1
|
Liu Y, Sawada K, Adachi T, Kino Y, Yin T, Yamamoto N, Yamada T. Comparative genome analysis of the immunomodulatory ability of Lactiplantibacillus plantarum and Lactiplantibacillus pentosus from Japanese pickles. mSystems 2025; 10:e0157524. [PMID: 40298372 PMCID: PMC12090711 DOI: 10.1128/msystems.01575-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 04/02/2025] [Indexed: 04/30/2025] Open
Abstract
Lactic acid bacteria (LAB) are pivotal in food preservation and exhibit immunomodulatory effects on interleukin-10 (IL-10) and interleukin-12 (IL-12) production. Lactiplantibacillus plantarum (L. plantarum) and Lactiplantibacillus pentosus (L. pentosus) from fermented food are known for their effect; however, a comprehensive comparative genome analysis is needed to identify the linked genes. Here, we investigated the immunomodulatory capability at the genome level of L. plantarum and L. pentosus strains isolated from Japanese pickles at the genome level, and we further identified their immunomodulation-associated genes using the potential-gene (PG) index derived from the Calinski-Harabasz (CH) index. The results revealed an immunostimulatory clade with strain-specific IL-10 and IL-12 induction and identified key genes via the PG index. Both genes across two species were shown to encode the enzyme TagF2, which is crucial for synthesizing poly-glycerol-3-phosphate type wall teichoic acid (poly-GroP WTA), indicating that TagF2 plays a potential role as an effective microbe-associated-molecular-pattern. In vivo analyses confirmed the IL-10-inducing ability of one strain, reinforcing the IL-10-stimulating capacity of its poly-GroP WTA. Subpotential genes in L. plantarum TagF2-possessing strains were linked to host‒cell interactions, suggesting that such strains play potential probiotic roles. Collectively, the PG index effectively identified immunomodulation-related genes, thus paving the way for the use of the PG index to detect potential health benefit-associated genes in other LAB species. IMPORTANCE Lactic acid bacteria are pivotal in food preservation and exhibit immunomodulatory effects on interleukin-10 (IL-10) and interleukin-12 (IL-12) production. Lactiplantibacillus plantarum and Lactiplantibacillus pentosus from fermented food are known for such effect, yet comprehensive comparative genome analysis is needed to elucidate the linked genes of the two species. The significance of our research is in observing the immunostimulatory clade with strain-specific cytokine induction and identifying key immunostimulation-related genes encoding enzymes that are crucial for synthesizing a potentially effective microbe-associated-molecular-pattern using the potential-gene index across two species. The further in vivo validation reinforced the interleukin-10-stimulating capacity of the identified pattern, and the detected sub-potential genes in Lactiplantibacillus plantarum key-gene possessing strains implied the utility of potential-gene index in detecting potential health-benefit-associated genes in other lactic acid bacteria species.
Collapse
Affiliation(s)
- Yiting Liu
- School of Life Science and Technology, Institute of Science Tokyo, Tokyo, Japan
| | | | - Takahiko Adachi
- Department of Precision Health, Medical Research Institute, The Institute of Medical Engineering, Institute of New Industry Incubation, Institute of Science Tokyo, Tokyo, Japan
| | - Yuta Kino
- School of Life Science and Technology, Institute of Science Tokyo, Tokyo, Japan
| | - Tingyu Yin
- School of Life Science and Technology, Institute of Science Tokyo, Tokyo, Japan
| | - Naoyuki Yamamoto
- School of Life Science and Technology, Institute of Science Tokyo, Tokyo, Japan
- Laboratory for Intestinal Microbiota, Juntendo University, Bunkyo City, Tokyo, Japan
| | - Takuji Yamada
- School of Life Science and Technology, Institute of Science Tokyo, Tokyo, Japan
- Metagen, Inc., Yamagata, Japan
- Metagen Theurapeutics, Inc., Yamagata, Japan
- digzyme, Inc., Tokyo, Japan
| |
Collapse
|
2
|
Paventi G, Di Martino C, Coppola F, Iorizzo M. β-Glucosidase Activity of Lactiplantibacillus plantarum: A Key Player in Food Fermentation and Human Health. Foods 2025; 14:1451. [PMID: 40361534 PMCID: PMC12072041 DOI: 10.3390/foods14091451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/18/2025] [Accepted: 04/20/2025] [Indexed: 05/15/2025] Open
Abstract
β-glucosidases are a relevant class of enzymes in the food industry due to their role in hydrolyzing different types of glycosidic bonds. This activity allows for formation of volatile compounds and release of bioactive aglycone compounds. In addition to endogenous β-glucosidase activity present in raw material, the function of β-glucosidases in fermenting microorganisms has been progressively clarified and increasingly appreciated. In this regard, several lactic acid bacteria, including Lactiplantibacillus plantarum, showed high β-glucosidase activity, which can be considered as a valid biotechnological resource in different food sectors. Here, we reviewed the huge literature in which the β-glucosidases of L. plantarum were shown to play a role, highlighting how their action results in enhancing the nutritional, sensory, and functional properties of fermented foods. To this aim, after a brief introduction of the main functions of these enzymes in several kingdoms, we critically analyzed the involvement of L. plantarum β-glucosidases in plant-based food production, with a particular insight for soy, cassava, and olive-fermented products, as well as in the production of both alcoholic and non-alcoholic beverages. We trust that the reports summarized here can be helpful in planning future research and innovative strategies to obtain pleasing, functional, and healthy foods.
Collapse
Affiliation(s)
- Gianluca Paventi
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy;
| | - Catello Di Martino
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy;
| | - Francesca Coppola
- Department of Agricultural Sciences, University of Naples “Federico II”, Portici, 80055 Naples, Italy;
| | - Massimo Iorizzo
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy;
| |
Collapse
|
3
|
Pham VD, Gerlinsky M, Lettrari S, Gänzle MG. Evolution and ecology of C30 carotenoid synthesis in Lactobacillaceae and application of pigmented lactobacilli in pasta production. Food Microbiol 2025; 127:104688. [PMID: 39667859 DOI: 10.1016/j.fm.2024.104688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/17/2024] [Accepted: 11/25/2024] [Indexed: 12/14/2024]
Abstract
Pasta is a staple food in many parts of the world. A bright yellow colour of pasta is preferred by consumers. However, the colour is easily degraded during pasta processing. In a sourdough used for pasta production, we identified the pigmented Fructilactobacillus spp. FUA 3913, which represents a novel species that remains to be described ,and carries genes for the carotenoid-producing enzymes CrtM and CrtN in its genome. HPLC and spectral analysis identified the carotenoid as 4,4'-diaponeurosporene which is also produced by other lactobacilli expressing CrtM and CrtN. The topology of the CrtM/N trees does not match the phylogeny of the organisms, indicating that the enzymes were acquired by horizontal gene transfer. Pigmentation is frequent in insect-associated lactobacilli and lactobacilli that are part of the phyllosphere. Pigmented heterofermentative lactobacilli may enhance the yellow colour of durum semolina pasta by two mechanisms, first, by producing carotenoids and second, by preventing lipoxygenase-mediated degradation of durum carotenoids during dough mixing and extrusion. The comparison of the influence of fermentation with the non-pigmented, homofermentative Lactiplantibacillus plantarum, the non-pigmented heterofermentative Fructilactobacillus sanfranciscensis and the pigmented, heterofermentative Fructilactobacillus spp. FUA3913 indicated that inhibition of lipid oxidation is more relevant for the colour of pasta. In summary, our study provides novel insights into the evolution of C30 carotenoid and ecology of lactobacilli, and documents the use of pigmented lactobacilli to enhance the yellow colour of fermented foods.
Collapse
Affiliation(s)
- Vi D Pham
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Canada
| | - Morgan Gerlinsky
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Canada
| | | | - Michael G Gänzle
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Canada.
| |
Collapse
|
4
|
Bujdoš D, Walter J, O'Toole PW. aurora: a machine learning gwas tool for analyzing microbial habitat adaptation. Genome Biol 2025; 26:66. [PMID: 40122838 PMCID: PMC11930000 DOI: 10.1186/s13059-025-03524-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/03/2025] [Indexed: 03/25/2025] Open
Abstract
A primary goal of microbial genome-wide association studies is identifying genomic variants associated with a particular habitat. Existing tools fail to identify known causal variants if the analyzed trait shaped the phylogeny. Furthermore, due to inclusion of allochthonous strains or metadata errors, the stated sources of strains in public databases are often incorrect, and strains may not be adapted to the habitat from which they were isolated. We describe a new tool, aurora, that identifies autochthonous strains and the genes associated with habitats while acknowledging the potential role of the habitat adaptation trait in shaping phylogeny.
Collapse
Affiliation(s)
- Dalimil Bujdoš
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland
- School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland
| | - Jens Walter
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland
- School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland
- Department of Medicine, University College Cork, National University of Ireland, Cork, Ireland
| | - Paul W O'Toole
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland.
- School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland.
| |
Collapse
|
5
|
Wang W, Kyrkou I, Bojer MS, Kalloubi D, Kali AJ, Alena-Rodriguez M, Leisner JJ, Fulaz S, Ingmer H. Characterization of agr-like Loci in Lactiplantibacillus plantarum and L. paraplantarum and Their Role in Quorum Sensing and Virulence Inhibition of Staphylococcus aureus. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10476-8. [PMID: 39966225 DOI: 10.1007/s12602-025-10476-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2025] [Indexed: 02/20/2025]
Abstract
The pathogenicity of Staphylococcus aureus is largely regulated by the agr quorum sensing (QS) system encoded by agrBDCA, which coordinates virulence factor production through secretion and sensing of auto-inducing peptides (AIPs). agr-like systems are also present in coagulase-negative staphylococci, and several of these encode AIPs that inhibit S. aureus QS. In lactic acid bacteria, a similar locus was previously identified in Lactiplantibacillus plantarum WCSF1 termed lamBDCA. Here, we characterized the lamBDCA locus in L. plantarum LMG 13556 and L. paraplantarum CIRM-BIA 1870, and explored the effects on S. aureus QS. Notably, we found that co-cultivation with L. paraplantarum significantly inhibits S. aureus QS and hemolysin production, while less so for L. plantarum. The inhibition by L. paraplantarum was lost upon disruption of its lamBDCA locus, suggesting that the L. paraplantarum AIP mediates cross-species interference with S. aureus agr activation. Transcriptomic analysis revealed that lamBDCA in L. paraplantarum controls the expression of genes belonging to various functional categories, including stress response and metabolism. The latter includes genes encoding riboflavin (B2 vitamin) biosynthesis, which enabled the growth of the L. paraplantarum lamB mutant in the presence of roseoflavin, a toxic riboflavin analogue. Collectively, our results show that L. paraplantarum CIRM-BIA 1870 interferes with S. aureus virulence gene expression through QS suppression, and they implicate QS in the probiotic properties of L. paraplantarum.
Collapse
Affiliation(s)
- Weizhe Wang
- Bacterial & Viruses Section, Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870, Copenhagen, Denmark
| | - Ifigeneia Kyrkou
- Bacterial & Viruses Section, Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870, Copenhagen, Denmark
| | - Martin S Bojer
- Bacterial & Viruses Section, Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870, Copenhagen, Denmark
| | - Dina Kalloubi
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
| | - Abdul Jabbar Kali
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
| | - Miguel Alena-Rodriguez
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
| | - Jørgen J Leisner
- Bacterial & Viruses Section, Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870, Copenhagen, Denmark
| | - Stephanie Fulaz
- Bacterial & Viruses Section, Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870, Copenhagen, Denmark.
| | - Hanne Ingmer
- Bacterial & Viruses Section, Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870, Copenhagen, Denmark.
| |
Collapse
|
6
|
Rahimi-Midani A, Iatsenko I. Colonization island directs L. plantarum to its niche. Cell Host Microbe 2025; 33:168-170. [PMID: 39947128 DOI: 10.1016/j.chom.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 05/09/2025]
Abstract
Symbiotic gut bacteria have evolved mechanisms to selectively recognize and colonize an appropriate host. In a recent issue of Science, Gutiérrez-García et al. reported a colonization island that encodes sugar-binding adhesins used by Lactiplantibacillus plantarum to colonize its symbiotic niche in the foregut of its host, Drosophila melanogaster.
Collapse
Affiliation(s)
- Aryan Rahimi-Midani
- Research group Genetics of host-microbe interactions, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Igor Iatsenko
- Research group Genetics of host-microbe interactions, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
7
|
Mazzeo MF, Sorrentino A, Morandi S, Abouloifa H, Asehraou A, Brasca M, Siciliano RA. Catalogue of surface proteins of Lactiplantibacillus plantarum strains of dairy and vegetable niches. Int J Food Microbiol 2025; 426:110922. [PMID: 39342700 DOI: 10.1016/j.ijfoodmicro.2024.110922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/05/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
Lactiplantibacillus plantarum (formerly Lactobacillus plantarum) exhibits relevant probiotic and technological features and is widely used in food industries, improving flavour, texture and organoleptic properties of fermented products. Cell-surface proteins have a key role in the molecular mechanisms responsible for healthy effects, being the first actors in the bacteria - host interactions. Proteins present on the surface of four L. plantarum strains (two isolated from vegetable matrices and two from dairy products) were identified by proteomics with the aim to gain a comprehensive picture of differences in protein profiles potentially related to the habitat of origin and specific properties of the analyzed strains. Results highlighted a more diversified pattern of surface proteins in strains from vegetable matrices compared to those from dairy matrices (>500 proteins vs about 200 proteins, respectively). The four strains shared a core of 143 proteins, while 445 were specifically present in strains from vegetable matrices and 26 were peculiar of strains from dairy origin. Sortase A, involved in adhesion, and choloylglycine hydrolase (bile salt hydrolase) were detected only in strains from vegetable matrices. The peculiar molecular functions of identified proteins suggested that these strains, and in particular L. plantarum S61, could have a significant probiotic and biotechnological potential.
