1
|
Fei Y, Shi Z, Zhou Y, Wei Q, Liu Y, Shen Y, Chen H. Distribution pattern and driving factors of mite communities in karst cave ecosystems. Ecol Evol 2024; 14:e11527. [PMID: 39119175 PMCID: PMC11306291 DOI: 10.1002/ece3.11527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/17/2024] [Accepted: 05/21/2024] [Indexed: 08/10/2024] Open
Abstract
Mites are among the most abundant invertebrates in subsurface ecosystems, and their community assemblages and distributions are often significantly influenced by the diversity of habitat resources. The cave ecosystem encompasses drastic changes in nonbiological factors, such as changes in lighting conditions from bright to extraordinarily dark and habitat gradients of surface plant resources from abundant to scarce or even disappearing, providing an ideal unique environment for evaluating the assembly mechanism of soil animal communities. Nevertheless, there still needs to be a sufficient understanding of the biodiversity patterns and drivers of mite communities across environmental gradients in karst caves. We conducted a comprehensive survey on the composition and diversity of soil mites in three photometric zones (dark, twilight, and light) of a typical karst cave and its adjoining extractive environments (forest scrub and farmland). Our research aimed to investigate the ecological relationships of mite communities between above- and below-ground habitats and the effects of abiotic factors on mite communities. We collected 49 families, 86 genera, and 1284 mites. In the external cave environment, we captured 1052 mites from 72 genera and 45 families; in the internal cave environment, we captured 232 mites from 46 genera and 29 families. The abundance, richness of genera, and diversity parameters of the mite community decreased from the cave entrance to the cave interior with decreasing light intensity. Oribatid mites dominated the mite community. Protoribates and Scheloribates were the dominant genera, along with Tectocepheus and 11 other genera, which primarily distinguished the mite communities among different habitats. Forty endemic taxa were found in the external cave environment, compared to 14 endemic taxa in the internal cave environment. The mite community showed a strong preference for the cave ecosystem habitat. Temperature, humidity, and soil nitrogen content significantly influenced the distribution pattern of mite communities (VIP > 0.8, p < 0.05).
Collapse
Affiliation(s)
- Yifan Fei
- School of Karst ScienceGuizhou Normal UniversityGuiyangChina
| | - Zheng Shi
- School of Karst ScienceGuizhou Normal UniversityGuiyangChina
| | - Yuanyuan Zhou
- School of Karst ScienceGuizhou Normal UniversityGuiyangChina
| | - Qiang Wei
- School of Karst ScienceGuizhou Normal UniversityGuiyangChina
| | - Ying Liu
- School of Karst ScienceGuizhou Normal UniversityGuiyangChina
| | - Yan Shen
- School of Karst ScienceGuizhou Normal UniversityGuiyangChina
| | - Hu Chen
- School of Karst ScienceGuizhou Normal UniversityGuiyangChina
| |
Collapse
|
2
|
Jang YT, Brännström Å, Pontarp M. The interactive effects of environmental gradient and dispersal shape spatial phylogenetic patterns. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1037980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
IntroductionThe emergence and maintenance of biodiversity include interacting environmental conditions, organismal adaptation to such conditions, and dispersal. To understand and quantify such ecological, evolutionary, and spatial processes, observation and interpretation of phylogenetic relatedness across space (e.g., phylogenetic beta diversity) is arguably a way forward as such patterns contain signals from all the processes listed above. However, it remains challenging to extract information about complex eco-evolutionary and spatial processes from phylogenetic patterns.MethodsWe link environmental gradients and organismal dispersal with phylogenetic beta diversity using a trait-based and eco-evolutionary model of diversification along environmental gradients. The combined effect of the environment and dispersal leads to distinct phylogenetic patterns between subsets of species and across geographical distances.Results and discussionSteep environmental gradients combined with low dispersal lead to asymmetric phylogenies, a high phylogenetic beta diversity, and the phylogenetic diversity between communities increases linearly along the environmental gradient. High dispersal combined with a less steep environmental gradient leads to symmetric phylogenies, low phylogenetic beta diversity, and the phylogenetic diversity between communities along the gradient increases in a sigmoidal form. By disentangling the eco-evolutionary mechanisms that link such interacting environment and dispersal effects and community phylogenetic patterns, our results improve understanding of biodiversity in general and help interpretation of observed phylogenetic beta diversity.
