1
|
Sanders SKD, van Kleunen M, Allan E, Thakur MP. Effects of extreme drought on the invasion dynamics of non-native plants. TRENDS IN PLANT SCIENCE 2025; 30:291-300. [PMID: 39523141 DOI: 10.1016/j.tplants.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
The increasing frequency of extreme droughts poses significant challenges for predicting the invasion success (or failure) of non-native plant species. While current frameworks are primarily based on moderate droughts, the unique characteristics of extreme droughts necessitate re-evaluating our understanding of plant invasion during and after extreme droughts. Here, using core principles of community assembly and invasion biology, we discuss how the invasibility of non-native plants during and after extreme droughts differs due to: (i) differences in the ecological response of the native community, (ii) barriers at different invasion stages, and (iii) the traits of non-native plants. We incorporate ideas from current ecological theories of invasive success and suggest how drought-mediated invasion is influenced by biotic interactions in the native community.
Collapse
Affiliation(s)
- Shareen K D Sanders
- Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland.
| | - Mark van Kleunen
- Ecology, Department of Biology, University of Konstanz, 78464, Konstanz, Germany; Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China
| | - Eric Allan
- Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland; Centre for Development and Environment, University of Bern, 3012 Bern, Switzerland
| | - Madhav P Thakur
- Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
2
|
Guo K, Pyšek P, Chytrý M, Divíšek J, Sychrová M, Lososová Z, van Kleunen M, Pierce S, Guo WY. Stage dependence of Elton's biotic resistance hypothesis of biological invasions. NATURE PLANTS 2024; 10:1484-1492. [PMID: 39227727 DOI: 10.1038/s41477-024-01790-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024]
Abstract
Elton's biotic resistance hypothesis posits that species-rich communities are more resistant to invasion. However, it remains unknown how species, phylogenetic and functional richness, along with environmental and human-impact factors, collectively affect plant invasion as alien species progress along the introduction-naturalization-invasion continuum. Using data from 12,056 local plant communities of the Czech Republic, this study reveals varying effects of these factors on the presence and richness of alien species at different invasion stages, highlighting the complexity of the invasion process. Specifically, we demonstrate that although species richness and functional richness of resident communities had mostly negative effects on alien species presence and richness, the strength and sometimes also direction of these effects varied along the continuum. Our study not only underscores that evidence for or against Elton's biotic resistance hypothesis may be stage-dependent but also suggests that other invasion hypotheses should be carefully revisited given their potential stage-dependent nature.
Collapse
Affiliation(s)
- Kun Guo
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration & Research Center for Global Change and Complex Ecosystems, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Petr Pyšek
- Department of Invasion Ecology, Institute of Botany, Czech Academy of Sciences, Průhonice, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Milan Chytrý
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jan Divíšek
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Geography, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Martina Sychrová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Geography, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Zdeňka Lososová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Mark van Kleunen
- Ecology, Department of Biology, University of Konstanz, Konstanz, Germany
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, People's Republic of China
| | - Simon Pierce
- Department of Agricultural and Environmental Sciences (DiSAA), University of Milan, Milan, Italy
| | - Wen-Yong Guo
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration & Research Center for Global Change and Complex Ecosystems, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, People's Republic of China.
- Zhejiang Zhoushan Island Ecosystem Observation and Research Station, Zhoushan, People's Republic of China.
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, People's Republic of China.
| |
Collapse
|
3
|
Melen MK, Snyder ED, Fernandez M, Lopez A, Lustenhouwer N, Parker IM. Invasion away from roadsides was not driven by adaptation to grassland habitats in Dittrichia graveolens (stinkwort). Biol Invasions 2024; 26:2923-2939. [PMID: 39144139 PMCID: PMC11319513 DOI: 10.1007/s10530-024-03359-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/22/2024] [Indexed: 08/16/2024]
Abstract
Invasive plants along transportation corridors can significantly threaten ecosystems and biodiversity if they spread beyond anthropogenic environments. Rapid evolution may increase the ability of invading plant populations to establish in resident plant communities over time, posing a challenge to invasion risk assessment. We tested for adaptive differentiation in Dittrichia graveolens (stinkwort), an invasive species of ruderal habitat in California that is increasingly spreading away from roadsides into more established vegetation. We collected seeds from eight pairs of vegetated sites and their nearest (presumed progenitor) roadside population. We assessed differentiation between populations in roadside and vegetated habitat for germination behavior and for response to competition in a greenhouse experiment. We also tested for increased performance in vegetated habitat with a grassland field experiment including a neighbor removal treatment. Germination rates were slightly reduced in seeds from vegetated sites, which may indicate lower seed viability. Otherwise, plants did not show consistent differences between the two habitat types. Competition strongly reduced performance of D. graveolens in both the greenhouse and in the field, but plants originating from vegetated sites did not show enhanced competitive ability. Our findings show no evidence of adaptive differentiation between D. graveolens populations from roadside and vegetated habitats to date, suggesting that invasiveness in grasslands has not been enhanced by rapid evolution in the 40 + years since this species was introduced to California. Evolutionary constraints or potentially high levels of gene flow at this small scale may limit adaptation to novel habitats along roadsides. Supplementary Information The online version contains supplementary material available at 10.1007/s10530-024-03359-6.