Collapse
Affiliation(s)
| | - Alida Sorrentino
- Institute of Food Sciences, National Research Council (CNR-ISA), Avellino, Italy
| | - Stefano Morandi
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), Milan, Italy
| | - Houssam Abouloifa
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed Premier University, Oujda, Morocco
| | - Abdeslam Asehraou
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed Premier University, Oujda, Morocco
| | - Milena Brasca
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), Milan, Italy
| | - Rosa Anna Siciliano
- Institute of Food Sciences, National Research Council (CNR-ISA), Avellino, Italy
| |
Collapse
|
8
|
Gutiérrez-García K, Aumiller K, Dodge R, Obadia B, Deng A, Agrawal S, Yuan X, Wolff R, Zhu H, Hsia RC, Garud N, Ludington WB. A conserved bacterial genetic basis for commensal-host specificity. Science 2024; 386:1117-1122. [PMID: 39636981 PMCID: PMC11914777 DOI: 10.1126/science.adp7748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/07/2024] [Indexed: 12/07/2024]
Abstract
Animals selectively acquire specific symbiotic gut bacteria from their environments that aid host fitness. To colonize, a symbiont must locate its niche and sustain growth within the gut. Adhesins are bacterial cell surface proteins that facilitate attachment to host tissues and are often virulence factors for opportunistic pathogens. However, the attachments are often transient and nonspecific, and additional mechanisms are required to sustain infection. In this work, we use live imaging of individual symbiotic bacterial cells colonizing the gut of living Drosophila melanogaster to show that Lactiplantibacillus plantarum specifically recognizes the fruit fly foregut as a distinct physical niche. L. plantarum establishes stably within its niche through host-specific adhesins encoded by genes carried on a colonization island. The adhesin binding domains are conserved throughout the Lactobacillales, and the island also encodes a secretion system widely conserved among commensal and pathogenic bacteria.
Collapse
Affiliation(s)
- Karina Gutiérrez-García
- Biosphere Sciences and Engineering Division, Carnegie Institution for Science, Baltimore, MD, USA
| | - Kevin Aumiller
- Biosphere Sciences and Engineering Division, Carnegie Institution for Science, Baltimore, MD, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Ren Dodge
- Biosphere Sciences and Engineering Division, Carnegie Institution for Science, Baltimore, MD, USA
| | - Benjamin Obadia
- Biosphere Sciences and Engineering Division, Carnegie Institution for Science, Baltimore, MD, USA
| | - Ann Deng
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Sneha Agrawal
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Xincheng Yuan
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Richard Wolff
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Haolong Zhu
- Biosphere Sciences and Engineering Division, Carnegie Institution for Science, Baltimore, MD, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Ru-Ching Hsia
- Biosphere Sciences and Engineering Division, Carnegie Institution for Science, Baltimore, MD, USA
| | - Nandita Garud
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | - William B. Ludington
- Biosphere Sciences and Engineering Division, Carnegie Institution for Science, Baltimore, MD, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
9
|
Smith TJ, Guillemin K. Home sweet home. Science 2024; 386:1091-1092. [PMID: 39637006 DOI: 10.1126/science.adt8031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Sugar-binding adhesins enable bacteria to persist in specific host niches.
Collapse
Affiliation(s)
- T Jarrod Smith
- Institute of Molecular Biology, University of Oregon, Eugene, OR, USA
| | - Karen Guillemin
- Institute of Molecular Biology, University of Oregon, Eugene, OR, USA
| |
Collapse
|
10
|
Rizzi F, Juan B, Espadaler-Mazo J, Capellas M, Huedo P. Lactiplantibacillus plantarum KABP051: Stability in Fruit Juices and Production of Bioactive Compounds During Their Fermentation. Foods 2024; 13:3851. [PMID: 39682922 DOI: 10.3390/foods13233851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
The lactic fermentation of fruit and vegetable juices by well-characterised probiotics remains relatively underexplored. We have investigated the stability and impact of Lactiplantibacillus plantarum KABP051 fermentation on orange, apple, and peach juices by microbiological, physicochemical, and sensory evaluation means. For each fruit juice, three different samples were analysed: original fruit juice without probiotic as blank (B), fruit juice inoculated with 107 CFU/mL of probiotic without fermentation (P), and fruit juice inoculated with 107 CFU/mL of probiotic and fermented at 37 °C for 24 h (PF). P samples displayed good stability throughout the study, and PF samples showed an initial increase in CFUs accompanied by a change in pH, confirming the ability of the probiotic to ferment these juices. After 60 days of refrigeration, PF samples contained >107 CFU/mL. Total phenolic content and antioxidant capacity were equivalent in F, P, and PF. Remarkably, deep metabolomic analyses confirmed malolactic fermentation and revealed the production of several bioactive compounds including the antimicrobial substance phenyllactic acid, the immunomodulatory and anti-fatigue amino acid N-acetyl glutamine, the vitamin B3 form nicotinic acid, the monoterpene (-)-β-pinene, and the neurotransmitter acetylcholine, among others, during probiotic fermentation. Finally, a hedonic analysis involving 51 participants showed that probiotic fermented orange juice is well accepted by panellists, with scores comparable to those of the control juice. Overall, we here show that fruit juices are excellent carriers for the delivery of the probiotic L. plantarum KABP051 and its non-alcoholic fermentation can result in tasty functional fruit juices enriched with health-promoting compounds.
Collapse
Affiliation(s)
- Francesca Rizzi
- Centre d'Innovació, Recerca i Transferència en Tecnologia dels Aliments (CIRTTA), XIA, TECNIO, Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (Cerdanyola del Vallès), 08193 Barcelona, Spain
- R&D Department, AB-Biotics S.A. (Part of Kaneka Corporation), 08174 Barcelona, Spain
| | - Bibiana Juan
- Centre d'Innovació, Recerca i Transferència en Tecnologia dels Aliments (CIRTTA), XIA, TECNIO, Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (Cerdanyola del Vallès), 08193 Barcelona, Spain
| | - Jordi Espadaler-Mazo
- R&D Department, AB-Biotics S.A. (Part of Kaneka Corporation), 08174 Barcelona, Spain
| | - Marta Capellas
- Centre d'Innovació, Recerca i Transferència en Tecnologia dels Aliments (CIRTTA), XIA, TECNIO, Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (Cerdanyola del Vallès), 08193 Barcelona, Spain
| | - Pol Huedo
- R&D Department, AB-Biotics S.A. (Part of Kaneka Corporation), 08174 Barcelona, Spain
- Basic Sciences Department, Universitat Internacional de Catalunya, 08195 Barcelona, Spain
| |
Collapse
|
11
|
Rappaport HB, Senewiratne NPJ, Lucas SK, Wolfe BE, Oliverio AM. Genomics and synthetic community experiments uncover the key metabolic roles of acetic acid bacteria in sourdough starter microbiomes. mSystems 2024; 9:e0053724. [PMID: 39287380 PMCID: PMC11498085 DOI: 10.1128/msystems.00537-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
While research on the sourdough microbiome has primarily focused on lactic acid bacteria (LAB) and yeast, recent studies have found that acetic acid bacteria (AAB) are also common members. However, the ecology, genomic diversity, and functional contributions of AAB in sourdough remain unknown. To address this gap, we sequenced 29 AAB genomes, including three that represent putatively novel species, from a collection of over 500 sourdough starters surveyed globally from community scientists. We found variations in metabolic traits related to carbohydrate utilization, nitrogen metabolism, and alcohol production, as well as in genes related to mobile elements and defense mechanisms. Sourdough AAB genomes did not cluster when compared to AAB isolated from other environments, although a subset of gene functions was enriched in sourdough isolates. The lack of a sourdough-specific genomic cluster may reflect the nomadic lifestyle of AAB. To assess the consequences of AAB on the emergent function of sourdough starter microbiomes, we constructed synthetic starter microbiomes, varying only the AAB strain included. All AAB strains increased the acidification of synthetic sourdough starters relative to yeast and LAB by 18.5% on average. Different strains of AAB had distinct effects on the profile of synthetic starter volatiles. Taken together, our results begin to define the ways in which AAB shape emergent properties of sourdough and suggest that differences in gene content resulting from intraspecies diversification can have community-wide consequences on emergent function. IMPORTANCE This study is a comprehensive genomic and ecological survey of acetic acid bacteria (AAB) isolated from sourdough starters. By combining comparative genomics with manipulative experiments using synthetic microbiomes, we demonstrate that even strains with >97% average nucleotide identity can shift important microbiome functions, underscoring the importance of species and strain diversity in microbial systems. We also demonstrate the utility of sourdough starters as a model system to understand the consequences of genomic diversity at the strain and species level on multispecies communities. These results are also relevant to industrial and home-bakers as we uncover the importance of AAB in shaping properties of sourdough starters that have direct impacts on sensory notes and the quality of sourdough bread.
Collapse
Affiliation(s)
- H. B. Rappaport
- Department of Biology,
Syracuse University,
Syracuse, New York, USA
| | | | - Sarah K. Lucas
- Department of Biology,
Syracuse University,
Syracuse, New York, USA
| | - Benjamin E. Wolfe
- Department of Biology,
Tufts University, Medford,
Massachusetts, USA
| | | |
Collapse
|
12
|
Kleerebezem M, Führen J. Synergistic vs. complementary synbiotics: the complexity of discriminating synbiotic concepts using a Lactiplantibacillus plantarum exemplary study. MICROBIOME RESEARCH REPORTS 2024; 3:46. [PMID: 39741951 PMCID: PMC11684985 DOI: 10.20517/mrr.2024.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 01/03/2025]
Abstract
Synbiotics are defined as "a mixture comprising live microorganisms and substrate(s) selectively utilized by host microorganisms that confers a health benefit on the host". The definition discriminates between synergistic and complementary synbiotics. Synergistic synbiotics involve a direct interaction between the substrate and co-administered microbe(s), while complementary synbiotics act through independent mechanisms. Here, we evaluate the complexity of discrimination between these two synbiotic concepts using an exemplary study performed with a panel of Lactiplantibacillus plantarum (L. plantarum) strains to identify strain-specific synergistic synbiotics that eventually turned out to work via a complementary synbiotic mechanism. This study highlights that assessing the in situ selectivity of synergistic synbiotics in the intestinal tract is challenging due to the confounding effects of the substrate ingredient on the endogenous microbiome, thereby raising doubts about the added value of distinguishing between synergistic and complementary concepts in synbiotics.
Collapse
Affiliation(s)
- Michiel Kleerebezem
- Department of Animal Sciences, Host Microbe Interactomics Group, Wageningen university and Research, Wageningen 6708 WD, the Netherlands
| | - Jori Führen
- Laboratory of Food Microbiology, Wageningen university and Research, Wageningen 6708 WG, the Netherlands
| |
Collapse
|
13
|
Petraro S, Tarracchini C, Lugli GA, Mancabelli L, Fontana F, Turroni F, Ventura M, Milani C. Comparative genome analysis of microbial strains marketed for probiotic interventions: an extension of the Integrated Probiotic Database. MICROBIOME RESEARCH REPORTS 2024; 3:45. [PMID: 39741953 PMCID: PMC11684986 DOI: 10.20517/mrr.2024.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/25/2024] [Accepted: 08/08/2024] [Indexed: 01/03/2025]
Abstract
Background: Members of the Bifidobacterium genus and lactobacilli are the most commonly used probiotics to promote human health. In this context, genome-based in silico analyses have been demonstrated as a fast and reliable tool for identifying and characterizing health-promoting activities imputed to probiotics. Methods: This study is an extension of the Integrated Probiotic Database (IPDB) previously created on probiotics of the genus Bifidobacterium, facilitating a comprehensive understanding of the genetic characteristics that contribute to the diverse spectrum of beneficial effects of probiotics. The strains integrated into this new version of the IPDB, such as various lactobacilli and strains belonging to the species Streptococcus thermophilus (S. thermophilus) and Heyndrickxia coagulans (H. coagulans) (formerly Bacillus coagulans), were selected based on the labels of probiotic formulations currently on the market and using the bacterial strains whose genome had already been sequenced. On these bacterial strains, comparative genome analyses were performed, mainly focusing on genetic factors that confer structural, functional, and chemical characteristics predicted to be involved in microbe-host and microbe-microbe interactions. Results: Our investigations revealed marked inter- and intra-species variations in the genetic makeup associated with the biosynthesis of external structures and bioactive metabolites putatively associated with microbe- and host-microbe interactions. Conclusion: Although genetic differences need to be confirmed as functional or phenotypic differences before any probiotic intervention, we believe that considering these divergences will aid in improving effective and personalized probiotic-based interventions.
