deficiency of Circulating Mucosal-Associated Invariant T Cells in Patients with Scrub Typhus. PLoS Negl Trop Dis 2016; 10:e0004832. [PMID: 27463223 PMCID: PMC4963088 DOI: 10.1371/journal.pntd.0004832] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/17/2016] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Mucosal-associated invariant T (MAIT) cells contribute to protection against certain microorganism infections. However, little is known about the role of MAIT cells in Orientia tsutsugamushi infection. Hence, the aims of this study were to examine the level and function of MAIT cells in patients with scrub typhus and to evaluate the clinical relevance of MAIT cell levels. METHODOLOGY/PRINCIPAL FINDINGS Thirty-eight patients with scrub typhus and 53 health control subjects were enrolled in the study. The patients were further divided into subgroups according to disease severity. MAIT cell level and function in the peripheral blood were measured by flow cytometry. Circulating MAIT cell levels were found to be significantly reduced in scrub typhus patients. MAIT cell deficiency reflects a variety of clinical conditions. In particular, MAT cell levels reflect disease severity. MAIT cells in scrub typhus patients displayed impaired tumor necrosis factor (TNF)-α production, which was restored during the remission phase. In addition, the impaired production of TNF-α by MAIT cells was associated with elevated CD69 expression. CONCLUSIONS This study shows that circulating MAIT cells are activated, numerically deficient, and functionally impaired in TNF-α production in patients with scrub typhus. These abnormalities possibly contribute to immune system dysregulation in scrub typhus infection.
Collapse
Affiliation(s)
- Seung-Ji Kang
- Department of Infectious Diseases, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Hye-Mi Jin
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Eun Jeong Won
- Department of Laboratory Medicine, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Young-Nan Cho
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Hyun-Ju Jung
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Yong-Soo Kwon
- Department of Pulmonary and Critical Care Medicine, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Hae Jin Kee
- Heart Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Jae Kyun Ju
- Department of Surgery, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Jung-Chul Kim
- Department of Surgery, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Uh Jin Kim
- Department of Infectious Diseases, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Hee-Chang Jang
- Department of Infectious Diseases, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Sook-In Jung
- Department of Infectious Diseases, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Seung-Jung Kee
- Department of Laboratory Medicine, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Yong-Wook Park
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| |
Collapse
|
21
|
Gannavaram S, Bhattacharya P, Ismail N, Kaul A, Singh R, Nakhasi HL. Modulation of Innate Immune Mechanisms to Enhance Leishmania Vaccine-Induced Immunity: Role of Coinhibitory Molecules. Front Immunol 2016; 7:187. [PMID: 27242794 PMCID: PMC4865500 DOI: 10.3389/fimmu.2016.00187] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/02/2016] [Indexed: 12/14/2022] Open
Abstract
No licensed human vaccines are currently available against any parasitic disease including leishmaniasis. Several antileishmanial vaccine formulations have been tested in various animal models, including genetically modified live-attenuated parasite vaccines. Experimental infection studies have shown that Leishmania parasites utilize a broad range of strategies to undermine effector properties of host phagocytic cells, i.e., dendritic cells (DCs) and macrophages (MΦ). Furthermore, Leishmania parasites have evolved strategies to actively inhibit TH1 polarizing functions of DCs and to condition the infected MΦ toward anti-inflammatory/alternative/M2 phenotype. The altered phenotype of phagocytic cells is characterized by decreased production of antimicrobial reactive oxygen, nitrogen molecules, and pro-inflammatory cytokines, such as IFN-γ, IL-12, and TNF-α. These early events limit the activation of TH1-effector cells and set the stage for pathogenesis. Furthermore, this early control of innate immunity by the virulent parasites results in substantial alteration in the adaptive immunity characterized by reduced proliferation of CD4+ and CD8+ T cells and TH2-biased immunity that results in production of anti-inflammatory cytokines, such as TGF-β, and IL-10. More recent studies have also documented the induction of coinhibitory ligands, such as CTLA-4, PD-L1, CD200, and Tim-3, that induce exhaustion and/or non-proliferation in antigen-experienced T cells. Most of these studies focus on viral infections in chronic phase, thus limiting the direct application of these results to parasitic infections and much less to parasitic vaccines. However, these studies suggest that vaccine-induced protective immunity can be modulated using strategies that enhance the costimulation that might reduce the threshold necessary for T cell activation and conversely by strategies that reduce or block inhibitory molecules, such as PD-L1 and CD200. In this review, we will focus on the polarization of antigen-presenting cells and subsequent role of costimulatory and coinhibitory molecules in mediating vaccine-induced immunity using live-attenuated Leishmania parasites as specific examples.
Collapse
Affiliation(s)
- Sreenivas Gannavaram
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Food and Drug Administration , Silver Spring, MD , USA
| | - Parna Bhattacharya
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Food and Drug Administration , Silver Spring, MD , USA
| | - Nevien Ismail
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Food and Drug Administration , Silver Spring, MD , USA
| | - Amit Kaul
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Food and Drug Administration , Silver Spring, MD , USA
| | - Rakesh Singh
- Department of Biochemistry, Banaras Hindu University , Varanasi , India
| | - Hira L Nakhasi
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Food and Drug Administration , Silver Spring, MD , USA
| |
Collapse
|
22
|
Zhang L, Zhang M, Li H, Chen Z, Luo A, Liu B, Chen M, Peng M, Ren H, Hu P. Tfh cell-mediated humoral immune response and HBsAg level can predict HBeAg seroconversion in chronic hepatitis B patients receiving peginterferon-α therapy. Mol Immunol 2016; 73:37-45. [PMID: 27037894 DOI: 10.1016/j.molimm.2016.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/17/2016] [Accepted: 03/23/2016] [Indexed: 11/19/2022]
Abstract
UNLABELLED Hepatitis B e antigen (HBeAg) seroconversion constitutes a significant milestone in the treatment of HBeAg-positive patients with chronic hepatitis B (CHB), but studies have yet to identify the specific humoral immune mechanisms behind the process or any accurate markers that can determine the virus-host immune status and, thereby, predict the degree of HBeAg seroconversion achievable. In the present longitudinal study, higher frequencies of circulating CXCR5(+)CD4(+) T cells and CD19(+)CD38(+) B cells were found in peginterferon-α treated HBeAg-positive CHB patients in whom HBeAg seroconversion had been achieved. What's more, both cell types peaked at 24 weeks for the HBeAg seroconversion group, while showing only a slight variation in the HBeAg non-seroconversion group. In addition, circulating CXCR5(+)CD4(+) T cells and hepatitis B surface antigens (HBsAg) were assessed at 24 weeks and 12 weeks, respectively, and the use of their ratio was explored in terms of its ability to predict HBeAg seroconversion. CONCLUSION Dysfunction of the humoral immune response mediated by CXCR5(+)CD4(+) T cells is associated with the failure of HBeAg seroconversion. The CXCR5(+)CD4(+) T cells/HBsAg ratio is an ideal marker for predicting HBeAg seroconversion in CHB patients.
Collapse
Affiliation(s)
- Li Zhang
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Miao Zhang
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hu Li
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhiwei Chen
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Aoran Luo
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Liu
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Min Chen
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mingli Peng
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Ren
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Hu
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|