Collapse
Affiliation(s)
- Miranda K. Melen
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA USA
| | - Emma D. Snyder
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA USA
| | - Michael Fernandez
- College of Natural & Applied Science, University of Guam, Mangilao, Guam USA
| | - Andrew Lopez
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA USA
| | - Nicky Lustenhouwer
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA USA
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Ingrid M. Parker
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA USA
| |
Collapse
|
4
|
Zhang YS, Meiners SJ, Meng Y, Yao Q, Guo K, Guo WY, Li SP. Temporal dynamics of Grime's CSR strategies in plant communities during 60 years of succession. Ecol Lett 2024; 27:e14446. [PMID: 38814284 DOI: 10.1111/ele.14446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/31/2024]
Abstract
Grime's competitive, stress-tolerant, ruderal (CSR) theory predicts a shift in plant communities from ruderal to stress-tolerant strategies during secondary succession. However, this fundamental tenet lacks empirical validation using long-term continuous successional data. Utilizing a 60-year longitudinal data of old-field succession, we investigated the community-level dynamics of plant strategies over time. Our findings reveal that while plant communities generally transitioned from ruderal to stress-tolerant strategies during succession, initial abandonment conditions crucially shaped early successional strategies, leading to varied strategy trajectories across different fields. Furthermore, we found a notable divergence in the CSR strategies of alien and native species over succession. Initially, alien and native species exhibited similar ruderal strategies, but in later stages, alien species exhibited higher ruderal and lower stress tolerance compared to native species. Overall, our findings underscore the applicability of Grime's predictions regarding temporal shifts in CSR strategies depending on both initial community conditions and species origin.
Collapse
Affiliation(s)
- Yan-Song Zhang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Zhejiang Zhoushan Island Ecosystem Observation and Research Station, Institute of Eco-Chongming, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Scott J Meiners
- Department of Biological Sciences, Eastern Illinois University, Charleston, Illinois, USA
| | - Yani Meng
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Zhejiang Zhoushan Island Ecosystem Observation and Research Station, Institute of Eco-Chongming, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Qi Yao
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Zhejiang Zhoushan Island Ecosystem Observation and Research Station, Institute of Eco-Chongming, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Kun Guo
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Zhejiang Zhoushan Island Ecosystem Observation and Research Station, Institute of Eco-Chongming, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Wen-Yong Guo
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Zhejiang Zhoushan Island Ecosystem Observation and Research Station, Institute of Eco-Chongming, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Shao-Peng Li
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Zhejiang Zhoushan Island Ecosystem Observation and Research Station, Institute of Eco-Chongming, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
5
|
Wan JSH, Bonser SP, Pang CK, Fazlioglu F, Rutherford S. Adaptive responses to living in stressful habitats: Do invasive and native plant populations use different strategies? Ecol Lett 2024; 27:e14419. [PMID: 38613177 DOI: 10.1111/ele.14419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/08/2024] [Accepted: 03/05/2024] [Indexed: 04/14/2024]
Abstract
Plants inhabit stressful environments characterized by a variety of stressors, including mine sites, mountains, deserts, and high latitudes. Populations from stressful and reference (non-stressful) sites often have performance differences. However, while invasive and native species may respond differently to stressful environments, there is limited understanding of the patterns in reaction norms of populations from these sites. Here, we use phylogenetically controlled meta-analysis to assess the performance of populations under stress and non-stress conditions. We ask whether stress populations of natives and invasives differ in the magnitude of lowered performance under non-stress conditions and if they vary in the degree of performance advantage under stress. We also assessed whether these distinctions differ with stress intensity. Our findings revealed that natives not only have greater adaptive advantages but also more performance reductions than invasives. Populations from very stressful sites had more efficient adaptations, and performance costs increased with stress intensity in natives only. Overall, the results support the notion that adaptation is frequently costless. Reproductive output was most closely associated with adaptive costs and benefits. Our study characterized the adaptive strategies used by invasive and native plants under stressful conditions, thereby providing important insights into the limitations of adaptation to extreme sites.
