1
|
Tian H, Li L, Zhu Y, Wang C, Wu M, Shen W, Li C, Li K. Soil fungal community and co-occurrence network patterns at different successional stages of black locust coppice stands. Front Microbiol 2025; 16:1528028. [PMID: 40170928 PMCID: PMC11959006 DOI: 10.3389/fmicb.2025.1528028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/26/2025] [Indexed: 04/03/2025] Open
Abstract
Background and aims Black locust (Robinia pseudoacacia L.) plantations transition from seedling to multi-generation coppice systems, leading to declines in productivity and biodiversity. However, the structural and functional reorganization of soil fungal communities during this transition remains poorly understood. This study aimed to characterize fungal community dynamics across successional stages of black locust stands and assess their implications for soil health and ecosystem resilience. Methods Soil fungal communities in three black locust stands (first-generation seedling forest, first- and second-generation coppice forests) were analyzed over one year using ITS high-throughput sequencing. We evaluated fungal diversity, guild composition, and co-occurrence networks, integrating statistical analyses (PERMANOVA, ANOSIM, FUNGuild) and network theory to assess seasonal and successional shifts. Results Fungal richness and diversity remained stable across stand types and seasons. However, these factors dramatically altered the soil fungal community structure. Shifts in fungal community composition were observed from seedling to coppice stands: Ascomycota dominance decreased (72.9 to 57.9%), while Basidiomycota increased (6.5 to 11.6%). Significant changes in the relative abundance of certain fungal guilds were observed by both stand conversion and seasonal variation (p < 0.05). However, the overall fungal guilds composition was only significantly affected by the seasonal variation, rather than stand conversion (p > 0.05). Furthermore, saprotrophic fungi dominated in autumn/winter (66.49-76.01%), whereas symbiotic fungi peaked in spring (up to 7.27%). As forests transition from seeding to coppice stands, the percentage of negative edges, average degree, and relative modularity of the fungal community co-occurrence networks all gradually decreased. Those suggested that the conversion of black locust stands decreased the connectivity between fungal species, formed less organized structure, increased homogeneity of function among microbial communities, reduced ecological functionality, and decreased resistance to environmental changes. Seasonal temperature fluctuations further modulated network complexity, with summer samples showing heightened edge density but reduced cooperation. Conclusion Our findings suggest that the conversion of forests can significantly shift the soil fungal community structure and assembly, favoring Basidiomycota over Ascomycota and reducing network stability. These shifts signal progressive soil nutrient depletion and functional homogenization, potentially compromising ecosystem resilience. Seasonal guild dynamics highlight fungi's role in nutrient cycling, with saprotrophs driving litter decomposition in colder months. This understanding suggest that forest management practices must prioritise the preservation of early successional stages. This is vital to support diverse fungal communities and complex community networks and ensure the stability, functionality and resistance of fungal communities. Restoration efforts must focus on promoting fungal resilience through targeted soil amendments and habitat diversification to enhance ecosystem stability and functionality.
Collapse
Affiliation(s)
- Huimei Tian
- Mountain Tai Forest Ecosystem Research Station of State Forestry Administration/Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River/Forestry College of Shandong Agricultural University, Tai'an, China
- Research Center for Forest Carbon Neutrality Engineering of Shandong Higher Education Institutions, Tai’an, China
| | - Liangzhe Li
- Mountain Tai Forest Ecosystem Research Station of State Forestry Administration/Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River/Forestry College of Shandong Agricultural University, Tai'an, China
- Research Center for Forest Carbon Neutrality Engineering of Shandong Higher Education Institutions, Tai’an, China
| | - Yunpeng Zhu
- Mountain Tai Forest Ecosystem Research Station of State Forestry Administration/Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River/Forestry College of Shandong Agricultural University, Tai'an, China
- Research Center for Forest Carbon Neutrality Engineering of Shandong Higher Education Institutions, Tai’an, China
| | - Chengcheng Wang
- Mountain Tai Forest Ecosystem Research Station of State Forestry Administration/Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River/Forestry College of Shandong Agricultural University, Tai'an, China
- Research Center for Forest Carbon Neutrality Engineering of Shandong Higher Education Institutions, Tai’an, China
| | - Mengxue Wu
- Mountain Tai Forest Ecosystem Research Station of State Forestry Administration/Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River/Forestry College of Shandong Agricultural University, Tai'an, China
- Research Center for Forest Carbon Neutrality Engineering of Shandong Higher Education Institutions, Tai’an, China
| | - Weixing Shen
- Mount Tai Scenic Spot Management Committee, Tai'an, China
| | - Chuanrong Li
- Mountain Tai Forest Ecosystem Research Station of State Forestry Administration/Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River/Forestry College of Shandong Agricultural University, Tai'an, China
- Research Center for Forest Carbon Neutrality Engineering of Shandong Higher Education Institutions, Tai’an, China
| | - Kun Li
- Mountain Tai Forest Ecosystem Research Station of State Forestry Administration/Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River/Forestry College of Shandong Agricultural University, Tai'an, China
- Research Center for Forest Carbon Neutrality Engineering of Shandong Higher Education Institutions, Tai’an, China
| |
Collapse
|
2
|
Cotta SR, Dias ACF, Mendes R, Andreote FD. Role of horizontal gene transfer and cooperation in rhizosphere microbiome assembly. Braz J Microbiol 2025; 56:225-236. [PMID: 39730778 PMCID: PMC11885732 DOI: 10.1007/s42770-024-01583-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/29/2024] [Indexed: 12/29/2024] Open
Abstract
Microbes employ a variety of mechanisms, encompassing chemical signaling (e.g., quorum-sensing molecules) and genetic processes like horizontal gene transfer (HGT), to engage in interactions. HGT, in particular, holds a pivotal role as it facilitates the generation of metabolic diversity, thus directly or indirectly influencing microorganisms' interactions and functioning within their habitat. In this study, we investigate the correlations between enhanced metabolic diversity through HGT and cooperative behavior in the rhizosphere. Despite the potential drawbacks of cooperative behavior, which renders it susceptible to exploitation by cheaters based on evolutionary theory, HGT emerges as a mitigating factor. It serves as a valuable and adaptive tool for survival in competitive environments, notably the rhizosphere. By initiating a comprehensive discussion on these processes combined, we anticipate achieving a profound understanding of the rhizosphere microbiome, ultimately enhancing soil microbiology management and the exploitation of this ecological niche.
Collapse
Affiliation(s)
- Simone Raposo Cotta
- Department of Soil Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Pádua Dias Av, 11, Piracicaba, SP, 13418-900, Brazil.
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil.
| | - Armando Cavalcante Franco Dias
- Department of Soil Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Pádua Dias Av, 11, Piracicaba, SP, 13418-900, Brazil
| | - Rodrigo Mendes
- Laboratory of Environmental Microbiology, Embrapa Environment, Jaguariuna, São Paulo, Brazil
| | - Fernando Dini Andreote
- Department of Soil Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Pádua Dias Av, 11, Piracicaba, SP, 13418-900, Brazil
| |
Collapse
|
3
|
Wang S, Li H, Jiao Y, Li L, Zhou Q, Sun H, Shao Z, Wang C, Jing J, Gao Z. Insight into the effect of electric fields on bioremediation of petroleum-contaminated soil: A micro-ecological response. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 377:124624. [PMID: 39986164 DOI: 10.1016/j.jenvman.2025.124624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/28/2025] [Accepted: 02/16/2025] [Indexed: 02/24/2025]
Abstract
The voltage gradient plays a crucial role in the process of electro-bioremediation for petroleum-contaminated soil. However, the micro-ecological response mechanisms of relevance have been scarcely documented. This study compared petroleum degradation characteristics, soil physicochemical properties, and bacterial microbiome indicators under 0.5 V cm-1, 1 V cm-1, and 2 V cm-1 conditions to elucidate the interaction mechanism among soil micro-ecological factors. The findings indicated that the treatment at 1 V cm-1 resulted in the most effective synergistic enhancement of electrokinetics and bioremediation, yielding a peak petroleum degradation ratio of 43.54 ± 1.64% over 105 days. The improvement in biodegradation resulted from the direct stimulation of bio-metabolism by higher ratios of "window condition" (RWC, 0.5331) and the indirect sustenance of microbial physiological activity by favorable soil conditions. The 1 V cm-1 voltage gradient either maintained or fostered the soil microbiome's response to the remediation system. The structural equation models (SEMs) demonstrated that variations in microbiome properties across different voltage gradients resulted from the influences of effective current intensity, soil pH, redox potential (Eh), dissolved organic carbon (DOC), and electrical conductivity (EC). Optimizing voltage gradients is a practical approach for developing effective micro-ecosystems to efficiently remediate petroleum-contaminated soil and implement electro-bioremediation in various engineering applications.
Collapse
Affiliation(s)
- Sa Wang
- College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China.
| | - Hui Li
- College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China
| | - Yaqi Jiao
- College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China
| | - Li Li
- College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China.
| | - Qin Zhou
- College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China
| | - Hao Sun
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Zhigou Shao
- State Key Laboratory of Petroleum Pollution Control, CNPC Research Institute of Safety and Environmental Technology, Beijing, 102206, China
| | - Changxian Wang
- College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China
| | - Jiawei Jing
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Zishu Gao
- College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China
| |
Collapse
|
4
|
Peczyk K, Siupka P, Magurno F, Malicka M, Piotrowska-Seget Z. Genome characterisation of three mycorrhizal helper bacterial strains isolated from a polycyclic aromatic hydrocarbon polluted site. Mol Genet Genomics 2025; 300:24. [PMID: 39985673 DOI: 10.1007/s00438-025-02232-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 02/07/2025] [Indexed: 02/24/2025]
Abstract
The study aimed to explore the genetic and functional potential of mycorrhizal helper bacteria (MHB) strains isolated from polluted soil, focusing on their ability to enhance plant growth and ameliorate the adverse effects of polycyclic aromatic hydrocarbons (PAHs). We sequenced the genomes of three MHB strains isolated from soil contaminated with PAHs and phenol. Moreover, experiments were carried out to check if these bacteria have ability to stimulate the growth of arbuscular mycorrhizal fungi (AMF) and promote plant development. Phylogenomic analysis identified the strains as belonging to the Streptomyces, Pantoea, and Bacillus genera, all exhibiting high tolerance to hydrocarbons. Genome mining revealed genes encoding enzymes for the degradation of aromatic compounds, alongside biosynthetic gene clusters for secondary metabolites such as siderophores and antibiotics. Laboratory experiments confirmed that the studied MHB strains enhance AMF development and spore production while exhibiting plant growth-promoting mechanisms such as siderophore and ammonia production, phosphate solubilization, and cellulolytic enzyme synthesis. These findings highlight the potential application of MHB in microbial-assisted remediation of hydrocarbon-contaminated soils through the tripartite plant-MHB-AMF system.
Collapse
Affiliation(s)
- Klaudia Peczyk
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, Katowice, 40-032, Poland
| | - Piotr Siupka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, Katowice, 40-032, Poland
| | - Franco Magurno
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, Katowice, 40-032, Poland
| | - Monika Malicka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, Katowice, 40-032, Poland
| | - Zofia Piotrowska-Seget
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, Katowice, 40-032, Poland.
| |
Collapse
|
5
|
Ndiaye A, Coulombe K, Fliss I, Filteau M. High-throughput ecological interaction mapping of dairy microorganisms. Int J Food Microbiol 2025; 427:110965. [PMID: 39522360 DOI: 10.1016/j.ijfoodmicro.2024.110965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/03/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
To engineer efficient microbial management strategies in the food industry, a comprehensive understanding of microbial interactions is crucial. Microorganisms live in communities where they influence each other in several ways. Although much attention has been paid to the production of antagonistic metabolites in lactic acid bacteria (LAB), research that accounts for the complexity of their ecological interactions and their dynamics remains limited. This study explores binary interactions within a mock community of 94 strains, including 23 LAB from culture collections and 71 isolated from dairy products. Using a colony-picking robot and image analysis, bidirectional interactions were measured at high throughput on solid media, where one test strain was challenged against other mock community members as the target strains. Assays of 15 test strains (14 LAB and one yeast) yielded 1,142 bidirectionally mapped interactions, classified by ecological type over seven days. The results showed variation in the strength, directionality, and type of interactions depending on the origin of the target strains. Cooperation rates increased for strains isolated from raw milk to pasteurized milk and cheese, while exploitation was more common in raw milk strains. Cooperating strains also exhibited more similar ecological behaviors than competing strains, suggesting the presence of microbial cliques. Interestingly, Lactococcus cremoris ATCC 19257 developed pink-red pigmentation when co-cultured with Pseudomonas aeruginosa. Overall, these findings present an unprecedented exploratory data set that significantly improves our understanding of microbial interactions at the system level, with potential applications in strain selection for food processes such as fermentation, bioprotection, and probiotics.