Collapse
Affiliation(s)
- Silvia Petraro
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability University of Parma, Parma 43124, Italy
- Authors contributed equally
| | - Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability University of Parma, Parma 43124, Italy
- Authors contributed equally
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability University of Parma, Parma 43124, Italy
- Microbiome Research Hub, University of Parma, Parma 43124, Italy
| | - Leonardo Mancabelli
- Microbiome Research Hub, University of Parma, Parma 43124, Italy
- Department of Medicine and Surgery, University of Parma, Parma 43124, Italy
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability University of Parma, Parma 43124, Italy
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability University of Parma, Parma 43124, Italy
- Microbiome Research Hub, University of Parma, Parma 43124, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability University of Parma, Parma 43124, Italy
- Microbiome Research Hub, University of Parma, Parma 43124, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability University of Parma, Parma 43124, Italy
- Microbiome Research Hub, University of Parma, Parma 43124, Italy
| |
Collapse
|
14
|
Di Chiano M, Sallustio F, Fiocco D, Rocchetti MT, Spano G, Pontrelli P, Moschetta A, Gesualdo L, Gadaleta RM, Gallone A. Psychobiotic Properties of Lactiplantibacillus plantarum in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:9489. [PMID: 39273435 PMCID: PMC11394828 DOI: 10.3390/ijms25179489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Neurodegenerative disorders are the main cause of cognitive and physical disabilities, affect millions of people worldwide, and their incidence is on the rise. Emerging evidence pinpoints a disturbance of the communication of the gut-brain axis, and in particular to gut microbial dysbiosis, as one of the contributors to the pathogenesis of these diseases. In fact, dysbiosis has been associated with neuro-inflammatory processes, hyperactivation of the neuronal immune system, impaired cognitive functions, aging, depression, sleeping disorders, and anxiety. With the rapid advance in metagenomics, metabolomics, and big data analysis, together with a multidisciplinary approach, a new horizon has just emerged in the fields of translational neurodegenerative disease. In fact, recent studies focusing on taxonomic profiling and leaky gut in the pathogenesis of neurodegenerative disorders are not only shedding light on an overlooked field but are also creating opportunities for biomarker discovery and development of new therapeutic and adjuvant strategies to treat these disorders. Lactiplantibacillus plantarum (LBP) strains are emerging as promising psychobiotics for the treatment of these diseases. In fact, LBP strains are able to promote eubiosis, increase the enrichment of bacteria producing beneficial metabolites such as short-chain fatty acids, boost the production of neurotransmitters, and support the homeostasis of the gut-brain axis. In this review, we summarize the current knowledge on the role of the gut microbiota in the pathogenesis of neurodegenerative disorders with a particular focus on the benefits of LBP strains in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, autism, anxiety, and depression.
Collapse
Affiliation(s)
- Mariagiovanna Di Chiano
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Fabio Sallustio
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Daniela Fiocco
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Maria Teresa Rocchetti
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Giuseppe Spano
- Department of Agriculture Food Natural Science Engineering (DAFNE), University of Foggia, 71122 Foggia, Italy
| | - Paola Pontrelli
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
- National Institute for Biostructure and Biosystems (INBB), Viale delle Medaglie d'Oro n. 305, 00136 Roma, Italy
| | - Loreto Gesualdo
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Raffaella Maria Gadaleta
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
- National Institute for Biostructure and Biosystems (INBB), Viale delle Medaglie d'Oro n. 305, 00136 Roma, Italy
| | - Anna Gallone
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| |
Collapse
|
15
|
Heo S, Jung EJ, Park MK, Sung MH, Jeong DW. Evolution and Competitive Struggles of Lactiplantibacillus plantarum under Different Oxygen Contents. Int J Mol Sci 2024; 25:8861. [PMID: 39201547 PMCID: PMC11354895 DOI: 10.3390/ijms25168861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Lactiplantibacillus (Lb.) plantarum is known as a benign bacterium found in various habitats, including the intestines of animals and fermented foods. Since animal intestines lack oxygen, while fermented foods provide a limited or more oxygen environment, this study aimed to investigate whether there were genetic differences in the growth of Lb. plantarum under aerobic vs. anaerobic conditions. Genomic analysis of Lb. plantarum obtained from five sources-animals, dairy products, fermented meat, fermented vegetables, and humans-was conducted. The analysis included not only an examination of oxygen-utilizing genes but also a comparative pan-genomic analysis to investigate evolutionary relationships between genomes. The ancestral gene analysis of the evolutionary pathway classified Lb. plantarum into groups A and B, with group A further subdivided into A1 and A2. It was confirmed that group A1 does not possess the narGHIJ operon, which is necessary for energy production under limited oxygen conditions. Additionally, it was found that group A1 has experienced more gene acquisition and loss compared to groups A2 and B. Despite an initial assumption that there would be genetic distinctions based on the origin (aerobic or anaerobic conditions), it was observed that such differentiation could not be attributed to the origin. However, the evolutionary process indicated that the loss of genes related to nitrate metabolism was essential in anaerobic or limited oxygen conditions, contrary to the initial hypothesis.
Collapse
Affiliation(s)
- Sojeong Heo
- Department of Food and Nutrition, Dongduk Women’s University, Seoul 02748, Republic of Korea;
| | - Eun Jin Jung
- Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea;
| | - Mi-Kyung Park
- School of Food Science and Biotechnology, Food and Bio-Industry Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Moon-Hee Sung
- KookminBio Corporation, Seoul 02826, Republic of Korea;
| | - Do-Won Jeong
- Department of Food and Nutrition, Dongduk Women’s University, Seoul 02748, Republic of Korea;
| |
Collapse
|
16
|
Kingkaew E, Tanaka N, Shiwa Y, Sitdhipol J, Nuhwa R, Tanasupawat S. Genomic Assessment of Potential Probiotic Lactiplantibacillus plantarum CRM56-2 Isolated from Fermented Tea Leaves. Trop Life Sci Res 2024; 35:249-269. [PMID: 39234476 PMCID: PMC11371405 DOI: 10.21315/tlsr2024.35.2.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 02/19/2024] [Indexed: 09/06/2024] Open
Abstract
Lactiplantibacillus plantarum is a widely studied species known for its probiotic properties that can help alleviate serum cholesterol levels. Whole-genome sequencing provides genetic information on probiotic attributes, metabolic activities and safety assessment. This study investigates the probiotic properties of strain CRM56-2, isolated from Thai fermented tea leaves, using Whole-Genome Sequencing (WGS) to evaluate the safety, health-promoting genes and functional analysis. Strain CRM56-2 showed bile salt hydrolase (BSH) activity, assimilated cholesterol at a rate of 75.94%, tolerated acidic and bile environments and attached to Caco-2 cells. Based on ANIb (98.9%), ANIm (99.2%), and digital DNA-DNA hybridisation (98.3%), strain CRM56-2 was identified as L. plantarum. In silico analysis revealed that it was not pathogenic and contained no antibiotic-resistance genes or plasmids. L. plantarum CRM56-2 possessed genes linked to several probiotic properties and beneficial impacts. The genome of strain CRM56-2 suggested that L. plantarum CRM56-2 is non-hazardous, with potential probiotic characteristics and beneficial impacts, which could enhance its probiotic application. Consequently, L. plantarum CRM56-2 demonstrated excellent cholesterol-lowering activity and probiotic properties.
Collapse
Affiliation(s)
- Engkarat Kingkaew
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Biology, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Naoto Tanaka
- Department of Molecular Microbiology, Faculty of Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Yuh Shiwa
- Department of Molecular Microbiology, Faculty of Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Jaruwan Sitdhipol
- Biodiversity Research Centre, Research and Development Group for Bio-Industries, Thailand Institute of Scientific and Technological Research, Pathum Thani 12120, Thailand
| | - Rattanatda Nuhwa
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Somboon Tanasupawat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
17
|
Isaac SL, Abdul Malek AZ, Hazif NS, Roslan FS, Mohd Hashim A, Song AAL, Abdul Rahim R, Wan Nur Ismah WAK. Genome mining of Lactiplantibacillus plantarum PA21: insights into its antimicrobial potential. BMC Genomics 2024; 25:571. [PMID: 38844835 PMCID: PMC11157852 DOI: 10.1186/s12864-024-10451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 05/24/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND The dramatic increase of antimicrobial resistance in the healthcare realm has become inexorably linked to the abuse of antibiotics over the years. Therefore, this study seeks to identify potential postbiotic metabolites derived from lactic acid bacteria such as Lactiplantibacillus plantarum that could exhibit antimicrobial properties against multi-drug resistant pathogens. RESULTS In the present work, the genome sequence of Lactiplantibacillus plantarum PA21 consisting of three contigs was assembled to a size of 3,218,706 bp. Phylogenomic analysis and average nucleotide identity (ANI) revealed L. plantarum PA21 is closely related to genomes isolated from diverse niches such as dairy products, food, and animals. Genome mining through the BAGEL4 and antiSMASH database revealed four bacteriocins in a single cluster and four regions of biosynthetic gene clusters responsible for the production of bioactive compounds. The potential probiotic genes indirectly responsible for postbiotic metabolites production were also identified. Additionally, in vitro studies showed that the L. plantarum PA21 cell-free supernatant exhibited antimicrobial activity against all nine methicillin-resistant Staphylococcus aureus (MRSA) and three out of 13 Klebsiella pneumoniae clinical isolates tested. CONCLUSION Results in this study demonstrates that L. plantarum PA21 postbiotic metabolites is a prolific source of antimicrobials against multi-drug resistant pathogens with potential antimicrobial properties.
Collapse
Affiliation(s)
- Sharleen Livina Isaac
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), Serdang, 43400, Selangor, Malaysia
| | - Ahmad Zuhairi Abdul Malek
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), Serdang, 43400, Selangor, Malaysia
- Halal Products Research Institute, Universiti Putra Malaysia (UPM), Serdang, 43400, Selangor, Malaysia
| | - Nurul Syafika Hazif
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), Serdang, 43400, Selangor, Malaysia
| | - Farah Syahrain Roslan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), Serdang, 43400, Selangor, Malaysia
| | - Amalia Mohd Hashim
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), Serdang, 43400, Selangor, Malaysia
- Halal Products Research Institute, Universiti Putra Malaysia (UPM), Serdang, 43400, Selangor, Malaysia
| | - Adelene Ai-Lian Song
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), Serdang, 43400, Selangor, Malaysia
| | - Raha Abdul Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), Serdang, 43400, Selangor, Malaysia
- National Institutes of Biotechnology Malaysia (NIBM), Serdang, 43400, Selangor, Malaysia
| | - Wan Ahmad Kamil Wan Nur Ismah
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), Serdang, 43400, Selangor, Malaysia.
| |
Collapse
|
18
|
Xie J, Yap G, Simpson D, Gänzle M. The effect of seed germination and Bacillus spp. on the ripening of plant cheese analogs. Appl Environ Microbiol 2024; 90:e0227623. [PMID: 38319095 PMCID: PMC10952449 DOI: 10.1128/aem.02276-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/13/2024] [Indexed: 02/07/2024] Open
Abstract
Consumer demand for plant cheeses is increasing, but challenges of improving both flavor and quality remain. This study investigated the microbiological and physicochemical impact of seed germination and fermentation with Bacillus velezensis and Bacillus amyloliquefaciens on the ripening of plant cheese analogs. Chlorine treatment or addition of Lactiplantibacillus plantarum and Lactococcus lactis controlled microbial growth during seed germination. Lp. plantarum and Lc. lactis also served as starter cultures for the acidification of soy and lupine milk and were subsequently present in the unripened plant cheese as dominant microbes. Acidification also inhibited the growth and metabolic activity of bacilli but Bacillus spores remained viable throughout ripening. During plant cheese ripening, Lc. lactis was inactivated before Lp. plantarum and the presence of bacilli during seed germination delayed Lc. lactis inactivation. Metagenomic sequencing of full-length 16S rRNA gene amplicons confirmed that the relative abundance of the inoculated strains in each ripened cheese sample exceeded 99%. Oligosaccharides including raffinose, stachyose, and verbascose were rapidly depleted in the initial stage of ripening. Both germination and the presence of bacilli during seed germination had impact on polysaccharide hydrolysis during ripening. Bacilli but not seed germination enhanced proteolysis of plant cheese during ripening. In conclusion, the use of germination with lactic acid bacteria in combination with Bacillus spp. exhibited the potential to improve the quality of ripened plant cheeses with a positive effect on the reduction of hygienic risks. IMPORTANCE The development of novel plant-based fermented food products for which no traditional templates exist requires the development of starter cultures. Although the principles of microbial flavor formation in plant-based analogs partially overlap with dairy fermentations, the composition of the raw materials and thus likely the selective pressure on the activity of starter cultures differs. Experiments that are described in this study explored the use of seed germination, the use of lactic acid bacteria, and the use of bacilli to reduce hygienic risks, to acidify plant milk, and to generate taste-active compounds through proteolysis and fermentative conversion of carbohydrates. The characterization of fermentation microbiota by culture-dependent and culture-independent methods also confirmed that the starter cultures used were able to control microbial communities throughout 90 d of ripening. Taken together, the results provide novel tools for the development of plant-based analogs of fermented dairy products.
Collapse
Affiliation(s)
- Jin Xie
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Gloria Yap
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - David Simpson
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Michael Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| |
Collapse
|
19
|
Surve SV, Shinde DB, Fernandes JM, Sharma S, Vijayvargiya M, Kadam K, Kulkarni R. Laboratory domestication of Lactiplantibacillus plantarum alters some phenotypic traits but causes non-novel genomic impact. J Appl Microbiol 2024; 135:lxae035. [PMID: 38341274 DOI: 10.1093/jambio/lxae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/17/2024] [Accepted: 02/08/2024] [Indexed: 02/12/2024]
Abstract
AIMS Laboratory domestication has been negligibly examined in lactic acid bacteria (LAB). Lactiplantibacillus plantarum is a highly studied and industrially relevant LAB. Here, we passaged L. plantarum JGR2 in a complex medium to study the effects of domestication on the phenotypic properties and the acquisition of mutations. METHODS AND RESULTS Lactiplantibacillus plantarum JGR2 was passaged in mMRS medium (deMan Rogossa Sharpe supplemented with 0.05% w/v L-cysteine) in three parallel populations for 70 days. One pure culture from each population was studied for various phenotypic properties and genomic alterations. Auto-aggregation of the evolved strains was significantly reduced, and lactic acid production and ethanol tolerance were increased. Other probiotic properties and antibiotic sensitivity were not altered. Conserved synonymous and non-synonymous mutations were observed in mobile element proteins (transposases), β-galactosidase, and phosphoketolases in all three isolates. The evolved strains lost all the repeat regions and some of the functions associated with them. Most of the conserved mutations were found in the genomes of other wild-type strains available in a public database, indicating the non-novel genomic impact of laboratory passaging. CONCLUSIONS Laboratory domestication can affect the phenotypic and genotypic traits of L. plantarum and similar studies are necessary for other important species of LAB.