Collapse
Affiliation(s)
- Justin S H Wan
- Research Centre for Ecosystem Resilience, Australian Institute of Botanic Science, Royal Botanic Garden Sydney, Sydney, New South Wales, Australia
| | - Stephen P Bonser
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales (UNSW), Sydney, New South Wales, Australia
| | - Clara K Pang
- PlantClinic, Australian Institute of Botanical Science, Royal Botanic Garden, Sydney, New South Wales, Australia
| | | | - Susan Rutherford
- Center for Sustainable Environmental and Ecosystem Research, Department of Environmental Science, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
- Department of Environmental and Sustainability Sciences, The Dorothy and George Hennings College of Science, Mathematics and Technology, Kean University, Union, New Jersey, USA
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou, Zhejiang Province, China
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Ouhai, Wenzhou, Zhejiang Province, China
| |
Collapse
|
6
|
Gulzar R, Hamid M, Hassan T, Rashid I, Khuroo AA. Different sets of traits determine transition of alien species along the invasion continuum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169137. [PMID: 38070553 DOI: 10.1016/j.scitotenv.2023.169137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
Invasive alien species are currently considered as one of the dominant drivers of global environmental change. Till now, the majority of studies have focused on single or a few traits of alien species that facilitate their invasion. Also inclusion of all the traits which determine the transition of aliens along the different stages of invasion continuum (casual, naturalised and invasive) has remained largely overlooked. In this study, we collected a comprehensive trait dataset on 144 alien plant species of Kashmir Himalaya - a global biodiversity hotspot region. To test which traits of alien species, individually or in combination along with anthropogenic factors, determine their transition along the invasion continuum, we employed chi-square tests, boosted regression trees and phylogenetic methods. We found the perennial life span, longer residence time, greater number of introduced regions, and better seed dispersal mechanism were critical in determining the transition from casual to naturalised. The herbaceous growth form, therophyte Raunkiaer life-form, annual life span, achene fruit, longer residence time and broader introduced range were the species' traits determining transition from naturalised to invasive. Aliens introduced as ornamentals have more propensity to become naturalised; whereas aliens introduced unintentionally show overrepresentation at the invasive stage. Phylogeny alone showed mixed results indicating both clustering and dispersion; however, in combination with other traits, it plays a significant role in determining the stage of invasion. Overall, our study disentangles the individual and interactive roles of multiple traits that determine the transition of alien species' along the invasion continuum. Further, we foresee the potential applicability of our findings in designing robust invasion risk analysis protocols and stage-specific invasion management strategies in this Himalayan region, with learnings for elsewhere in the world.
Collapse
Affiliation(s)
- Ruquia Gulzar
- Centre for Biodiversity and Taxonomy, Department of Botany, University of Kashmir, Srinagar 190 006, Jammu and Kashmir, India
| | - Maroof Hamid
- Centre for Biodiversity and Taxonomy, Department of Botany, University of Kashmir, Srinagar 190 006, Jammu and Kashmir, India
| | - Tabasum Hassan
- Centre for Biodiversity and Taxonomy, Department of Botany, University of Kashmir, Srinagar 190 006, Jammu and Kashmir, India
| | - Irfan Rashid
- Department of Geoinformatics, University of Kashmir, Srinagar 190 006, Jammu and Kashmir, India
| | - Anzar Ahmad Khuroo
- Centre for Biodiversity and Taxonomy, Department of Botany, University of Kashmir, Srinagar 190 006, Jammu and Kashmir, India.