Collapse
Affiliation(s)
- Amadou Ndiaye
- Département des Sciences des aliments, Université Laval, Québec, QC, Canada; Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC, Canada; Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Karl Coulombe
- Département des Sciences des aliments, Université Laval, Québec, QC, Canada; Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC, Canada
| | - Ismail Fliss
- Département des Sciences des aliments, Université Laval, Québec, QC, Canada; Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC, Canada
| | - Marie Filteau
- Département des Sciences des aliments, Université Laval, Québec, QC, Canada; Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC, Canada; Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada.
| |
Collapse
|
6
|
Peng Q, Zhao C, Wang X, Cheng K, Wang C, Xu X, Lin L. Modeling bacterial interactions uncovers the importance of outliers in the coastal lignin-degrading consortium. Nat Commun 2025; 16:639. [PMID: 39809803 PMCID: PMC11733112 DOI: 10.1038/s41467-025-56012-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
Lignin, as the abundant carbon polymer, is essential for carbon cycle and biorefinery. Microorganisms interact to form communities for lignin biodegradation, yet it is a challenge to understand such complex interactions. Here, we develop a coastal lignin-degrading bacterial consortium (LD), through "top-down" enrichment. Sequencing and physiological analyses reveal that LD is dominated by the lignin degrader Pluralibacter gergoviae (>98%), with additional rare non-degraders. Interestingly, LD, cultured in lignin-MB medium, significantly enhances cell growth and lignin degradation as compared to P. gergoviae alone, implying a role of additional outliers. Using genome-scale metabolic models, metabolic profiling and culture experiments, modeling of inter-species interactions between P. gergoviae, Vibrio alginolyticus, Aeromonas hydrophila and Shewanella putrefaciens, unravels cross-feeding of amino acids, organic acids and alcohols between the degrader and non-degraders. Furthermore, the sub-population ratio is essential to enforce the synergy. Our study highlights the unrecognized role of outliers in lignin degradation.
Collapse
Affiliation(s)
- Qiannan Peng
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Cheng Zhao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xiaopeng Wang
- Key Laboratory of Aquacultral Biotechnology, Chinese Ministry of Education, Ningbo University, Ningbo, China
| | - Kelin Cheng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Congcong Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xihui Xu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Lu Lin
- Institute of Marine Science and Technology, Shandong University, Qingdao, China.
- Qingdao Key Laboratory of Ocean Carbon Sequestration and Negative Technology, Shandong University, Qingdao, China.
| |
Collapse
|
7
|
Venkataraman P, Mahilkar A, Raj N, Saini S. Empirical evidence of resource dependent evolution of payoff matrices in Saccharomyces cerevisiae populations. J Evol Biol 2025; 38:122-128. [PMID: 39387146 PMCID: PMC11696675 DOI: 10.1093/jeb/voae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/24/2024] [Accepted: 10/08/2024] [Indexed: 10/12/2024]
Abstract
In evolutionary game theory, a relative comparison of the cost and benefit associated with obtaining a resource, called payoff, is used as an indicator of fitness of an organism. Payoffs of different strategies, quantitatively represented as payoff matrices, are used to understand complex inter-species and intra-species interactions like cooperation, mutualism, and altruism. Payoff matrices, however, are usually treated as invariant with time-largely due to the absence of any empirical data quantifying their evolution. In this paper, we present empirical evidence of three types of resource-dependent changes in the payoff matrices of evolving Saccharomyces cerevisiae populations. We show that depending on the carbon source and participating genotypes, N-player games could collapse, be born, or be maintained. Our results highlight the need to consider the dynamic nature of payoff matrices while making even short-term predictions about population interactions and dynamics.
Collapse
Affiliation(s)
- Pavithra Venkataraman
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Anjali Mahilkar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Namratha Raj
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Supreet Saini
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
8
|
Duan S, Jin Z, Zhang L, Declerck S. Mechanisms of cooperation in the plants-arbuscular mycorrhizal fungi-bacteria continuum. THE ISME JOURNAL 2025; 19:wraf023. [PMID: 39921668 PMCID: PMC11879240 DOI: 10.1093/ismejo/wraf023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
In nature, cooperation is an essential way for species, whether they belong to the same kingdom or to different kingdoms, to overcome the scarcity of resources and improve their fitness. Arbuscular mycorrhizal fungi are symbiotic microorganisms whose origin date back 400 million years. They form symbiotic associations with the vast majority of terrestrial plants, helping them to obtain nutrients from the soil in exchange for carbon. At the more complex level, soil bacteria participate in the symbiosis between arbuscular mycorrhizal fungi and plants: they obtain carbon from the exudation of hyphae connected to the roots and compensate for the limited saprophytic capacity of arbuscular mycorrhizal fungi by mineralizing organic compounds. Therefore, plants, arbuscular mycorrhizal fungi and soil bacteria constitute a continuum that may be accompanied by multiple forms of cooperation. In this review, we first analyzed the functional complementarities and differences between plants and arbuscular mycorrhizal fungi in arbuscular mycorrhizal symbiosis. Secondly, we discussed the resource exchange relationship between plants and arbuscular mycorrhizal fungi from the perspective of biological market theory and "surplus carbon" hypothesis. Finally, on the basis of mechanisms for maintaining cooperation, direct and indirect reciprocity in the hyphosphere, induced by the availability of external resource and species fitness, were examined. Exploring these reciprocal cooperations will provide a better understanding of the intricate ecological relationships between plants, arbuscular mycorrhizal fungi and soil bacteria as well as their evolutionary implications.
Collapse
Affiliation(s)
- Shilong Duan
- Université catholique de Louvain, Earth and Life Institute, Applied microbiology, Mycology, Croix du sud 2, bte L7.05.06, Louvain-la-Neuve B-1348, Belgium
- State Key Laboratory of Nutrient Use and Management; College of Resources and Environmental Sciences; Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, China
| | - Zexing Jin
- State Key Laboratory of Nutrient Use and Management; College of Resources and Environmental Sciences; Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, China
| | - Lin Zhang
- State Key Laboratory of Nutrient Use and Management; College of Resources and Environmental Sciences; Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, China
| | - Stéphane Declerck
- Université catholique de Louvain, Earth and Life Institute, Applied microbiology, Mycology, Croix du sud 2, bte L7.05.06, Louvain-la-Neuve B-1348, Belgium
| |
Collapse
|
9
|
Saati-Santamaría Z, Navarro-Gómez P, Martínez-Mancebo JA, Juárez-Mugarza M, Flores A, Canosa I. Genetic and species rearrangements in microbial consortia impact biodegradation potential. THE ISME JOURNAL 2025; 19:wraf014. [PMID: 39861970 PMCID: PMC11892951 DOI: 10.1093/ismejo/wraf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/14/2025] [Accepted: 01/23/2025] [Indexed: 01/27/2025]
Abstract
Genomic reorganisation between species and horizontal gene transfer have been considered the most important mechanism of biological adaptation under selective pressure. Still, the impact of mobile genes in microbial ecology is far from being completely understood. Here we present the collection and characterisation of microbial consortia enriched from environments contaminated with emerging pollutants, such as non-steroidal anti-inflammatory drugs. We have obtained and further enriched two ibuprofen-degrading microbial consortia from two unrelated wastewater treatment plants. We have also studied their ability to degrade the drug and the dynamics of the re-organisations of the genetic information responsible for its biodegradation among the species within the consortium. Our results show that genomic reorganisation within microorganisms and species rearrangements occur rapidly and efficiently during the selection process, which may be facilitated by plasmids and/or transposable elements located within the sequences. We show the evolution of at least two different plasmid backbones on samples from different locations, showing rearrangements of genomic information, including genes encoding activities for IBU degradation. As a result, we found variations in the expression pattern of the consortia after evolution under selective pressure, as an adaptation process to the new conditions. This work provides evidence for changes in the metagenomes of microbial communities that allow adaptation under a selective constraint -ibuprofen as a sole carbon source- and represents a step forward in knowledge that can inspire future biotechnological developments for drug bioremediation.
Collapse
Affiliation(s)
- Zaki Saati-Santamaría
- Departamento de Microbiología y Genética, Universidad de Salamanca, 37007 Salamanca, Spain
- Institute for Agrobiotechnology Research (CIALE), Universidad de Salamanca, 37185 Salamanca, Spain
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Czech Academy of Sciences, 14200 Prague, Czech Republic
| | - Pilar Navarro-Gómez
- Department of Molecular Biology and Biochemistry, Universidad Pablo de Olavide, Centro Andaluz de Biología del Desarrollo/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, 41013 Seville, Spain
| | - Juan A Martínez-Mancebo
- Department of Molecular Biology and Biochemistry, Universidad Pablo de Olavide, Centro Andaluz de Biología del Desarrollo/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, 41013 Seville, Spain
| | - Maitane Juárez-Mugarza
- Department of Molecular Biology and Biochemistry, Universidad Pablo de Olavide, Centro Andaluz de Biología del Desarrollo/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, 41013 Seville, Spain
- Department of Plant Biology and Ecology, Faculty of Science and Technology, The University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Amando Flores
- Department of Molecular Biology and Biochemistry, Universidad Pablo de Olavide, Centro Andaluz de Biología del Desarrollo/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, 41013 Seville, Spain
| | - Inés Canosa
- Department of Molecular Biology and Biochemistry, Universidad Pablo de Olavide, Centro Andaluz de Biología del Desarrollo/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, 41013 Seville, Spain
| |
Collapse
|
10
|
Solé R, Maull V, Amor DR, Mauri JP, Núria CP. Synthetic Ecosystems: From the Test Tube to the Biosphere. ACS Synth Biol 2024; 13:3812-3826. [PMID: 39570594 DOI: 10.1021/acssynbio.4c00384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
The study of ecosystems, both natural and artificial, has historically been mediated by population dynamics theories. In this framework, quantifying population numbers and related variables (associated with metabolism or biological-environmental interactions) plays a central role in measuring and predicting system-level properties. As we move toward advanced technological engineering of cells and organisms, the possibility of bioengineering ecosystems (from the gut microbiome to wildlands) opens several questions that will require quantitative models to find answers. Here, we present a comprehensive survey of quantitative modeling approaches for managing three kinds of synthetic ecosystems, sharing the presence of engineered strains. These include test tube examples of ecosystems hosting a relatively low number of interacting species, mesoscale closed ecosystems (or ecospheres), and macro-scale, engineered ecosystems. The potential outcomes of synthetic ecosystem designs and their limits will be relevant to different disciplines, including biomedical engineering, astrobiology, space exploration and fighting climate change impacts on endangered ecosystems. We propose a space of possible ecosystems that captures this broad range of scenarios and a tentative roadmap for open problems and further exploration.
