1
|
Kong JD, Ritchie MW, Vadboncoeur É, MacMillan HA, Bertram SM. Growth, development, and life history of a mass-reared edible insect, Gryllodes sigillatus (Orthoptera: Gryllidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2025:toaf073. [PMID: 40251933 DOI: 10.1093/jee/toaf073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 02/21/2025] [Accepted: 03/07/2025] [Indexed: 04/21/2025]
Abstract
Edible insects offer a viable alternative protein source to help meet the protein demands of a growing population. Optimizing insect mass-rearing for food and feed production depends on an understanding of insect life history. However, supporting data on growth, development, and reproduction from hatch to adulthood is often not available for many farmed insects, such as the decorated cricket (Gryllodes sigillatus Walk.). Here, we describe the life history of G. sigillatus from hatch to adulthood at 30 °C for traits relevant for mass-rearing and colony management. Female crickets first reached adulthood after 29 d and weighed 292.0 mg ± 74.09 mg, and male crickets first reached adulthood after 35 d and weighed 200.96 mg ± 34.51 mg. Crickets had 7 nymphal instars most characterizable by head width. Sex was identified by the development of ovipositors in females, and wings in both sexes. Crickets oviposited 56.74 ± 31.77 eggs every 48 h over 30 d and eggs hatched after 10.6 ± 0.5 d. This information provides the foundation to start and manage a cricket colony, to conduct research on life history and performance, and to facilitate practitioners to make informed decisions about rearing practices or identify arising issues. We highlight ways that a fundamental understanding of cricket biology can be informative for optimizing cricket growth, reducing variability in yield, and informing future precision farming practices.
Collapse
Affiliation(s)
- Jacinta D Kong
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | | | | | | | - Susan M Bertram
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Grígelová A, Mikulecká A, Kubová H. Behavioral comorbidities of early-life seizures: Insights from developmental studies in rats. Epilepsy Behav 2025; 165:110307. [PMID: 40015055 DOI: 10.1016/j.yebeh.2025.110307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/01/2025] [Accepted: 02/04/2025] [Indexed: 03/01/2025]
Abstract
Childhood epilepsy is frequently associated with neurobehavioral comorbidities such as depression, anxiety, cognitive impairments, and social dysfunction, as revealed by both clinical and experimental studies. Despite extensive neurophysiological research, behavioral studies in developing animals remain limited and underreported. Here, we review the behavioral impact of early-life seizures (ELSs) in commonly used rat models in developmental studies. We outline suitable tests and provide guidance on how traditional tests should be adapted and interpreted in this context. Finally, we examine factors influencing behavioral analysis in developmental studies, exploring confounding variables and offering strategies to minimize their impact.
Collapse
Affiliation(s)
- Andrea Grígelová
- Developmental Epileptology Institute of Physiology of the Czech Academy of Science Prague Czech Republic; Department of Physiology Faculty of Science Charles University Prague Czech Republic.
| | - Anna Mikulecká
- Developmental Epileptology Institute of Physiology of the Czech Academy of Science Prague Czech Republic
| | - Hana Kubová
- Developmental Epileptology Institute of Physiology of the Czech Academy of Science Prague Czech Republic
| |
Collapse
|
3
|
Kong JD, Vadboncoeur É, Bertram SM, MacMillan HA. Temperature-dependence of life history in an edible cricket: Implications for optimising mass-rearing. CURRENT RESEARCH IN INSECT SCIENCE 2025; 7:100109. [PMID: 40129661 PMCID: PMC11931298 DOI: 10.1016/j.cris.2025.100109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/17/2025] [Accepted: 02/25/2025] [Indexed: 03/26/2025]
Abstract
Optimisation of life history and organismal performance underlies success in insect mass-rearing. Rearing schedules, resource use and production yield depend on many aspects of insect fitness and performance within and across generations, such as growth, development, longevity, and fecundity, which are all temperature dependent. Despite this general understanding, we often lack species-specific information needed to make informed decisions about manipulating rearing temperatures to optimise insect growth and development. Here, we characterise the effects of rearing temperature on nymph to adult development and lifespan (20 - 38 °C), and reproductive output (30 - 38 °C) in a farmed cricket (Gryllodes sigillatus). Crickets grew larger and reached adulthood sooner at higher developmental temperatures at the expense of longevity. Reproductive output was similar across a range of temperatures but decreased at 38 °C. Therefore, while temperature control is necessary to maximise production rates, temperature is unlikely to affect production yield in a fixed harvest cycle provided it is maintained within the narrow range enabling both fast growth and stable reproduction (32 - 36 °C). Our study provides a fundamental basis for further optimisation of insect rearing operations and a deeper understanding of the thermal biology of this commonly farmed species.
Collapse
Affiliation(s)
- Jacinta D. Kong
- Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Émile Vadboncoeur
- Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Susan M. Bertram
- Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Heath A. MacMillan
- Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| |
Collapse
|
4
|
Méndez-Narváez J, Warkentin KM. Effects of larval foam-making and prolonged terrestriality on morphology, nitrogen excretion and development to metamorphosis in a Leptodactylid frog. PeerJ 2025; 13:e18990. [PMID: 40028200 PMCID: PMC11871897 DOI: 10.7717/peerj.18990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/23/2025] [Indexed: 03/05/2025] Open
Abstract
At ontogenetic transitions, animals often exhibit plastic variation in development, behavior and physiology in response to environmental conditions. Most terrestrial-breeding frogs have aquatic larval periods. Some species can extend their initial terrestrial period, as either a plastic embryonic response to balance trade-offs across environments or an enforced wait for rain that allows larvae to access aquatic habitats. Terrestrial larvae of the foam-nesting frog, Leptodactylus fragilis, can arrest development, make their own nest foam to prevent dehydration, and synthesize urea to avoid ammonia toxicity. These plastic responses enable survival during unpredictably long periods in underground nest chambers, waiting for floods to enable exit and continued development in water. However, such physiological and behavioral responses may have immediate and long-term carry-over effects across subsequent ecological and developmental transitions. We examined effects of prolonged terrestriality and larval foam-making activity on larval physiology, development, and metamorphosis in L. fragilis. We tested for changes in foam-making ability by measuring the nests larvae produced following complete removal of parental foam at different ages. We measured ammonia and urea levels in larval foam nests to assess nitrogen excretion patterns, testing for effects of larval age, soil hydration around parental nests, and repeated nest construction. We also assessed immediate and long-term effects of larval foam-making and prolonged terrestriality on larval morphology at water entry and development to metamorphosis. We found that larvae arrested development during prolonged time on land and even young larvae were able to effectively produce multiple foam nests. We found high ammonia concentrations in larval nests, very high urea excretion by developmentally arrested older larvae, and faster growth of larvae in water than while constructing nests. Nonetheless, sibling larvae had a similar aquatic larval period and size at metamorphosis, regardless of their nest-making activity and timing of water entry. Sibship size increased the size of larval foam nests, but reduced per-capita foam production and increased size at metamorphosis, suggesting maternal effects in cooperative groups. Metamorph size also decreased with aquatic larval period. Our results highlight the extent of larval ability to maintain and construct a suitable developmental environment and excrete N-waste as urea, which are both crucial for survival during enforced extensions of terrestriality. Our results suggest that the energetic reserves in large eggs are sufficient to meet metabolic costs of urea synthesis and foam production during developmental arrest over an extended period on land, with no apparent carry-over effects on fitness-relevant traits at metamorphosis.
Collapse
Affiliation(s)
- Javier Méndez-Narváez
- Calima, Fundación para la Investigación de la Biodiversidad y Conservación en el Trópico, Cali, Colombia
- Biology Department, Boston University, Boston, Massachusetts, United States
| | - Karen M. Warkentin
- Biology Department, Boston University, Boston, Massachusetts, United States
- Smithsonian Tropical Research Institute, Panama, Panama
| |
Collapse
|
5
|
Shephard AM, Ledón-Rettig CC. A novel carnivorous diet reduces brain telomere length. Biol Lett 2025; 21:20240593. [PMID: 39933569 DOI: 10.1098/rsbl.2024.0593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 02/13/2025] Open
Abstract
Developmental conditions can profoundly influence adult survival or longevity. One established correlate of longevity is the length of telomeres-non-coding DNA regions that protect chromosomal ends. Telomere length in adulthood can be influenced by environmental conditions during development, such as nutrient restriction. Yet, we lack experimental studies of how adult telomere length is affected by a different form of nutritional variation: diet type. Here, we asked how diet-type variation during larval development affects telomere length in multiple post-metamorphic somatic tissues of the Mexican spadefoot (Spea multiplicata), an anuran species whose larvae develop on two qualitatively distinct diets: an ancestral omnivorous diet of detritus or a more novel carnivorous diet of live shrimp. We found that larvae developing on the novel shrimp diet developed into post-metamorphic frogs with shorter telomeres in the brain-a structure that is particularly vulnerable to harmful effects of nutritional adversity, such as oxidative stress. Given known links between telomere length and neurological health outcomes, our study suggests that a dietary transition to carnivory might carry costs in terms of compromised neural integrity later in life. This work highlights the lasting impact of a developmental diet on somatic maintenance and health.
Collapse
|
6
|
Shephard AM, Jacobsen S, Ledón-Rettig CC. Diet-induced plasticity modifies relationships between larval growth rate and post-metamorphic behavior and physiology in spadefoot toads. J Exp Biol 2025; 228:JEB249299. [PMID: 39698962 DOI: 10.1242/jeb.249299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024]
Abstract
It has frequently been hypothesized that among-individual variation in behavior and physiology will correlate with life history traits, yet the nature of these correlations can vary. Such variability may arise from plasticity in trait development, which can amplify or attenuate trait correlations across different environments. Using the Mexican spadefoot toad (Spea multiplicata), we tested whether relationships between larval growth rate and post-metamorphic behavior or physiology are influenced by a key mediator of developmental plasticity: larval diet type. Spea multiplicata larvae develop on two alternative diets, with slower growing omnivores feeding on detritus and faster growing carnivores consuming live fairy shrimp. We found that correlations between larval growth rate and post-metamorphic behavior and physiology differed by diet type. Among detritus feeders, faster growing larvae developed into juvenile frogs that were not only bolder but also had higher hypothalamic-pituitary-interrenal axis reactivity (an indicator of stress responsiveness) and longer telomeres, suggesting greater somatic maintenance. In contrast, among shrimp feeders - which exhibited faster growth overall - larval growth rate was less strongly correlated with juvenile behavior and physiology, indicating that a shift from omnivory to carnivory can attenuate trait correlations among individuals. Overall, our study suggests that developmental plasticity induced by different diet types can modify relationships between life history traits and individual behavior or physiology.
Collapse
Affiliation(s)
- Alexander M Shephard
- Department of Biology, Indiana University at Bloomington, Bloomington, IN 47405-7005, USA
| | - Sydney Jacobsen
- Department of Biology, Indiana University at Bloomington, Bloomington, IN 47405-7005, USA
| | | |
Collapse
|
7
|
Sinsch U. Environmental Drivers of Local Demography and Size Plasticity in Fire Salamanders ( Salamandra salamandra). Animals (Basel) 2024; 14:2869. [PMID: 39409818 PMCID: PMC11475656 DOI: 10.3390/ani14192869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
Conspecific amphibian populations may vary widely in local demography and average body size throughout their geographical range. The environmental drivers of variation may reflect geographical gradients or local habitat quality. Among fire salamander populations (Salamandra salamandra), local demography shows a limited range of variation because high concentrations of skin toxins reduce mortality from predation to a minimum, whereas average adult body size varies significantly over a wide range. This study on four neighboring populations inhabiting the catchments of low-order streams in the upper middle Rhine Valley (Koblenz, Germany) focuses on the identification of local environmental drivers of variation in age and body size. I collected 192 individuals at two localities per stream, measured snout-vent length, clipped a toe for posterior skeletochronological age determination, and released salamanders in situ again. Populations were similar in age distribution. Local habitat quality accounted for a significant proportion of demographic variability, mediated by the impact of landscape-induced mortality risk, including roads and agriculture. Still, the main effect of variation in habitat quality was on adult body size, the result of growth rates of aquatic larvae and terrestrial juveniles. Larvae exposed to non-lethal heavy metal contamination in streams developed into smaller juveniles and adults than clean-water larvae, providing evidence for carry-over effects from one stage to another. The generally small average adult size in the Rhine Valley populations compared to those in other parts of the distribution range indicates the action of a still unidentified environmental driver.