Collapse
Affiliation(s)
- Sarvesh V Surve
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune 412115, India
| | - Dasharath B Shinde
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune 412115, India
| | - Joyleen M Fernandes
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune 412115, India
| | - Sharoni Sharma
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune 412115, India
| | - Monty Vijayvargiya
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune 412115, India
| | - Komal Kadam
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune 412115, India
| | - Ram Kulkarni
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune 412115, India
| |
Collapse
|
20
|
Bachtarzi N, Gomri MA, Meradji M, Gil-Cardoso K, Ortega N, Chomiciute G, Del Bas JM, López Q, Martínez V, Kharroub K. In vitro assessment of biofunctional properties of Lactiplantibacillus plantarum strain Jb21-11 and the characterization of its exopolysaccharide. Int Microbiol 2024; 27:239-256. [PMID: 37286917 DOI: 10.1007/s10123-023-00387-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/25/2023] [Accepted: 06/01/2023] [Indexed: 06/09/2023]
Abstract
ABSTACT The microbiota of traditional food provides a rich reservoir of biodiversity to find new strains with interesting features for novel functional food formulation. Therefore, this study aimed to investigate the biofunctional potential of the lactic acid bacteria (LAB) strain Jb21-11 isolated from Jben, a traditional Algerian fresh cheese. This isolate was selected out of a collection of 154 LAB based on its exopolysaccharide (EPS) phenotype and was preliminarily identified by polyphasic characterization as Lactiplantibacillus plantarum (previously known as Lactobacillus plantarum) and its biofunctional properties were then assessed in vitro. The tested strain demonstrated good resistance to gastric juice, acidity around pH 2, and 2% (v/v) bile salts, which are important characteristics for potential biofunctional LAB candidates. It also showed a good production of ropy EPS with 674 mg/L on MRS medium. However, this ability appears to compromise the adhesion of the strain to Caco-2 cells (less than 1%), which according to our results, seems not to be related to autoaggregation and hydrophobicity (44.88 ± 0.028% and 16.59 ± 0.012%). Furthermore, promising antimicrobial activity against three pathogenic bacteria (Escherichia coli, Staphylococcus aureus, and Salmonella) was detected probably due to antimicrobial metabolites excreted during fermentation process into the medium. Moreover, the strain L. plantarum Jb21-11 displayed a therapeutic functionality with both anti-inflammatory and immunomodulatory action using RAW 264.7 cells. The chemical features of the novel ropy Jb21-11-EPS were also investigated revealing the presence of three monosaccharides, namely, mannose, galactose, and glucose, with a molar ratio of 5.42:1.00:4.52 linked together by α- and β-glycosidic bonds, presenting a relatively high molecular weight of 1.08 × 105 Da of interest for a texturing potential. Therefore, the new producing EPS strain Jb21-11 is a promising candidate for use as an adjunct culture for improving the texture of functional food.
Collapse
Affiliation(s)
- Nadia Bachtarzi
- Laboratory of Biotechnology and Food Quality (BIOQUAL), Institute of Nutrition, Food and Agri-Food Technologies (INATAA), University of Mentouri Brother's Constantine 1 (UFMC1), Road of Ain El Bey, 25000, Constantine, Algeria.
| | - Mohamed Amine Gomri
- Laboratory of Biotechnology and Food Quality (BIOQUAL), Institute of Nutrition, Food and Agri-Food Technologies (INATAA), University of Mentouri Brother's Constantine 1 (UFMC1), Road of Ain El Bey, 25000, Constantine, Algeria
| | - Meriem Meradji
- Laboratory of Biotechnology and Food Quality (BIOQUAL), Institute of Nutrition, Food and Agri-Food Technologies (INATAA), University of Mentouri Brother's Constantine 1 (UFMC1), Road of Ain El Bey, 25000, Constantine, Algeria
| | - Katherine Gil-Cardoso
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Reus, Spain
| | - Nàdia Ortega
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Reus, Spain
| | - Gertruda Chomiciute
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Reus, Spain
| | | | - Quiro López
- Creaciones Aromáticas Industriales SA, Cuatrecasas i Arimí, 2, 08192, Sant Quirze del Vallès, Barcelona, Spain
| | - Vanesa Martínez
- Creaciones Aromáticas Industriales SA, Cuatrecasas i Arimí, 2, 08192, Sant Quirze del Vallès, Barcelona, Spain
| | - Karima Kharroub
- Laboratory of Biotechnology and Food Quality (BIOQUAL), Institute of Nutrition, Food and Agri-Food Technologies (INATAA), University of Mentouri Brother's Constantine 1 (UFMC1), Road of Ain El Bey, 25000, Constantine, Algeria
| |
Collapse
|
21
|
Wiull K, Hagen LH, Rončević J, Westereng B, Boysen P, Eijsink VGH, Mathiesen G. Antigen surface display in two novel whole genome sequenced food grade strains, Lactiplantibacillus pentosus KW1 and KW2. Microb Cell Fact 2024; 23:19. [PMID: 38212746 PMCID: PMC10782763 DOI: 10.1186/s12934-024-02296-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Utilization of commensal bacteria for delivery of medicinal proteins, such as vaccine antigens, is an emerging strategy. Here, we describe two novel food-grade strains of lactic acid bacteria, Lactiplantibacillus pentosus KW1 and KW2, as well as newly developed tools for using this relatively unexplored but promising bacterial species for production and surface-display of heterologous proteins. RESULTS Whole genome sequencing was performed to investigate genomic features of both strains and to identify native proteins enabling surface display of heterologous proteins. Basic characterization of the strains revealed the optimum growth temperatures for both strains to be 35-37 °C, with peak heterologous protein production at 33 °C (KW1) and 37 °C (KW2). Negative staining revealed that only KW1 produces closely bound exopolysaccharides. Production of heterologous proteins with the inducible pSIP-expression system enabled high expression in both strains. Exposure to KW1 and KW2 skewed macrophages toward the antigen presenting state, indicating potential adjuvant properties. To develop these strains as delivery vehicles, expression of the mycobacterial H56 antigen was fused to four different strain-specific surface-anchoring sequences. CONCLUSION All experiments that enabled comparison of heterologous protein production revealed KW1 to be the better recombinant protein production host. Use of the pSIP expression system enabled successful construction of L. pentosus strains for production and surface display of an antigen, underpinning the potential of these strains as novel delivery vehicles.
Collapse
Affiliation(s)
- Kamilla Wiull
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway.
| | - Live Heldal Hagen
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway
| | - Jelena Rončević
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway
| | - Bjørge Westereng
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway
| | - Preben Boysen
- Faculty of Veterinary Medicine, NMBU - Norwegian University of Life Sciences, Ås, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway
| | - Geir Mathiesen
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
22
|
Sato K, Ikagawa Y, Niwa R, Nishioka H, Horie M, Iwahashi H. Genome Sequencing Unveils Nomadic Traits of Lactiplantibacillus plantarum in Japanese Post-Fermented Tea. Curr Microbiol 2023; 81:52. [PMID: 38155273 DOI: 10.1007/s00284-023-03566-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/17/2023] [Indexed: 12/30/2023]
Abstract
Post-fermented tea production involving microbial fermentation is limited to a few regions, such as Southeast Asia and Japan, with Japan's Shikoku island being particularly prominent. Lactiplantibacillus plantarum was the dominant species found in tea leaves after anaerobic fermentation of Awa-bancha in Miyoshi City, Tokushima, and Ishizuchi-kurocha in Ehime. Although the draft genome of L. plantarum from Japanese post-fermented tea has been previously reported, its genetic diversity requires further exploration. In this study, whole-genome sequencing was conducted on four L. plantarum strains isolated from Japanese post-fermented tea using nanopore sequencing. These isolates were then compared with other sources to examine their genetic diversity revealing that L. plantarum isolated from Japanese post-fermented tea contained several highly variable gene regions associated with sugar metabolism and transportation. However, no source-specific genes or clusters were identified within accessory or core gene regions. This study indicates that L. plantarum possesses high genetic diversity and that the unique environment of Japanese post-fermented tea does not appear to exert selective pressure on L. plantarum growth.
Collapse
Affiliation(s)
- Kyoka Sato
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University, Gifu, 501-1193, Japan.
| | - Yuichiro Ikagawa
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University, Gifu, 501-1193, Japan
| | - Ryo Niwa
- Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Hiroki Nishioka
- Food and Biotechnology Division, Tokushima Prefectural Industrial Technology Center, Tokushima, 770-8021, Japan
| | - Masanori Horie
- Health and Medical Research Institute (HMRI), National Institute of Advanced Industrial Science and Technology (AIST), Kagawa, 761-0395, Japan
| | - Hitoshi Iwahashi
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University, Gifu, 501-1193, Japan.
| |
Collapse
|
23
|
Iorizzo M, Paventi G, Di Martino C. Biosynthesis of Gamma-Aminobutyric Acid (GABA) by Lactiplantibacillus plantarum in Fermented Food Production. Curr Issues Mol Biol 2023; 46:200-220. [PMID: 38248317 PMCID: PMC10814391 DOI: 10.3390/cimb46010015] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
In recent decades, given the important role of gamma-aminobutyric acid (GABA) in human health, scientists have paid great attention to the enrichment of this chemical compound in food using various methods, including microbial fermentation. Moreover, GABA or GABA-rich products have been successfully commercialized as food additives or functional dietary supplements. Several microorganisms can produce GABA, including bacteria, fungi, and yeasts. Among GABA-producing microorganisms, lactic acid bacteria (LAB) are commonly used in the production of many fermented foods. Lactiplantibacillus plantarum (formerly Lactobacillus plantarum) is a LAB species that has a long history of natural occurrence and safe use in a wide variety of fermented foods and beverages. Within this species, some strains possess not only good pro-technological properties but also the ability to produce various bioactive compounds, including GABA. The present review aims, after a preliminary excursus on the function and biosynthesis of GABA, to provide an overview of the current uses of microorganisms and, in particular, of L. plantarum in the production of GABA, with a detailed focus on fermented foods. The results of the studies reported in this review highlight that the selection of new probiotic strains of L. plantarum with the ability to synthesize GABA may offer concrete opportunities for the design of new functional foods.
Collapse
Affiliation(s)
| | - Gianluca Paventi
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (M.I.); (C.D.M.)
| | | |
Collapse
|
24
|
Gänzle MG, Qiao N, Bechtner J. The quest for the perfect loaf of sourdough bread continues: Novel developments for selection of sourdough starter cultures. Int J Food Microbiol 2023; 407:110421. [PMID: 37806010 DOI: 10.1016/j.ijfoodmicro.2023.110421] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/17/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
Sourdough fermentation, one of the oldest unit operations in food production, is currently experiencing a revival in bread production at the household, artisanal, and the industrial level. The expanding use of sourdough fermentation in bread production and the adaptation of fermentation to large scale industrial bread production also necessitate the development of novel starter cultures. Developments in the last years also have expanded the tools that are used to assess the metabolic potential of specific strains, species or genera of the Lactobacillaceae and have identified multiple ecological and metabolic traits as clade-specific. This review aims to provide an overview on the clade-specific metabolic potential of members of the Lactobacillaceae for use in sourdough baking, and the impact of these clade-specific traits on bread quality. Emphasis is placed on carbohydrate metabolism, including the conversion of sucrose and starch to soluble polysaccharides, conversion of amino acids, and the metabolism of organic acids. The current state of knowledge to compose multi-strain starter cultures (synthetic microbial communities) that are suitable for back-slopping will also be discussed. Taken together, the communication outlines the current tools for selection of microbes for use in sourdough baking.
Collapse
Affiliation(s)
- Michael G Gänzle
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Canada.
| | - Nanzhen Qiao
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Canada
| | - Julia Bechtner
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Canada
| |
Collapse
|
25
|
Heng YC, Silvaraju S, Lee JKY, Kittelmann S. Lactiplantibacillus brownii sp. nov., a novel psychrotolerant species isolated from sauerkraut. Int J Syst Evol Microbiol 2023; 73. [PMID: 38063497 DOI: 10.1099/ijsem.0.006194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
A Gram-stain-positive, rod-shaped, facultatively anaerobic and homofermentative strain, named WILCCON 0030T, was isolated from sauerkraut (fermented cabbage) collected from a local market in the Moscow region of Russia. Comparative analyses based on 16S rRNA gene sequence similarity and whole genome relatedness indicated that strain WILCCON 0030T was most closely related to the type strains Lactiplantibacillus nangangensis NCIMB 15186T, Lactiplantibacillus daoliensis LMG 31171T and Lactiplantibacillus pingfangensis LMG 31176T. However, the average nucleotide identity and digital DNA-DNA hybridization prediction values with these closest relatives only ranged from 84.6 to 84.9 % and from 24.1 to 24.7 %, respectively, and were below the 95.0 and 70.0% thresholds for species delineation. Substantiated by further physiological and biochemical analyses, strain WILCCON 0030T represents a novel species within the genus Lactiplantibacillus for which we propose the name Lactiplantibacillus brownii sp. nov. (type strain WILCCON 0030T=DSM 116485T=LMG 33211T).