Collapse
Affiliation(s)
- Ricard Solé
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Dr Aiguader 88, 08003 Barcelona, Spain
- Institut de Biologia Evolutiva, CSIC-UPF, Pg Maritim de la Barceloneta 37, 08003 Barcelona, Spain
- European Centre for Living Technology, Sestiere Dorsoduro, 3911, 30123, Venice, Italy
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe New Mexico 87501, United States
| | - Victor Maull
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Dr Aiguader 88, 08003 Barcelona, Spain
- Institut de Biologia Evolutiva, CSIC-UPF, Pg Maritim de la Barceloneta 37, 08003 Barcelona, Spain
| | - Daniel R Amor
- LPENS, Département de physique, École normale supérieure, Université PSL, Sorbonne Université, Université Paris Cité, CNRS, 75005 Paris, France
- IAME, Université de Paris Cité, Université Sorbonne Paris Nord, INSERM, 75005 Paris, France
| | - Jordi Pla Mauri
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Dr Aiguader 88, 08003 Barcelona, Spain
- Institut de Biologia Evolutiva, CSIC-UPF, Pg Maritim de la Barceloneta 37, 08003 Barcelona, Spain
| | - Conde-Pueyo Núria
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Dr Aiguader 88, 08003 Barcelona, Spain
- EMBL Barcelona, European Molecular Biology Laboratory (EMBL), Barcelona 08003, Spain
| |
Collapse
|
11
|
Velmurugan L, Pandian KD. Enhancing physico-chemical water quality in recycled dairy effluent through microbial consortium treatment. Heliyon 2024; 10:e39501. [PMID: 39524800 PMCID: PMC11544059 DOI: 10.1016/j.heliyon.2024.e39501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/11/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
The dairy industry, notorious by generating wastewater rich in organic and nitrogenous content, necessitates sustainable recycling solutions. Biological treatment emerges as a cost-effective and chemical-free alternative. This study delves into the potential of microbial consortium, a microbial consortium, for recycling dairy effluent, aiming at water reclamation and environmental sustainability. Effluent samples from Madurai's Dairy Industry underwent microbial consortium treatment in a recycling prototype, with treatment efficacy assessed through physicochemical parameters and contaminant removal efficiency. Guided by a biodegradability index of 4.51, the study showcased EM's impact, revealing a notable decrease in pH levels, fostering an alkaline environment (2.35 ± 0.06 ppt). Dissolved oxygen increased significantly to 4.50 ppm, indicating improved aerobic conditions. EM treatment led to substantial reductions in calcium (53 %), magnesium (95 %), nitrogen (22 %), sulfate (79 %), phosphate (86 %), BOD (78 %), and COD (82 %). In contrast, dairy effluent treated without microbial consortium during the sludge activation process exhibited negligible water quality improvement. These findings underscore microbial consortium efficacy in advancing biological treatment of dairy effluent, demonstrating a significant reduction in contaminants and showcasing its potential for sustainable water reclamation. Improved alkalinity, dissolved oxygen, and nutrient content further signify positive impacts on ecosystem health. Microbial consortium emerges as a promising avenue for recycling dairy effluent, offering an economically viable and environmentally friendly solution. The study emphasizes the crucial role of microbial treatments in achieving efficient water reclamation, contributing to a cleaner and sustainable environment. Future research and broader implementation of microbial consortium in dairy industry wastewater management are recommended for enhanced environmental benefits.
Collapse
Affiliation(s)
- Lavanya Velmurugan
- Research Center, Department of Botany, Thiagarajar College, 139-140, Kamarajar Salai, Teppakulam, Madurai, Tamil Nadu, 625 009, India
| | - Kannan Dorai Pandian
- Research Centre, Department of Botany (Retired), Thiagarajar College, 139-140, Kamarajar Salai, Teppakulam, Madurai, Tamil Nadu, 625 009, India
- Guest Faculty, Department of Ecology and Environmental Sciences, Pondicherry University, Puducherry, 605 014, India
| |
Collapse
|
12
|
Meunier L, Costa R, Keller-Costa T, Cannella D, Dechamps E, George IF. Selection of marine bacterial consortia efficient at degrading chitin leads to the discovery of new potential chitin degraders. Microbiol Spectr 2024; 12:e0088624. [PMID: 39315806 PMCID: PMC11537107 DOI: 10.1128/spectrum.00886-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/13/2024] [Indexed: 09/25/2024] Open
Abstract
Chitin degradation is a keystone process in the oceans, mediated by marine microorganisms with the help of several enzymes, mostly chitinases. Sediment, seawater, and filter-feeding marine invertebrates, such as sponges, are known to harbor chitin-degrading bacteria and are presumably hotspots for chitin turnover. Here, we employed an artificial selection process involving enrichment cultures derived from microbial communities associated with the marine sponge Hymeniacidon perlevis, its surrounding seawater and sediment, to select bacterial consortia capable of degrading raw chitin. Throughout the artificial selection process, chitin degradation rates and the taxonomic composition of the four successive enrichment cultures were followed. To the best of our knowledge, chitin degradation was characterized for the first time using size exclusion chromatography, which revealed significant shifts in the numbered average chitin molecular weight, strongly suggesting the involvement of endo-chitinases in the breakdown of the chitin polymer during the enrichment process. Concomitantly with chitin degradation, the enrichment cultures exhibited a decrease in alpha diversity compared with the environmental samples. Notably, some of the dominant taxa in the enriched communities, such as Motilimonas, Arcobacter, and Halarcobacter, were previously unknown to be involved in chitin degradation. In particular, the analysis of published genomes of these genera suggests a pivotal role of Motilimonas in the hydrolytic cleavage of chitin. This study provides context to the microbiome of the marine sponge Hymeniacidon perlevis in light of its environmental surroundings and opens new ground to the future discovery and characterization of novel enzymes of marine origin involved in chitin degradation processes.IMPORTANCEChitin is the second most abundant biopolymer on Earth after cellulose, and the most abundant in the marine environment. At present, industrial processes for the conversion of seafood waste into chitin, chitosan, and chitooligosaccharide (COS) rely on the use of high amounts of concentrated acids or strong alkali at high temperature. Developing bio-based methods to transform available chitin into valuable compounds, such as chitosan and COS, holds promise in promoting a more sustainable, circular bioeconomy. By employing an artificial selection procedure based on chitin as a sole C and N source, we discovered microorganisms so-far unknown to metabolize chitin in the rare microbial biosphere of several marine biotopes. This finding represents a first important step on the path towards characterizing and exploiting potentially novel enzymes of marine origin with biotechnological interest, since products of chitin degradation may find applications across several sectors, such as agriculture, pharmacy, and waste management.
Collapse
Affiliation(s)
- Laurence Meunier
- Laboratory of Ecology of Aquatic Systems, Brussels Bioengineering School, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Rodrigo Costa
- Institute for Bioengineering and Biosciences (iBB) and Institute for Health and Bioeconomy (i4HB), Instituto Superior Técnico (IST), Universidade de Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico (IST), Universidade de Lisboa, Lisbon, Portugal
| | - Tina Keller-Costa
- Institute for Bioengineering and Biosciences (iBB) and Institute for Health and Bioeconomy (i4HB), Instituto Superior Técnico (IST), Universidade de Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico (IST), Universidade de Lisboa, Lisbon, Portugal
| | - David Cannella
- PhotoBioCatalysis Unit, Crop Nutrition and Biostimulation Lab (CPBL) and Biomass Transformation Lab (BTL), Brussels Bioengineering School, Université Libre de Bruxelles, Brussels, Belgium
| | - Etienne Dechamps
- Laboratory of Ecology of Aquatic Systems, Brussels Bioengineering School, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Isabelle F. George
- Laboratory of Ecology of Aquatic Systems, Brussels Bioengineering School, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
13
|
Han J, Liu B, Lin X, Zhang S, Dong L, Ji C. Mathematical modeling and comparative metabolomics analyses of interactions between Lactiplantibacillus plantarum and Morganella morganii. Food Res Int 2024; 196:115026. [PMID: 39614548 DOI: 10.1016/j.foodres.2024.115026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/12/2024] [Accepted: 09/01/2024] [Indexed: 12/01/2024]
Abstract
Morganella morganii is a spoilage microorganism in fish products that produces harmful biogenic amines (BAs). It has been discovered that Lactiplantibacillus plantarum His6 can inhibit the growth of this bacterium. The aim of this study was to quantitatively assess the inhibitory impact of the bioprotective culture Lpb. plantarum His6 on M. morganii YC16 in the matrix (fish and rice) using predictive microbiology models, and elucidate the interaction mechanism through untargeted metabolomics. The mathematical model results showed the inhibition effect of Lpb. plantarum His6 on M. morganii YC16 was dependent on temperature and inoculation concentration. In addition, the simultaneous growth of Lpb. plantarum His6 and M. morganii YC16 could be well simulated with the Lotka-Volterra model. Furthermore, significant decreased in histamine levels was observed in co-(1:3) at 25 °C. Finally, based on the metabolomics data, it was speculated that Lpb. plantarum His6 may enhance bacteriocin production while reducing the yield of glycerophospholipids and fatty acids associated with outer membrane formation, thereby inhibiting the growth of M. morganii YC16. These findings provide valuable insights into the interaction behavior and mechanism of Lpb. plantarum His6 and M. morganii YC16 in co-culture, facilitating the design of the biopreservation strategies for fish products.
Collapse
Affiliation(s)
- Jing Han
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China.
| | - Binkun Liu
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Xinping Lin
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, China.
| | - Sufang Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, China.
| | - Liang Dong
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, China.
| | - Chaofan Ji
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, China.
| |
Collapse
|
14
|
Xiong H, Zhou X, Cao Z, Xu A, Dong W, Jiang M. Microbial biofilms as a platform for diverse biocatalytic applications. BIORESOURCE TECHNOLOGY 2024; 411:131302. [PMID: 39173957 DOI: 10.1016/j.biortech.2024.131302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
Microbial biofilms have gained significant traction in commercial wastewater treatment due to their inherent resilience, well-organized structure, and potential for collaborative metabolic processes. As our understanding of their physiology deepens, these living catalysts are finding exciting applications beyond wastewater treatment, including the production of bulk and fine chemicals, bioelectricity generation, and enzyme immobilization. While the biological applications of biofilms in different biocatalytic systems have been extensively summarized, the applications of artificially engineered biofilms were rarely discussed. This review aims to bridge this gap by highlighting the untapped potential of engineered microbial biofilms in diverse biocatalytic applications, with a focus on strategies for biofilms engineering. Strategies for engineering biofilm-based systems will be explored, including genetic modification, synthetic biology approaches, and targeted manipulation of biofilm formation processes. Finally, the review will address key challenges and future directions in developing robust biofilm-based biocatalytic platforms for large-scale production of chemicals, pharmaceuticals, and biofuels.
Collapse
Affiliation(s)
- Hongda Xiong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xinyu Zhou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhanqing Cao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Anming Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Weiliang Dong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Min Jiang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
15
|
Choudhary R, Mahadevan R. DyMMM-LEAPS: An ML-based framework for modulating evenness and stability in synthetic microbial communities. Biophys J 2024; 123:2974-2995. [PMID: 38733081 PMCID: PMC11427784 DOI: 10.1016/j.bpj.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/22/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024] Open
Abstract
There have been a growing number of computational strategies to aid in the design of synthetic microbial consortia. A framework to identify regions in parametric space to maximize two essential properties, evenness and stability, is critical. In this study, we introduce DyMMM-LEAPS (dynamic multispecies metabolic modeling-locating evenness and stability in large parametric space), an extension of the DyMMM framework. Our method explores the large parametric space of genetic circuits in synthetic microbial communities to identify regions of evenness and stability. Due to the high computational costs of exhaustive sampling, we utilize adaptive sampling and surrogate modeling to reduce the number of simulations required to map the vast space. Our framework predicts engineering targets and computes their operating ranges to maximize the probability of the engineered community to have high evenness and stability. We demonstrate our approach by simulating five cocultures and one three-strain culture with different social interactions (cooperation, competition, and predation) employing quorum-sensing-based genetic circuits. In addition to guiding circuit tuning, our pipeline gives an opportunity for a detailed analysis of pockets of evenness and stability for the circuit under investigation, which can further help dissect the relationship between the two properties. DyMMM-LEAPS is easily customizable and can be expanded to a larger community with more complex interactions.