Collapse
Affiliation(s)
- Ulrich Sinsch
- Department of Biology, Zoology Group, University of Koblenz, 56070 Koblenz, Germany
| |
Collapse
|
8
|
Miller JA, Almeida LZ, Rogers LA, Thalmann HL, Forney RM, Laurel BJ. Age, not growth, explains larger body size of Pacific cod larvae during recent marine heatwaves. Sci Rep 2024; 14:19313. [PMID: 39164346 PMCID: PMC11336165 DOI: 10.1038/s41598-024-69915-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024] Open
Abstract
Marine heatwaves (MHWs) are often associated with physiological changes throughout biological communities but can also result in biomass declines that correspond with shifts in phenology. We examined the response of larval Pacific cod (Gadus macrocephalus) to MHWs in the Gulf of Alaska across seven years to evaluate the effects of MHWs on hatch phenology, size-at-age, and daily growth and identify potential regulatory mechanisms. Hatch dates were, on average, 19 days earlier since the onset of MHWs, shifting a mean of 15 days earlier per 1 ℃ increase. Size-at-capture was larger during & between MHWs but, contrary to expectations, larvae grew slower and were smaller in size-at-age. The larger size during & between MHWs can be entirely explained by older ages due to earlier hatching. Daily growth variation was well-explained by an interaction among age, temperature, and hatch date. Under cool conditions, early growth was fastest for the latest hatchers. However, this variation converged at warmer temperatures, due to faster growth of earlier hatchers. Stage-specific growth did not vary with temperature, remaining relatively similar from 4 to 8 ℃. Temperature-related demographic changes were more predictable based on phenological shifts rather than changes in growth, which could affect population productivity after MHWs.
Collapse
Affiliation(s)
- Jessica A Miller
- Department of Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon Marine Experiment Station, Hatfield Marine Science Center, Oregon State University, 2030 SE Marine Science Drive, Newport, OR, 97365, USA.
| | - L Zoe Almeida
- Department of Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon Marine Experiment Station, Hatfield Marine Science Center, Oregon State University, 2030 SE Marine Science Drive, Newport, OR, 97365, USA
- Cornell Biological Field Station, Department of Natural Resources and the Environment, Cornell University, 900 Shackelton Point Road, Bridgeport, NY, 13030, USA
| | - Lauren A Rogers
- Recruitment Processes Program, Resource Assessment and Conservation Engineering Division, Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA, Seattle, WA, USA
| | - Hillary L Thalmann
- Department of Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon Marine Experiment Station, Hatfield Marine Science Center, Oregon State University, 2030 SE Marine Science Drive, Newport, OR, 97365, USA
| | - Rebecca M Forney
- Department of Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon Marine Experiment Station, Hatfield Marine Science Center, Oregon State University, 2030 SE Marine Science Drive, Newport, OR, 97365, USA
| | - Benjamin J Laurel
- Fisheries Behavioral Ecology Program, Resource Assessment and Conservation Engineering Division, Alaska Fisheries Science Center, Hatfield Marine Science Center, National Marine Fisheries Service, NOAA, Newport, OR, 97365, USA
| |
Collapse
|
9
|
Bottini CLJ, Whiley RE, Branfireun BA, MacDougall-Shackleton SA. Effects of sublethal methylmercury and food stress on songbird energetic performance: metabolic rates, molt and feather quality. J Exp Biol 2024; 227:jeb246239. [PMID: 38856174 PMCID: PMC11418191 DOI: 10.1242/jeb.246239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
Organisms regularly adjust their physiology and energy balance in response to predictable seasonal environmental changes. Stressors and contaminants have the potential to disrupt these critical seasonal transitions. No studies have investigated how simultaneous exposure to the ubiquitous toxin methylmercury (MeHg) and food stress affects birds' physiological performance across seasons. We quantified several aspects of energetic performance in song sparrows, Melospiza melodia, exposed or not to unpredictable food stress and MeHg in a 2×2 experimental design, over 3 months during the breeding season, followed by 3 months post-exposure. Birds exposed to food stress had reduced basal metabolic rate and non-significant higher factorial metabolic scope during the exposure period, and had a greater increase in lean mass throughout most of the experimental period. Birds exposed to MeHg had increased molt duration, and increased mass:length ratio of some of their primary feathers. Birds exposed to the combined food stress and MeHg treatment often had responses similar to the stress-only or MeHg-only exposure groups, suggesting these treatments affected physiological performance through different mechanisms and resulted in compensatory or independent effects. Because the MeHg and stress variables were selected in candidate models with a ΔAICc lower than 2 but the 95% confidence interval of these variables overlapped zero, we found weak support for MeHg effects on all measures except basal metabolic rate, and for food stress effects on maximum metabolic rate, factorial metabolic scope and feather mass:length ratio. This suggests that MeHg and food stress effects on these measures are statistically identified but not simple and/or were too weak to be detected via linear regression. Overall, combined exposure to ecologically relevant MeHg and unpredictable food stress during the breeding season does not appear to induce extra energetic costs for songbirds in the post-exposure period. However, MeHg effects on molt duration could carry over across multiple annual cycle stages.
Collapse
Affiliation(s)
- Claire L. J. Bottini
- The University of Western Ontario, Department of Biology, 1151 Richmond St., London, ON, Canada, N6A 5B7
- Advanced Facility for Avian Research, University of Western Ontario, London, ON, N6G 4W4, Canada
| | - Rebecca E. Whiley
- The University of Western Ontario, Department of Biology, 1151 Richmond St., London, ON, Canada, N6A 5B7
- Advanced Facility for Avian Research, University of Western Ontario, London, ON, N6G 4W4, Canada
| | - Brian A. Branfireun
- The University of Western Ontario, Department of Biology, 1151 Richmond St., London, ON, Canada, N6A 5B7
- Advanced Facility for Avian Research, University of Western Ontario, London, ON, N6G 4W4, Canada
| | - Scott A. MacDougall-Shackleton
- Advanced Facility for Avian Research, University of Western Ontario, London, ON, N6G 4W4, Canada
- The University of Western Ontario, Department of Psychology, 1151 Richmond St., London, ON, N6A 5C2, Canada
| |
Collapse
|
10
|
Lechner ER, Stewart EMC, Frasca VR, Jeffries KM, Wilson CC, Raby GD. Thermal stressors during embryo incubation have limited ontogenic carryover effects in brook trout. J Therm Biol 2024; 122:103880. [PMID: 38850621 DOI: 10.1016/j.jtherbio.2024.103880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/06/2024] [Accepted: 05/24/2024] [Indexed: 06/10/2024]
Abstract
Winter climate is changing rapidly in northern latitudes, and these temperature events have effects on salmonid thermal biology. Stressors during winter egg incubation could reduce hatching success and physiological performance of fall-spawning fishes. Here we quantified the potential for ontogenic carryover effects from embryonic thermal stress in multiple wild and hatchery-origin populations of brook trout (Salvelinus fontinalis), a temperate ectotherm native to northeastern North America. Fertilized eggs from four populations were incubated over the winter in the laboratory in four differing thermal regimes: ambient stream-fed water, chronic warming (+2 °C), ambient with a mid-winter cold-shock, and short-term warming late during embryogenesis (to stimulate an early spring). We examined body size and upper thermal tolerance at the embryonic, fry (10 weeks post-hatch and 27-30 weeks post-hatch) and gravid adult (age 2+) life stages (overall N = 1482). In a separate experiment, we exposed developing embryos to acute seven-day heat stress events immediately following fertilization and at the eyed-egg stage, and then assessed upper thermal tolerance (CTmax) 37 weeks post-hatch. In all cases, fish were raised in common garden conditions after hatch (i.e., same temperatures). Our thermal treatments during incubation had effects that varied by life stage, with incubation temperature and life stage both affecting body size and thermal tolerance. Embryos incubated in warmer treatment groups had higher thermal tolerance; there was no effect of the mid-winter melt event on embryo CTmax. Ten weeks after hatch, fry from the ambient and cold-shock treatment groups had higher and less variable thermal tolerance than did the warmer treatment groups. At 27-30 post-hatch and beyond, differences in thermal tolerance among treatment groups were negligible. Collectively, our study suggests that brook trout only exhibit short-term carryover effects from thermal stressors during embryo incubation, with no lasting effects on phenotype beyond the first few months after hatch.
Collapse
Affiliation(s)
- Emily R Lechner
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, K9L 1Z8, Canada.
| | - Erin M C Stewart
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, K9L 1Z8, Canada
| | - Vince R Frasca
- Ontario Ministry of Natural Resources and Forestry, Aquatic Research and Monitoring Section, Codrington Fisheries Research Facility, Codrington, Ontario, K0K 1R0, Canada
| | - Ken M Jeffries
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Chris C Wilson
- Ontario Ministry of Natural Resources and Forestry, Aquatic Research and Monitoring Section, Trent University, Peterborough, Ontario, K9J 7B8, Canada
| | - Graham D Raby
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, K9L 1Z8, Canada; Department of Biology, Trent University, Peterborough, Ontario, K9L IZ8, Canada
| |
Collapse
|
11
|
Shephard AM, Lagon SR, Jacobsen S, Millar K, Ledón-Rettig CC. Corticosterone Contributes to Diet-Induced Reprogramming of Post-Metamorphic Behavior in Spadefoot Toads. Integr Org Biol 2024; 6:obae012. [PMID: 38707679 PMCID: PMC11067961 DOI: 10.1093/iob/obae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/28/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024] Open
Abstract
Stressful experiences in early life can have phenotypic effects that persist into, or manifest during, adulthood. In vertebrates, such carryover effects can be driven by stress-induced secretion of glucocorticoid hormones, such as corticosterone, which can lead to developmental reprogramming of hypothalamic-pituitary-adrenal/interrenal axis activity and behavior. Nutritional stress in the form of early life nutrient restriction is well known to modify later life behaviors and stress activity through corticosterone-related mechanisms. However, it is not known whether corticosterone is also mechanistically involved in carryover effects induced by a different form of nutritional variation: the use of alternate or entirely novel types of dietary resources. The plains spadefoot (Spea bombifrons) presents an excellent system for testing this question, since larvae of this species have evolved to use 2 alternate diet types: an ancestral detritus-based diet and a more novel diet of live shrimp. While previous work has shown that feeding on the novel shrimp diet influences juvenile (i.e., post-metamorphic) behavior and corticosterone levels, it is unclear whether these diet-induced carryover effects are mediated by diet-induced corticosterone itself. To test for the mechanistic role of corticosterone in diet-induced carryover effects, we experimentally treated S. bombifrons larvae with exogenous corticosterone and measured subsequent effects on juvenile behavior and corticosterone levels. We found that while shrimp-fed larvae had elevated corticosterone levels, treatment of larvae with corticosterone itself had effects on juvenile behavior that partially resembled those carryover effects induced by the shrimp diet, such as altered food seeking and higher locomotor activity. However, unlike carryover effects caused by the shrimp diet, larval corticosterone exposure did not affect juvenile corticosterone levels. Overall, our study shows that corticosterone-related mechanisms are likely involved in carryover effects induced by a novel diet, yet such diet-induced carryover effects are not driven by corticosterone alone.