| |
Collapse
|
7
|
Guo K, Pyšek P, van Kleunen M, Kinlock NL, Lučanová M, Leitch IJ, Pierce S, Dawson W, Essl F, Kreft H, Lenzner B, Pergl J, Weigelt P, Guo WY. Plant invasion and naturalization are influenced by genome size, ecology and economic use globally. Nat Commun 2024; 15:1330. [PMID: 38351066 PMCID: PMC10864296 DOI: 10.1038/s41467-024-45667-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024] Open
Abstract
Human factors and plant characteristics are important drivers of plant invasions, which threaten ecosystem integrity, biodiversity and human well-being. However, while previous studies often examined a limited number of factors or focused on a specific invasion stage (e.g., naturalization) for specific regions, a multi-factor and multi-stage analysis at the global scale is lacking. Here, we employ a multi-level framework to investigate the interplay between plant characteristics (genome size, Grime's adaptive CSR-strategies and native range size) and economic use and how these factors collectively affect plant naturalization and invasion success worldwide. While our findings derived from structural equation models highlight the substantial contribution of human assistance in both the naturalization and spread of invasive plants, we also uncovered the pivotal role of species' adaptive strategies among the factors studied, and the significantly varying influence of these factors across invasion stages. We further revealed that the effects of genome size on plant invasions were partially mediated by species adaptive strategies and native range size. Our study provides insights into the complex and dynamic process of plant invasions and identifies its key drivers worldwide.
Collapse
Affiliation(s)
- Kun Guo
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, 200241, Shanghai, P. R. China
- Research Center for Global Change and Complex Ecosystems, School of Ecological and Environmental Sciences, East China Normal University, 200241, Shanghai, P. R. China
| | - Petr Pyšek
- Czech Academy of Sciences, Institute of Botany, Department of Invasion Ecology, Průhonice, CZ-25243, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague, CZ-12844, Czech Republic
| | - Mark van Kleunen
- Ecology, Department of Biology, University of Konstanz, Universitätsstrasse 10, D-78457, Konstanz, Germany
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, P. R. China
| | - Nicole L Kinlock
- Ecology, Department of Biology, University of Konstanz, Universitätsstrasse 10, D-78457, Konstanz, Germany
| | - Magdalena Lučanová
- Czech Academy of Sciences, Institute of Botany, Department of Evolutionary Plant Biology, Průhonice, CZ-25243, Czech Republic
- Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, CZ-370 05, Czech Republic
| | - Ilia J Leitch
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK
| | - Simon Pierce
- Department of Agricultural and Environmental Sciences (DiSAA), University of Milan, Via G. Celoria 2, I-20133, Milan, Italy
| | - Wayne Dawson
- Department of Biosciences, Durham University, Durham, UK
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Franz Essl
- Division of BioInvasions, Global Change & Macroecology, Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Holger Kreft
- Biodiversity, Macroecology & Biogeography, University of Goettingen, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Goettingen, Göttingen, Germany
- Campus-Institute Data Science, Göttingen, Germany
| | - Bernd Lenzner
- Division of BioInvasions, Global Change & Macroecology, Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Jan Pergl
- Czech Academy of Sciences, Institute of Botany, Department of Invasion Ecology, Průhonice, CZ-25243, Czech Republic
| | - Patrick Weigelt
- Biodiversity, Macroecology & Biogeography, University of Goettingen, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Goettingen, Göttingen, Germany
- Campus-Institute Data Science, Göttingen, Germany
| | - Wen-Yong Guo
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, 200241, Shanghai, P. R. China.
- Research Center for Global Change and Complex Ecosystems, School of Ecological and Environmental Sciences, East China Normal University, 200241, Shanghai, P. R. China.
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 200241, Shanghai, P. R. China.