Collapse
Affiliation(s)
- Ruhi Choudhary
- University of Toronto, Department of Chemical Engineering and Applied Chemistry, Toronto, ON, Canada
| | - Radhakrishnan Mahadevan
- University of Toronto, Department of Chemical Engineering and Applied Chemistry, Toronto, ON, Canada.
| |
Collapse
|
16
|
Hesse E, Luján AM, O'Brien S, Newbury A, McAvoy T, Soria Pascual J, Bayer F, Hodgson DJ, Buckling A. Parallel ecological and evolutionary responses to selection in a natural bacterial community. Proc Natl Acad Sci U S A 2024; 121:e2403577121. [PMID: 39190353 PMCID: PMC11388356 DOI: 10.1073/pnas.2403577121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/09/2024] [Indexed: 08/28/2024] Open
Abstract
Evolution can occur over ecological timescales, suggesting a potentially important role for rapid evolution in shaping community trait distributions. However, evidence of concordant eco-evolutionary dynamics often comes from in vitro studies of highly simplified communities, and measures of ecological and evolutionary dynamics are rarely directly comparable. Here, we quantified how ecological species sorting and rapid evolution simultaneously shape community trait distributions by tracking within- and between-species changes in a key trait in a complex bacterial community. We focused on the production of siderophores; bacteria use these costly secreted metabolites to scavenge poorly soluble iron and to detoxify environments polluted with toxic nonferrous metals. We found that responses to copper-imposed selection within and between species were ultimately the same-intermediate siderophore levels were favored-and occurred over similar timescales. Despite being a social trait, this level of siderophore production was selected regardless of whether species evolved in isolation or in a community context. Our study suggests that evolutionary selection can play a pivotal role in shaping community trait distributions within natural, highly complex, bacterial communities. Furthermore, trait evolution may not always be qualitatively affected by interactions with other community members.
Collapse
Affiliation(s)
- Elze Hesse
- Centre for Ecology and Conservation & Environment and Sustainability Institute, Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, United Kingdom
| | - Adela M Luján
- Centre for Ecology and Conservation & Environment and Sustainability Institute, Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, United Kingdom
- Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas, Consejo Nacional de Investigaciones Científicas y Técnicas/Universidad Católica de Córdoba, Córdoba X5016DHK, Argentina
- Facultad de Ciencias de la Salud, Universidad Católica de Córdoba (UCC), Córdoba X5004ASK, Argentina
| | - Siobhan O'Brien
- Centre for Ecology and Conservation & Environment and Sustainability Institute, Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, United Kingdom
| | - Arthur Newbury
- Centre for Ecology and Conservation & Environment and Sustainability Institute, Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, United Kingdom
| | - Terence McAvoy
- Centre for Ecology and Conservation & Environment and Sustainability Institute, Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, United Kingdom
| | - Jesica Soria Pascual
- Centre for Ecology and Conservation & Environment and Sustainability Institute, Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, United Kingdom
| | - Florian Bayer
- Centre for Ecology and Conservation & Environment and Sustainability Institute, Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, United Kingdom
| | - David J Hodgson
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, United Kingdom
| | - Angus Buckling
- Centre for Ecology and Conservation & Environment and Sustainability Institute, Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, United Kingdom
| |
Collapse
|
17
|
Pereira O, Qin W, Galand PE, Debroas D, Lami R, Hochart C, Zhou Y, Zhou J, Zhang C. Metabolic activities of marine ammonia-oxidizing archaea orchestrated by quorum sensing. MLIFE 2024; 3:417-429. [PMID: 39359677 PMCID: PMC11442133 DOI: 10.1002/mlf2.12144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/22/2024] [Accepted: 06/18/2024] [Indexed: 10/04/2024]
Abstract
Ammonia-oxidizing archaea (AOA) play crucial roles in marine carbon and nitrogen cycles by fixing inorganic carbon and performing the initial step of nitrification. Evaluation of carbon and nitrogen metabolism popularly relies on functional genes such as amoA and accA. Increasing studies suggest that quorum sensing (QS) mainly studied in biofilms for bacteria may serve as a universal communication and regulatory mechanism among prokaryotes; however, this has yet to be demonstrated in marine planktonic archaea. To bridge this knowledge gap, we employed a combination of metabolic activity markers (amoA, accA, and grs) to elucidate the regulation of AOA-mediated nitrogen, carbon processes, and their interactions with the surrounding heterotrophic population. Through co-transcription investigations linking metabolic markers to potential key QS genes, we discovered that QS molecules could regulate AOA's carbon, nitrogen, and lipid metabolisms under different conditions. Interestingly, specific AOA ecotypes showed a preference for employing distinct QS systems and a distinct QS circuit involving a typical population. Overall, our data demonstrate that QS orchestrates nitrogen and carbon metabolism, including the exchange of organic metabolites between AOA and surrounding heterotrophic bacteria, which has been previously overlooked in marine AOA research.
Collapse
Affiliation(s)
- Olivier Pereira
- Shenzhen Key Laboratory of Marine Geo-Omics of Archaea, Department of Science and Engineering Southern University of Science and Technology Shenzhen China
- Institut WUT-AMU Wuhan University of Technology and Aix-Marseille Université Wuhan China
| | - Wei Qin
- School of Biological Sciences, Institute for Environmental Genomics University of Oklahoma Norman Oklahoma USA
| | - Pierre E Galand
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB) Banyuls sur Mer France
| | - Didier Debroas
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Genome et Environnement Clermont-Ferrand France
| | - Raphael Lami
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM) Banyuls sur Mer France
| | - Corentin Hochart
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB) Banyuls sur Mer France
| | - Yangkai Zhou
- Shenzhen Key Laboratory of Marine Geo-Omics of Archaea, Department of Science and Engineering Southern University of Science and Technology Shenzhen China
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School Tsinghua University Shenzhen China
| | - Chuanlun Zhang
- Shenzhen Key Laboratory of Marine Geo-Omics of Archaea, Department of Science and Engineering Southern University of Science and Technology Shenzhen China
- Shanghai Sheshan National Geophysical Observatory Shanghai Earthquake Agency Shanghai China
| |
Collapse
|
18
|
Mostafa F, Krüger A, Nies T, Frunzke J, Schipper K, Matuszyńska A. Microbial markets: socio-economic perspective in studying microbial communities. MICROLIFE 2024; 5:uqae016. [PMID: 39318452 PMCID: PMC11421381 DOI: 10.1093/femsml/uqae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/05/2024] [Accepted: 08/01/2024] [Indexed: 09/26/2024]
Abstract
Studying microbial communities through a socio-economic lens, this paper draws parallels with human economic transactions and microbes' race for resources. Extending the 'Market Economy' concept of social science to microbial ecosystems, the paper aims to contribute to comprehending the collaborative and competitive dynamics among microorganisms. Created by a multidisciplinary team of an economist, microbiologists, and mathematicians, the paper also highlights the risks involved in employing a socio-economic perspective to explain the complexities of natural ecosystems. Navigating through microbial markets offers insights into the implications of these interactions while emphasizing the need for cautious interpretation within the broader ecological context. We hope that this paper will be a fruitful source of inspiration for future studies on microbial communities.
Collapse
Affiliation(s)
- Fariha Mostafa
- Computational Life Science, Department of Biology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Aileen Krüger
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Tim Nies
- Computational Life Science, Department of Biology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Julia Frunzke
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Kerstin Schipper
- Institute of Microbiology, Heinrich-Heine University Dusseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Anna Matuszyńska
- Computational Life Science, Department of Biology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| |
Collapse
|
19
|
Yang S, Sun J, Wang C, Li S, Li Z, Luo W, Wei G, Chen W. Residue quality drives SOC sequestration by altering microbial taxonomic composition and ecophysiological function in desert ecosystem. ENVIRONMENTAL RESEARCH 2024; 250:118518. [PMID: 38382662 DOI: 10.1016/j.envres.2024.118518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
Plant residues are important sources of soil organic carbon in terrestrial ecosystems. The degradation of plant residue by microbes can influence the soil carbon cycle and sequestration. However, little is known about the microbial composition and function, as well as the accumulation of soil organic carbon (SOC) in response to the inputs of different quality plant residues in the desert environment. The present study evaluated the effects of plant residue addition from Pinus sylvestris var. mongolica (Pi), Artemisia desertorum (Ar) and Amorpha fruticosa (Am) on desert soil microbial community composition and function in a field experiment in the Mu Us Desert. The results showed that the addition of the three plant residues with different C/N ratios induced significant variation in soil microbial communities. The Am treatment (low C/N ratio) improved microbial diversity compared with the Ar and Pi treatments (medium and high C/N ratios). The variations in the taxonomic and functional compositions of the dominant phyla Actinobacteria and Proteobacteria were higher than those of the other phyla among the different treatments. Moreover, the network links between Proteobacteria and other phyla and the CAZyme genes abundances from Proteobacteria increased with increasing residue C/N, whereas those decreased for Actinobacteria. The SOC content of the Am, Ar and Pi treatments increased by 45.73%, 66.54% and 107.99%, respectively, as compared to the original soil. The net SOC accumulation was positively correlated with Proteobacteria abundance and negatively correlated with Actinobacteria abundance. These findings showed that changing the initial quality of plant residue from low C/N to high C/N can result in shifts in taxonomic and functional composition from Actinobacteria to Proteobacteria, which favors SOC accumulation. This study elucidates the ecophysiological roles of Actinobacteria and Proteobacteria in the desert carbon cycle, expands our understanding of the potential microbial-mediated mechanisms by which plant residue inputs affect SOC sequestration in desert soils, and provides valuable guidance for species selection in desert vegetation reconstruction.
Collapse
Affiliation(s)
- Shanshan Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Shaanxi, China
| | - Jieyu Sun
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Shaanxi, China
| | - Chang Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Shaanxi, China
| | - Shuyue Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Shaanxi, China
| | - Zubing Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Shaanxi, China
| | - Wen Luo
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Shaanxi, China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Shaanxi, China
| | - Weimin Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Shaanxi, China.
| |
Collapse
|
20
|
Quispe Haro JJ, Chen F, Los R, Shi S, Sun W, Chen Y, Idema T, Wegner SV. Optogenetic Control of Bacterial Cell-Cell Adhesion Dynamics: Unraveling the Influence on Biofilm Architecture and Functionality. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310079. [PMID: 38613837 PMCID: PMC11187914 DOI: 10.1002/advs.202310079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/22/2024] [Indexed: 04/15/2024]
Abstract
The transition of bacteria from an individualistic to a biofilm lifestyle profoundly alters their biology. During biofilm development, the bacterial cell-cell adhesions are a major determinant of initial microcolonies, which serve as kernels for the subsequent microscopic and mesoscopic structure of the biofilm, and determine the resulting functionality. In this study, the significance of bacterial cell-cell adhesion dynamics on bacterial aggregation and biofilm maturation is elucidated. Using photoswitchable adhesins between bacteria, modifying the dynamics of bacterial cell-cell adhesions with periodic dark-light cycles is systematic. Dynamic cell-cell adhesions with liquid-like behavior improve bacterial aggregation and produce more compact microcolonies than static adhesions with solid-like behavior in both experiments and individual-based simulations. Consequently, dynamic cell-cell adhesions give rise to earlier quorum sensing activation, better intermixing of different bacterial populations, improved biofilm maturation, changes in the growth of cocultures, and higher yields in fermentation. The here presented approach of tuning bacterial cell-cell adhesion dynamics opens the door for regulating the structure and function of biofilms and cocultures with potential biotechnological applications.
Collapse
Affiliation(s)
- Juan José Quispe Haro
- Institute of Physiological Chemistry and PathobiochemistryUniversity of MünsterMünsterGermany
| | - Fei Chen
- Institute of Physiological Chemistry and PathobiochemistryUniversity of MünsterMünsterGermany
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaChina
| | - Rachel Los
- Department of BionanoscienceKavli Institute of NanoscienceDelft University of TechnologyDelftThe Netherlands
| | - Shuqi Shi
- National Engineering Research Center for BiotechnologyCollege of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
| | - Wenjun Sun
- National Engineering Research Center for BiotechnologyCollege of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
| | - Yong Chen
- National Engineering Research Center for BiotechnologyCollege of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
| | - Timon Idema
- Department of BionanoscienceKavli Institute of NanoscienceDelft University of TechnologyDelftThe Netherlands
| | - Seraphine V. Wegner
- Institute of Physiological Chemistry and PathobiochemistryUniversity of MünsterMünsterGermany
| |
Collapse
|
21
|
Postek W, Staśkiewicz K, Lilja E, Wacław B. Substrate geometry affects population dynamics in a bacterial biofilm. Proc Natl Acad Sci U S A 2024; 121:e2315361121. [PMID: 38621130 PMCID: PMC11047097 DOI: 10.1073/pnas.2315361121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/11/2024] [Indexed: 04/17/2024] Open
Abstract
Biofilms inhabit a range of environments, such as dental plaques or soil micropores, often characterized by noneven surfaces. However, the impact of surface irregularities on the population dynamics of biofilms remains elusive, as most experiments are conducted on flat surfaces. Here, we show that the shape of the surface on which a biofilm grows influences genetic drift and selection within the biofilm. We culture Escherichia coli biofilms in microwells with a corrugated bottom surface and observe the emergence of clonal sectors whose size corresponds to that of the corrugations, despite no physical barrier separating different areas of the biofilm. The sectors are remarkably stable and do not invade each other; we attribute this stability to the characteristics of the velocity field within the biofilm, which hinders mixing and clonal expansion. A microscopically detailed computer model fully reproduces these findings and highlights the role of mechanical interactions such as adhesion and friction in microbial evolution. The model also predicts clonal expansion to be limited even for clones with a significant growth advantage-a finding which we confirm experimentally using a mixture of antibiotic-sensitive and antibiotic-resistant mutants in the presence of sublethal concentrations of the antibiotic rifampicin. The strong suppression of selection contrasts sharply with the behavior seen in range expansion experiments in bacterial colonies grown on agar. Our results show that biofilm population dynamics can be affected by patterning the surface and demonstrate how a better understanding of the physics of bacterial growth can be used to control microbial evolution.