Collapse
Affiliation(s)
- A M Shephard
- Department of Biology, Indiana University Bloomington, Myers Hall, 915 East 3rd Street, Bloomington IN 47405, USA
| | - S R Lagon
- Department of Biology, Indiana University Bloomington, Myers Hall, 915 East 3rd Street, Bloomington IN 47405, USA
| | - S Jacobsen
- Department of Biology, Indiana University Bloomington, Myers Hall, 915 East 3rd Street, Bloomington IN 47405, USA
| | - K Millar
- Department of Biology, Indiana University Bloomington, Myers Hall, 915 East 3rd Street, Bloomington IN 47405, USA
| | - C C Ledón-Rettig
- Department of Biology, Indiana University Bloomington, Myers Hall, 915 East 3rd Street, Bloomington IN 47405, USA
| |
Collapse
|
12
|
Padilla P, Herrel A, Denoël M. Invading new climates at what cost? Ontogenetic differences in the thermal dependence of metabolic rate in an invasive amphibian. J Therm Biol 2024; 121:103836. [PMID: 38604116 DOI: 10.1016/j.jtherbio.2024.103836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/30/2024] [Accepted: 02/27/2024] [Indexed: 04/13/2024]
Abstract
Global warming can either promote or constrain the invasive potential of alien species. In ectotherm invaders that exhibit a complex life cycle, success is inherently dependent on the capacity of each developmental stage to cope with environmental change. This is particularly relevant for invasive anurans, which disperse on land while requiring water for reproduction. However, it remains unknown how the different life stages respond in terms of energy expenditure under different climate change scenarios. We here quantified the oxygen uptake of frogs at rest (a proxy of the standard metabolic rate) in the aquatic phase (at the tadpole and climax, i.e. during metamorphosis, stages) and in the terrestrial phase (metamorphosed stage) at three environmental temperatures. To do so, we used marsh frogs (Pelophylax ridibundus), an amphibian with the largest invasive range within the palearctic realm and for which their adaptation to global warming might be key to their invasion success. Beyond an increase of metabolic rate with temperature, our data show variation in thermal adaptation across life stages and a higher metabolic cost during metamorphosis. These results suggest that the cost to shift habitat and face changes in temperature may be a constraint on the invasive potential of species with a complex life cycle which may be particularly vulnerable during metamorphosis.
Collapse
Affiliation(s)
- Pablo Padilla
- Laboratory of Ecology and Conservation of Amphibians (LECA), Freshwater and OCeanic Science Unit of Research (FOCUS), University of Liège, Liège, Belgium; UMR 7179, C.N.R.S/M.N.H.N., Département Adaptations du Vivant, Paris, France.
| | - Anthony Herrel
- UMR 7179, C.N.R.S/M.N.H.N., Département Adaptations du Vivant, Paris, France; Evolutionary Morphology of Vertebrates, Ghent University, Ghent, Belgium; Department of Biology, University of Antwerp, Wilrijk, Belgium; Naturhistorisches Museum Bern, Bern, Switzerland
| | - Mathieu Denoël
- Laboratory of Ecology and Conservation of Amphibians (LECA), Freshwater and OCeanic Science Unit of Research (FOCUS), University of Liège, Liège, Belgium
| |
Collapse
|
13
|
Njoroge TM, Berenbaum MR, Stone CM, Kim CH, Dunlap C, Muturi EJ. Culex pipiens and Culex restuans larval interactions shape the bacterial communities in container aquatic habitats. FEMS MICROBES 2024; 5:xtae002. [PMID: 38450098 PMCID: PMC10917442 DOI: 10.1093/femsmc/xtae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/30/2024] [Accepted: 02/09/2024] [Indexed: 03/08/2024] Open
Abstract
Container aquatic habitats host a community of aquatic insects, primarily mosquito larvae that browse on container surface microbial biofilm and filter-feed on microorganisms in the water column. We examined how the bacterial communities in these habitats respond to feeding by larvae of two container-dwelling mosquito species, Culex pipiens and Cx. restuans. We also investigated how the microbiota of these larvae is impacted by intra- and interspecific interactions. Microbial diversity and richness were significantly higher in water samples when mosquito larvae were present, and in Cx. restuans compared to Cx. pipiens larvae. Microbial communities of water samples clustered based on the presence or absence of mosquito larvae and were distinct from those of mosquito larvae. Culex pipiens and Cx. restuans larvae harbored distinct microbial communities when reared under intraspecific conditions and similar microbial communities when reared under interspecific conditions. These findings demonstrate that mosquito larvae play a major role in structuring the microbial communities in container habitats and that intra- and interspecific interactions in mosquito larvae may shape their microbiota. This has important ecological and public health implications since larvae of the two mosquito species are major occupants of container habitats while the adults are vectors of West Nile virus.
Collapse
Affiliation(s)
- Teresia M Njoroge
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin- Carmichael Hall, 1234 N. Notre Dame Ave, South Bend, IN 46617, United States
- Department of Entomology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave, Urbana, IL 61801, United States
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, 1816 S. Oak St, Champaign, IL 61820, United States
| | - May R Berenbaum
- Department of Entomology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave, Urbana, IL 61801, United States
| | - Christopher M Stone
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, 1816 S. Oak St, Champaign, IL 61820, United States
| | - Chang-Hyun Kim
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, 1816 S. Oak St, Champaign, IL 61820, United States
| | - Christopher Dunlap
- Crop Bioprotection Research Unit, Agricultural Research Service, US Department of Agriculture, 1815 N. University St., Peoria, IL 61604, United States
| | - Ephantus J Muturi
- Crop Bioprotection Research Unit, Agricultural Research Service, US Department of Agriculture, 1815 N. University St., Peoria, IL 61604, United States
| |
Collapse
|
14
|
Sun X, Arnott SE, Little AG. Impacts of sequential salinity and heat stress are recovery time-specific in freshwater crustacean, Daphnia pulicaria. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115899. [PMID: 38171229 DOI: 10.1016/j.ecoenv.2023.115899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024]
Abstract
Stressors can interact to affect animal fitness, but we have limited knowledge about how temporal variation in stressors may impact their combined effect. This limits our ability to predict the outcomes of pollutants and future dynamic environmental changes. Elevated salinity in freshwater ecosystems has been observed worldwide. Meanwhile, heatwaves have become more frequent and intensified as an outcome of climate change. These two stressors can jointly affect organisms; however, their interaction has rarely been explored in the context of freshwater ecosystems. We conducted lab experiments using Daphnia pulicaria, a key species in lakes, to investigate how elevated salinity and heatwave conditions collectively affect freshwater organisms. We also monitored the impacts of various recovery times between the two stressors. Daphnia physiological conditions (metabolic rate, Na+-K+-ATPase (NKA) activity, and lipid peroxidation level) and life history traits (survival, fecundity, and growth) in response to salt stress as well as mortality in heat treatment were examined. We found that Daphnia responded to elevated salinity by upregulating NKA activity and increasing metabolic rate, causing a high lipid peroxidation level. Survival, fecundity, and growth were all negatively affected by this stressor. These impacts on physiological conditions and life history traits persisted for a few days after the end of the exposure. Heat treatments caused mortality in Daphnia, which increased with rising temperature. Results also showed that individuals that experienced salt exposure were more susceptible to subsequent heat stress, but this effect decreased with increasing recovery time between stressors. Findings from this work suggest that the legacy effects from a previous stressor can reduce individual resistance to a subsequent stressor, adding great difficulties to the prediction of outcomes of multiple stressors. Our work also demonstrates that cross-tolerance/susceptibility and the associated mechanisms remain unclear, necessitating further investigation.
Collapse
Affiliation(s)
- Xinyu Sun
- Biology Department, Queen's University, 116 Barrie St., Kingston, ON K7L 3N6, Canada.
| | - Shelley E Arnott
- Biology Department, Queen's University, 116 Barrie St., Kingston, ON K7L 3N6, Canada
| | - Alexander G Little
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1 ON, Canada
| |
Collapse
|
15
|
Mackay AJ, Yan J, Kim CH, Barreaux AMG, Stone CM. Larval diet and temperature alter mosquito immunity and development: using body size and developmental traits to track carry-over effects on longevity. Parasit Vectors 2023; 16:434. [PMID: 37993953 PMCID: PMC10666368 DOI: 10.1186/s13071-023-06037-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/29/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Estimating arbovirus transmission potential requires a mechanistic understanding of how environmental factors influence the expression of adult mosquito traits. While preimaginal exposure to environmental factors can have profound effects on adult traits, tracking and predicting these effects remains challenging. METHODS Using Aedes albopictus and a structural equation modeling approach, we explored how larval nutrition and temperature jointly affect development rate and success, female body size, and whether these metrics capture carry-over effects on adult female longevity. Additionally, we investigated how larval diet and temperature affect the baseline expression of 10 immune genes. RESULTS We found that larval development success was primarily determined by diet, while temperature and diet both affected development rate and female body size. Under a low larval diet, pupal wet weight and wing length both declined with increasing temperature. In contrast, responses of the two morphometric measures to rearing temperature diverged when females were provided higher larval nutrition, with pupal wet weight increasing and wing length decreasing at higher temperatures. Our analyses also revealed opposing relationships between adult female lifespan and the two morphometric measures, with wing length having a positive association with longevity and pupal weight a negative association. Larval diet indirectly affected adult longevity, and the time to pupation was negatively correlated with longevity. The expression of eight immune genes from the toll, JAK-STAT and Imd pathways was enhanced in mosquitoes with higher nutrition. CONCLUSIONS Our results highlight deficiencies from using a single body size measure to capture carry-over effects on adult traits. Further studies of larval development rate under varying environmental conditions and its potential for tracking carry-over effects on vectorial capacity are warranted.
Collapse
Affiliation(s)
- Andrew J Mackay
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, 1816 S. Oak St., Champaign, IL, 61820, USA.
| | - Jiayue Yan
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, 1816 S. Oak St., Champaign, IL, 61820, USA
| | - Chang-Hyun Kim
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, 1816 S. Oak St., Champaign, IL, 61820, USA
| | - Antoine M G Barreaux
- INTERTRYP (Univ. Montpellier, CIRAD, IRD), Montpellier, France
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Chris M Stone
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, 1816 S. Oak St., Champaign, IL, 61820, USA
| |
Collapse
|
16
|
Medina-Báez OA, Lenard A, Muzychuk RA, da Silva CRB, Diamond SE. Life cycle complexity and body mass drive erratic changes in climate vulnerability across ontogeny in a seasonally migrating butterfly. CONSERVATION PHYSIOLOGY 2023; 11:coad058. [PMID: 37547363 PMCID: PMC10401068 DOI: 10.1093/conphys/coad058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 06/26/2023] [Accepted: 07/19/2023] [Indexed: 08/08/2023]
Abstract
Physiological traits are often used for vulnerability assessments of organismal responses to climate change. Trait values can change dramatically over the life cycle of organisms but are typically assessed at a single developmental stage. Reconciling ontogenetic changes in physiological traits with vulnerability assessments often reveals early life-stage vulnerabilities. The degree to which ontogenetic changes in physiological traits are due to changes in body mass over development versus stage-specific responses determines the degree to which mass can be used as a proxy for vulnerability. Here, we use the painted lady butterfly, Vanessa cardui, to test ontogenetic changes in two physiological traits, the acute thermal sensitivity of routine metabolic rate (RMR Q10) and the critical thermal maximum (CTmax). RMR Q10 generally followed ontogenetic changes in body mass, with stages characterized by smaller body mass exhibiting lower acute thermal sensitivity. However, CTmax was largely decoupled from ontogenetic changes in body mass. In contrast with trends from other studies showing increasing vulnerability among progressively earlier developmental stages, our study revealed highly erratic patterns of vulnerability across ontogeny. Specifically, we found the lowest joint-trait vulnerability (both RMR Q10 and CTmax) in the earliest developmental stage we tested (3rd instar larvae), the highest vulnerabilities in the next two developmental stages (4th and 5th instar larvae), and reduced vulnerability into the pupal and adult stages. Our study supports growing evidence of mechanistic decoupling of physiology across developmental stages and suggests that body mass is not a universal proxy for all physiological trait indicators of climate vulnerability.