Collapse
|
3
|
Bellvert A, Roca‐Cusachs M, Tonzo V, Arnedo MA, Kaliontzopoulou A. The Vitruvian spider: Segmenting and integrating over different body parts to describe ecophenotypic variation. J Morphol 2022; 283:1425-1438. [PMID: 36169046 PMCID: PMC9828460 DOI: 10.1002/jmor.21516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 01/12/2023]
Abstract
Understanding what drives the existing phenotypic variability has been a major topic of interest for biologists for generations. However, the study of the phenotype may not be straightforward. Indeed, organisms may be interpreted as composite objects, comprising different ecophenotypic traits, which are neither necessarily independent from each other nor do they respond to the same evolutionary pressures. For this reason, a deep biological understanding of the focal organism is essential for any morphological analysis. The spider genus Dysdera provides a particularly well-suited system for setting up protocols for morphological analyses that encompass a suit of morphological structures in any nonmodel system. This genus has undergone a remarkable diversification in the Canary Islands, where different species perform different ecological roles, exhibiting different levels of trophic specialization or troglomorphic adaptations, which translate into a remarkable interspecific morphological variability. Here, we seek to develop a broad guide, of which morphological characters must be considered, to study the effect of different ecological pressures in spiders and propose a general workflow that will be useful whenever researchers set out to investigate variation in the body plans of different organisms, with data sets comprising a set of morphological traits. We use geometric morphometric methods to quantify variation in different body structures, all of them with diverse phenotypic modifications in their chelicera, prosoma, and legs. We explore the effect of analyzing different combined landmark (LM) configurations of these characters and the degree of morphological integration that they exhibit. Our results suggest that different LM configurations of each of these body parts exhibit a higher degree of integration compared to LM configurations from different structures and that the analysis of each of these body parts captures different aspects of morphological variation, potentially related to different ecological factors.
Collapse
Affiliation(s)
- Adrià Bellvert
- Departament de Biologia Evolutiva, Ecologia i Ciències AmbientalsUniversitat de Barcelona (UB)BarcelonaSpain,Institut de Recerca de la Biodiversitat (IRBio)Universitat de Barcelona (UB)BarcelonaSpain
| | - Marcos Roca‐Cusachs
- Departament de Biologia Evolutiva, Ecologia i Ciències AmbientalsUniversitat de Barcelona (UB)BarcelonaSpain,Institut de Recerca de la Biodiversitat (IRBio)Universitat de Barcelona (UB)BarcelonaSpain
| | - Vanina Tonzo
- Departament de Biologia Evolutiva, Ecologia i Ciències AmbientalsUniversitat de Barcelona (UB)BarcelonaSpain,Institut de Recerca de la Biodiversitat (IRBio)Universitat de Barcelona (UB)BarcelonaSpain
| | - Miquel A. Arnedo
- Departament de Biologia Evolutiva, Ecologia i Ciències AmbientalsUniversitat de Barcelona (UB)BarcelonaSpain,Institut de Recerca de la Biodiversitat (IRBio)Universitat de Barcelona (UB)BarcelonaSpain
| | - Antigoni Kaliontzopoulou
- Departament de Biologia Evolutiva, Ecologia i Ciències AmbientalsUniversitat de Barcelona (UB)BarcelonaSpain,Institut de Recerca de la Biodiversitat (IRBio)Universitat de Barcelona (UB)BarcelonaSpain
| |
Collapse
|
4
|
Milano F, Borio L, Komposch C, Mammola S, Pantini P, Pavlek M, Isaia M. Species conservation profiles of the endemic spiders Troglohyphantes (Araneae, Linyphiidae) from the Alps and the north-western Dinarides. Biodivers Data J 2022; 10:e87261. [PMID: 36761670 PMCID: PMC9848466 DOI: 10.3897/bdj.10.e87261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/29/2022] [Indexed: 11/12/2022] Open
Abstract