Collapse
Affiliation(s)
- Witold Postek
- Dioscuri Centre for Physics and Chemistry of Bacteria, Institute of Physical Chemistry, Polish Academy of Sciences, Warszawa01-224, Poland
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
| | - Klaudia Staśkiewicz
- Dioscuri Centre for Physics and Chemistry of Bacteria, Institute of Physical Chemistry, Polish Academy of Sciences, Warszawa01-224, Poland
| | - Elin Lilja
- Dioscuri Centre for Physics and Chemistry of Bacteria, Institute of Physical Chemistry, Polish Academy of Sciences, Warszawa01-224, Poland
| | - Bartłomiej Wacław
- Dioscuri Centre for Physics and Chemistry of Bacteria, Institute of Physical Chemistry, Polish Academy of Sciences, Warszawa01-224, Poland
- School of Physics and Astronomy, The University of Edinburgh, EdinburghEH9 3FD, United Kingdom
| |
Collapse
|
22
|
Pan C, Sun C, Qu X, Yu W, Guo J, Yu Y, Li X. Microbial community interactions determine the mineralization of soil organic phosphorus in subtropical forest ecosystems. Microbiol Spectr 2024; 12:e0135523. [PMID: 38334388 PMCID: PMC10913379 DOI: 10.1128/spectrum.01355-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
In subtropical forest ecosystems with few phosphorus (P) inputs, P availability and forest productivity depend on soil organic P (Po) mineralization. However, the mechanisms by which the microbial community determines the status and fate of soil Po mineralization remain unclear. In the present study, soils were collected from three typical forest types: secondary natural forest (SNF), mixed planting, and monoculture forest of Chinese fir. The P fractions, Po-mineralization ability, and microbial community in the soils of different forest types were characterized. In addition, we defined Po-mineralizing taxa with the potential to interact with the soil microbial community to regulate Po mineralization. We found that a higher labile P content persisted in SNF and was positively associated with the Po-mineralization capacity of the soil microbial community. In vitro cultures of soil suspensions revealed that soil Po mineralization of three forest types was distinguished by differences in the composition of fungal communities. We further identified broad phylogenetic lineages of Po-mineralizing fungi with a high intensity of positive interactions with the soil microbial community, implying that the facilitation of Po-mineralizing taxa is crucial for soil P availability. Our dilution experiments to weaken microbial interactions revealed that in SNF soil, which had the highest interaction intensity of Po-mineralizing taxa with the community, Po-mineralization capacity was irreversibly lost after dilution, highlighting the importance of microbial diversity protection in forest soils. In summary, this study demonstrates that the interactions of Po-mineralizing microorganisms with the soil microbial community are critical for P availability in subtropical forests.IMPORTANCEIn subtropical forest ecosystems with few phosphorus inputs, phosphorus availability and forest productivity depend on soil organic phosphorus mineralization. However, the mechanisms by which the microbial community interactions determine the mineralization of soil organic phosphorus remain unclear. In the present study, soils were collected from three typical forest types: secondary natural forest, mixed planting, and monoculture forest of Chinese fir. We found that a higher soil labile phosphorus content was positively associated with the organic phosphorus mineralization capacity of the soil microbial community. Soil organic phosphorus mineralization of three forest types was distinguished by the differences in the composition of fungal communities. The positive interactions between organic phosphorus-mineralizing fungi and the rest of the soil microbial community facilitated organic phosphorus mineralization. This study highlights the importance of microbial diversity protection in forest soils and reveals the microbial mechanism of phosphorus availability maintenance in subtropical forest ecosystems.
Collapse
Affiliation(s)
- Chang Pan
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
- School of Life Sciences, Anqing Normal University, Anqing, China
| | - Chenchen Sun
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Xinjing Qu
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Wenruinan Yu
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Jiahuan Guo
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Yuanchun Yu
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Xiaogang Li
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
23
|
Uppal G, Vural DC. On the possibility of engineering social evolution in microfluidic environments. Biophys J 2024; 123:407-419. [PMID: 38204167 PMCID: PMC10870175 DOI: 10.1016/j.bpj.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/18/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024] Open
Abstract
Many species of microbes cooperate by producing public goods from which they collectively benefit. However, these populations are under the risk of being taken over by cheating mutants that do not contribute to the pool of public goods. Here we present theoretical findings that address how the social evolution of microbes can be manipulated by external perturbations to inhibit or promote the fixation of cheaters. To control social evolution, we determine the effects of fluid-dynamical properties such as flow rate or domain geometry. We also study the social evolutionary consequences of introducing beneficial or harmful chemicals at steady state and in a time-dependent fashion. We show that by modulating the flow rate and by applying pulsed chemical signals, we can modulate the spatial structure and dynamics of the population in a way that can select for more or less cooperative microbial populations.
Collapse
Affiliation(s)
- Gurdip Uppal
- Harvard Medical School, Boston, Massachusetts; Division of Computational Pathology, Brigham and Women's hospital, Boston, Massachusetts
| | - Dervis Can Vural
- Department of Physics, University of Notre Dame, Notre Dame, Indiana.
| |
Collapse
|
24
|
Coleine C, Delgado-Baquerizo M, DiRuggiero J, Guirado E, Harfouche AL, Perez-Fernandez C, Singh BK, Selbmann L, Egidi E. Dryland microbiomes reveal community adaptations to desertification and climate change. THE ISME JOURNAL 2024; 18:wrae056. [PMID: 38552152 PMCID: PMC11031246 DOI: 10.1093/ismejo/wrae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/21/2024]
Abstract
Drylands account for 45% of the Earth's land area, supporting ~40% of the global population. These regions support some of the most extreme environments on Earth, characterized by extreme temperatures, low and variable rainfall, and low soil fertility. In these biomes, microorganisms provide vital ecosystem services and have evolved distinctive adaptation strategies to endure and flourish in the extreme. However, dryland microbiomes and the ecosystem services they provide are under threat due to intensifying desertification and climate change. In this review, we provide a synthesis of our current understanding of microbial life in drylands, emphasizing the remarkable diversity and adaptations of these communities. We then discuss anthropogenic threats, including the influence of climate change on dryland microbiomes and outline current knowledge gaps. Finally, we propose research priorities to address those gaps and safeguard the sustainability of these fragile biomes.
Collapse
Affiliation(s)
- Claudia Coleine
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, 01100, Italy
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, E-41012, Spain
| | - Jocelyne DiRuggiero
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, United States
- Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Emilio Guirado
- Multidisciplinary Institute for Environment Studies “Ramón Margalef”, Universidad de Alicante, Alicante E-03071, Spain
| | - Antoine L Harfouche
- Department for Innovation in Biological, Agro-Food and Forest systems, University of Tuscia, Viterbo 01100, Italy
| | | | - Brajesh K Singh
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith 2750, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith 2750, Australia
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, 01100, Italy
- Mycological Section, Italian Antarctic National Museum (MNA), Genoa 16128, Italy
| | - Eleonora Egidi
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith 2750, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith 2750, Australia
| |
Collapse
|
25
|
Richards L, Cremin K, Coates M, Vigor F, Schäfer P, Soyer OS. Ammonia leakage can underpin nitrogen-sharing among soil microorganisms. THE ISME JOURNAL 2024; 18:wrae171. [PMID: 39236233 PMCID: PMC11440039 DOI: 10.1093/ismejo/wrae171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/16/2024] [Accepted: 09/04/2024] [Indexed: 09/07/2024]
Abstract
Soil microbial communities host a large number of microbial species that support important ecological functions such as biogeochemical cycling and plant nutrition. The extent and stability of these functions are affected by inter-species interactions among soil microorganisms, yet the different mechanisms underpinning microbial interactions in the soil are not fully understood. Here, we study the extent of nutrient-based interactions among two model, plant-supporting soil microorganisms, the fungi Serendipita indica, and the bacteria Bacillus subtilis. We found that S. indica is unable to grow with nitrate - a common nitrogen source in the soil - but this inability could be rescued, and growth restored in the presence of B. subtilis. We demonstrate that this effect is due to B. subtilis utilising nitrate and releasing ammonia, which can be used by S. indica. We refer to this type of mechanism as ammonia mediated nitrogen sharing (N-sharing). Using a mathematical model, we demonstrated that the pH dependent equilibrium between ammonia (NH3) and ammonium (NH+4) results in an inherent cellular leakiness, and that reduced amonnium uptake or assimilation rates could result in higher levels of leaked ammonia. In line with this model, a mutant B. subtilis - devoid of ammonia uptake - showed higher S. indica growth support in nitrate media. These findings highlight that ammonia based N-sharing can be a previously under-appreciated mechanism underpinning interaction among soil microorganisms and could be influenced by microbial or abiotic alteration of pH in microenvironments.
Collapse
Affiliation(s)
- Luke Richards
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| | - Kelsey Cremin
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| | - Mary Coates
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| | - Finley Vigor
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| | - Patrick Schäfer
- Institute of Phytophathology, Justus-Liebig Universität, Heinrich-Buff-Ring 26-32 35392 Giessen, Germany
| | - Orkun S Soyer
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
26
|
Le Bec M, Pouzet S, Cordier C, Barral S, Scolari V, Sorre B, Banderas A, Hersen P. Optogenetic spatial patterning of cooperation in yeast populations. Nat Commun 2024; 15:75. [PMID: 38168087 PMCID: PMC10761962 DOI: 10.1038/s41467-023-44379-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
Microbial communities are shaped by complex metabolic interactions such as cooperation and competition for resources. Methods to control such interactions could lead to major advances in our ability to better engineer microbial consortia for synthetic biology applications. Here, we use optogenetics to control SUC2 invertase production in yeast, thereby shaping spatial assortment of cooperator and cheater cells. Yeast cells behave as cooperators (i.e., transform sucrose into hexose, a public good) upon blue light illumination or cheaters (i.e., consume hexose produced by cooperators to grow) in the dark. We show that cooperators benefit best from the hexoses they produce when their domain size is constrained between two cut-off length-scales. From an engineering point of view, the system behaves as a bandpass filter. The lower limit is the trace of cheaters' competition for hexoses, while the upper limit is defined by cooperators' competition for sucrose. Cooperation mostly occurs at the frontiers with cheater cells, which not only compete for hexoses but also cooperate passively by letting sucrose reach cooperators. We anticipate that this optogenetic method could be applied to shape metabolic interactions in a variety of microbial ecosystems.
Collapse
Affiliation(s)
- Matthias Le Bec
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, 75005, Paris, France
| | - Sylvain Pouzet
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, 75005, Paris, France
| | - Céline Cordier
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, 75005, Paris, France
| | - Simon Barral
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, 75005, Paris, France
| | - Vittore Scolari
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, 75005, Paris, France
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3664, Laboratoire Dynamique du Noyau, 75005, Paris, France
| | - Benoit Sorre
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, 75005, Paris, France
| | - Alvaro Banderas
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, 75005, Paris, France.
| | - Pascal Hersen
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, 75005, Paris, France.
| |
Collapse
|
27
|
Sun X, Xie J, Zheng D, Xia R, Wang W, Xun W, Huang Q, Zhang R, Kovács ÁT, Xu Z, Shen Q. Metabolic interactions affect the biomass of synthetic bacterial biofilm communities. mSystems 2023; 8:e0104523. [PMID: 37971263 PMCID: PMC10734490 DOI: 10.1128/msystems.01045-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE Co-occurrence network analysis is an effective tool for predicting complex networks of microbial interactions in the natural environment. Using isolates from a rhizosphere, we constructed multi-species biofilm communities and investigated co-occurrence patterns between microbial species in genome-scale metabolic models and in vitro experiments. According to our results, metabolic exchanges and resource competition may partially explain the co-occurrence network analysis results found in synthetic bacterial biofilm communities.