Collapse
Affiliation(s)
- Osmary A Medina-Báez
- Corresponding author: Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA. Tel: 1-216-368-0699.
| | - Angie Lenard
- Department of Biology, Case Western Reserve University, 2074 Adelbert Rd, Cleveland, OH 44106, USA
| | - Rut A Muzychuk
- Department of Biology, Case Western Reserve University, 2074 Adelbert Rd, Cleveland, OH 44106, USA
| | - Carmen R B da Silva
- Department of Biology, Case Western Reserve University, 2074 Adelbert Rd, Cleveland, OH 44106, USA
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton 3800, Australia
- College of Science and Engineering, Flinders University, Anchor Court, Bedford Park 5042, South Australia, Australia
| | - Sarah E. Diamond
- Department of Biology, Case Western Reserve University, 2074 Adelbert Rd, Cleveland, OH 44106, USA
| |
Collapse
|
17
|
Powell EC, Painting CJ, Machado G, Holwell GI. Juvenile leg autotomy predicts adult male morph in a New Zealand harvestman with weapon polymorphism. Behav Ecol 2023; 34:613-620. [PMID: 37434639 PMCID: PMC10332453 DOI: 10.1093/beheco/arad029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 03/08/2023] [Accepted: 03/29/2023] [Indexed: 07/13/2023] Open
Abstract
Intraspecific weapon polymorphisms that arise via conditional thresholds may be affected by juvenile experience such as predator encounters, yet this idea has rarely been tested. The New Zealand harvestman Forsteropsalis pureora has three male morphs: majors (alphas and betas) are large-bodied with large chelicerae used in male-male contests, while minors (gammas) are small-bodied with small chelicerae and scramble to find mates. Individuals use leg autotomy to escape predators and there is no regeneration of the missing leg. Here, we tested whether juvenile experience affects adult morph using leg autotomy scars as a proxy of predator encounters. Juvenile males that lost at least one leg (with either locomotory or sensory function) had a 45 times higher probability of becoming a minor morph at adulthood than intact juvenile males. Leg loss during development may affect foraging, locomotion, and/or physiology, potentially linking a juvenile's predator encounters to their final adult morph and future reproductive tactic.
Collapse
Affiliation(s)
- Erin C Powell
- Te Kura Mātauranga Koiora/School of Biological Sciences, University of Auckland, 3a Symonds St, Auckland 1010, New Zealand
| | - Christina J Painting
- Te Aka Mātuatua School of Science, University of Waikato, Gate 8, Hillcrest Road, Hamilton 3240, New Zealand
| | - Glauco Machado
- LAGE do Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Travessa 14, no. 101, Cidade Universitária, São Paulo CEP 05.508-090, Brazil
| | - Gregory I Holwell
- Te Kura Mātauranga Koiora/School of Biological Sciences, University of Auckland, 3a Symonds St, Auckland 1010, New Zealand
| |
Collapse
|
18
|
Badger JJ, Bowen WD, den Heyer CE, Breed GA. Large offspring have enhanced lifetime reproductive success: Long-term carry-over effects of weaning size in gray seals ( Halichoerus grypus). Ecol Evol 2023; 13:e10095. [PMID: 37293121 PMCID: PMC10244896 DOI: 10.1002/ece3.10095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 06/10/2023] Open
Abstract
An individual's size in early stages of life may be an important source of individual variation in lifetime reproductive performance, as size effects on ontogenetic development can have cascading physiological and behavioral consequences throughout life. Here, we explored how size-at-young influences subsequent reproductive performance in gray seals (Halichoerus grypus) using repeated encounter and reproductive data on a marked sample of 363 females that were measured for length after weaning, at ~4 weeks of age, and eventually recruited to the Sable Island breeding colony. Two reproductive traits were considered: provisioning performance (mass of weaned offspring), modeled using linear mixed effects models; and reproductive frequency (rate at which a female returns to breed), modeled using mixed effects multistate mark-recapture models. Mothers with the longest weaning lengths produced pups 8 kg heavier and were 20% more likely to breed in a given year than mothers with the shortest lengths. Correlation in body lengths between weaning and adult life stages, however, is weak: Longer pups do not grow to be longer than average adults. Thus, covariation between weaning length and future reproductive performance appears to be a carry-over effect, where the size advantages afforded in early juvenile stages may allow enhanced long-term performance in adulthood.
Collapse
Affiliation(s)
- Janelle J. Badger
- Department of Biology and WildlifeUniversity of Alaska FairbanksFairbanksAlaskaUSA
- Present address:
Pacific Islands Fisheries Science CenterNational Oceanic and Atmospheric AdministrationHonoluluHawaiiUSA
| | - W. Don Bowen
- Department of Fisheries and Oceans CanadaBedford Institute of OceanographyDartmouthNova ScotiaCanada
| | - Cornelia E. den Heyer
- Department of Fisheries and Oceans CanadaBedford Institute of OceanographyDartmouthNova ScotiaCanada
| | - Greg A. Breed
- Department of Biology and WildlifeUniversity of Alaska FairbanksFairbanksAlaskaUSA
- Institute of Arctic BiologyUniversity of Alaska FairbanksFairbanksAlaskaUSA
| |
Collapse
|
19
|
Moore MP. Ornamented species incur higher male mortality in the larval stage. Biol Lett 2023; 19:20230108. [PMID: 37194259 PMCID: PMC10189301 DOI: 10.1098/rsbl.2023.0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/27/2023] [Indexed: 05/18/2023] Open
Abstract
Life-cycle stages are not always capable of evolving independently from each other, but it remains unclear if evolving to meet the demands of one stage actually imposes costs on other stages. Male ornamentation is a useful trait in which to test this potential evolutionary constraint because ornaments improve reproduction in the adult stage but can require the expression of risky traits in the juvenile stage. Here, I compared larval mortality between populations of ornamented and non-ornamented dragonfly species. Since males produce more exaggerated melanin wing ornaments than females, I tested if larval mortality of males is higher in populations of species that have evolved adult male wing ornamentation. My analyses uncover male-biased larval mortality in species that have evolved male ornamentation. These findings indicate that evolving to optimize mating for the adult stage imposes a cost to survival in the larval stage. Thus, this study reveals that evolution in one life-cycle stage can impose fitness costs on other stages that persist over macroevolutionary timescales.
Collapse
Affiliation(s)
- Michael P. Moore
- Department of Integrative Biology, University of Colorado Denver, Denver, CO 80204, USA
| |
Collapse
|
20
|
Fernandes JF, Calado R, Jerónimo D, Madeira D. Thermal tolerance limits and physiological traits as indicators of Hediste diversicolor's acclimation capacity to global and local change drivers. J Therm Biol 2023; 114:103577. [PMID: 37263039 DOI: 10.1016/j.jtherbio.2023.103577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/08/2023] [Accepted: 04/15/2023] [Indexed: 06/03/2023]
Abstract
Global projections predict significant increases in ocean temperature and changes in ocean chemistry, including salinity variations by 2100. This has led to a substantial interest in the study of thermal ecophysiology, as temperature is a major factor shaping marine ectotherm communities. However, responses to temperature may be influenced by other factors such as salinity, highlighting the relevance of multiple stressor studies. In the present work, we experimentally evaluated the thermal tolerance of the marine ragworm Hediste diversicolor under predicted global change scenarios. Organisms were subjected to an experimental trial under control (24 °C), and two temperature treatment scenarios (ocean warming +3 °C - (27 °C) and heat wave +6 °C - (30 °C)), combined with salinity variations (20 and 30) in a full factorial design for 29 days. Environmental data from the field were collected during 2019 and 2020. At day 30 post exposure, upper thermal limits (Critical Thermal Maximum - CTMax), thermal safety margins (TSM) and acclimation capacity were measured. Higher acclimation temperatures led to higher thermal tolerance limits, confirming that H. diversicolor features some physiological plasticity, acclimation capacity and a positive thermal safety margin. This margin was greater considering in situ temperature data from 2019 than maximum temperatures for 2020 (CTMax > maximum habitat temperature-MHT). Moreover, smaller organisms displayed higher upper thermal limits suggesting that thermal tolerance is size dependent. Ragworms subjected to higher salinity also showed a higher CTMax than those acclimated to lower salinity. However, temperature and salinity showed an additive effect on CTMax, as no significant interaction was detected. We conclude that H. diversicolor can easily acclimate to increased water temperature, independently of salinity variations. Given the key role of ragworms in food webs in estuaries and coastal lagoons, substrate bioturbation and aquaculture, this information is relevant to support conservation actions, optimize culture protocols and identify thermal resistant strains.
Collapse
Affiliation(s)
- Joana Filipa Fernandes
- ECOMARE - Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565, Gafanha da Nazaré, Portugal.
| | - Ricardo Calado
- ECOMARE - Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565, Gafanha da Nazaré, Portugal
| | - Daniel Jerónimo
- ECOMARE - Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565, Gafanha da Nazaré, Portugal
| | - Diana Madeira
- ECOMARE - Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565, Gafanha da Nazaré, Portugal; UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, Faculty of Sciences and Technology, NOVA University of Lisbon, 2829-516, Caparica, Portugal.
| |
Collapse
|
21
|
Ledón-Rettig CC, Lo K, Lagon SR. Baseline corticosterone levels in spadefoot toads reflect alternate larval diets one year later. Gen Comp Endocrinol 2023; 339:114291. [PMID: 37094616 DOI: 10.1016/j.ygcen.2023.114291] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 03/30/2023] [Accepted: 04/19/2023] [Indexed: 04/26/2023]
Abstract
Early-life environmental variation can influence later-life physiology, such as the regulation of glucocorticoids. However, characterizing the effects of environmental factors on hormone regulation can be hampered when assessing animals that are small and require destructive sampling to collect blood. Using spadefoot toads (genus Spea), we evaluated whether waterborne corticosterone (CORT) measures could be used as a proxy for plasma CORT measures, detect stress-induced levels of CORT, and detect larval diet-induced changes in CORT regulation after metamorphosed individuals were maintained for 1 year under common garden conditions. We found that waterborne CORT measures were correlated with plasma CORT measures and could be used to detect stress-induced levels of CORT. Further, larval diet type significantly influenced baseline plasma CORT levels 1-year post-metamorphosis: adults that had consumed live prey as larvae had higher plasma CORT levels than adults that had consumed detritus as larvae. However, waterborne measures failed to reflect these differences, possibly due to low sample size. Our study demonstrates the utility of the waterborne hormone assay in assessing variation in baseline and stress-induced CORT levels in adult spadefoots. However, resolving more subtle differences that arise through developmental plasticity will require larger samples sizes when using the waterborne assay.