Background The genus Troglohyphantes Joseph, 1882 (Araneae, Linyphiidae) includes 131 species, mainly distributed across the main European mountain ranges. The Alps and the north-western Dinarides account for 66 species, most of them showing narrow or even point-like distributions. The majority of Troglohyphantes spiders dwell in subterranean habitats including caves, mines, soil litter, rocky debris and other moist and shaded retreats. Despite being intensively studied from taxonomic, ecological and biogeographic standpoints, knowledge on the status of conservation and on the potential risk of extinction of these spiders is lagging. To date, only three species have been included in the global IUCN Red List, but their status has not been updated ever since their last assessment in 1996. The aim of this contribution is to assess the Alpine and north-western Dinaric species of the genus Troglohyphantes and to re-assess the species previously evaluated, according to the last version of the IUCN Red List Categories and Criteria. New information Amongst the 66 species here considered, 62 had sufficient data to allow the quantification of their Extent Of Occurrence (EOO) and Area Of Occupancy (AOO). Most of the species have a narrow distribution range, with an estimated EOO < 20,000 km2 and AOO < 2,000 km2, meeting the thresholds for the inclusion in the threatened categories. Five species have a more widespread distribution (EOO > 20,000 km2), extending across multiple countries. The quality of the data on distribution of four species was not sufficient to provide a reliable estimation of the distribution range.A continuing decline in EOO, AOO and habitat quality was inferred for 30 species. The majority of them were subterranean specialised species, with a reduced thermal tolerance and a low dispersal ability. Accordingly, changes in subterranean microclimatic conditions due to climate change represent a major threat for these species. Land-use change and habitat alteration were identified as additional relevant threats for several species.A considerable proportion of the species here assessed was found in protected areas and in sites of the Natura 2000 network. In addition, 14 species are formally protected by national and sub-national legislation. At present, 25 species are listed in the regional Red Lists.Long-term monitoring programmes, management plans for both the species and their habitats, expansion of the extant protected areas and designation of new ones, should be considered as the most effective approaches to species conservation.
Collapse
Affiliation(s)
- Filippo Milano
- Department of Life Sciences and Systems Biology, University of Turin, Turin, ItalyDepartment of Life Sciences and Systems Biology, University of TurinTurinItaly
| | - Luca Borio
- Department of Life Sciences and Systems Biology, University of Turin, Turin, ItalyDepartment of Life Sciences and Systems Biology, University of TurinTurinItaly
| | - Christian Komposch
- ÖKOTEAM – Institute for Animal Ecology and Landscape Planning, Graz, AustriaÖKOTEAM – Institute for Animal Ecology and Landscape PlanningGrazAustria
| | - Stefano Mammola
- Water Research Institute (IRSA), National Research Council (CNR), Verbania Pallanza, ItalyWater Research Institute (IRSA), National Research Council (CNR)Verbania PallanzaItaly,Finnish Museum of Natural History, University of Helsinki, Helsinki, FinlandFinnish Museum of Natural History, University of HelsinkiHelsinkiFinland
| | - Paolo Pantini
- Museo Civico di Scienze Naturali “E. Caffi.”, Bergamo, ItalyMuseo Civico di Scienze Naturali “E. Caffi.”BergamoItaly
| | - Martina Pavlek
- Ruđer Bošković Institute, Zagreb, CroatiaRuđer Bošković InstituteZagrebCroatia,Croatian Biospeleological Society, Zagreb, CroatiaCroatian Biospeleological SocietyZagrebCroatia
| | - Marco Isaia
- Department of Life Sciences and Systems Biology, University of Turin, Turin, ItalyDepartment of Life Sciences and Systems Biology, University of TurinTurinItaly
| |
Collapse
|
5
|
Reboleira AS, Bodawatta KH, Ravn NMR, Lauritzen SE, Skoglund RØ, Poulsen M, Michelsen A, Jønsson KA. Nutrient-limited subarctic caves harbour more diverse and complex bacterial communities than their surface soil. ENVIRONMENTAL MICROBIOME 2022; 17:41. [PMID: 35941623 PMCID: PMC9361705 DOI: 10.1186/s40793-022-00435-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Subarctic regions are particularly vulnerable to climate change, yet little is known about nutrient availability and biodiversity of their cave ecosystems. Such knowledge is crucial for predicting the vulnerability of these ecosystems to consequences of climate change. Thus, to improve our understanding of life in these habitats, we characterized environmental variables, as well as bacterial and invertebrate communities of six subarctic