Collapse
Affiliation(s)
- Xinli Sun
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jiyu Xie
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Daoyue Zheng
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Riyan Xia
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Wei Wang
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Weibing Xun
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Qiwei Huang
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ruifu Zhang
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ákos T. Kovács
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| | - Zhihui Xu
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Qirong Shen
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
28
|
Roitershtein A, Rastegar R, Chapkin RS, Ivanov I. Extinction scenarios in evolutionary processes: a multinomial Wright-Fisher approach. J Math Biol 2023; 87:63. [PMID: 37751048 PMCID: PMC10586398 DOI: 10.1007/s00285-023-01993-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 08/16/2023] [Accepted: 08/31/2023] [Indexed: 09/27/2023]
Abstract
We study a discrete-time multi-type Wright-Fisher population process. The mean-field dynamics of the stochastic process is induced by a general replicator difference equation. We prove several results regarding the asymptotic behavior of the model, focusing on the impact of the mean-field dynamics on it. One of the results is a limit theorem that describes sufficient conditions for an almost certain path to extinction, first eliminating the type which is the least fit at the mean-field equilibrium. The effect is explained by the metastability of the stochastic system, which under the conditions of the theorem spends almost all time before the extinction event in a neighborhood of the equilibrium. In addition to the limit theorems, we propose a maximization principle for a general deterministic replicator dynamics and study its implications for the stochastic model.
Collapse
Affiliation(s)
| | - Reza Rastegar
- Occidental Petroleum Corporation, Houston, TX, 77046, USA
| | - Robert S Chapkin
- Department of Nutrition - Program in Integrative Nutrition & Complex Diseases, Texas A &M University, College Station, TX, 77843, USA
| | - Ivan Ivanov
- Department of Veterinary Physiology and Pharmacology, Texas A &M University, College Station, TX, 77843, USA.
| |
Collapse
|
29
|
Humphreys JR, Debebe BJ, Diggle SP, Winzer K. Clostridium beijerinckii strain degeneration is driven by the loss of Spo0A activity. Front Microbiol 2023; 13:1075609. [PMID: 36704551 PMCID: PMC9871927 DOI: 10.3389/fmicb.2022.1075609] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/12/2022] [Indexed: 01/12/2023] Open
Abstract
Solventogenic clostridia represent a diverse group of anaerobic, spore-forming bacteria capable of producing acetone, butanol and ethanol through their unique biphasic metabolism. An intrinsic problem with these organisms however is their tendency to degenerate when repeatedly subcultured or when grown continuously. This phenomenon sees cells lose their ability to produce solvents and spores, posing a significant problem for industrial applications. To investigate the mechanistic and evolutionary basis of degeneration we combined comparative genomics, ultra-deep sequencing, and concepts of sociomicrobiology using Clostridium beijerinckii NCIMB 8052 as our model organism. These approaches revealed spo0A, the master regulator gene involved in spore and solvent formation, to be key to the degeneration process in this strain. Comparative genomics of 71 degenerate variants revealed four distinct hotspot regions that contained considerably more mutations than the rest of the genome. These included spo0A as well as genes suspected to regulate its expression and activity. Ultra-deep sequencing of populations during the subculturing process showed transient increases in mutations we believe linked to the spo0A network, however, these were ultimately dominated by mutations in the master regulator itself. Through frequency-dependent fitness assays, we found that spo0A mutants gained a fitness advantage, relative to the wild type, presumably allowing for propagation throughout the culture. Combined, our data provides new insights into the phenomenon of clostridial strain degeneration and the C. beijerinckii NCIMB 8052 solvent and spore regulation network.
Collapse
Affiliation(s)
- Jonathan R. Humphreys
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, The University of Nottingham, Nottingham, United Kingdom
| | - Bisrat J. Debebe
- DeepSeq, Centre for Genetics and Genomics, The University of Nottingham, Nottingham, United Kingdom
| | - Stephen P. Diggle
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Klaus Winzer
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, The University of Nottingham, Nottingham, United Kingdom,*Correspondence: Klaus Winzer, ✉
| |
Collapse
|
30
|
Kratzl F, Kremling A, Pflüger‐Grau K. Streamlining of a synthetic co-culture towards an individually controllable one-pot process for polyhydroxyalkanoate production from light and CO 2. Eng Life Sci 2023; 23:e2100156. [PMID: 36619884 PMCID: PMC9815089 DOI: 10.1002/elsc.202100156] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/23/2021] [Accepted: 02/01/2022] [Indexed: 01/11/2023] Open
Abstract
Rationally designed synthetic microbial consortia carry a vast potential for biotechnological applications. The application of such a consortium in a bioprocess, however, requires tight and individual controllability of the involved microbes. Here, we present the streamlining of a co-cultivation process consisting of Synechococcus elongatus cscB and Pseudomonas putida for the production of polyhydroxyalkanoates (PHA) from light and CO2. First, the process was improved by employing P. putida cscRABY, a strain with a higher metabolic activity towards sucrose. Next, the individual controllability of the co-culture partners was addressed by providing different nitrogen sources, each exclusively available for one strain. By this, the growth rate of the co-culture partners could be regulated individually, and defined conditions could be set. The molC/molN ratio, a key value for PHA accumulation, was estimated from the experimental data, and the necessary feeding rates to obtain a specific ratio could be predicted. This information was then implemented in the co-cultivation process, following the concept of a DBTL-cycle. In total, the streamlining of the process resulted in an increased maximal PHA titer of 393 mg/L and a PHA production rate of 42.1 mg/(L•day).
Collapse
Affiliation(s)
- Franziska Kratzl
- Professorship of Systems BiotechnologyTechnical University of MunichGarchingGermany
| | - Andreas Kremling
- Professorship of Systems BiotechnologyTechnical University of MunichGarchingGermany
| | | |
Collapse
|
31
|
Godin R, Karamched BR, Ryan SD. The space between us: Modeling spatial heterogeneity in synthetic microbial consortia dynamics. BIOPHYSICAL REPORTS 2022; 2:100085. [PMID: 36479317 PMCID: PMC9720408 DOI: 10.1016/j.bpr.2022.100085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
A central endeavor in bioengineering concerns the construction of multistrain microbial consortia with desired properties. Typically, a gene network is partitioned between strains, and strains communicate via quorum sensing, allowing for complex behaviors. Yet a fundamental question of how emergent spatiotemporal patterning in multistrain microbial consortia affects consortial dynamics is not understood well. Here, we propose a computationally tractable and straightforward modeling framework that explicitly allows linking spatiotemporal patterning to consortial dynamics. We validate our model against previously published results and make predictions of how spatial heterogeneity impacts interstrain communication. By enabling the investigation of spatial patterns effects on microbial dynamics, our modeling framework informs experimentalists, helps advance the understanding of complex microbial systems, and supports the development of applications involving them.
Collapse
Affiliation(s)
- Ryan Godin
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa
- Department of Biology, Geology, and Environmental Sciences, Cleveland State University, Cleveland, Ohio
- Department of Mathematics and Statistics, Cleveland State University, Cleveland, Ohio
- Center for Applied Data Analysis and Modeling, Cleveland State University, Cleveland, Ohio
| | - Bhargav R. Karamched
- Department of Mathematics, Florida State University, Tallahassee, Florida
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida
- Program in Neuroscience, Florida State University, Tallahassee, Florida
| | - Shawn D. Ryan
- Department of Mathematics and Statistics, Cleveland State University, Cleveland, Ohio
- Center for Applied Data Analysis and Modeling, Cleveland State University, Cleveland, Ohio
| |
Collapse
|
32
|
Eigentler L, Davidson FA, Stanley-Wall NR. Mechanisms driving spatial distribution of residents in colony biofilms: an interdisciplinary perspective. Open Biol 2022; 12:220194. [PMID: 36514980 PMCID: PMC9748781 DOI: 10.1098/rsob.220194] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Biofilms are consortia of microorganisms that form collectives through the excretion of extracellular matrix compounds. The importance of biofilms in biological, industrial and medical settings has long been recognized due to their emergent properties and impact on surrounding environments. In laboratory situations, one commonly used approach to study biofilm formation mechanisms is the colony biofilm assay, in which cell communities grow on solid-gas interfaces on agar plates after the deposition of a population of founder cells. The residents of a colony biofilm can self-organize to form intricate spatial distributions. The assay is ideally suited to coupling with mathematical modelling due to the ability to extract a wide range of metrics. In this review, we highlight how interdisciplinary approaches have provided deep insights into mechanisms causing the emergence of these spatial distributions from well-mixed inocula.
Collapse
Affiliation(s)
- Lukas Eigentler
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK,Mathematics, School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK
| | - Fordyce A. Davidson
- Mathematics, School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK
| | - Nicola R. Stanley-Wall
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
33
|
Roik A, Reverter M, Pogoreutz C. A roadmap to understanding diversity and function of coral reef-associated fungi. FEMS Microbiol Rev 2022; 46:fuac028. [PMID: 35746877 PMCID: PMC9629503 DOI: 10.1093/femsre/fuac028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/01/2022] [Accepted: 06/14/2022] [Indexed: 01/09/2023] Open
Abstract
Tropical coral reefs are hotspots of marine productivity, owing to the association of reef-building corals with endosymbiotic algae and metabolically diverse bacterial communities. However, the functional importance of fungi, well-known for their contribution to shaping terrestrial ecosystems and global nutrient cycles, remains underexplored on coral reefs. We here conceptualize how fungal functional traits may have facilitated the spread, diversification, and ecological adaptation of marine fungi on coral reefs. We propose that functions of reef-associated fungi may be diverse and go beyond their hitherto described roles of pathogens and bioeroders, including but not limited to reef-scale biogeochemical cycles and the structuring of coral-associated and environmental microbiomes via chemical mediation. Recent technological and conceptual advances will allow the elucidation of the physiological, ecological, and chemical contributions of understudied marine fungi to coral holobiont and reef ecosystem functioning and health and may help provide an outlook for reef management actions.
Collapse
Affiliation(s)
- Anna Roik
- Helmholtz Institute for Functional Marine Biodiversity, University of Oldenburg, Ammerländer Heerstraße 231, 26129 Oldenburg, Germany
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Wilhelmshaven, 26046, Germany
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Miriam Reverter
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Wilhelmshaven, 26046, Germany
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, United Kingdom
| | - Claudia Pogoreutz
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
34
|
Rossi A, Morlino MS, Gaspari M, Basile A, Kougias P, Treu L, Campanaro S. Analysis of the anaerobic digestion metagenome under environmental stresses stimulating prophage induction. MICROBIOME 2022; 10:125. [PMID: 35965344 PMCID: PMC9377139 DOI: 10.1186/s40168-022-01316-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The viral community has the potential to influence the structure of the microbiome and thus the yield of the anaerobic digestion process. However, the virome composition in anaerobic digestion is still under-investigated. A viral induction experiment was conducted on separate batches undergoing a series of DNA-damaging stresses, in order to coerce temperate viruses to enter the lytic cycle. RESULTS The sequencing of the metagenome revealed a viral community almost entirely composed of tailed bacteriophages of the order Caudovirales. Following a binning procedure 1,092 viral and 120 prokaryotic genomes were reconstructed, 64 of which included an integrated prophage in their sequence. Clustering of coverage profiles revealed the presence of species, both viral and microbial, sharing similar reactions to shocks. A group of viral genomes, which increase under organic overload and decrease under basic pH, uniquely encode the yopX gene, which is involved in the induction of temperate prophages. Moreover, the in-silico functional analysis revealed an enrichment of sialidases in viral genomes. These genes are associated with tail proteins and, as such, are hypothesised to be involved in the interaction with the host. Archaea registered the most pronounced changes in relation to shocks and featured behaviours not shared with other species. Subsequently, data from 123 different samples of the global anaerobic digestion database was used to determine coverage profiles of host and viral genomes on a broader scale. CONCLUSIONS Viruses are key components in anaerobic digestion environments, shaping the microbial guilds which drive the methanogenesis process. In turn, environmental conditions are pivotal in shaping the viral community and the rate of induction of temperate viruses. This study provides an initial insight into the complexity of the anaerobic digestion virome and its relation with the microbial community and the diverse environmental parameters. Video Abstract.