Collapse
Affiliation(s)
- Cristina C Ledón-Rettig
- Indiana University at Bloomington, 915 East 3(rd) Street, Myers Hall Bloomington, IN 47405, USA.
| | - Katie Lo
- Indiana University at Bloomington, 915 East 3(rd) Street, Myers Hall Bloomington, IN 47405, USA
| | - Sarah R Lagon
- Indiana University at Bloomington, 915 East 3(rd) Street, Myers Hall Bloomington, IN 47405, USA
| |
Collapse
|
22
|
Xu X, Ye Y, Briggs E, Wang C, Qing B, Song Z, Ding C. Why do parents produce small broods of offspring that have lower body mass, survival, and lifetime reproductive success? A case study in a long-lived bird. Behav Ecol Sociobiol 2023. [DOI: 10.1007/s00265-023-03301-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
23
|
Bottini CLJ, Whiley RE, Branfireun BA, MacDougall-Shackleton SA. Effects of methylmercury and food stress on migratory activity in song sparrows, Melospiza melodia. Horm Behav 2022; 146:105261. [PMID: 36126358 DOI: 10.1016/j.yhbeh.2022.105261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 11/25/2022]
Abstract
Avian migration is a challenging life stage susceptible to the adverse effects of stressors, including contaminants like methylmercury (MeHg). Although birds often experience stressors and contaminants concurrently in the wild, no study to date has investigated how simultaneous exposure to MeHg and food stress affects migratory behavior. Our objectives were to determine if MeHg or food stress exposure during summer, alone or combined, has carry-over effects on autumn migratory activity, and if hormone levels (corticosterone, thyroxine) and body condition were related to these effects. We tested how exposure to dietary MeHg and/or food stress (unpredictable temporary food removal) affected migratory behavior in captive song sparrows, Melospiza melodia. Nocturnal activity was influenced by a 3-way interaction between MeHg × stress × nights of the study, indicating that activity changed over time in different ways depending on prior treatments. Thyroxine was not affected by treatment or sampling date. During the migratory season, fecal corticosterone metabolite concentrations increased in birds co-exposed to MeHg and food stress compared to controls, suggesting an additive carry-over effect. As well, during the period of behavioral recording, body condition increased with time in unstressed birds, but not in stressed birds. Fecal corticosterone metabolite concentrations were positively correlated to duration of nocturnal activity, but thyroxine levels and body condition were not. The differences in nocturnal activity between groups suggest that food stress and MeHg exposure on breeding grounds could have direct and indirect carry-over effects that have the potential to affect the fall migration journey.
Collapse
Affiliation(s)
- Claire L J Bottini
- University of Western Ontario, Department of Biology, 1151 Richmond St., London, Ontario N6A 5B7, Canada; Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada.
| | - Rebecca E Whiley
- University of Western Ontario, Department of Biology, 1151 Richmond St., London, Ontario N6A 5B7, Canada; Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada
| | - Brian A Branfireun
- University of Western Ontario, Department of Biology, 1151 Richmond St., London, Ontario N6A 5B7, Canada
| | - Scott A MacDougall-Shackleton
- Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada; University of Western Ontario, Department of Psychology, 1151 Richmond St., London, Ontario N6A 5C2, Canada
| |
Collapse
|
24
|
Barzaghi B, Melotto A, Cogliati P, Manenti R, Ficetola GF. Factors determining the dorsal coloration pattern of aposematic salamanders. Sci Rep 2022; 12:17090. [PMID: 36224211 PMCID: PMC9556531 DOI: 10.1038/s41598-022-19466-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/30/2022] [Indexed: 01/04/2023] Open
Abstract
Aposematic bright colors have a key role for animal defense and can be expressed through metabolic production or by acquiring pigments from diet. Aposematic coloration can be related to both local adaptations and availability of trophic resources. The European fire salamander (Salamandra salamandra) shows significant color variability and occurs across a broad range of habitats. Here we combined field observations with common rearing experiments to disentangle the role of environmental conditions and local adaptations in determining aposematic coloration of salamander populations. We assessed color variation and measured habitat features and food availability in adults from 25 populations. Furthermore, we reared newborn larvae from 10 populations under different food availability and analyzed color of metamorphs. To assess color pattern, we measured the percentage of yellow covering the body, and the Hue, Saturation and Value of yellow coloration. Adult showed strong variation of color pattern; variation was strongly related to the individual's size, to habitat productivity and to food availability. Under common garden conditions, differences between populations were not anymore evident, and coloration was only affected by resource availability during larval development. Our results suggest that environmental conditions and food availability are more important than local adaptations in determining differences in aposematic color pattern.
Collapse
Affiliation(s)
- Benedetta Barzaghi
- grid.4708.b0000 0004 1757 2822Department of Environmental Science and Policy, University of Milano, Milan, Italy
| | - Andrea Melotto
- grid.11956.3a0000 0001 2214 904XCentre of Excellence for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, 7600 South Africa
| | - Paola Cogliati
- grid.4708.b0000 0004 1757 2822Department of Environmental Science and Policy, University of Milano, Milan, Italy
| | - Raoul Manenti
- grid.4708.b0000 0004 1757 2822Department of Environmental Science and Policy, University of Milano, Milan, Italy
| | - Gentile Francesco Ficetola
- grid.4708.b0000 0004 1757 2822Department of Environmental Science and Policy, University of Milano, Milan, Italy ,grid.11956.3a0000 0001 2214 904XCentre of Excellence for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, 7600 South Africa ,grid.450307.50000 0001 0944 2786Laboratoire D’Ecologie Alpine (LECA), CNRS, Univ. Grenoble Alpes, Grenoble, France
| |
Collapse
|
25
|
Candolin U, Goncalves S, Pant P. Delayed early life effects in the threespine stickleback. Proc Biol Sci 2022; 289:20220554. [PMID: 35642365 PMCID: PMC9156908 DOI: 10.1098/rspb.2022.0554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Early life conditions can have a decisive influence on viability later in life. However, the influence of embryo density within a nest or body cavity on subsequent viability has received little attention within an ecological setting. This is surprising given that embryos often compete for limited resources, such as nutrients and oxygen, and this could influence their viability later in life through carry-over and compensatory effects. We show that the density of fertilized eggs within the nests of threespine stickleback males (Gasterosteus aculeatus) influences their viability after hatching. Embryos from larger broods hatch earlier and at a smaller size than those from smaller broods, which reduces their survival until the age of four weeks. This indicates a trade-off between the number and viability of offspring that males can raise to the hatching stage, which could explain the high incidence of partial egg cannibalism in nest-brooding fishes-as a strategy to improve the survival of remaining offspring. These results highlight the importance of considering conditions at the embryonic stage when evaluating the impact of early life conditions on viability and the adaptive value of reproductive decisions.
Collapse
Affiliation(s)
- Ulrika Candolin
- Organismal and Evolutionary Biology, University of Helsinki, PO Box 65, FI-00014 Helsinki, Finland
| | - Sara Goncalves
- Organismal and Evolutionary Biology, University of Helsinki, PO Box 65, FI-00014 Helsinki, Finland
| | - Pankaj Pant
- Organismal and Evolutionary Biology, University of Helsinki, PO Box 65, FI-00014 Helsinki, Finland
| |
Collapse
|
26
|
Tamian A, Viblanc VA, Dobson FS, Neuhaus P, Hammer TL, Nesterova AP, Raveh S, Skibiel AL, Broussard D, Manno TG, Rajamani N, Saraux C. Integrating microclimatic variation in phenological responses to climate change: A 28‐year study in a hibernating mammal. Ecosphere 2022. [DOI: 10.1002/ecs2.4059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Anouch Tamian
- Département Ecologie, Physiologie et Ethologie Institut Pluridisciplinaire Hubert Curien, CNRS Strasbourg France
| | - Vincent A. Viblanc
- Département Ecologie, Physiologie et Ethologie Institut Pluridisciplinaire Hubert Curien, CNRS Strasbourg France
| | - F. Stephen Dobson
- Département Ecologie, Physiologie et Ethologie Institut Pluridisciplinaire Hubert Curien, CNRS Strasbourg France
- Department of Biological Sciences Auburn University Auburn Alabama USA
| | - Peter Neuhaus
- Department of Biological Sciences University of Calgary Calgary Canada
| | - Tracey L. Hammer
- Département Ecologie, Physiologie et Ethologie Institut Pluridisciplinaire Hubert Curien, CNRS Strasbourg France
- Department of Biological Sciences University of Calgary Calgary Canada
| | | | - Shirley Raveh
- Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Glasgow UK
| | - Amy L. Skibiel
- Department of Animal, Veterinary and Food Sciences University of Idaho Moscow Idaho USA
| | - David Broussard
- Department of Biology Lycoming College Williamsport Pennsylvania USA
| | - Theodore G. Manno
- Science Department Catalina Foothills High School Tucson Arizona USA
| | - Nandini Rajamani
- Indian Institute of Science Education and Research Tirupati Andhra Pradesh India
| | - Claire Saraux
- Département Ecologie, Physiologie et Ethologie Institut Pluridisciplinaire Hubert Curien, CNRS Strasbourg France
| |
Collapse
|
27
|
Ma L, Versteegh MA, Hammers M, Komdeur J. Sex-specific influence of communal breeding experience on parenting performance and fitness in a burying beetle. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211179. [PMID: 35223054 PMCID: PMC8847889 DOI: 10.1098/rsos.211179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Communal breeding, wherein multiple conspecifics live and reproduce together, may generate short-term benefits in terms of defence and reproduction. However, its carry-over effects remain unclear. We experimentally tested the effects of communal breeding on parental care and reproduction in burying beetles (Nicrophorus vespilloides), which use carcasses as breeding resources and provide parental care to offspring. We subjected individuals to communal or non-communal breeding (i.e. pair breeding) during their first breeding event and to non-communal breeding during their second breeding event. We measured the parental care of individuals and of groups and the reproductive success of groups during both breeding events. In communal groups, large individuals became dominant and largely monopolized the carcass, whereas small individuals (i.e. subordinates) had restricted access to the carcass. At the first breeding event, large males in communal groups spent more time providing care than large males in non-communal groups, whereas such an effect was not observed for large females and small individuals. Reproductive successes were similar in communal and non-communal groups, indicating no short-term benefits of communal breeding in terms of reproduction. Compared with males from non-communal groups, males originating from communal groups produced a larger size of brood during their second breeding event, whereas such an effect was not observed for females. Our results demonstrate the sex-specific effects of communal breeding experience on parenting performance and fitness.
Collapse
Affiliation(s)
- Long Ma
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, 9712 CP Groningen, The Netherlands
| | - Maaike A. Versteegh
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, 9712 CP Groningen, The Netherlands
| | - Martijn Hammers
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, 9712 CP Groningen, The Netherlands
- Aeres University of Applied Sciences, Arboretum West 98, 1325 WB Almere, The Netherlands
| | - Jan Komdeur
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, 9712 CP Groningen, The Netherlands
| |
Collapse
|
28
|
Prokkola JM, Åsheim ER, Morozov S, Bangura P, Erkinaro J, Ruokolainen A, Primmer CR, Aykanat T. Genetic coupling of life-history and aerobic performance in Atlantic salmon. Proc Biol Sci 2022; 289:20212500. [PMID: 35078367 PMCID: PMC8790367 DOI: 10.1098/rspb.2021.2500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/24/2021] [Indexed: 11/12/2022] Open
Abstract
A better understanding of the genetic and phenotypic architecture underlying life-history variation is a longstanding aim in biology. Theories suggest energy metabolism determines life-history variation by modulating resource acquisition and allocation trade-offs, but the genetic underpinnings of the relationship and its dependence on ecological conditions have rarely been demonstrated. The strong genetic determination of age-at-maturity by two unlinked genomic regions (vgll3 and six6) makes Atlantic salmon (Salmo salar) an ideal model to address these questions. Using more than 250 juveniles in common garden conditions, we quantified the covariation between metabolic phenotypes-standard and maximum metabolic rates (SMR and MMR), and aerobic scope (AS)-and the life-history genomic regions, and tested if food availability modulates the relationships. We found that the early maturation genotype in vgll3 was associated with higher MMR and consequently AS. Additionally, MMR exhibited physiological epistasis; it was decreased when late maturation genotypes co-occurred in both genomic regions. Contrary to our expectation, the life-history genotypes had no effects on SMR. Furthermore, food availability had no effect on the genetic covariation, suggesting a lack of genotype-by-environment interactions. Our results provide insights on the key organismal processes that link energy use at the juvenile stage to age-at-maturity, indicating potential mechanisms by which metabolism and life-history can coevolve.