caves in Northern Norway. RESULTS Only a minuscule diversity of surface-adapted invertebrates were found in these caves. However, the bacterial communities in caves were compositionally different, more diverse and more complex than the nutrient-richer surface soil. Cave soil microbiomes were less variable between caves than between surface communities in the same area, suggesting that the stable cave environments with tougher conditions drive the uniform microbial communities. We also observed only a small proportion of cave bacterial genera originating from the surface, indicating unique cave-adapted microbial communities. Increased diversity within caves may stem from higher niche specialization and levels of interdependencies for nutrient cycling among bacterial taxa in these oligotrophic environments. CONCLUSIONS Taken together this suggest that environmental changes, e.g., faster melting of snow as a result of global warming that could alter nutrient influx, can have a detrimental impact on interactions and dependencies of these complex communities. This comparative exploration of cave and surface microbiomes also lays the foundation to further investigate the long-term environmental variables that shape the biodiversity of these vulnerable ecosystems.
Collapse
Affiliation(s)
- Ana Sofia Reboleira
- Departamento de Biologia Animal, and Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisbon, Portugal.
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen East, Denmark.
| | - Kasun H Bodawatta
- Departamento de Biologia Animal, and Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisbon, Portugal
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen East, Denmark
| | - Nynne M R Ravn
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen East, Denmark
| | - Stein-Erik Lauritzen
- Department of Earth Science, University of Bergen, Allegt. 41, 5007, Bergen, Norway
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, 0316, Oslo, Norway
| | | | - Michael Poulsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen East, Denmark
| | - Anders Michelsen
- Section for Terrestrial Ecology, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen East, Denmark
| | - Knud Andreas Jønsson
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen East, Denmark
| |
Collapse
|
6
|
Ramírez MJ, Magalhaes I, Pizarro-Araya J, Ballarin F, Marusik YM, Eskov KY. A new species of the spider genus Tekellina Levi, 1957 from Chile, with a broadened definition of the family Synotaxidae (Arachnida, Araneae). ZOOL ANZ 2022. [DOI: 10.1016/j.jcz.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
7
|
Mammola S, Pavlek M, Huber BA, Isaia M, Ballarin F, Tolve M, Čupić I, Hesselberg T, Lunghi E, Mouron S, Graco-Roza C, Cardoso P. A trait database and updated checklist for European subterranean spiders. Sci Data 2022; 9:236. [PMID: 35618868 PMCID: PMC9135732 DOI: 10.1038/s41597-022-01316-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 04/05/2022] [Indexed: 01/25/2023] Open
Abstract
Species traits are an essential currency in ecology, evolution, biogeography, and conservation biology. However, trait databases are unavailable for most organisms, especially those living in difficult-to-access habitats such as caves and other subterranean ecosystems. We compiled an expert-curated trait database for subterranean spiders in Europe using both literature data (including grey literature published in many different languages) and direct morphological measurements whenever specimens were available to us. We started by updating the checklist of European subterranean spiders, now including 512 species across 20 families, of which at least 192 have been found uniquely in subterranean habitats. For each of these species, we compiled 64 traits. The trait database encompasses morphological measures, including several traits related to subterranean adaptation, and ecological traits referring to habitat preference, dispersal, and feeding strategies. By making these data freely available, we open up opportunities for exploring different research questions, from the quantification of functional dimensions of subterranean adaptation to the study of spatial patterns in functional diversity across European caves.
Collapse
Affiliation(s)
- Stefano Mammola
- LIBRe-Laboratory for Integrative Biodiversity Research, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland.