| |
Collapse
|
8
|
Dong R, Dong BC, Fu QY, Yang Q, Dai ZC, Luo FL, Gao JQ, Yu FH, van Kleunen M. Cultivated alien plants with high invasion potential are more likely to be traded online in China. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e2811. [PMID: 36708137 DOI: 10.1002/eap.2811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 06/18/2023]
Abstract
Biological invasions have become a worldwide problem, and measures to efficiently prevent and control invasions are still in development. Like many other parts of the world, China is undergoing a dramatic increase in plant invasions. Most of the currently 933 established (i.e., naturalized) plant species, of which 214 are categorized as invasive, have been introduced into China for cultivation. It is likely that many of those species are still being traded, particularly online, by plant nurseries. However, studies assessing whether naturalized and invasive species are currently being traded more or less than nonnaturalized aliens are rare. We extracted online-trade information for 13,718 cultivated alien plant taxa on 1688.com, the largest website for domestic B2B in China. We analyzed how the presence in online-nursery catalogs, the number of online nurseries that offerred the species for sale, and the product type (i.e., seeds, live plants and vegetative organs) differed among nonnaturalized, naturalized noninvasive, and invasive species. Compared to nonnaturalized taxa, naturalized noninvasive and invasive taxa were 3.7-5.2 times more likely to be available for purchase. Naturalized noninvasive and invasive taxa were more frequently offered as seeds by online nurseries, whereas nonnaturalized taxa were more frequently offered as live plants. Based on these findings, we propose that, to reduce the further spread of invasive and potentially invasive plants, implementation of plant-trade regulations and a monitoring system of the online horticultural supply chain will be essential.
Collapse
Affiliation(s)
- Ran Dong
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Bi-Cheng Dong
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
- The Key Laboratory of Ecological Protection in the Yellow River Basin of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Qiu-Yue Fu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Qiang Yang
- Ecology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Zhi-Cong Dai
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Fang-Li Luo
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
- The Key Laboratory of Ecological Protection in the Yellow River Basin of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Jun-Qin Gao
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
- The Key Laboratory of Ecological Protection in the Yellow River Basin of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Fei-Hai Yu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
| | - Mark van Kleunen
- Ecology, Department of Biology, University of Konstanz, Konstanz, Germany
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
| |
Collapse
|
9
|
Zheng J, Wang Q, Yuan S, Zhang B, Zhang F, Li S, Qiao J, Wu Y, Xing J, Han G, Zhang J, Zhao M. Soil deterioration due to long-term grazing of desert-steppe promotes stress-tolerant ecological strategies in plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 907:168131. [PMID: 39491197 DOI: 10.1016/j.scitotenv.2023.168131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/05/2024]
Abstract
Predicting the impact of grazing on desert steppes' vegetation is crucial for sustainable management. The competitor, stress-tolerator and ruderal (CSR) theory has offer valuable insights into plant adaptive capacity and predicting changes in vegetation structure. However, whether adaptive strategy of desert steppe change with grazing intensity is not understood yet. We conducted a comprehensive assessment of the effects of 19 years of varying grazing intensities (no grazing: CK; light grazing: LG; moderate grazing: MG; heavy grazing: HG) on plant CSR strategies. Within the desert steppe ecosystem, the prevailing plant community strategy leaned towards SR (Stress-tolerant/Ruderal) under non-grazed conditions (C:S:R = 2:48:50 %). However, as grazing intensity increased, the S-score increased significantly from 48 % to 62 % while the R-score decreased from 50 % to 36 %. This trend persisted across functional groups and species, except for shrubs, due to the convergent response of traits and ecological strategies of these species under intense grazing pressure. Furthermore, our findings reveal that the shift of CSR on the community level was primarily influenced by soil nutrients and soil density, but not by evolutionary history (phylogenetic conservatism of traits). This suggests that plant traits co-evolved under prolonged environmental stress, resulting consistent variation and ecological strategies in desert grasslands. Overall, long-term grazing reinforced selective pressure, creating a simplified plant community structure with low levels of diversity and productivity, dominated by conservative resource-use strategy. This study highlights the mechanisms of plant adaptation to the prolonged grazing disturbance in desert steppes.
Collapse
Affiliation(s)
- Jiahua Zheng
- Key Laboratory of Grassland Resources of the Ministry of Education, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of the Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Grassland Management and Utilization, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China
| | - Qi Wang
- Key Laboratory of Grassland Resources of the Ministry of Education, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of the Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Grassland Management and Utilization, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China
| | - Shuai Yuan
- Forestry and Grassland Monitoring and Planning Institute of Inner Mongolia Autonomous Region, Hohhot 010020, China
| | - Bin Zhang
- Key Laboratory of Grassland Resources of the Ministry of Education, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of the Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Grassland Management and Utilization, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China.