Collapse
Affiliation(s)
- Alessandro Rossi
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131, Padova, Italy
| | - Maria Silvia Morlino
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131, Padova, Italy
| | - Maria Gaspari
- Department of Hydraulics, Soil Science and Agricultural Engineering, Faculty of Agriculture, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Arianna Basile
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131, Padova, Italy
| | - Panagiotis Kougias
- Soil and Water Resources Institute, Hellenic Agricultural Organisation Demeter, Thermi, 57001, Thessaloniki, Greece
| | - Laura Treu
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131, Padova, Italy.
| | - Stefano Campanaro
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131, Padova, Italy
- CRIBI biotechnology center, University of Padua, via U. Bassi 58/b, 35131, Padova, Italy
| |
Collapse
|
35
|
Yu F, Luo W, Xie W, Li Y, Meng S, Kan J, Ye X, Peng T, Wang H, Huang T, Hu Z. Community reassemblies of eukaryotes, prokaryotes, and viruses in the hexabromocyclododecanes-contaminated microcosms. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129159. [PMID: 35643009 DOI: 10.1016/j.jhazmat.2022.129159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/28/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The microbial community in seriously contaminated environment were not well known. This research investigated the community reassemblies in microcosms made of two distinct mangrove sediments amended with high levels of hexabromocyclododecanes (HBCDs). After eight months of contamination, the transformation of HBCDs yielded various lower brominated products and resulted in acidification (pH ~2). Therefore, the degraders and dehalogenase homologous genes involved in transformation of HBCDs only presented in low abundance to avoid further deterioration of the habitats. Moreover, in these deteriorated habitats, 1344 bacterial, 969 archaeal, 599 eukaryotic (excluded fungi), 187 fungal OTUs, and 10 viral genera, were reduced compared with controls. Specifically, in two groups of microcosms, Zetaproteobacteria, Deinococcus-Thermus, Spirochaetes, Bacteroidetes, Euryarchaeota, and Ascomycota, were positively responding taxa to HBCDs. Caloneis (Bacillariophyta) and Ascomycota turned to the dominant eukaryotic and fungal taxa. Most of predominant taxa were related to the contamination of brominated flame retardants (BFRs). Microbial communities were reassembled in divergent and sediment-dependent manner. The long-term contamination of HBCDs leaded to the change of relations between many taxa, included some of the environmental viruses and their known hosts. This research highlight the importance of monitoring the ecological effects around plants producing or processing halogenated compounds.
Collapse
Affiliation(s)
- Fei Yu
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Wenqi Luo
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Wei Xie
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Yuyang Li
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Shanshan Meng
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Jie Kan
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Xueying Ye
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Tao Peng
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Hui Wang
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Tongwang Huang
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Zhong Hu
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, PR China.
| |
Collapse
|
36
|
Lee AJ, Reiter T, Doing G, Oh J, Hogan DA, Greene CS. Using genome-wide expression compendia to study microorganisms. Comput Struct Biotechnol J 2022; 20:4315-4324. [PMID: 36016717 PMCID: PMC9396250 DOI: 10.1016/j.csbj.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/07/2022] [Accepted: 08/07/2022] [Indexed: 11/30/2022] Open
Abstract
A gene expression compendium is a heterogeneous collection of gene expression experiments assembled from data collected for diverse purposes. The widely varied experimental conditions and genetic backgrounds across samples creates a tremendous opportunity for gaining a systems level understanding of the transcriptional responses that influence phenotypes. Variety in experimental design is particularly important for studying microbes, where the transcriptional responses integrate many signals and demonstrate plasticity across strains including response to what nutrients are available and what microbes are present. Advances in high-throughput measurement technology have made it feasible to construct compendia for many microbes. In this review we discuss how these compendia are constructed and analyzed to reveal transcriptional patterns.
Collapse
Affiliation(s)
- Alexandra J. Lee
- Genomics and Computational Biology Graduate Program, University of Pennsylvania, Philadelphia, PA, USA
| | - Taylor Reiter
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Denver, CO, USA
| | - Georgia Doing
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Julia Oh
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Deborah A. Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth, Hanover, NH, USA
| | - Casey S. Greene
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Denver, CO, USA
| |
Collapse
|
37
|
San León D, Nogales J. Toward merging bottom-up and top-down model-based designing of synthetic microbial communities. Curr Opin Microbiol 2022; 69:102169. [PMID: 35763963 DOI: 10.1016/j.mib.2022.102169] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/25/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022]
Abstract
The increasing interest of microbial communities as promising biocatalyst is leading an intense effort into the development of computational frameworks assisting the analysis and rational engineering of such complex ecosystems. Here, we critically review the recent computational and model-guided advances in the system-level engineering of microbiome, including both the rational bottom-up and the evolutionary top-down approaches. Furthermore, we highlight modeling and computational methods supporting both engineering paradigms. Finally, we discuss the advantages of combining both strategies into a hybrid top-down/bottom-up (middle-out) strategy to engineer synthetic microbial communities with improved performance and scope.
Collapse
Affiliation(s)
- David San León
- Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain.
| | - Juan Nogales
- Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain.
| |
Collapse
|
38
|
Barcoto MO, Rodrigues A. Lessons From Insect Fungiculture: From Microbial Ecology to Plastics Degradation. Front Microbiol 2022; 13:812143. [PMID: 35685924 PMCID: PMC9171207 DOI: 10.3389/fmicb.2022.812143] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Anthropogenic activities have extensively transformed the biosphere by extracting and disposing of resources, crossing boundaries of planetary threat while causing a global crisis of waste overload. Despite fundamental differences regarding structure and recalcitrance, lignocellulose and plastic polymers share physical-chemical properties to some extent, that include carbon skeletons with similar chemical bonds, hydrophobic properties, amorphous and crystalline regions. Microbial strategies for metabolizing recalcitrant polymers have been selected and optimized through evolution, thus understanding natural processes for lignocellulose modification could aid the challenge of dealing with the recalcitrant human-made polymers spread worldwide. We propose to look for inspiration in the charismatic fungal-growing insects to understand multipartite degradation of plant polymers. Independently evolved in diverse insect lineages, fungiculture embraces passive or active fungal cultivation for food, protection, and structural purposes. We consider there is much to learn from these symbioses, in special from the community-level degradation of recalcitrant biomass and defensive metabolites. Microbial plant-degrading systems at the core of insect fungicultures could be promising candidates for degrading synthetic plastics. Here, we first compare the degradation of lignocellulose and plastic polymers, with emphasis in the overlapping microbial players and enzymatic activities between these processes. Second, we review the literature on diverse insect fungiculture systems, focusing on features that, while supporting insects' ecology and evolution, could also be applied in biotechnological processes. Third, taking lessons from these microbial communities, we suggest multidisciplinary strategies to identify microbial degraders, degrading enzymes and pathways, as well as microbial interactions and interdependencies. Spanning from multiomics to spectroscopy, microscopy, stable isotopes probing, enrichment microcosmos, and synthetic communities, these strategies would allow for a systemic understanding of the fungiculture ecology, driving to application possibilities. Detailing how the metabolic landscape is entangled to achieve ecological success could inspire sustainable efforts for mitigating the current environmental crisis.
Collapse
Affiliation(s)
- Mariana O. Barcoto
- Center for the Study of Social Insects, São Paulo State University (UNESP), Rio Claro, Brazil
- Department of General and Applied Biology, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Andre Rodrigues
- Center for the Study of Social Insects, São Paulo State University (UNESP), Rio Claro, Brazil
- Department of General and Applied Biology, São Paulo State University (UNESP), Rio Claro, Brazil
| |
Collapse
|
39
|
Variation in Root Exudate Composition Influences Soil Microbiome Membership and Function. Appl Environ Microbiol 2022; 88:e0022622. [PMID: 35536051 DOI: 10.1128/aem.00226-22] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Root exudation is one of the primary processes that mediate interactions between plant roots, microorganisms, and the soil matrix, yet the mechanisms by which exudation alters microbial metabolism in soils have been challenging to unravel. Here, utilizing distinct sorghum genotypes, we characterized the chemical heterogeneity between root exudates and the effects of that variability on soil microbial membership and metabolism. Distinct exudate chemical profiles were quantified and used to formulate synthetic root exudate treatments: a high-organic-acid treatment (HOT) and a high-sugar treatment (HST). To parse the response of the soil microbiome to different exudate regimens, laboratory soil reactors were amended with these root exudate treatments as well as a nonexudate control. Amplicon sequencing of the 16S rRNA gene illustrated distinct microbial diversity patterns and membership in response to HST, HOT, or control amendments. Exometabolite changes reflected these microbial community changes, and we observed enrichment of organic and amino acids, as well as possible phytohormones in the HST relative to the HOT and control. Linking the metabolic capacity of metagenome-assembled genomes in the HST to the exometabolite patterns, we identified microorganisms that could produce these phytohormones. Our findings emphasize the tractability of high-resolution multiomics tools to investigate soil microbiomes, opening the possibility of manipulating native microbial communities to improve specific soil microbial functions and enhance crop production. IMPORTANCE Decrypting the chemical interactions between plant roots and the soil microbiome is a gateway for future manipulation and management of the rhizosphere, a soil compartment critical to promoting plant fitness and yields. Our experimental results demonstrate how soil microbial community and genomic diversity is influenced by root exudates of differing chemical compositions and how changes in this microbiome result in altered production of plant-relevant metabolites. Together, these findings demonstrate the tractability of high-resolution multiomics tools to investigate soil microbiomes and provide new information on plant-soil environments useful for the development of efficient and precise microbiota management strategies in agricultural systems.
Collapse
|
40
|
Fornasaro S, Esposito A, Florian F, Pallavicini A, De Leo L, Not T, Lagatolla C, Mezzarobba M, Di Silvestre A, Sergo V, Bonifacio A. Spectroscopic investigation of faeces with surface-enhanced Raman scattering: a case study with coeliac patients on gluten-free diet. Anal Bioanal Chem 2022; 414:3517-3527. [PMID: 35258650 PMCID: PMC9018641 DOI: 10.1007/s00216-022-03975-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 11/06/2022]
Abstract
Surface-enhanced Raman scattering (SERS) spectra of faecal samples can be obtained by adding AuNP to their methanol extracts according to the reported protocol, and display bands that are due to bilirubin-like species but also to xanthine and hypoxanthine, two metabolic products secreted by gut bacteria. A total of 27 faecal samples from three different groups, i.e. coeliac patients (n = 9), coeliac patients on gluten-free diet (n = 10) and a control group (n = 8), were characterized with both SERS spectroscopy and 16S rRNA sequencing analysis. Significant differences are present between SERS spectra of coeliac patients and those on gluten-free diet, with a marked increase in the relative intensity of both xanthine and hypoxanthine for the latter. Interestingly, these differences do not correlate with bacterial composition as derived from 16S rRNA sequencing.