- DarkMEG-Molecular Ecology Group, Water Research Institute, National Research Council of Italy (CNR), Verbania, Pallanza, Italy.
| | - Martina Pavlek
- Ruđer Bošković Institute, Zagreb, Croatia
- Croatian Biospeleological Society, Zagreb, Croatia
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Biodiversity Research Institute (IRBio), Universitat de Barcelona, Barcelona, Spain
| | | | - Marco Isaia
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
| | - Francesco Ballarin
- Systematic Zoology Laboratory, Department of Biological Sciences, Tokyo Metropolitan University, Minami-Osawa, Hachioji-shi, Tokyo, Japan
| | - Marco Tolve
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
| | - Iva Čupić
- Croatian Biospeleological Society, Zagreb, Croatia
| | | | - Enrico Lunghi
- Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Museo di Storia Naturale dell'Università degli Studi di Firenze, "La Specola", Firenze, Italy
| | - Samuel Mouron
- LIBRe-Laboratory for Integrative Biodiversity Research, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France
| | - Caio Graco-Roza
- Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland
| | - Pedro Cardoso
- LIBRe-Laboratory for Integrative Biodiversity Research, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Zhang S, Kubota K. Local ecological divergence of two closely related stag beetles based on genetic, morphological, and environmental analyses. Ecol Evol 2022; 12:e8837. [PMID: 35449584 PMCID: PMC9013855 DOI: 10.1002/ece3.8837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 03/19/2022] [Accepted: 03/29/2022] [Indexed: 11/10/2022] Open
Abstract
The process of phenotypic adaptation to the environments is widely recognized. However, comprehensive studies integrating phylogenetic, phenotypic, and ecological approaches to assess this process are scarce. Our study aims to assess whether local adaptation may explain intraspecific differentiation by quantifying multidimensional differences among populations in closely related lucanid species, Platycerus delicatulus and Platycerus kawadai, which are endemic saproxylic beetles in Japan. First, we determined intraspecific analysis units based on nuclear and mitochondrial gene analyses of Platycerus delicatulus and Platycerus kawadai under sympatric and allopatric conditions. Then, we compared differences in morphology and environmental niche between populations (analysis units) within species. We examined the relationship between morphology and environmental niche via geographic distance. P. kawadai was subdivided into the “No introgression” and “Introgression” populations based on mitochondrial COI gene – nuclear ITS region discordance. P. delicatulus was subdivided into “Allopatric” and “Sympatric” populations. Body length differed significantly among the populations of each species. For P. delicatulus, character displacement was suggested. For P. kawadai, the morphological difference was likely caused by geographic distance or genetic divergence rather than environmental differences. The finding showed that the observed mitochondrial–nuclear discordance is likely due to historical mitochondrial introgression following a range of expansion. Our results show that morphological variation among populations of P. delicatulus and P. kawadai reflects an ecological adaptation process based on interspecific interactions, geographic distance, or genetic divergence. Our results will deepen understanding of ecological specialization processes across the distribution and adaptation of species in natural systems.