Collapse
Affiliation(s)
- Jenni M. Prokkola
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Eirik R. Åsheim
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Sergey Morozov
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Paul Bangura
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | | | - Annukka Ruokolainen
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Craig R. Primmer
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Tutku Aykanat
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| |
Collapse
|
29
|
Gurguis CI, Duckworth RA. Dynamic changes in begging signal short-term information on hunger and need. Am Nat 2022; 199:705-718. [DOI: 10.1086/719030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
30
|
de Rysky E, Roberta B, Andrea C, Daniele C. Measuring athletic performance in post-metamorphic fire salamanders. BMC Res Notes 2021; 14:399. [PMID: 34702356 PMCID: PMC8549336 DOI: 10.1186/s13104-021-05808-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/11/2021] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Athletic performances are dynamic movements that are physically challenging and often predict individual success in ecological contexts. They stem from a complex integration of multiple phenotypic traits-e.g., morphological, physiological and behavioural-that dictate animal survival and individual fitness. However, directly quantifying athletic performances can be particularly challenging in cryptic, slow-moving species or not very reactive in attitude. Here we present and describe a rapid, simple, and low-cost method to measure athletic performance in post-metamorphic individuals of the fire salamander Salamandra salamandra. While extremely reactive during the larval stage, adult salamanders are, in fact, cryptic and relatively slow-moving. RESULTS Forcing terrestrial juveniles to swim under standard, albeit ecologically plausible, laboratory conditions, and using an automatic point-mass tracking tool, we were able to measure maximal and average performance indicators of post-metamorphic individuals. This method avoids inter-individual variation in motivation, as it forces individuals to perform at their best. Moreover, with this method, measures of athletic performance will be directly comparable between larval and terrestrial stages, allowing to study the contribution of carryover effects to the wide range of processes implicated in the eco-evo-devo of athletic performance in salamanders.
Collapse
Affiliation(s)
- Erica de Rysky
- Dipartimento Di Scienze Ecologiche E Biologiche, Università Della Tuscia. Viale Dell'Università S.N.C, 01100, Viterbo, Italy
| | - Bisconti Roberta
- Dipartimento Di Scienze Ecologiche E Biologiche, Università Della Tuscia. Viale Dell'Università S.N.C, 01100, Viterbo, Italy.
| | - Chiocchio Andrea
- Dipartimento Di Scienze Ecologiche E Biologiche, Università Della Tuscia. Viale Dell'Università S.N.C, 01100, Viterbo, Italy
| | - Canestrelli Daniele
- Dipartimento Di Scienze Ecologiche E Biologiche, Università Della Tuscia. Viale Dell'Università S.N.C, 01100, Viterbo, Italy
| |
Collapse
|
31
|
Rebolledo AP, Sgrò CM, Monro K. Thermal Performance Curves Are Shaped by Prior Thermal Environment in Early Life. Front Physiol 2021; 12:738338. [PMID: 34744779 PMCID: PMC8564010 DOI: 10.3389/fphys.2021.738338] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/21/2021] [Indexed: 01/31/2023] Open
Abstract
Understanding links between thermal performance and environmental variation is necessary to predict organismal responses to climate change, and remains an ongoing challenge for ectotherms with complex life cycles. Distinct life stages can differ in thermal sensitivity, experience different environmental conditions as development unfolds, and, because stages are by nature interdependent, environmental effects can carry over from one stage to affect performance at others. Thermal performance may therefore respond to carryover effects of prior thermal environments, yet detailed insights into the nature, strength, and direction of those responses are still lacking. Here, in an aquatic ectotherm whose early planktonic stages (gametes, embryos, and larvae) govern adult abundances and dynamics, we explore the effects of prior thermal environments at fertilization and embryogenesis on thermal performance curves at the end of planktonic development. We factorially manipulate temperatures at fertilization and embryogenesis, then, for each combination of prior temperatures, measure thermal performance curves for survival of planktonic development (end of the larval stage) throughout the performance range. By combining generalized linear mixed modeling with parametric bootstrapping, we formally estimate and compare curve descriptors (thermal optima, limits, and breadth) among prior environments, and reveal carryover effects of temperature at embryogenesis, but not fertilization, on thermal optima at completion of development. Specifically, thermal optima shifted to track temperature during embryogenesis, while thermal limits and breadth remained unchanged. Our results argue that key aspects of thermal performance are shaped by prior thermal environment in early life, warranting further investigation of the possible mechanisms underpinning that response, and closer consideration of thermal carryover effects when predicting organismal responses to climate change.
Collapse
|
32
|
Suzuki Y, Toh L. Constraints and Opportunities for the Evolution of Metamorphic Organisms in a Changing Climate. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.734031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We argue that developmental hormones facilitate the evolution of novel phenotypic innovations and timing of life history events by genetic accommodation. Within an individual’s life cycle, metamorphic hormones respond readily to environmental conditions and alter adult phenotypes. Across generations, the many effects of hormones can bias and at times constrain the evolution of traits during metamorphosis; yet, hormonal systems can overcome constraints through shifts in timing of, and acquisition of tissue specific responses to, endocrine regulation. Because of these actions of hormones, metamorphic hormones can shape the evolution of metamorphic organisms. We present a model called a developmental goblet, which provides a visual representation of how metamorphic organisms might evolve. In addition, because developmental hormones often respond to environmental changes, we discuss how endocrine regulation of postembryonic development may impact how organisms evolve in response to climate change. Thus, we propose that developmental hormones may provide a mechanistic link between climate change and organismal adaptation.
Collapse
|
33
|
Sperm Production Is Reduced after a Heatwave at the Pupal Stage in the Males of the Parasitoid Wasp Microplitisrufiventris Kok (Hymenoptera; Braconidae). INSECTS 2021; 12:insects12100862. [PMID: 34680631 PMCID: PMC8539703 DOI: 10.3390/insects12100862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/31/2021] [Accepted: 09/18/2021] [Indexed: 11/23/2022]
Abstract
Simple Summary Biocontrol with natural enemies of insect pests needs an optimal reproduction of beneficial insects. Most insects are sensitive to heat, and many males suffer from sperm decrease when exposed to warmth during their development. It is dramatic in hymenoptera because males are issued from the development of unfertilized oocytes and only females develop from fertilized eggs. The sex ratio of populations then results from the availability of sperm for egg laying females. Microplitisrufiventris is a parasite of the cotton worm; this moth is a major pest for cotton fields in Egypt. Because the temperature is high in Egypt, reproduction of M. rufiventris must be studied to optimize its use in the fields. We conducted experiments to measure the sperm number of males after heat periods during their development. It shows that M. rufiventris males have less sperm than controls when they were exposed to 36 °C and 40 °C short periods during their development. Moreover, those males live shorter than males that were maintained at 25 °C. In conclusion, we found, males to be sensitive to heat waves, which results in lower fertility, resulting in a lower availability of sperm for females leading to a sex ratio bias. It may lead to a decrease of the efficacy of biocontrol in cotton fields. Abstract Understanding reproduction is essential for controlling pests and supporting beneficial insects. Among the many factors allowing optimal reproduction, sperm availability is key to sex ratio control in hymenopteran parasitoids since males are haploid and only females come from fertilization. Microplitisrufiventris (Hymenoptera; Braconidae) is a solitary endoparasitoid of some noctuids. This insect could be used for the control of the cotton leafworm Spodopteralittoralis. Under controlled conditions, sperm quantity was measured in virgin males at 1, 5, 10, and 15 days; it increases in adult males until the fifth day. Sperm stock of control males increased from 2500 at one day to 6700 at 15 days. With the control climatic condition being 25 °C, we tested the effects of a time-limited increase of temperature that can be found in Egypt (36 and 40 °C) during one day at the early pupal stage. Emerging males had 1500 and 420 sperm at 36 and 40 °C, respectively; both lived shorter than the control. The sperm potential of males is dependent on both age and temperature during the early pupal stage. It could have dramatic consequences on the sex ratio of M. rufiventris in natural and controlled populations.
Collapse
|
34
|
Birnie-Gauvin K, Larsen MH, Peiman KS, Midwood JD, Wilson ADM, Cooke SJ, Aarestrup K. No Evidence for Long-Term Carryover Effects in a Wild Salmonid Fish. Physiol Biochem Zool 2021; 94:319-329. [PMID: 34283699 DOI: 10.1086/716000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractEarly-life experiences can shape life histories and population dynamics of wild animals. To examine whether stressful stimuli experienced in early life resulted in carryover effects in later life stages, we conducted several experimental manipulations and then monitored wild fish with passive integrated transponder tags during juvenile out-migration and adult return migration. In total, 3,217 juvenile brown trout (Salmo trutta) were subjected to one of six manipulations: chase to exhaustion, thermal challenge, food deprivation, low-concentration cortisol injection, high-concentration cortisol injection, and sham injection, plus a control group. Cortisol and food deprivation treatments were previously shown to have short-term effects on juveniles, such as lower survival to out-migration and changes in migration timing. However, it remained unknown whether any of the six manipulations had effects that carried over into the adult phase. We therefore investigated whether these extrinsic manipulations, as well as intrinsic factors (size and condition), affected probability of return as adults and time spent at sea. Of the 1,273 fish that out-migrated, 146 returned as adults. We failed to detect any effect of treatments on return rates, while high-concentration cortisol weakly affected time spent at sea in one tagging event. We also found that juvenile condition was positively correlated to likelihood of adult return in only one tagging event. Overall, our findings did not identify either intrinsic factors or extrinsic stressful early-life experiences that have strong effects on fish that survive to adulthood. This suggests that some species may be more resilient than others to stressful stimuli encountered early in life.
Collapse
|
35
|
Gaudreau M, Guerra-Grenier E, Abram PK, Brodeur J. Photoprotective egg pigmentation reduces negative carryover effects of ultraviolet radiation on stink bug nymph survival. JOURNAL OF INSECT PHYSIOLOGY 2021; 133:104273. [PMID: 34181983 DOI: 10.1016/j.jinsphys.2021.104273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Solar ultraviolet radiation (UV) can have a wide range of negative effects on animal fitness that take place not only during, but also after exposure (carryover effects). UV-induced carryover effects and potential adaptations to avoid or mitigate them are understudied in terrestrial animals, including arthropods and their potentially most vulnerable life stages. The spined soldier bug, Podisus maculiventris, increases the emergence of its eggs that are exposed to UV radiation by coating them in sunscreen-like pigmentation, but consequences of these conditions of embryonic development for nymphs and adults are unknown. We measured stink bug nymph survival, adult size and sex ratio following exposure of differently pigmented eggs across a range of UV intensities. Nymph survival to adulthood decreased with higher intensity of embryonic UV exposure and this carryover effect decreased with higher level of egg pigmentation, similar to previously observed effects on embryonic survival. Nymph development time, adult size and sex ratio were not affected by embryonic exposure to UV radiation nor by photoprotective egg pigmentation. This study is the first to demonstrate the potential for lethal carryover effects of UV radiation in terrestrial insects, highlighting the need for more studies of how this pervasive environmental stressor can affect fitness across life stages.