Collapse
Affiliation(s)
- Yu Chyuan Heng
- Wilmar International Limited, WIL@NUS Corporate Laboratory, Centre for Translational Medicine, National University of Singapore, Singapore, Singapore
| | - Shaktheeshwari Silvaraju
- Wilmar International Limited, WIL@NUS Corporate Laboratory, Centre for Translational Medicine, National University of Singapore, Singapore, Singapore
| | - Jolie Kar Yi Lee
- Wilmar International Limited, WIL@NUS Corporate Laboratory, Centre for Translational Medicine, National University of Singapore, Singapore, Singapore
| | - Sandra Kittelmann
- Wilmar International Limited, WIL@NUS Corporate Laboratory, Centre for Translational Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
26
|
Tang T, Martinenghi LD, Hounmanou YMG, Leisner JJ. Distribution and ecology of the generalist lactic acid bacterium Carnobacterium maltaromaticum in different freshwater habitats: Metabolic and antagonistic abilities. Environ Microbiol 2023; 25:3556-3576. [PMID: 37750577 DOI: 10.1111/1462-2920.16508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/05/2023] [Indexed: 09/27/2023]
Abstract
We explored the distribution, metabolic and antagonistic activities of Carnobacterium maltaromaticum, isolated from freshwater locations in Denmark during winter or early spring. This species was widely distributed in such habitats although it was relatively rare in low pH locations. Isolates possessed a diverse metabolism, potentially enabling functional capacities independent of habitat. The intraspecies competition showed a relatively high degree of mostly low-intensity interactions, which overall were not correlated with phylogeny or location. Only a few isolates exhibited broad-spectrum inhibition activity, targeting species from other genera and families, including one isolate that exhibited a broad inhibitory activity due to H2 O2 production. Bioinformatic analyses revealed that the frequency of bacteriocinogenic systems was low, and only one unmodified bacteriocin, piscicolin 126, correlated with phenotypic antagonistic activity. Furthermore, most potential bacteriocin gene complexes were not complete. Overall, this study showed C. maltaromaticum to be a generalist (nomadic) species with a constant presence in freshwater habitats, especially those with pH values >5. General metabolic properties did not suggest a strong degree of adaptation to the freshwater environment, and bacteriocin-mediated antagonistic activities appeared to play a minimal ecological role.
Collapse
Affiliation(s)
- Taya Tang
- Faculty of Health and Medical Sciences, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Laura Daniela Martinenghi
- Faculty of Health and Medical Sciences, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Yaovi Mahuton Gildas Hounmanou
- Faculty of Health and Medical Sciences, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Jørgen J Leisner
- Faculty of Health and Medical Sciences, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
27
|
Wang Z, Zhang Z, Shi Q, Liu S, Wu Q, Wang Z, Saiding E, Han J, Zhou J, Wang R, Su X. Comparison of Lactiplantibacillus plantarum isolates from the gut of mice supplemented with different types of nutrients: a genomic and metabolomic study. Front Microbiol 2023; 14:1295058. [PMID: 38033563 PMCID: PMC10684713 DOI: 10.3389/fmicb.2023.1295058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Many studies have focused on the influence of dietary supplements on gut microbiota composition, but limited research have reported their effects on specific bacterial species in the gut. Lactiplantibacillus plantarum is one of the most widely studied probiotics, with a wide range of sources and good environmental adaptability. In this study, in order to elucidate the adaptation strategies of L. plantarum to the gut of mice supplemented with carbohydrates, peptides and minerals, whole genome resequencing and intracellular metabolites detection were performed, and high-frequency mutant genes and differential metabolites were screened. The results suggested different types of dietary supplements do have different effects on L. plantarum from the gut of mice. Additionally, KEGG annotation unveiled that the effects of these dietary supplements on the gene level of L. plantarum primarily pertained to environmental information processing, while the differential metabolites were predominantly associated with metabolism. This study provided new perspectives on the adaptive mechanism of L. plantarum in response to the host's gut environment, suggesting that the diversity of the genome and metabolome of L. plantarum was correlated with dietary supplements. Furthermore, this study offered useful guidance in the effective utilization of dietary supplements.
Collapse
Affiliation(s)
- Ziyan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Zhixuan Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Qiuyue Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Songyi Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Qiaoli Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Ze Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Emilaguli Saiding
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Jiaojiao Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Jun Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Rixin Wang
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Xiurong Su
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
28
|
Qiao N, Gaur G, Modesto M, Chinnici F, Scarafile D, Borruso L, Marin AC, Spiezio C, Valente D, Sandri C, Gänzle MG, Mattarelli P. Physiological and genomic characterization of Lactiplantibacillus plantarum isolated from Indri indri in Madagascar. J Appl Microbiol 2023; 134:lxad255. [PMID: 37934609 DOI: 10.1093/jambio/lxad255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/21/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023]
Abstract
AIMS Indri indri is a lemur of Madagascar which is critically endangered. The analysis of the microbial ecology of the intestine offers tools to improve conservation efforts. This study aimed to achieve a functional genomic analysis of three Lactiplantibacillus plantarum isolates from indris. METHODS AND RESULTS Samples were obtained from 18 indri; 3 isolates of Lp. plantarum were obtained from two individuals. The three isolates were closely related to each other, with <10 single nucleotide polymorphisms, suggesting that the two individuals shared diet-associated microbes. The genomes of the three isolates were compared to 96 reference strains of Lp. plantarum. The three isolates of Lp. plantarum were not phenotypically resistant to antibiotics but shared all 17 genes related to antimicrobial resistance that are part of the core genome of Lp. plantarum. The genomes of the three indri isolates of Lp. plantarum also encoded for the 6 core genome genes coding for enzymes related to metabolism of hydroxybenzoic and hydroxycinnamic acids. The phenotype for metabolism of hydroxycinnamic acids by indri isolates of Lp. plantarum matched the genotype. CONCLUSIONS Multiple antimicrobial resistance genes and gene coding for metabolism of phenolic compounds were identified in the genomes of the indri isolates, suggesting that Lp. plantarum maintains antimicrobial resistance in defense of antimicrobial plant secondary pathogens and that their metabolism by intestinal bacteria aids digestion of plant material by primate hosts.
Collapse
Affiliation(s)
- Nanzhen Qiao
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Gautam Gaur
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Monica Modesto
- Department of Agricultural and Food Sciences, University of Bologna, Bologna 40126, Italy
| | - Fabio Chinnici
- Department of Agricultural and Food Sciences, University of Bologna, Bologna 40126, Italy
| | - Donatella Scarafile
- Department of Agricultural and Food Sciences, University of Bologna, Bologna 40126, Italy
| | - Luigimaria Borruso
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano-Bozen, Bolzano 39100, Italy
| | - Antonio Castro Marin
- Department of Agricultural and Food Sciences, University of Bologna, Bologna 40126, Italy
| | - Caterina Spiezio
- Department of Animal Health Care and Management, Parco Natura Viva, Bussolengo (Verona) 37012, Italy
| | - Daria Valente
- Department of Life Sciences and Systems Biology, University of Torino, Turin 10124, Italy
| | - Camillo Sandri
- Department of Agricultural and Food Sciences, University of Bologna, Bologna 40126, Italy
- Department of Animal Health Care and Management, Parco Natura Viva, Bussolengo (Verona) 37012, Italy
| | - Michael G Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Paola Mattarelli
- Department of Agricultural and Food Sciences, University of Bologna, Bologna 40126, Italy
| |
Collapse
|
29
|
Pérez-Díaz IM, Page CA, Mendez-Sandoval L, Johanningsmeier SD. Levilactobacillus brevis, autochthonous to cucumber fermentation, is unable to utilize citric acid and encodes for a putative 1,2-propanediol utilization microcompartment. Front Microbiol 2023; 14:1210190. [PMID: 37564281 PMCID: PMC10410858 DOI: 10.3389/fmicb.2023.1210190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/03/2023] [Indexed: 08/12/2023] Open
Abstract
The metabolic versatility of Levilactobacillus brevis, a heterofermentative lactic acid bacterium, could benefit environmentally compatible and low salt cucumber fermentation. The biodiversity of Lvb. brevis autochthonous to cucumber fermentation was studied using genotypic and phenotypic analyses to identify unique adjunct cultures. A group of 131 isolates autochthonous to industrial fermentations was screened using rep-PCR-(GTG)5 and a fermentation ability assay under varied combinations of salt (0 or 6%), initial pH (4.0 or 5.2), and temperature (15 or 30°C). No apparent similarities were observed among the seven and nine clusters in the genotypic and phenotypic dendrograms, respectively. A total of 14 isolates representing the observed biodiversity were subjected to comparative genome analysis. The autochthonous Lvb. brevis clustered apart from allochthonous isolates, as their genomes lack templates for citrate lyase, several putative hypothetical proteins, and some plasmid- and phage-associated proteins. Four and two representative autochthonous and allochthonous Lvb. brevis, respectively, were subjected to phenotype microarray analysis using an Omnilog. Growth of all Lvb. brevis strains was supported to various levels by glucose, fructose, gentiobiose, 1,2-propanediol, and propionic acid, whereas the allochthonous isolate ATCC14890 was unique in utilizing citric acid. All the Lvb. brevis genomes encode for 1,2-propanediol utilization microcompartments. This study identified a unique Lvb. brevis strain, autochthonous to cucumber, as a potential functional adjunct culture for commercial fermentation that is distinct in metabolic activities from allochthonous isolates of the same species.
Collapse
Affiliation(s)
- Ilenys M. Pérez-Díaz
- USDA-Agricultural Research Service, Food Science Research Unit, Raleigh, NC, United States
| | | | | | | |
Collapse
|
30
|
Karaseva O, Ozhegov G, Khusnutdinova D, Siniagina M, Anisimova E, Akhatova F, Fakhrullin R, Yarullina D. Whole Genome Sequencing of the Novel Probiotic Strain Lactiplantibacillus plantarum FCa3L. Microorganisms 2023; 11:1234. [PMID: 37317208 DOI: 10.3390/microorganisms11051234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 06/16/2023] Open
Abstract
Lactiplantibacillus plantarum is best known for its significant adaptive potential and ability to colonize different ecological niches. Different strains of L. plantarum are widely used as probiotics. To characterize the probiotic potential of the novel L. plantarum FCa3L strain isolated from fermented cabbage, we sequenced its whole genome using the Illumina MiSeq platform. This bacterial isolate had a circular chromosome of 3,365,929 bp with 44.3% GC content and a cyclic phage phiX174 of 5386 bp with 44.7% GC content. The results of in vitro studies showed that FCa3L was comparable with the reference probiotic strain L. plantarum 8PA3 in terms of acid and bile tolerance, adhesiveness, H2O2 production, and acidification rate. The strain 8PA3 possessed higher antioxidant activity, while FCa3L demonstrated superior antibacterial properties. The antibiotic resistance of FCa3L was more relevant to the probiotic strain than that of 8PA3, although a number of silent antibiotic resistance genes were identified in its genome. Genomic evidence to support adhesive and antibacterial properties, biosynthesis of bioactive metabolites, and safety of FCa3L was also presented. Thus, this study confirmed the safety and probiotic properties of L. plantarum FCa3L via complete genome and phenotype analysis, suggesting its potential as a probiotic, although further in vivo investigations are still necessary.
Collapse
Affiliation(s)
- Olga Karaseva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya Str. 18, 420008 Kazan, Republic of Tatarstan, Russia
| | - Georgii Ozhegov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya Str. 18, 420008 Kazan, Republic of Tatarstan, Russia
| | - Dilyara Khusnutdinova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya Str. 18, 420008 Kazan, Republic of Tatarstan, Russia
| | - Maria Siniagina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya Str. 18, 420008 Kazan, Republic of Tatarstan, Russia
| | - Elizaveta Anisimova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya Str. 18, 420008 Kazan, Republic of Tatarstan, Russia
| | - Farida Akhatova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya Str. 18, 420008 Kazan, Republic of Tatarstan, Russia
| | - Rawil Fakhrullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya Str. 18, 420008 Kazan, Republic of Tatarstan, Russia
| | - Dina Yarullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya Str. 18, 420008 Kazan, Republic of Tatarstan, Russia
| |
Collapse
|
31
|
Nikolopoulos N, Matos RC, Ravaud S, Courtin P, Akherraz H, Palussiere S, Gueguen-Chaignon V, Salomon-Mallet M, Guillot A, Guerardel Y, Chapot-Chartier MP, Grangeasse C, Leulier F. Structure-function analysis of Lactiplantibacillus plantarum DltE reveals D-alanylated lipoteichoic acids as direct cues supporting Drosophila juvenile growth. eLife 2023; 12:e84669. [PMID: 37042660 PMCID: PMC10241514 DOI: 10.7554/elife.84669] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/11/2023] [Indexed: 04/13/2023] Open
Abstract
Metazoans establish mutually beneficial interactions with their resident microorganisms. However, our understanding of the microbial cues contributing to host physiology remains elusive. Previously, we identified a bacterial machinery encoded by the dlt operon involved in Drosophila melanogaster's juvenile growth promotion by Lactiplantibacillus plantarum. Here, using crystallography combined with biochemical and cellular approaches, we investigate the physiological role of an uncharacterized protein (DltE) encoded by this operon. We show that lipoteichoic acids (LTAs) but not wall teichoic acids are D-alanylated in Lactiplantibacillus plantarumNC8 cell envelope and demonstrate that DltE is a D-Ala carboxyesterase removing D-Ala from LTA. Using the mutualistic association of L. plantarumNC8 and Drosophila melanogaster as a symbiosis model, we establish that D-alanylated LTAs (D-Ala-LTAs) are direct cues supporting intestinal peptidase expression and juvenile growth in Drosophila. Our results pave the way to probing the contribution of D-Ala-LTAs to host physiology in other symbiotic models.