Collapse
Affiliation(s)
- Sheng‐Nan Zhang
- Department of Forest Science Graduate School of Agricultural and Life Sciences The University of Tokyo Tokyo Japan
| | - Kôhei Kubota
- Department of Forest Science Graduate School of Agricultural and Life Sciences The University of Tokyo Tokyo Japan
| |
Collapse
|
9
|
Isaia M, Arnedo MA, Mammola S. A multi-layered approach uncovers overlooked taxonomic and physiological diversity in Alpine subterranean spiders (Araneae: Linyphiidae: Troglohyphantes). INVERTEBR SYST 2022. [DOI: 10.1071/is21054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Jugovic J, Šumer N. Differences in Troglomorphism and Sexual Dimorphism in Two Sympatric Subtroglophile Crickets of Genus Troglophilus (Insecta: Orthoptera). POLISH JOURNAL OF ECOLOGY 2021. [DOI: 10.3161/15052249pje2021.69.1.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Jure Jugovic
- Department of Biodiversity, Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia
| | - Nika Šumer
- Department of Biodiversity, Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia
| |
Collapse
|
11
|
Exploring ecological specialization in pipefish using genomic, morphometric and ecological evidence. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
12
|
Mammola S, Hesselberg T, Lunghi E. A trade‐off between latitude and elevation contributes to explain range segregation of broadly distributed cave‐dwelling spiders. J ZOOL SYST EVOL RES 2020. [DOI: 10.1111/jzs.12432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Stefano Mammola
- Laboratory for Integrative Biodiversity Research (LIBRe) Finnish Museum of Natural History (LUOMUS) University of Helsinki Helsinki Finland
- Molecular Ecology Group (MEG) Water Research Institute (IRSA) National Research Council (CNR) Verbania Pallanza Italy
| | | | - Enrico Lunghi
- Key Laboratory of the Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
- Museo di Storia Naturale dell'Università degli Studi di Firenze Sezione di Zoologia "La Specola" Firenze Italy
- Natural Oasis Prato Italy
| |
Collapse
|
13
|
Mammola S, Amorim IR, Bichuette ME, Borges PAV, Cheeptham N, Cooper SJB, Culver DC, Deharveng L, Eme D, Ferreira RL, Fišer C, Fišer Ž, Fong DW, Griebler C, Jeffery WR, Jugovic J, Kowalko JE, Lilley TM, Malard F, Manenti R, Martínez A, Meierhofer MB, Niemiller ML, Northup DE, Pellegrini TG, Pipan T, Protas M, Reboleira ASPS, Venarsky MP, Wynne JJ, Zagmajster M, Cardoso P. Fundamental research questions in subterranean biology. Biol Rev Camb Philos Soc 2020; 95:1855-1872. [DOI: 10.1111/brv.12642] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Stefano Mammola
- Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History (LUOMUS) University of Helsinki Pohjoinen Rautatiekatu 13 Helsinki 00100 Finland
- Molecular Ecology Group (MEG) Water Research Institute (IRSA), National Research Council (CNR) Corso Tonolli, 50 Pallanza 28922 Italy
| | - Isabel R. Amorim
- cE3c – Centre for Ecology Evolution and Environmental Changes/Azorean Biodiversity Group and Universidade dos Açores, Faculty of Agrarian and Environmental Sciences, Rua Capitão João d'Àvila Pico da Urze Angra do Heroísmo Azores 9700‐042 Portugal
| | - Maria E. Bichuette
- Laboratory of Subterranean Studies Federal University of São Carlos Rodovia Washington Luís km 235 São Carlos São Paulo 13565‐905 Brazil
| | - Paulo A. V. Borges
- cE3c – Centre for Ecology Evolution and Environmental Changes/Azorean Biodiversity Group and Universidade dos Açores, Faculty of Agrarian and Environmental Sciences, Rua Capitão João d'Àvila Pico da Urze Angra do Heroísmo Azores 9700‐042 Portugal
| | - Naowarat Cheeptham
- Department of Biological Sciences, Faculty of Science Thompson Rivers University 805 TRU Way Kamloops British Columbia Canada
| | - Steven J. B. Cooper
- Evolutionary Biology Unit South Australian Museum North Terrace Adelaide South Australia 5000 Australia
- Australian Centre for Evolutionary Biology and Biodiversity, and Environment Institute, School of Biological Sciences University of Adelaide Adelaide South Australia 5005 Australia