Collapse
Affiliation(s)
- Mathilde Gaudreau
- Institut de Recherche en Biologie Végétale, Département de sciences biologiques, Université de Montréal, 4101 Sherbrooke E, Montréal, QC H1X 2B2, Canada.
| | - Eric Guerra-Grenier
- Institut de Recherche en Biologie Végétale, Département de sciences biologiques, Université de Montréal, 4101 Sherbrooke E, Montréal, QC H1X 2B2, Canada; Redpath Museum, Department of Biology, McGill University, 859 Sherbrooke W, Montréal, QC H3A 0C4, Canada
| | - Paul K Abram
- Institut de Recherche en Biologie Végétale, Département de sciences biologiques, Université de Montréal, 4101 Sherbrooke E, Montréal, QC H1X 2B2, Canada; Agassiz Research and Development Centre, Agriculture and Agri-Food Canada, Agassiz, BC V0M 1A0, Canada
| | - Jacques Brodeur
- Institut de Recherche en Biologie Végétale, Département de sciences biologiques, Université de Montréal, 4101 Sherbrooke E, Montréal, QC H1X 2B2, Canada
| |
Collapse
|
36
|
Ledón‐Rettig CC, Lagon SR. A novel larval diet interacts with nutritional stress to modify juvenile behaviors and glucocorticoid responses. Ecol Evol 2021; 11:10880-10891. [PMID: 34429887 PMCID: PMC8366881 DOI: 10.1002/ece3.7860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 11/29/2022] Open
Abstract
Developmental plasticity can allow the exploitation of alternative diets. While such flexibility during early life is often adaptive, it can leave a legacy in later life that alters the overall health and fitness of an individual. Species of the spadefoot toad genus Spea are uniquely poised to address such carryover effects because their larvae can consume drastically different diets: their ancestral diet of detritus or a derived shrimp diet. Here, we use Spea bombifrons to assess the effects of developmental plasticity in response to larval diet type and nutritional stress on juvenile behaviors and stress axis reactivity. We find that, in an open-field assay, juveniles fed shrimp as larvae have longer latencies to move, avoid prey items more often, and have poorer prey-capture abilities. While juveniles fed shrimp as larvae are more exploratory, this effect disappears if they also experienced a temporary nutritional stressor during early life. The larval shrimp diet additionally impairs juvenile jumping performance. Finally, larvae that were fed shrimp under normal nutritional conditions produce juveniles with higher overall glucocorticoid levels, and larvae that were fed shrimp and experienced a temporary nutritional stressor produce juveniles with higher stress-induced glucocorticoid levels. Thus, while it has been demonstrated that consuming the novel, alternative diet can be adaptive for larvae in nature, doing so has marked effects on juvenile phenotypes that may recalibrate an individual's overall fitness. Given that organisms often utilize diverse diets in nature, our study underscores the importance of considering how diet type interacts with early-life nutritional adversity to influence subsequent life stages.
Collapse
|
37
|
Krug PJ, Shimer E, Rodriguez VA. Differential Tolerance and Seasonal Adaptation to Temperature and Salinity Stress at a Dynamic Range Boundary Between Estuarine Gastropods. THE BIOLOGICAL BULLETIN 2021; 241:105-122. [PMID: 34436970 DOI: 10.1086/715845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
AbstractInsight into how coastal organisms will respond to changing temperature and salinity regimes may be derived from studies of adaptation to fluctuating estuarine environments, especially under stressful range-edge conditions. We characterized a dynamic range boundary between two estuarine sea slugs, Alderia modesta (distributed across the North Pacific and North Atlantic) and Alderia willowi, known from southern and central California. The species overlap from Bodega Bay to San Francisco Bay, where populations are dominated by A. modesta after winter rains but by A. willowi after peak summer temperatures. Laboratory assays confirmed superior tolerance to low salinity for the northern species, A. modesta: encapsulated embryos developed at 8 ppt, larvae survived at 4-6 ppt, and adults survived repeated exposure to 2 ppt, salinities that reduced development or survival for the same stages of A. willowi. Adults did not appreciably differ in their high-temperature threshold, however. Each species showed increased tolerance to either temperature or salinity stress at its range margin, indicating plasticity or local adaptation, but at the cost of reduced tolerance to the other stressor. At its northern limit, A. willowi became more tolerant of low salinity during the winter rainy season, but also less heat tolerant. Conversely, A. modesta became more heat resistant from spring to summer at its southern limit, but less tolerant of low salinity. Trade-offs in stress tolerance may generally constrain adaptation and limit biotic response to a rapidly changing environment, as well as differentiating species niches.
Collapse
|
38
|
Villeneuve AR, Komoroske LM, Cheng BS. Diminished warming tolerance and plasticity in low-latitude populations of a marine gastropod. CONSERVATION PHYSIOLOGY 2021; 9:coab039. [PMID: 34136259 PMCID: PMC8201192 DOI: 10.1093/conphys/coab039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/08/2021] [Accepted: 05/13/2021] [Indexed: 05/25/2023]
Abstract
Models of species response to climate change often assume that physiological traits are invariant across populations. Neglecting potential intraspecific variation may overlook the possibility that some populations are more resilient or susceptible than others, creating inaccurate predictions of climate impacts. In addition, phenotypic plasticity can contribute to trait variation and may mediate sensitivity to climate. Quantifying such forms of intraspecific variation can improve our understanding of how climate can affect ecologically important species, such as invasive predators. Here, we quantified thermal performance (tolerance, acclimation capacity, developmental traits) across seven populations of the predatory marine snail (Urosalpinx cinerea) from native Atlantic and non-native Pacific coast populations in the USA. Using common garden experiments, we assessed the effects of source population and developmental acclimation on thermal tolerance and developmental traits of F1 snails. We then estimated climate sensitivity by calculating warming tolerance (thermal tolerance - habitat temperature), using field environmental data. We report that low-latitude populations had greater thermal tolerance than their high latitude counterparts. However, these same low-latitude populations exhibited decreased thermal tolerance when exposed to environmentally realistic higher acclimation temperatures. Low-latitude native populations had the greatest climate sensitivity (habitat temperatures near thermal limits). In contrast, invasive Pacific snails had the lowest climate sensitivity, suggesting that these populations are likely to persist and drive negative impacts on native biodiversity. Developmental rate significantly increased in embryos sourced from populations with greater habitat temperature but had variable effects on clutch size and hatching success. Thus, warming can produce widely divergent responses within the same species, resulting in enhanced impacts in the non-native range and extirpation in the native range. Broadly, our results highlight how intraspecific variation can alter management decisions, as this may clarify whether management efforts should be focused on many or only a few populations.
Collapse
Affiliation(s)
- Andrew R Villeneuve
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Gloucester Marine Station, University of Massachusetts Amherst, Gloucester, MA 01930, USA
| | - Lisa M Komoroske
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Gloucester Marine Station, University of Massachusetts Amherst, Gloucester, MA 01930, USA
| | - Brian S Cheng
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Gloucester Marine Station, University of Massachusetts Amherst, Gloucester, MA 01930, USA
| |
Collapse
|
39
|
Donelan SC, Breitburg D, Ogburn MB. Context-dependent carryover effects of hypoxia and warming in a coastal ecosystem engineer. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02315. [PMID: 33636022 PMCID: PMC8243920 DOI: 10.1002/eap.2315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 11/06/2020] [Accepted: 12/06/2020] [Indexed: 05/20/2023]
Abstract
Organisms are increasingly likely to be exposed to multiple stressors repeatedly across ontogeny as climate change and other anthropogenic stressors intensify. Early life stages can be particularly sensitive to environmental stress, such that experiences early in life can "carry over" to have long-term effects on organism fitness. Despite the potential importance of these within-generation carryover effects, we have little understanding of how they vary across ecological contexts, particularly when organisms are re-exposed to the same stressors later in life. In coastal marine systems, anthropogenic nutrients and warming water temperatures are reducing average dissolved oxygen (DO) concentrations while also increasing the severity of naturally occurring daily fluctuations in DO. Combined effects of warming and diel-cycling DO can strongly affect the fitness and survival of coastal organisms, including the eastern oyster (Crassostrea virginica), a critical ecosystem engineer and fishery species. However, whether early life exposure to hypoxia and warming affects oysters' subsequent response to these stressors is unknown. Using a multiphase laboratory experiment, we explored how early life exposure to diel-cycling hypoxia and warming affected oyster growth when oysters were exposed to these same stressors 8 weeks later. We found strong, interactive effects of early life exposure to diel-cycling hypoxia and warming on oyster tissue : shell growth, and these effects were context-dependent, only manifesting when oysters were exposed to these stressors again two months later. This change in energy allocation based on early life stress exposure may have important impacts on oyster fitness. Exposure to hypoxia and warming also influenced oyster tissue and shell growth, but only later in life. Our results show that organisms' responses to current stress can be strongly shaped by their previous stress exposure, and that context-dependent carryover effects may influence the fitness, production, and restoration of species of management concern, particularly for sessile species such as oysters.
Collapse
Affiliation(s)
- Sarah C. Donelan
- Smithsonian Environmental Research Center647 Contees Wharf RoadEdgewaterMaryland21037USA
| | - Denise Breitburg
- Smithsonian Environmental Research Center647 Contees Wharf RoadEdgewaterMaryland21037USA
| | - Matthew B. Ogburn
- Smithsonian Environmental Research Center647 Contees Wharf RoadEdgewaterMaryland21037USA
| |
Collapse
|
40
|
Moore MP. Larval habitats impose trait-dependent limits on the direction and rate of adult evolution in dragonflies. Biol Lett 2021; 17:20210023. [PMID: 34006119 DOI: 10.1098/rsbl.2021.0023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Natural selection on juveniles is often invoked as a constraint on adult evolution, but it remains unclear when such restrictions will have their greatest impact. Selection on juveniles could, for example, mainly limit the evolution of adult traits that mostly develop prior to maturity. Alternatively, selection on juveniles might primarily constrain the evolution of adult traits that experience weak or context-dependent selection in the adult stage. Using a comparative study of dragonflies, I tested these hypotheses by examining how a species' larval habitat was related to the evolution of two adult traits that differ in development and exposure to selection: adult size and male ornamentation. Whereas adult size is fixed at metamorphosis and experiences consistent positive selection in the adult stage, ornaments develop throughout adulthood and provide context-dependent fitness benefits. My results show that species that develop in less stable larval habitats have smaller adult sizes and slower rates of adult size evolution. However, these risky larval habitats do not limit ornament expression or rates of ornament evolution. Selection on juveniles may therefore primarily affect the evolution of adult traits that mostly develop prior to maturity.
Collapse
Affiliation(s)
- Michael P Moore
- Living Earth Collaborative, Washington University, St Louis, MO 63130, USA
| |
Collapse
|
41
|
Moore MP, Martin RA. Natural Selection on Adults Has Trait-Dependent Consequences for Juvenile Evolution in Dragonflies. Am Nat 2021; 197:677-689. [PMID: 33989138 DOI: 10.1086/714048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractAlthough natural selection often fluctuates across ontogeny, it remains unclear what conditions enable selection in one life-cycle stage to shape evolution in others. Organisms that undergo metamorphosis are useful for addressing this topic because their highly specialized life-cycle stages cannot always evolve independently despite their dramatic life-history transition. Using a comparative study of dragonflies, we examined three conditions that are hypothesized to allow selection in one stage to affect evolution in others. First, we tested whether lineages with less dramatic metamorphosis (e.g., hemimetabolous insects) lack the capacity for stage-specific evolution. Rejecting this hypothesis, we found that larval body shape evolves independently from selection on adult shape. Next, we evaluated whether stage-specific evolution is limited for homologous and/or coadapted structures. Indeed, we found that selection for larger wings is associated with the evolution of coadapted larval sheaths that store developing wing tissue. Finally, we assessed whether stage-specific evolution is restricted for traits linked to a single biochemical pathway. Supporting this hypothesis, we found that species with more wing melanization in the adult stage have evolved weaker melanin immune defenses in the larval stage. Thus, our results collectively show that natural selection in one stage imposes trait-dependent constraints on evolution in others.