Collapse
Affiliation(s)
- Nikos Nikolopoulos
- Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086, Université Claude Bernard Lyon 1LyonFrance
| | - Renata C Matos
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Université Claude Bernard Lyon 1LyonFrance
| | - Stephanie Ravaud
- Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086, Université Claude Bernard Lyon 1LyonFrance
| | - Pascal Courtin
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis InstituteJouy-en-JosasFrance
| | - Houssam Akherraz
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Université Claude Bernard Lyon 1LyonFrance
| | - Simon Palussiere
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis InstituteJouy-en-JosasFrance
| | - Virginie Gueguen-Chaignon
- Protein Science Facility, CNRS UAR3444, INSERM US8, Université Claude Bernard Lyon 1, Ecole Normale Supérieur de LyonLyonFrance
| | - Marie Salomon-Mallet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis InstituteJouy-en-JosasFrance
| | - Alain Guillot
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis InstituteJouy-en-JosasFrance
| | - Yann Guerardel
- Institute for Glyco-core Research (iGCORE), Gifu UniversityGifuJapan
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et FonctionnelleLilleFrance
| | | | - Christophe Grangeasse
- Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086, Université Claude Bernard Lyon 1LyonFrance
| | - François Leulier
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Université Claude Bernard Lyon 1LyonFrance
| |
Collapse
|
32
|
Gaur G, Chen C, Gänzle MG. Characterization of isogenic mutants with single or double deletions of four phenolic acid esterases in Lactiplantibacillus plantarum TMW1.460. Int J Food Microbiol 2023; 388:110100. [PMID: 36706579 DOI: 10.1016/j.ijfoodmicro.2023.110100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 11/05/2022] [Accepted: 01/15/2023] [Indexed: 01/22/2023]
Abstract
In plants, hydroxycinnamic and hydroxybenzoic acids occur mainly as esters. This study aimed to determine the contribution of individual phenolic acid esterases in Lp. plantarum TMW1.460, which encodes for four esterases: TanA, Lp_0796, Est_1092 and a homolog of Lj0536 and Lj1228 that was termed HceP. To determine which of the phenolic acid esterases present in Lp plantarum TMW1.460 are responsible for esterase activity, mutants with deletions in lp_0796, est_1092, tanB, hceP, or hceP and est_1092 were constructed. The phenotype of wild type strain and mutants was determined with esters of hydroxycinnamic acids (chlorogenic acid and ethyl ferulate) and of hydroxybenzoic acids (methyl gallate, tannic acid and epigallocatechin-3-gallate). Lp. plantarum TMW1.460 hydrolysed chlorogenic acid, methyl ferulate and methyl gallate but not tannic acid or epigallocatechin gallate. The phenotype of mutant strains during growth in mMRS differed from the wild type as follows: Lp. plantarum TMW1.460ΔhceP did not hydrolyse esters of hydroxycinnamic acids; Lp. plantarum TMW1.460ΔtanB did not hydrolyse esters of hydroxybenzoic acids; disruption of est_1092 or Lp_0796 did not alter the phenotype. The phenotype of Lp. plantarum TMW1.460ΔΔhceP/est_1092 was identical to Lp. plantarum TMW1.460ΔhceP. The metabolism of phenolic acids during growth of the mutant strains in broccoli puree and wheat sourdough did not differ from metabolism of the wild type strain. In conclusion, esters of hydroxycinnamic and hydroxybenzoic acids each are hydrolysed by dedicated enzymes. The hydroxycinnamic acid esterase HceP is not expressed, or not active during growth of Lp. plantarum TMW1.460 in all food substrates.
Collapse
Affiliation(s)
- Gautam Gaur
- University of Alberta, Department of Agricultural, Food and Nutritional Science, Edmonton, Alberta, Canada
| | - Chen Chen
- University of Alberta, Department of Agricultural, Food and Nutritional Science, Edmonton, Alberta, Canada; Shanghai Institute of Technology, School of Perfume and Aroma Technology, Shanghai, PR China
| | - Michael G Gänzle
- University of Alberta, Department of Agricultural, Food and Nutritional Science, Edmonton, Alberta, Canada.
| |
Collapse
|
33
|
Mendoza RM, Kim SH, Vasquez R, Hwang IC, Park YS, Paik HD, Moon GS, Kang DK. Bioinformatics and its role in the study of the evolution and probiotic potential of lactic acid bacteria. Food Sci Biotechnol 2023; 32:389-412. [PMID: 36911331 PMCID: PMC9992694 DOI: 10.1007/s10068-022-01142-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/30/2022] [Accepted: 07/13/2022] [Indexed: 11/04/2022] Open
Abstract
Due to their numerous well-established applications in the food industry, there have been many studies regarding the adaptation and evolution of lactic acid bacteria (LAB) in a wide variety of hosts and environments. Progress in sequencing technology and continual decreases in its costs have led to the availability of LAB genome sequence data. Bioinformatics has been central to the extraction of valuable information from these raw genome sequence data. This paper presents the roles of bioinformatics tools and databases in understanding the adaptation and evolution of LAB, as well as the bioinformatics methods used in the initial screening of LAB for probiotic potential. Moreover, the advantages, challenges, and limitations of employing bioinformatics for these purposes are discussed.
Collapse
Affiliation(s)
- Remilyn M. Mendoza
- Department of Animal Resources Science, Dankook University, 119 Dandae-ro, Cheonan, 31116 Republic of Korea
| | - Sang Hoon Kim
- Department of Animal Resources Science, Dankook University, 119 Dandae-ro, Cheonan, 31116 Republic of Korea
| | - Robie Vasquez
- Department of Animal Resources Science, Dankook University, 119 Dandae-ro, Cheonan, 31116 Republic of Korea
| | - In-Chan Hwang
- Department of Animal Resources Science, Dankook University, 119 Dandae-ro, Cheonan, 31116 Republic of Korea
| | - Young-Seo Park
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120 Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resource, Konkuk University, Seoul, 05029 Republic of Korea
| | - Gi-Seong Moon
- Division of Food Science and Biotechnology, Korea National University of Transportation, Jeungpyeong, 27909 Republic of Korea
| | - Dae-Kyung Kang
- Department of Animal Resources Science, Dankook University, 119 Dandae-ro, Cheonan, 31116 Republic of Korea
| |
Collapse
|
34
|
Cappello C, Acin-Albiac M, Pinto D, Polo A, Filannino P, Rinaldi F, Gobbetti M, Di Cagno R. Do nomadic lactobacilli fit as potential vaginal probiotics? The answer lies in a successful selective multi-step and scoring approach. Microb Cell Fact 2023; 22:27. [PMID: 36774510 PMCID: PMC9921609 DOI: 10.1186/s12934-023-02030-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/21/2023] [Indexed: 02/13/2023] Open
Abstract
BACKGROUND The goal of this study was to create a multi-strain probiotic gel that would foster a lactobacilli-dominated vaginal microbiota in pregnant women and ensure appropriate eubiosis for the newborn. Nomadic lactobacilli (95 strains), mostly isolated from food sources, were preliminarily screened for functional traits before being characterized for their capability to inhibit the two vaginal pathogens Streptococcus agalactiae and Candida albicans, which may lead to adverse pregnancy-related outcomes. Eight best-performing strains were chosen and furtherly investigated for their ability to produce biofilm. Lastly, the two selected potential probiotic candidates were analyzed in vitro for their ability to reduce the inflammation caused by C. albicans infection on the reconstituted human vaginal epithelium (HVE). RESULTS Lactiplantibacillus plantarum produced both isomers of lactic acid, while Lacticaseibacillus paracasei produced only L-isomer. The production of hydrogen peroxide was strain-dependent, with the highest concentrations found within Lact. paracasei strains. The auto-aggregation capacity and hydrophobicity traits were species-independent. S. agalactiae 88II3 was strongly inhibited both at pH 7.0 and 4.0, whereas the inhibition of C. albicans UNIBZ54 was less frequent. Overall, L. plantarum strains had the highest pathogen inhibition and functional scoring. L. plantarum C5 and POM1, which were selected as potential probiotic candidates also based on their ability to form biofilms, were able to counteract the inflammation process caused by C. albicans infection in the HVE model. CONCLUSIONS Our multi-step and cumulative scoring-based approach was proven successful in mining and highlighting the probiotic potential of two nomadic lactobacilli strains (L. plantarum C5 and POM1), being applicable to preserve and improve human vaginal health.
Collapse
Affiliation(s)
- Claudia Cappello
- Faculty of Science and Technology, Free University of Bolzano, Bolzano, Italy
| | - Marta Acin-Albiac
- Faculty of Science and Technology, Free University of Bolzano, Bolzano, Italy
| | - Daniela Pinto
- Human Microbiome Advanced Project, Research & Development, Milan, Italy.
| | - Andrea Polo
- Faculty of Science and Technology, Free University of Bolzano, Bolzano, Italy
| | - Pasquale Filannino
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Fabio Rinaldi
- Human Microbiome Advanced Project, Research & Development, Milan, Italy
| | - Marco Gobbetti
- Faculty of Science and Technology, Free University of Bolzano, Bolzano, Italy
| | - Raffaella Di Cagno
- Faculty of Science and Technology, Free University of Bolzano, Bolzano, Italy
| |
Collapse
|
35
|
Opportunities and Challenges of Understanding Community Assembly in Spontaneous Food Fermentation. Foods 2023; 12:foods12030673. [PMID: 36766201 PMCID: PMC9914028 DOI: 10.3390/foods12030673] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Spontaneous fermentations that do not rely on backslopping or industrial starter cultures were especially important to the early development of society and are still practiced around the world today. While current literature on spontaneous fermentations is observational and descriptive, it is important to understand the underlying mechanism of microbial community assembly and how this correlates with changes observed in microbial succession, composition, interaction, and metabolite production. Spontaneous food and beverage fermentations are home to autochthonous bacteria and fungi that are naturally inoculated from raw materials, environment, and equipment. This review discusses the factors that play an important role in microbial community assembly, particularly focusing on commonly reported yeasts and bacteria isolated from spontaneously fermenting food and beverages, and how this affects the fermentation dynamics. A wide range of studies have been conducted in spontaneously fermented foods that highlight some of the mechanisms that are involved in microbial interactions, niche adaptation, and lifestyle of these microorganisms. Moreover, we will also highlight how controlled culture experiments provide greater insight into understanding microbial interactions, a modest attempt in decoding the complexity of spontaneous fermentations. Further research using specific in vitro microbial models to understand the role of core microbiota are needed to fill the knowledge gap that currently exists in understanding how the phenotypic and genotypic expression of these microorganisms aid in their successful adaptation and shape fermentation outcomes. Furthermore, there is still a vast opportunity to understand strain level implications on community assembly. Translating these findings will also help in improving other fermentation systems to help gain more control over the fermentation process and maintain consistent and superior product quality.
Collapse
|
36
|
Davray D, Bawane H, Kulkarni R. Non-redundant nature of Lactiplantibacillus plantarum plasmidome revealed by comparative genomic analysis of 105 strains. Food Microbiol 2023; 109:104153. [DOI: 10.1016/j.fm.2022.104153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/09/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022]
|
37
|
Dueholm MKD, Besteman M, Zeuner EJ, Riisgaard-Jensen M, Nielsen ME, Vestergaard SZ, Heidelbach S, Bekker NS, Nielsen PH. Genetic potential for exopolysaccharide synthesis in activated sludge bacteria uncovered by genome-resolved metagenomics. WATER RESEARCH 2023; 229:119485. [PMID: 36538841 DOI: 10.1016/j.watres.2022.119485] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
A good floc formation of activated sludge (AS) is crucial for solid-liquid separation and production of clean effluent during wastewater treatment. Floc formation is partly controlled by self-produced extracellular polymeric substances (EPS) such as exopolysaccharides, proteins, and nucleic acids. Little is known about the composition, structure, and function of EPS in AS and which bacteria produce them. To address this knowledge gap for the exopolysaccharides, we took advantage of 1083 high-quality metagenome-assembled genomes (MAGs) obtained from 23 Danish wastewater treatment plants. We investigated the genomic potential for exopolysaccharide biosynthesis in bacterial species typical in AS systems based on genome mining and gene synteny analyses. Putative gene clusters associated with the biosynthesis of alginate, cellulose, curdlan, diutan, hyaluronic acids, Pel, poly-β-1,6-N-acetyl-d-glucosamine (PNAG), Psl, S88 capsular polysaccharide, salecan, succinoglycan, and xanthan were identified and linked to individual MAGs, providing a comprehensive overview of the genome-resolved potential for these exopolysaccharides in AS bacteria. The approach and results provide a starting point for a more comprehensive understanding of EPS composition in wastewater treatment systems, which may facilitate a more refined regulation of the activated sludge process for improved stability.
Collapse
Affiliation(s)
- Morten Kam Dahl Dueholm
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.
| | - Maaike Besteman
- Department of Agrotechnology and Food Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Emil Juel Zeuner
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Marie Riisgaard-Jensen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Morten Eneberg Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Sofie Zacho Vestergaard
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Søren Heidelbach
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Nicolai Sundgaard Bekker
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Per Halkjær Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| |
Collapse
|
38
|
Biochemical and Genomic Characterization of Two New Strains of Lacticaseibacillus paracasei Isolated from the Traditional Corn-Based Beverage of South Africa, Mahewu, and Their Comparison with Strains Isolated from Kefir Grains. Foods 2023; 12:foods12010223. [PMID: 36613437 PMCID: PMC9818903 DOI: 10.3390/foods12010223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Lacticaseibacillus paracasei (formerly Lactobacillus paracasei) is a nomadic lactic acid bacterium (LAB) that inhabits a wide variety of ecological niches, from fermented foodstuffs to host-associated microenvironments. Many of the isolated L. paracasei strains have been used as single-strain probiotics or as part of a symbiotic consortium within formulations. The present study contributes to the exploration of different strains of L. paracasei derived from non-conventional isolation sources-the South African traditional fermented drink mahewu (strains MA2 and MA3) and kefir grains (strains KF1 and ABK). The performed microbiological, biochemical and genomic comparative analyses of the studied strains demonstrated correlation between properties of the strains and their isolation source, which suggests the presence of at least partial strain adaptation to the isolation environments. Additionally, for the studied strains, antagonistic activities against common pathogens and against each other were observed, and the ability to release bioactive peptides with antioxidant and angiotensin I-converting enzyme inhibitory (ACE-I) properties during milk fermentation was investigated. The obtained results may be useful for a deeper understanding of the nomadic lifestyle of L. paracasei and for the development of new starter cultures and probiotic preparations based on this LAB in the future.