| | - Feng Zhang
- Key Laboratory of Grassland Resources of the Ministry of Education, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of the Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Grassland Management and Utilization, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China
| | - Shaoyu Li
- Key Laboratory of Grassland Resources of the Ministry of Education, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of the Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Grassland Management and Utilization, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China
| | - Jirong Qiao
- Key Laboratory of Grassland Resources of the Ministry of Education, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of the Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Grassland Management and Utilization, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China
| | - Yunga Wu
- Key Laboratory of Grassland Resources of the Ministry of Education, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of the Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Grassland Management and Utilization, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China
| | - Jiaqing Xing
- Key Laboratory of Grassland Resources of the Ministry of Education, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of the Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Grassland Management and Utilization, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China
| | - Guodong Han
- Key Laboratory of Grassland Resources of the Ministry of Education, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of the Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Grassland Management and Utilization, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China
| | - Jun Zhang
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Mengli Zhao
- Key Laboratory of Grassland Resources of the Ministry of Education, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of the Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Grassland Management and Utilization, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China.
| |
Collapse
|
10
|
Ceriani A, Dalle Fratte M, Agosto G, Montagnoli A, Cerabolini BEL. Using Plant Functional Traits to Define the Biomass Energy Potential of Invasive Alien Plant Species. PLANTS (BASEL, SWITZERLAND) 2023; 12:3198. [PMID: 37765361 PMCID: PMC10535227 DOI: 10.3390/plants12183198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
The eradication of invasive alien plant species (IAPS) is mandatory worldwide, but the resulting biomass is still considered waste. The energy use of biomasses obtained from IAPS eradication may represent ecological and economic benefits, creating synergies with restoration projects. We evaluated whether the growth forms and functional types identified using the functional space of 63 IAPS corresponded to a possible bioenergy use through multivariate analysis techniques. We extracted leaf and nutrient traits and Grime's CSR plant strategies from an existing database. We calculated the carbon-to-nitrogen ratio (C:N) and gross heating value (GHV) as indicators of biochemical or thermal processes, respectively. For 10 species, we measured the above-ground biomass C:N and GHV (including leaves, stems and branches) and correlated them with those of leaves and with plant adaptive strategies. We identified four groups of IAPS indicative of the main trade-offs between plant economics and size variation, which respectively correlated with C:N and GHV. Herbaceous IAPS were better suited to biochemical processes, and woody IAPS to thermal ones. Overall, Grime's CSR strategies were the best tool to define the IAPS bioenergy potential. In the long term, competitive and ruderal IAPSs can represent a reusable feedstock until their complete eradication.
Collapse
Affiliation(s)
- Alex Ceriani
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100 Varese, Italy
| | - Michele Dalle Fratte
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100 Varese, Italy
| | - Gustavo Agosto
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100 Varese, Italy
| | - Antonio Montagnoli
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100 Varese, Italy
| | | |
Collapse
|
11
|
Guo K, Pyšek P, Chytrý M, Divíšek J, Lososová Z, van Kleunen M, Pierce S, Guo W. Ruderals naturalize, competitors invade: varying roles of plant adaptive strategies along the invasion continuum. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kun Guo
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station & Research Center for Global Change and Complex Ecosystems School of Ecological and Environmental Sciences East China Normal University Shanghai P. R. China
| | - Petr Pyšek
- Czech Academy of Sciences Institute of Botany Department of Invasion Ecology Průhonice Czech Republic
- Department of Ecology, Faculty of Science Charles University, Viničná 7 Prague Czech Republic
| | - Milan Chytrý
- Department of Botany and Zoology, Faculty of Science Masaryk University, Kotlářská 2 Brno Czech Republic
| | - Jan Divíšek
- Department of Botany and Zoology, Faculty of Science Masaryk University, Kotlářská 2 Brno Czech Republic
- Department of Geography, Faculty of Science Masaryk University, Kotlářská 2 Brno Czech Republic
| | - Zdeňka Lososová
- Department of Botany and Zoology, Faculty of Science Masaryk University, Kotlářská 2 Brno Czech Republic
| | - Mark van Kleunen
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation Taizhou University Taizhou P. R. China
- Ecology, Department of Biology University of Konstanz, Universitätsstrasse 10 Konstanz Germany
| | - Simon Pierce
- Department of Agricultural and Environmental Sciences (DiSAA) University of Milan, Via G. Celoria 2 Milan Italy
| | - Wen‐Yong Guo
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station & Research Center for Global Change and Complex Ecosystems School of Ecological and Environmental Sciences East China Normal University Shanghai P. R. China
| |
Collapse
|