Collapse
|
42
|
Martin RA, Chick LD, Garvin ML, Diamond SE. In a nutshell, a reciprocal transplant experiment reveals local adaptation and fitness trade-offs in response to urban evolution in an acorn-dwelling ant. Evolution 2021; 75:876-887. [PMID: 33586171 PMCID: PMC8247984 DOI: 10.1111/evo.14191] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 02/07/2021] [Indexed: 01/02/2023]
Abstract
Urban-driven evolution is widely evident, but whether these changes confer fitness benefits and thus represent adaptive urban evolution is less clear. We performed a multiyear field reciprocal transplant experiment of acorn-dwelling ants across urban and rural environments. Fitness responses were consistent with local adaptation: we found a survival advantage of the "home" and "local" treatments compared to "away" and "foreign" treatments. Seasonal bias in survival was consistent with evolutionary patterns of gains and losses in thermal tolerance traits across the urbanization gradient. Rural ants in the urban environment were more vulnerable in the summer, putatively due to low heat tolerance, and urban ants in the rural environment were more vulnerable in winter, putatively due to an evolved loss of cold tolerance. The results for fitness via fecundity were also generally consistent with local adaptation, if somewhat more complex. Urban-origin ants produced more alates in their home versus away environment, and rural-origin ants had a local advantage in the rural environment. Overall, the magnitude of local adaptation was lower for urban ants in the novel urban environment compared with rural ants adapted to the ancestral rural environment, adding further evidence that species might not keep pace with anthropogenic change.
Collapse
Affiliation(s)
- Ryan A. Martin
- Department of BiologyCase Western Reserve UniversityClevelandOhio44106
| | - Lacy D. Chick
- Department of BiologyCase Western Reserve UniversityClevelandOhio44106
- Hawken SchoolGates MillsOhio44040
| | - Matthew L. Garvin
- Department of BiologyCase Western Reserve UniversityClevelandOhio44106
- Department of BiologyCentral Michigan UniversityMount PleasantMichigan48859
| | - Sarah E. Diamond
- Department of BiologyCase Western Reserve UniversityClevelandOhio44106
| |
Collapse
|
43
|
Mouton JC, Duckworth RA. Maternally derived hormones, neurosteroids and the development of behaviour. Proc Biol Sci 2021; 288:20202467. [PMID: 33499795 DOI: 10.1098/rspb.2020.2467] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In a wide range of taxa, there is evidence that mothers adaptively shape the development of offspring behaviour by exposing them to steroids. These maternal effects have major implications for fitness because, by shaping early development, they can permanently alter how offspring interact with their environment. However, theory on parent-offspring conflict and recent physiological studies showing that embryos rapidly metabolize maternal steroids have placed doubt on the adaptive significance of these hormone-mediated maternal effects. Reconciling these disparate perspectives requires a mechanistic understanding of the pathways by which maternal steroids can influence neural development. Here, we highlight recent advances in developmental neurobiology and psychiatric pharmacology to show that maternal steroid metabolites can have direct neuro-modulatory effects potentially shaping the development of neural circuitry underlying ecologically relevant behavioural traits. The recognition that maternal steroids can act through a neurosteroid pathway has critical implications for our understanding of the ecology and evolution of steroid-based maternal effects. Overall, compared to the classic view, a neurosteroid mechanism may reduce the evolutionary lability of hormone-mediated maternal effects owing to increased pleiotropic constraints and frequently influence long-term behavioural phenotypes in offspring.
Collapse
Affiliation(s)
- James C Mouton
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA.,Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park, MRC 5503, Washington, DC 20013-7012, USA
| | - Renée A Duckworth
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
44
|
English S, Barreaux AMG. The evolution of sensitive periods in development: insights from insects. Curr Opin Behav Sci 2020. [DOI: 10.1016/j.cobeha.2020.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Zanette LY, Clinchy M. Ecology and Neurobiology of Fear in Free-Living Wildlife. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-011720-124613] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The ecology of fear concerns the population-, community-, and ecosystem-level consequences of the behavioral interactions between predators and prey, i.e., the aggregate impacts of individual responses to life-threatening events. We review new experiments demonstrating that fear itself is powerful enough to affect the population growth rate in free-living wild birds and mammals, and fear of large carnivores—or the human super predator—can cause trophic cascades affecting plant and invertebrate abundance. Life-threatening events like escaping a predator can have enduring, even lifelong, effects on the brain, and new interdisciplinary research on the neurobiology of fear in wild animals is both providing insights into post-traumatic stress (PTSD) and reinforcing the likely commonality of population- and community-level effects of fear in nature. Failing to consider fear thus risks dramatically underestimating the total impact predators can have on prey populations and the critical role predator-prey interactions can play in shaping ecosystems.
Collapse
Affiliation(s)
- Liana Y. Zanette
- Department of Biology, Western University, London, Ontario N6A 5B7, Canada;,
| | - Michael Clinchy
- Department of Biology, Western University, London, Ontario N6A 5B7, Canada;,
| |
Collapse
|
46
|
Bladon EK, English S, Pascoal S, Kilner RM. Early-life effects on body size in each sex interact to determine reproductive success in the burying beetle Nicrophorus vespilloides. J Evol Biol 2020; 33:1725-1734. [PMID: 33045112 DOI: 10.1111/jeb.13711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/08/2020] [Accepted: 09/19/2020] [Indexed: 11/28/2022]
Abstract
Early-life conditions have been shown to have a profound effect on an animal's body size and fecundity across diverse taxa. However, less is known about how early-life effects on fecundity within each sex interact to determine reproductive success. We used experiments with burying beetles Nicrophorus vespilloides to analyse this problem. The nutritional conditions experienced by burying beetles in early life are a key determinant of adult body size in both sexes, and adult body size in turn influences male reproductive tactics. In previous work, we showed that smaller males are more effective than larger males at stimulating virgin female fecundity. In this study, we manipulated male and female body size by restricting access to food in early development. We then conducted breeding assays, in which small and large females were mated sequentially with small and large males, and then allowed to raise offspring without paternal care. We tested whether large females, which are potentially more fecund, laid even more eggs when mated with small males. We found no evidence to support this prediction. Instead, we detected only a weak non-significant trend in the predicted direction and no equivalent trend in the number of larvae produced. However, we did find that larvae attained a greater mass by the end of development when their mother was large and mated with a small male first. We suggest that large females might have evolved counter-measures that prevent exploitation by small fecundity-stimulating males, including partial filial cannibalism. By eating surplus larvae during reproduction, larger females would leave more of the carrion for their offspring to consume. This could explain why their surviving larvae are able to attain a greater mass by the time they complete their development.
Collapse
Affiliation(s)
| | - Sinead English
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Sonia Pascoal
- Department of Zoology, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
47
|
Bourne AR, Cunningham SJ, Spottiswoode CN, Ridley AR. Hot droughts compromise interannual survival across all group sizes in a cooperatively breeding bird. Ecol Lett 2020; 23:1776-1788. [PMID: 32945068 DOI: 10.1111/ele.13604] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/03/2020] [Accepted: 08/13/2020] [Indexed: 12/20/2022]
Abstract
Climate change is affecting animal populations around the world and one relatively unexplored aspect of species vulnerability is whether and to what extent responses to environmental stressors might be mitigated by variation in group size in social species. We used a 15-year data set for a cooperatively breeding bird, the southern pied babbler Turdoides bicolor, to determine the impact of temperature, rainfall and group size on body mass change and interannual survival in both juveniles and adults. Hot and dry conditions were associated with reduced juvenile growth, mass loss in adults and compromised survival between years in both juveniles (86% reduction in interannual survival) and adults (60% reduction in interannual survival). Individuals across all group sizes experienced similar effects of climatic conditions. Larger group sizes may not buffer individual group members against the impacts of hot and dry conditions, which are expected to increase in frequency and severity in future.
Collapse
Affiliation(s)
- Amanda R Bourne
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa
| | - Susan J Cunningham
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa
| | - Claire N Spottiswoode
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa.,Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Amanda R Ridley
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa.,Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, 6009, Australia
| |
Collapse
|
48
|
de la Serna Buzon SM, Martin RA, Pfennig DW. Carryover effects and the evolution of polyphenism. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AbstractAn individual’s early-life environment and phenotype often influence its traits and performance as an adult. We investigated whether such ‘carryover effects’ are associated with alternative, environmentally-induced phenotypes (‘polyphenism’), and, if so, whether they influence the evolution of polyphenism. To do so, we studied Mexican spadefoot toads, Spea multiplicata, which have evolved a polyphenism consisting of two, dramatically different forms: a carnivore morph and an omnivore morph. We sampled both morphs from a fast-drying and a slow-drying pond and reared them to sexual maturity. Larval environment (pond) strongly influenced survival as well as age and size at metamorphosis and sexual maturity; i.e. environment-dependent carryover effects were present. By contrast, larval phenotype (morph) did not affect life-history traits at sexual maturity; i.e. phenotype-dependent carryover effects were absent. These results are consistent with theory, which suggests that by amplifying selective trade-offs in heterogenous environments, environment-dependent carryover effects might foster the evolution of polyphenism. At the same time, by freeing selection to refine a novel phenotype without altering the existing form, the absence of phenotype-dependent carryover effects might enable polyphenism to evolve in the first place. Generally, carryover effects might play an underappreciated role in the evolution of polyphenism.
Collapse
Affiliation(s)
| | - Ryan A Martin
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| | - David W Pfennig
- Department of Biology, CB#3280, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
49
|
Mouton JC, Tobalske BW, Wright NA, Martin TE. Risk of predation on offspring reduces parental provisioning, but not flight performance or survival across early life stages. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13650] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- James C. Mouton
- Montana Cooperative Wildlife Research Unit University of Montana Missoula MT USA
| | - Bret W. Tobalske
- Field Research Station at Fort Missoula Division of Biological Sciences University of Montana Missoula MT USA
| | - Natalie A. Wright
- Field Research Station at Fort Missoula Division of Biological Sciences University of Montana Missoula MT USA
- Department of Biology Kenyon College Gambier OH USA
| | - Thomas E. Martin
- U.S. Geological Survey Montana Cooperative Wildlife Research Unit University of Montana Missoula MT USA
| |
Collapse
|
50
|
Relative size underlies alternative morph development in a salamander. Oecologia 2020; 193:879-888. [PMID: 32740730 DOI: 10.1007/s00442-020-04723-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 07/23/2020] [Indexed: 01/16/2023]
Abstract
Size thresholds commonly underlie the induction of alternative morphological states. However, the respective importance of absolute and relative size to such thresholds remains uncertain. If absolute size governs expression, morph frequency should differ among environments that influence absolute sizes (e.g. resources, competition), and individuals of the same morph should have similar average sizes across environments. If relative size determines expression, the frequency of each morph may not differ among environments, but morphs within each environment should differ in size relative to one another. We tested these predictions in a salamander (Ambystoma talpoideum) that develops into either a terrestrial metamorph or an aquatic paedomorph. To generate size variation within and among environments, we reared individuals in mesocosm ponds across three conspecific densities. We found that morph frequency did not differ among density treatments, and the morphs were not similarly sized within each density treatment. Instead, within each environment, relatively larger individuals became metamorphs and relatively smaller individuals became paedomorphs. Relative size therefore determined morph development, highlighting the importance of an individual's social context to size-dependent morph induction.
Collapse
|