Collapse
|
39
|
Zhao X, Liang Q, Song X, Zhang Y. Whole genome sequence of Lactiplantibacillus plantarum MC5 and comparative analysis of eps gene clusters. Front Microbiol 2023; 14:1146566. [PMID: 37200914 PMCID: PMC10185785 DOI: 10.3389/fmicb.2023.1146566] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/17/2023] [Indexed: 05/20/2023] Open
Abstract
Introduction Probiotic Lactiplantibacillus plantarum MC5 produces large amounts of exopolysaccharides (EPS), and its use as a compound fermentor can greatly improve the quality of fermented milk. Methods To gain insight into the genomic characteristics of probiotic MC5 and reveal the relationship between its EPS biosynthetic phenotype and genotype, we analyzed the carbohydrate metabolic capacity, nucleotide sugar formation pathways, and EPS biosynthesis-related gene clusters of strain MC5 based on its whole genome sequence. Finally, we performed validation tests on the monosaccharides and disaccharides that strain MC5 may metabolize. Results Genomic analysis showed that MC5 has seven nucleotide sugar biosynthesis pathways and 11 sugar-specific phosphate transport systems, suggesting that the strain can metabolize mannose, fructose, sucrose, cellobiose, glucose, lactose, and galactose. Validation results showed that strain MC5 can metabolize these seven sugars and produce significant amounts of EPS (> 250 mg/L). In addition, strain MC5 possesses two typical eps biosynthesis gene clusters, which include the conserved genes epsABCDE, wzx, and wzy, six key genes for polysaccharide biosynthesis, and one MC5-specific epsG gene. Discussion These insights into the mechanism of EPS-MC5 biosynthesis can be used to promote the production of EPS through genetic engineering.
Collapse
|
40
|
Phenotypic and Safety Assessment of the Cheese Strain Lactiplantibacillus plantarum LL441, and Sequence Analysis of its Complete Genome and Plasmidome. Int J Mol Sci 2022; 24:ijms24010605. [PMID: 36614048 PMCID: PMC9820265 DOI: 10.3390/ijms24010605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
This work describes the phenotypic typing and complete genome analysis of LL441, a dairy Lactiplantibacillus plantarum strain. LL441 utilized a large range of carbohydrates and showed strong activity of some carbohydrate-degrading enzymes. The strain grew slowly in milk and produced acids and ketones along with other volatile compounds. The genome of LL441 included eight circular molecules, the bacterial chromosome, and seven plasmids (pLL441-1 through pLL441-7), ranging in size from 8.7 to 53.3 kbp. Genome analysis revealed vast arrays of genes involved in carbohydrate utilization and flavor formation in milk, as well as genes providing acid and bile resistance. No genes coding for virulence traits or pathogenicity factors were detected. Chromosome and plasmids were packed with insertion sequence (IS) elements. Plasmids were also abundant in genes encoding heavy metal resistance traits and plasmid maintenance functions. Technologically relevant phenotypes linked to plasmids, such as the production of plantaricin C (pLL441-1), lactose utilization (pLL441-2), and bacteriophage resistance (pLL441-4), were also identified. The absence of acquired antibiotic resistance and of phenotypes and genes of concern suggests L. plantarum LL441 be safe. The strain might therefore have a use as a starter or starter component in dairy and other food fermentations or as a probiotic.
Collapse
|
41
|
Blázquez-Bondia C, Parera M, Català-Moll F, Casadellà M, Elizalde-Torrent A, Aguiló M, Espadaler-Mazo J, Santos JR, Paredes R, Noguera-Julian M. Probiotic effects on immunity and microbiome in HIV-1 discordant patients. Front Immunol 2022; 13:1066036. [PMID: 36569851 PMCID: PMC9774487 DOI: 10.3389/fimmu.2022.1066036] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
Background Some HIV-1 infected patients are unable to completely recover normal CD4+ T-cell (CD4+) counts after achieving HIV-1 suppression with combined Antiretroviral Therapy (cART), hence being classified as immuno-discordant. The human microbiome plays a crucial role in maintaining immune homeostasis and is a potential target towards immune reconstitution. Setting RECOVER (NCT03542786) was a double-blind placebo-controlled clinical trial designed to evaluate if the novel probiotic i3.1 (AB-Biotics, Sant Cugat del Vallès, Spain) was able to improve immune reconstitution in HIV-1 infected immuno-discordant patients with stable cART and CD4+ counts <500 cells/mm3. The mixture consisted of two strains of L. plantarum and one of P. acidilactici, given with or without a fiber-based prebiotic. Methods 71 patients were randomized 1:2:2 to Placebo, Probiotic or probiotic + prebiotic (Synbiotic), and were followed over 6 months + 3-month washout period, in which changes on systemic immune status and gut microbiome were evaluated. Primary endpoints were safety and tolerability of the investigational product. Secondary endpoints were changes on CD4+ and CD8+ T-cell (CD8+) counts, inflammation markers and faecal microbiome structure, defined by alpha diversity (Gene Richness), beta diversity (Bray-Curtis) and functional profile. Comparisons across/within groups were performed using standard/paired Wilcoxon test, respectively. Results Adverse event (AE) incidence was similar among groups (53%, 33%, and 55% in the Placebo, Probiotic and Synbiotic groups, respectively, the most common being grade 1 digestive AEs: flatulence, bloating and diarrhoea. Two grade 3 AEs were reported, all in the Synbiotic group: abdominal distension (possibly related) and malignant lung neoplasm (unrelated), and 1 grade 4 AE in the Placebo: hepatocarcinoma (unrelated). Synbiotic exposure was associated with a higher increase in CD4+/CD8+ T-cell (CD4/CD8) ratio at 6 months vs baseline (median=0.76(IQR=0.51) vs 0.72(0. 45), median change= 0.04(IQR=0.19), p = 0.03). At month 9, the Synbiotic group had a significant increase in CD4/CD8 ratio (0.827(0.55) vs 0.825(0.53), median change = 0.04(IQR=0.15), p= 0.02) relative to baseline, and higher CD4+ counts (447 (157) vs. 342(73) counts/ml, p = 0.03), and lower sCD14 values (2.16(0.67) vs 3.18(0.8), p = 0.008) than Placebo. No effect in immune parameters was observed in the Probiotic arm. None of the two interventions modified microbial gene richness (alpha diversity). However, intervention as categorical variable was associated with slight but significant effect on Bray-Curtis distance variance (Adonis R2 = 0.02, p = 0.005). Additionally, at month 6, Synbiotic intervention was associated with lower pathway abundances vs Placebo of Assimilatory Sulphate Reduction (8.79·10-6 (1.25·10-5) vs. 1.61·10-5 (2.77·10-5), p = 0.03) and biosynthesis of methionine (2.3·10-5 (3.17·10-5) vs. 4·10-5 (5.66·10-5), p = 0.03) and cysteine (1.83·10-5 (2.56·10-5) vs. 3.3·10-5 (4.62·10-5), p = 0.03). At month 6, probiotic detection in faeces was associated with significant decreases in C Reactive Protein (CRP) vs baseline (11.1(22) vs. 19.2(66), median change= -2.7 (13.2) ug/ml, p = 0.04) and lower IL-6 values (0.58(1.13) vs. 1.17(1.59) ug/ml, p = 0.02) when compared with samples with no detectable probiotic. No detection of the probiotic was associated with higher CD4/CD8 ratio at month 6 vs baseline (0.718(0.57) vs. 0.58(0.4), median change = 0.4(0.2), p = 0.02). After washout, probiotic non-detection was also associated with a significant increase in CD4+ counts (457(153) vs. 416(142), median change = 45(75), counts/ml, p = 0.005) and CD4/CD8 ratio (0.67(0.5) vs 0.59(0.49), median change = 0.04 (0.18), p = 0.02). Conclusion A synbiotic intervention with L. plantarum and P. acidilactici was safe and led to small increases in CD4/CD8 ratio and minor reductions in sCD14 of uncertain clinical significance. A probiotic with the same composition was also safe but did not achieve any impact on immune parameters or faecal microbiome composition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - José Ramon Santos
- Infectious Diseases Department and Fundació Lluita contra les Infeccions, Hospital Universitari Germans Trias i Pujol, Badalona, Catalonia, Spain
| | - Roger Paredes
- IrsiCaixa AIDS Research Institute, Badalona, Spain,Infectious Diseases Department and Fundació Lluita contra les Infeccions, Hospital Universitari Germans Trias i Pujol, Badalona, Catalonia, Spain,Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic – Central University of Catalonia (UVic – UCC), Vic, Barcelona, Spain,Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain,Infectious Disease Networking Biomedical Research Center, Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Carlos III Health Institute, Madrid, Spain
| | - Marc Noguera-Julian
- IrsiCaixa AIDS Research Institute, Badalona, Spain,Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic – Central University of Catalonia (UVic – UCC), Vic, Barcelona, Spain,Infectious Disease Networking Biomedical Research Center, Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Carlos III Health Institute, Madrid, Spain,*Correspondence: Marc Noguera-Julian,
| |
Collapse
|
42
|
Pereira Barbosa J, dos Santos Lima M, Amaral Souza Tette P. Prebiotic potential of Puçá and Gabiroba fruit by-products from Cerrado Savannah. FOOD BIOTECHNOL 2022. [DOI: 10.1080/08905436.2022.2124520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
| | - Marcos dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão Pernambucano, Petrolina, Brazil
| | | |
Collapse
|
43
|
Bacterial Metabolism and Transport Genes Are Associated with the Preference of Drosophila melanogaster for Dietary Yeast. Appl Environ Microbiol 2022; 88:e0072022. [PMID: 35913151 PMCID: PMC9397100 DOI: 10.1128/aem.00720-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Many animal traits are influenced by their associated microorganisms ("microbiota"). To expand our understanding of the relationship between microbial genotype and host phenotype, we report an analysis of the influence of the microbiota on the dietary preference of the fruit fly Drosophila melanogaster. First, we confirmed through experiments on flies reared bacteria-free ("axenic") or in monoassociation with two different strains of bacteria that the microbiota significantly influences fruit fly dietary preference across a range of ratios of dietary yeast:dietary glucose. Then, focusing on microbiota-dependent changes in fly dietary preference for yeast (DPY), we performed a metagenome-wide association (MGWA) study to define microbial species specificity for this trait and to predict bacterial genes that influence it. In a subsequent mutant analysis, we confirmed that disrupting a subset of the MGWA-predicted genes influences fly DPY, including for genes involved in thiamine biosynthesis and glucose transport. Follow-up tests revealed that the bacterial influence on fly DPY did not depend on bacterial modification of the glucose or protein content of the fly diet, suggesting that the bacteria mediate their effects independent of the fly diet or through more specific dietary changes than broad ratios of protein and glucose. Together, these findings provide additional insight into bacterial determinants of host nutrition and behavior by revealing specific genetic disruptions that influence D. melanogaster DPY. IMPORTANCE Associated microorganisms ("microbiota") impact the physiology and behavior of their hosts, and defining the mechanisms underlying these interactions is a major gap in the field of host-microbe interactions. This study expands our understanding of how the microbiota can influence dietary preference for yeast (DPY) of a model host, Drosophila melanogaster. First, we show that fly preferences for a range of different dietary yeast:dietary glucose ratios vary significantly with the identity of the microbes that colonize the fruit flies. We then performed a metagenome-wide association study to identify candidate bacterial genes that contributed to some of these bacterial influences. We confirmed that disrupting some of the predicted genes, including genes involved in glucose transport and thiamine biosynthesis, resulted in changes to fly DPY and show that the influence of two of these genes is not through changes in dietary ratios of protein to glucose. Together, these efforts expand our understanding of the bacterial genetic influences on a feeding behavior of a model animal host.
Collapse
|
44
|
Mechanism of gastrointestinal adaptability and antioxidant function of infant-derived Lactobacillus plantarum BF_15 through genomics. Food Sci Biotechnol 2022; 31:1451-1462. [PMID: 36060571 PMCID: PMC9433590 DOI: 10.1007/s10068-022-01132-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/12/2022] [Accepted: 07/01/2022] [Indexed: 11/04/2022] Open
Abstract
Lactobacillus plantarum is an essential probiotic in the human gastrointestinal tract. L. plantarum BF_15, a functional probiotic isolated from the feces of breast-fed infants, has been reported in many in vitro and in vivo studies with strong gastrointestinal adaptability and outstanding anti-oxidative activities. Therefore, the whole genome of L. plantarum BF_15 was sequenced. Several genes, encoding the gastrointestinal adaptability-related proteins, were identified, including genes related to gastrointestinal environment-induced stress resistance, adhesive performance, and ability to transport and metabolize resistant starch and oligosaccharides. Genes related to alleviating oxidative stress were also found. Further functional verification was carried out by RT-qPCR on the 10 and 12 key adhesion and antioxidant genes. Overall, this study might provide a critical basis for L. plantarum BF_15 as a potential candidate for probiotics. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-022-01132-w.