| | - David C. Culver
- Department of Environmental Science American University 4400 Massachusetts Avenue, N.W. Washington DC 20016 U.S.A
| | - Louis Deharveng
- UMR7205 – ISYEB Museum national d'Histoire naturelle 45 rue Buffon (CP50) Paris 75005 France
| | - David Eme
- IFREMER Centre Atlantique Unité Ecologie et Modèles pour l'Halieutique Rue de l'Île d'Yeu Nantes 44980 France
| | - Rodrigo Lopes Ferreira
- Center of Studies in Subterranean Biology, Biology Department Federal University of Lavras Campus Universitário Lavras Minas Gerais CEP 37202‐553 Brazil
| | - Cene Fišer
- SubBio Lab, Department of Biology, Biotechnical Faculty University of Ljubljana Jamnikarjeva 101, PO BOX 2995 Ljubljana SI‐1000 Slovenia
| | - Žiga Fišer
- SubBio Lab, Department of Biology, Biotechnical Faculty University of Ljubljana Jamnikarjeva 101, PO BOX 2995 Ljubljana SI‐1000 Slovenia
| | - Daniel W. Fong
- Department of Biology American University 4400 Massachusetts Avenue, N.W. Washington DC 20016 U.S.A
| | - Christian Griebler
- Department of Functional and Evolutionary Ecology, Division of Limnology University of Vienna Althanstrasse 14 Vienna 1090 Austria
| | - William R. Jeffery
- Department of Biology University of Maryland College Park MD 20742 U.S.A
| | - Jure Jugovic
- Department of Biodiversity, Faculty of Mathematics, Natural Sciences and Information Technologies University of Primorska Glagoljaška 8 Koper SI‐6000 Slovenia
| | - Johanna E. Kowalko
- Harriet L. Wilkes Honors College Florida Atlantic University 5353 Parkside Dr Jupiter FL 33458 U.S.A
| | - Thomas M. Lilley
- BatLab Finland, Finnish Museum of Natural History University of Helsinki Pohjoinen Rautatiekatu 13 Helsinki 00100 Finland
| | - Florian Malard
- UMR5023 Ecologie des Hydrosystèmes Naturels et Anthropisés Univ. Lyon 1, ENTPE, CNRS, Université de Lyon, Bat. Forel 6 rue Raphaël Dubois Villeurbanne cedex 69622 France
| | - Raoul Manenti
- Department of Environmental Science and Policy Università degli Studi di Milano Via Celoria 26 Milan 20113 Italy
| | - Alejandro Martínez
- Molecular Ecology Group (MEG) Water Research Institute (IRSA), National Research Council (CNR) Corso Tonolli, 50 Pallanza 28922 Italy
| | - Melissa B. Meierhofer
- BatLab Finland, Finnish Museum of Natural History University of Helsinki Pohjoinen Rautatiekatu 13 Helsinki 00100 Finland
- Department of Rangeland, Wildlife and Fisheries Management Texas A&M University 534 John Kimbrough Blvd. College Station TX 77843 U.S.A
| | - Matthew L. Niemiller
- Department of Biological Sciences The University of Alabama in Huntsville 301 Sparkman Drive NW Huntsville AL 35899 U.S.A
| | - Diana E. Northup
- Department of Biology University of New Mexico Albuquerque NM 87131‐0001 U.S.A
| | - Thais G. Pellegrini
- Center of Studies in Subterranean Biology, Biology Department Federal University of Lavras Campus Universitário Lavras Minas Gerais CEP 37202‐553 Brazil
| | - Tanja Pipan
- ZRC SAZU Karst Research Institute Novi trg 2 Ljubljana SI‐1000 Slovenia
- UNESCO Chair on Karst Education University of Nova Gorica Vipavska cesta Nova Gorica 5000 Slovenia
| | - Meredith Protas
- Department of Natural Sciences and Mathematics Domenicas University of California 50 Acacia Avenue San Rafael CA 94901 U.S.A
| | - Ana Sofia P. S. Reboleira
- Natural History Museum of Denmark University of Copenhagen Universitetsparken 15 Copenhagen 2100 Denmark
| | - Michael P. Venarsky
- Australian Rivers Institute Griffith University 170 Kessels Road Nathan Queensland 4111 Australia
| | - J. Judson Wynne
- Department of Biological Sciences, Center for Adaptable Western Landscapes Northern Arizona University Box 5640 Flagstaff AZ 86011 U.S.A
| | - Maja Zagmajster
- SubBio Lab, Department of Biology, Biotechnical Faculty University of Ljubljana Jamnikarjeva 101, PO BOX 2995 Ljubljana SI‐1000 Slovenia
| | - Pedro Cardoso
- Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History (LUOMUS) University of Helsinki Pohjoinen Rautatiekatu 13 Helsinki 00100 Finland
| |
Collapse
|