Collapse
|
45
|
Nikolopoulos N, Matos RC, Courtin P, Ayala I, Akherraz H, Simorre JP, Chapot-Chartier MP, Leulier F, Ravaud S, Grangeasse C. DltC acts as an interaction hub for AcpS, DltA and DltB in the teichoic acid D-alanylation pathway of Lactiplantibacillus plantarum. Sci Rep 2022; 12:13133. [PMID: 35907949 PMCID: PMC9338922 DOI: 10.1038/s41598-022-17434-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023] Open
Abstract
Teichoic acids (TA) are crucial for the homeostasis of the bacterial cell wall as well as their developmental behavior and interplay with the environment. TA can be decorated by different modifications, modulating thus their biochemical properties. One major modification consists in the esterification of TA by d-alanine, a process known as d-alanylation. TA d-alanylation is performed by the Dlt pathway, which starts in the cytoplasm and continues extracellularly after d-Ala transportation through the membrane. In this study, we combined structural biology and in vivo approaches to dissect the cytoplasmic steps of this pathway in Lactiplantibacillus plantarum, a bacterial species conferring health benefits to its animal host. After establishing that AcpS, DltB, DltC1 and DltA are required for the promotion of Drosophila juvenile growth under chronic undernutrition, we solved their crystal structure and/or used NMR and molecular modeling to study their interactions. Our work demonstrates that the suite of interactions between these proteins is ordered with a conserved surface of DltC1 docking sequentially AcpS, DltA and eventually DltB. Altogether, we conclude that DltC1 acts as an interaction hub for all the successive cytoplasmic steps of the TA d-alanylation pathway.
Collapse
Affiliation(s)
- Nikos Nikolopoulos
- Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086, Université Claude Bernard Lyon 1, Lyon, France
| | - Renata C Matos
- Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, CNRS UMR 5242, Université Claude Bernard Lyon 1, Lyon, France
| | - Pascal Courtin
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Isabel Ayala
- Institut de Biologie Structurale, CEA, CNRS UMR 5075, Université Grenoble Alpes, 3800, Grenoble, France
| | - Houssam Akherraz
- Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, CNRS UMR 5242, Université Claude Bernard Lyon 1, Lyon, France
| | - Jean-Pierre Simorre
- Institut de Biologie Structurale, CEA, CNRS UMR 5075, Université Grenoble Alpes, 3800, Grenoble, France
| | | | - François Leulier
- Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, CNRS UMR 5242, Université Claude Bernard Lyon 1, Lyon, France
| | - Stéphanie Ravaud
- Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086, Université Claude Bernard Lyon 1, Lyon, France.
| | - Christophe Grangeasse
- Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086, Université Claude Bernard Lyon 1, Lyon, France.
| |
Collapse
|
46
|
Calcium Determines
Lactiplantibacillus plantarum
Intraspecies Competitive Fitness. Appl Environ Microbiol 2022; 88:e0066622. [PMID: 35852360 PMCID: PMC9361822 DOI: 10.1128/aem.00666-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The importance of individual nutrients for microbial strain robustness and coexistence in habitats containing different members of the same species is not well understood. To address this for Lactiplantibacillus plantarum in food fermentations, we performed comparative genomics and examined the nutritive requirements and competitive fitness for L. plantarum strains B1.1 and B1.3 isolated from a single sample of teff injera fermentation batter. Compared to B1.1 and other L. plantarum strains, B1.3 has a smaller genome, limited biosynthetic capacities, and large mobilome. Despite these differences, B1.3 was equally competitive with B1.1 in a suspension of teff flour. In commercially sourced, nutrient-replete MRS (cMRS) medium, strain B1.3 reached 3-fold-higher numbers than B1.1 within 2 days of passage. Because B1.3 growth and competitive fitness were poor in mMRS medium (here called mMRS), a modified MRS medium lacking beef extract, we used mMRS to identify nutrients needed for robust B1.3 growth. No improvement was observed when mMRS was supplemented with nucleotides, amino acids, vitamins, or monovalent metals. Remarkably, the addition of divalent metal salts increased the growth rate and cell yields of B1.3 in mMRS. Metal requirements were confirmed by inductively coupled plasma mass spectrometry, showing that total B1.3 intracellular metal concentrations were significantly (up to 2.7-fold) reduced compared to B1.1. Supplemental CaCl2 conferred the greatest effect, resulting in equal growth between B1.1 and B1.3 over five successive passages in mMRS. Moreover, calcium supplementation reversed a B1.3 strain-specific, stationary-phase, flocculation phenotype. These findings show how L. plantarum calcium requirements affect competitive fitness at the strain level. IMPORTANCE Ecological theory states that the struggle for existence is stronger between closely related species. Contrary to this assertion, fermented foods frequently sustain conspecific individuals, in spite of their high levels of phylogenetic relatedness. Therefore, we investigated two isolates of Lactiplantibacillus plantarum, B1.1 and B1.3, randomly selected from a single batch of teff injera batter. These strains spanned the known genomic and phenotypic range of the L. plantarum species, and in laboratory culture medium used for strain screening, B1.3 exhibited poor growth and was outcompeted by the more robust strain B1.1. Nonetheless, B1.1 and B1.3 were equally competitive in teff flour. This result shows how L. plantarum has adapted for coexistence in that environment. The capacity for the single macronutrient calcium to restore B1.3 competitive fitness in laboratory culture medium suggests that L. plantarum intraspecies diversity found in food systems is fine-tuned to nutrient requirements at the strain level.
Collapse
|
47
|
Garcia-Gonzalez N, Bottacini F, van Sinderen D, Gahan CGM, Corsetti A. Comparative Genomics of Lactiplantibacillus plantarum: Insights Into Probiotic Markers in Strains Isolated From the Human Gastrointestinal Tract and Fermented Foods. Front Microbiol 2022; 13:854266. [PMID: 35663852 PMCID: PMC9159523 DOI: 10.3389/fmicb.2022.854266] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Lactiplantibacillus (Lpb.) plantarum is a versatile species commonly found in a wide variety of ecological niches including dairy products and vegetables, while it may also occur as a natural inhabitant of the human gastrointestinal tract. Although Lpb. plantarum strains have been suggested to exert beneficial properties on their host, the precise mechanisms underlying these microbe-host interactions are still obscure. In this context, the genome-scale in silico analysis of putative probiotic bacteria represents a bottom-up approach to identify probiotic biomarkers, predict desirable functional properties, and identify potentially detrimental antibiotic resistance genes. In this study, we characterized the bacterial genomes of three Lpb. plantarum strains isolated from three distinct environments [strain IMC513 (from the human GIT), C904 (from table olives), and LT52 (from raw-milk cheese)]. A whole-genome sequencing was performed combining Illumina short reads with Oxford Nanopore long reads. The phylogenomic analyses suggested the highest relatedness between IMC513 and C904 strains which were both clade 4 strains, with LT52 positioned within clade 5 within the Lpb. plantarum species. The comparative genome analysis performed across several Lpb. plantarum representatives highlighted the genes involved in the key metabolic pathways as well as those encoding potential probiotic features in these new isolates. In particular, our strains varied significantly in genes encoding exopolysaccharide biosynthesis and in contrast to strains IMC513 and C904, the LT52 strain does not encode a Mannose-binding adhesion protein. The LT52 strain is also deficient in genes encoding complete pentose phosphate and the Embden-Meyerhof pathways. Finally, analyses using the CARD and ResFinder databases revealed that none of the strains encode known antibiotic resistance loci. Ultimately, the results provide better insights into the probiotic potential and safety of these three strains and indicate avenues for further mechanistic studies using these isolates.
Collapse
Affiliation(s)
- Natalia Garcia-Gonzalez
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- School of Microbiology, University College Cork, Cork, Ireland
- Synbiotec S.r.l., Spin-off of University of Camerino, Camerino, Italy
| | - Francesca Bottacini
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Biological Sciences, Munster Technological University, Cork, Ireland
| | | | - Cormac G. M. Gahan
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Aldo Corsetti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
48
|
Iorizzo M, Ganassi S, Albanese G, Letizia F, Testa B, Tedino C, Petrarca S, Mutinelli F, Mazzeo A, De Cristofaro A. Antimicrobial Activity from Putative Probiotic Lactic Acid Bacteria for the Biological Control of American and European Foulbrood Diseases. Vet Sci 2022; 9:vetsci9050236. [PMID: 35622764 PMCID: PMC9143654 DOI: 10.3390/vetsci9050236] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/02/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023] Open
Abstract
The balance of the gut microbiome is important for the honey bee’s growth and development, immune function and defense against pathogens. The use of a beneficial bacteria-based strategy for the prevention and biocontrol of American foulbrood (AFB) and European foulbrood (EFB) diseases in honey bees offers interesting prospects. Lactic acid bacteria (LAB) are common inhabitants of the gastrointestinal tract of the honey bee. Among LABs associated with bee gut microbiota, Lactiplantibacillus plantarum (previously Lactobacillus plantarum) and Apilactobacillus kunkeei (formerly classified as Lactobacillus kunkeei) are two of the most abundant species. In this study, four Lactiplantibacillus plantarum strains and four Apilactobacillus kunkeei strains, isolated from the gastrointestinal tract of honey bee (Apis mellifera L.) were selected for their in vitro inhibition ability of Paenibacillus larvae ATCC 9545 and Melissococccus plutonius ATCC 35311. In addition, these LABs have been characterized through some biochemical and functional characteristics: cell surface properties (hydrophobicity and auto-aggregation), carbohydrates assimilation and enzymatic activities. The antimicrobial, biochemical and cell surface properties of these LABs have been functional to their candidature as potential probiotics in beekeeping and for the biocontrol of AFB and EFB diseases.
Collapse
Affiliation(s)
- Massimo Iorizzo
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (S.G.); (F.L.); (B.T.); (C.T.); (S.P.); (A.M.); (A.D.C.)
| | - Sonia Ganassi
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (S.G.); (F.L.); (B.T.); (C.T.); (S.P.); (A.M.); (A.D.C.)
| | - Gianluca Albanese
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (S.G.); (F.L.); (B.T.); (C.T.); (S.P.); (A.M.); (A.D.C.)
- Correspondence:
| | - Francesco Letizia
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (S.G.); (F.L.); (B.T.); (C.T.); (S.P.); (A.M.); (A.D.C.)
| | - Bruno Testa
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (S.G.); (F.L.); (B.T.); (C.T.); (S.P.); (A.M.); (A.D.C.)
| | - Cosimo Tedino
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (S.G.); (F.L.); (B.T.); (C.T.); (S.P.); (A.M.); (A.D.C.)
| | - Sonia Petrarca
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (S.G.); (F.L.); (B.T.); (C.T.); (S.P.); (A.M.); (A.D.C.)
- Conaproa, Consorzio Nazionale Produttori Apistici, 86100 Campobasso, Italy
| | - Franco Mutinelli
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), National Reference Laboratory for Honey Bee Health, Viale dell’Università 10, 35020 Legnaro, Italy;
| | - Alessandra Mazzeo
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (S.G.); (F.L.); (B.T.); (C.T.); (S.P.); (A.M.); (A.D.C.)
| | - Antonio De Cristofaro
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (S.G.); (F.L.); (B.T.); (C.T.); (S.P.); (A.M.); (A.D.C.)
| |
Collapse
|
49
|
Fermentation of Habanero Pepper by Two Lactic Acid Bacteria and Its Effect on the Production of Volatile Compounds. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8050219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Lactiplantibacillus plantarum is a lactic acid bacterium that grows in different environments; this ability arises due to the variability within the species, which may be influenced by their origin. On the other hand, habanero pepper (Capsicum chinense) from Yucatan, Mexico, is characterized by its unique sensory properties such as aroma and pungency and has an annual production of more than 5000 t in the Yucatan Peninsula. Thus, the purpose of this study was to compare L. plantarum from different isolation sources during habanero pepper fermentation. A 23 factorial design was made for the evaluation of the effect of two cultures a commercial (COM) and a wild (WIL) strain, in a habanero pepper puree medium (HPP); ripe and unripe peppers and different proportions of habanero pepper puree (40:60 or 60:40, HPP:water, w/w) were used to obtain the kinetic parameters of growth, lactic acid production, and volatile composition. The highest growth and lactic acid production were achieved in the 60:40 HPP:water, while WIL presented the major production of lactic acid. Characteristic volatiles in WIL fermentation were 2,3- butanedione, whereas in COM fermentation, they were limonene, cis-3-hexenyl hexanoate, and 1-hexanol. The association between COM and 1-hexanol was confirmed with principal component analysis (PCA).
Collapse
|
50
|
Spatiotemporal bio-shielding of bacteria through consolidated geometrical structuring. NPJ Biofilms Microbiomes 2022; 8:37. [PMID: 35534500 PMCID: PMC9085766 DOI: 10.1038/s41522-022-00302-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 04/07/2022] [Indexed: 11/17/2022] Open
Abstract
The probiotic bacterium Lactobacillus plantarum is often reckoned as a ‘generalist’ for its ability to adapt and survive in diverse ecological niches. The genomic signatures of L. plantarum have shown its intricate evolutionary ancestry and dynamic lifestyles. Here, we report on a unique geometrical arrangement of the multicellular population of L. plantarum cells. Prominently, a phenomenon of the cone-shaped colony formation and V-shaped cell chaining are discovered in response to the acidic-pH environment. Moreover, subsequent cold stress response triggers an unusual cellular arrangement of consolidated bundles, which appeared to be independently governed by a small heat shock protein (HSP 1). We further report that the V-shaped L. plantarum chaining demonstrates potent antagonistic activity against Candida albicans, a pathogenic yeast, both in vitro and in a Caenorhabditis elegans co-infection model. Finally, we deduce that the multifaceted traits manifested by this probiotic bacterium is an outcome of its dynamic flexibility and cellular heterogeneity.
Collapse
|