Collapse
Affiliation(s)
- Stefano Fornasaro
- Raman Spectroscopy Laboratory, Department of Engineering and Architecture, University of Trieste, P.le Europa 1, 34100, Trieste, Italy
| | - Alessandro Esposito
- Raman Spectroscopy Laboratory, Department of Engineering and Architecture, University of Trieste, P.le Europa 1, 34100, Trieste, Italy
| | - Fiorella Florian
- Department of Life Sciences, University of Trieste, Via Edoardo Weiss 2, 34128, Trieste, TS, Italy
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, Via Edoardo Weiss 2, 34128, Trieste, TS, Italy
| | - Luigina De Leo
- Institute for Maternal Child Health-IRCCS "Burlo Garofolo" Trieste, via dell'Istria 65/1, 34100, Trieste, Italy
| | - Tarcisio Not
- Institute for Maternal Child Health-IRCCS "Burlo Garofolo" Trieste, via dell'Istria 65/1, 34100, Trieste, Italy
| | - Cristina Lagatolla
- Department of Life Sciences, University of Trieste, Via Edoardo Weiss 2, 34128, Trieste, TS, Italy
| | - Marica Mezzarobba
- Department of Life Sciences, University of Trieste, Via Edoardo Weiss 2, 34128, Trieste, TS, Italy
| | - Alessia Di Silvestre
- Raman Spectroscopy Laboratory, Department of Engineering and Architecture, University of Trieste, P.le Europa 1, 34100, Trieste, Italy
| | - Valter Sergo
- Raman Spectroscopy Laboratory, Department of Engineering and Architecture, University of Trieste, P.le Europa 1, 34100, Trieste, Italy
| | - Alois Bonifacio
- Raman Spectroscopy Laboratory, Department of Engineering and Architecture, University of Trieste, P.le Europa 1, 34100, Trieste, Italy.
| |
Collapse
|
41
|
Zachar I, Boza G. The Evolution of Microbial Facilitation: Sociogenesis, Symbiogenesis, and Transition in Individuality. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.798045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Metabolic cooperation is widespread, and it seems to be a ubiquitous and easily evolvable interaction in the microbial domain. Mutual metabolic cooperation, like syntrophy, is thought to have a crucial role in stabilizing interactions and communities, for example biofilms. Furthermore, cooperation is expected to feed back positively to the community under higher-level selection. In certain cases, cooperation can lead to a transition in individuality, when freely reproducing, unrelated entities (genes, microbes, etc.) irreversibly integrate to form a new evolutionary unit. The textbook example is endosymbiosis, prevalent among eukaryotes but virtually lacking among prokaryotes. Concerning the ubiquity of syntrophic microbial communities, it is intriguing why evolution has not lead to more transitions in individuality in the microbial domain. We set out to distinguish syntrophy-specific aspects of major transitions, to investigate why a transition in individuality within a syntrophic pair or community is so rare. We review the field of metabolic communities to identify potential evolutionary trajectories that may lead to a transition. Community properties, like joint metabolic capacity, functional profile, guild composition, assembly and interaction patterns are important concepts that may not only persist stably but according to thought-provoking theories, may provide the heritable information at a higher level of selection. We explore these ideas, relating to concepts of multilevel selection and of informational replication, to assess their relevance in the debate whether microbial communities may inherit community-level information or not.
Collapse
|
42
|
Niu L, Zou G, Guo Y, Li Y, Wang C, Hu Q, Zhang W, Wang L. Eutrophication dangers the ecological status of coastal wetlands: A quantitative assessment by composite microbial index of biotic integrity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151620. [PMID: 34780838 DOI: 10.1016/j.scitotenv.2021.151620] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/16/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
The intertidal wetland ecosystem is vulnerable to environmental and anthropogenic stressors. Understanding how the ecological statuses of intertidal wetlands respond to influencing factors is crucial for the management and protection of intertidal wetland ecosystems. In this study, the community characteristics of bacteria, archaea and microeukaryote from Jiangsu coast areas (JCA), the longest muddy intertidal wetlands in the world, were detected to develop a composite microbial index of biotic integrity (CM-IBI) and to explore the influence mechanisms of stresses on the intertidal wetland ecological status. A total of 12 bacterial, archaea and microeukaryotic metrics were determined by range, responsiveness and redundancy tests for the development of ba-IBI, ar-IBI and eu-IBI. The CM-IBI was further developed via three sub-IBIs with weight coefficients 0.40, 0.33 and 0.27, respectively. The CM-IBI (R2 = 0.58) exhibited the highest goodness of fit with the CEI, followed by ba-IBI (R2 = 0.36), ar-IBI (R2 = 0.25) and eu-IBI (R2 = 0.21). Redundancy and random forest analyses revealed inorganic nitrogen (inorgN), total phosphorus (TP) and total organic carbon (TOC) to be key environmental variables influencing community compositions. A conditional reasoning tree model indicated the close associating between the ecological status and eutrophication conditions. The majority of sites with water inorgN<0.67 mg/L exhibited good statuses, while the poor ecological status was observed for inorgN>0.67 mg/L and TP > 0.11 mg/L. Microbial networks demonstrated the interactions of microbial taxonomic units among three kingdoms decreases with the ecological degradation, suggesting a reduced reliability and stability of microbial communities. Multi-level path analysis revealed fishery aquaculture and industrial development as the dominant anthropogenic activities effecting the eutrophication and ecological degradation of the JCA tidal wetlands. This study developed an efficient ecological assessment method of tidal wetlands based on microbial communities, and determined the influence of human activities and eutrophication on ecological status, providing guidance for management standards and coastal development.
Collapse
Affiliation(s)
- Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Guanhua Zou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yuntong Guo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Chao Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China.
| | - Qing Hu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Linqiong Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
43
|
Zhao S, Niu C, Xing X, Fan L, Zheng F, Liu C, Wang J, Li Q. Revealing the changes of microbiota structure and function in broad bean paste mediated by sunlight and ventilation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
44
|
García-Victoria P, Cavaliere M, Gutiérrez-Naranjo MA, Cárdenas-Montes M. Evolutionary game theory in a cell: A membrane computing approach. Inf Sci (N Y) 2022. [DOI: 10.1016/j.ins.2021.12.109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Patalinghug JMR, Padayao MHRA, Angeles IP, Yee JC. Bioactivity of Amaranthus spinosus L. leaf extracts and meals against Aeromonas hydrophila. Access Microbiol 2022; 4:000305. [PMID: 35355878 PMCID: PMC8941963 DOI: 10.1099/acmi.0.000305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/22/2021] [Indexed: 11/18/2022] Open
Abstract
Plant-based protein is being sought after as a substitute for fish meals (powdered fish) in tilapia feeds. This is to promote sustainable aquaculture, as fish meals contribute to the dwindling marine fish catch. Amaranthus spinosus is an edible weed that shows potential to improve the growth and immunity of Nile tilapia. However, most studies only consider the survivability of fish to evaluate the benefit of using plant-based feeds and do not necessarily elucidate whether a pathogen is affected in vivo. A. spinosus leaf meals (ASLMs) were used to determine effectiveness against
Aeromonas hydrophila
(BIOTECH 10089) injected intraperitoneally into Nile tilapia. Formulated feeds with fish meals substituted with 50 % (ASLM50) and 75 % (ASLM75) A. spinosus leaves were fed to Nile tilapia challenged with
A. hydrophila
. Then spleen and kidney tissue were collected and analysed 10 days post-injection for total plate count. The fish fed with ASLM50 appeared healthier than those fed with ASLM75 and those fed with control feeds. Fish fed with ASLMs had lower
A. hydrophila
counts (P=0.03). Phytochemical screening and antimicrobial activity determination for crude methanolic A. spinosus leaf (ASL) and ASLMs were also conducted to enhance the in vivo results. The metabolites present in the extracts were carbohydrates, amino acids and proteins, cardiac glycosides, saponins and terpenoids. The ASL and ASLM extracts had antimicrobial activity (MIC=115 mg ml−1). Overall, the study showed that ASLMs can make tilapia more resilient against
A. hydrophila
infections. Fish meal substitution was best at 50 %. Higher substitution had unwanted effects (more bacterial counts), possibly due to antinutritional factors.
Collapse
Affiliation(s)
| | | | - Isagani Pablo Angeles
- Freshwater Fisheries Center of Cagayan Valley, Isabela State University, Echague, Philippines
| | - Jonie Calisogan Yee
- Department of Biology, University of San Carlos, Cebu City 6000, Philippines
| |
Collapse
|
46
|
Yadav M, Joshi C, Paritosh K, Thakur J, Pareek N, Masakapalli SK, Vivekanand V. Reprint of:Organic waste conversion through anaerobic digestion: A critical insight into the metabolic pathways and microbial interactions. Metab Eng 2022; 71:62-76. [DOI: 10.1016/j.ymben.2022.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/17/2021] [Accepted: 11/30/2021] [Indexed: 12/25/2022]
|
47
|
Mataigne V, Vannier N, Vandenkoornhuyse P, Hacquard S. Microbial Systems Ecology to Understand Cross-Feeding in Microbiomes. Front Microbiol 2021; 12:780469. [PMID: 34987488 PMCID: PMC8721230 DOI: 10.3389/fmicb.2021.780469] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/25/2021] [Indexed: 12/26/2022] Open
Abstract
Understanding how microorganism-microorganism interactions shape microbial assemblages is a key to deciphering the evolution of dependencies and co-existence in complex microbiomes. Metabolic dependencies in cross-feeding exist in microbial communities and can at least partially determine microbial community composition. To parry the complexity and experimental limitations caused by the large number of possible interactions, new concepts from systems biology aim to decipher how the components of a system interact with each other. The idea that cross-feeding does impact microbiome assemblages has developed both theoretically and empirically, following a systems biology framework applied to microbial communities, formalized as microbial systems ecology (MSE) and relying on integrated-omics data. This framework merges cellular and community scales and offers new avenues to untangle microbial coexistence primarily by metabolic modeling, one of the main approaches used for mechanistic studies. In this mini-review, we first give a concise explanation of microbial cross-feeding. We then discuss how MSE can enable progress in microbial research. Finally, we provide an overview of a MSE framework mostly based on genome-scale metabolic-network reconstruction that combines top-down and bottom-up approaches to assess the molecular mechanisms of deterministic processes of microbial community assembly that is particularly suitable for use in synthetic biology and microbiome engineering.
Collapse
Affiliation(s)
- Victor Mataigne
- Université de Rennes 1, CNRS, UMR6553 ECOBIO, Rennes, France
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Nathan Vannier
- Université de Rennes 1, CNRS, UMR6553 ECOBIO, Rennes, France
| | | | | |
Collapse
|
48
|
Saa P, Urrutia A, Silva-Andrade C, Martín AJ, Garrido D. Modeling approaches for probing cross-feeding interactions in the human gut microbiome. Comput Struct Biotechnol J 2021; 20:79-89. [PMID: 34976313 PMCID: PMC8685919 DOI: 10.1016/j.csbj.2021.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 12/16/2022] Open
Abstract
Microbial communities perform emergent activities that are essentially different from those carried by their individual members. The gut microbiome and its metabolites have a significant impact on the host, contributing to homeostasis or disease. Food molecules shape this community, being fermented through cross-feeding interactions of metabolites such as lactate, acetate, and amino acids, or products derived from macromolecule degradation. Mathematical and experimental approaches have been applied to understand and predict the interactions between microorganisms in complex communities such as the gut microbiota. Rational and mechanistic understanding of microbial interactions is essential to exploit their metabolic activities and identify keystone taxa and metabolites. The latter could be used in turn to modulate or replicate the metabolic behavior of the community in different contexts. This review aims to highlight recent experimental and modeling approaches for studying cross-feeding interactions within the gut microbiome. We focus on short-chain fatty acid production and fiber fermentation, which are fundamental processes in human health and disease. Special attention is paid to modeling approaches, particularly kinetic and genome-scale stoichiometric models of metabolism, to integrate experimental data under different diet and health conditions. Finally, we discuss limitations and challenges for the broad application of these modeling approaches and their experimental verification for improving our understanding of the mechanisms of microbial interactions.
Collapse
Affiliation(s)
- Pedro Saa
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
- Institute for Mathematical and Computational Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna, 4860 Santiago, Chile
| | - Arles Urrutia
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Silva-Andrade
- Laboratorio de Biología de Redes, Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Alberto J. Martín
- Laboratorio de Biología de Redes, Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Daniel Garrido
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
49
|
Organic waste conversion through anaerobic digestion: A critical insight into the metabolic pathways and microbial interactions. Metab Eng 2021; 69:323-337. [PMID: 34864213 DOI: 10.1016/j.ymben.2021.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/17/2021] [Accepted: 11/30/2021] [Indexed: 11/23/2022]
Abstract
Anaerobic digestion is a promising method for energy recovery through conversion of organic waste to biogas and other industrial valuables. However, to tap the full potential of anaerobic digestion, deciphering the microbial metabolic pathway activities and their underlying bioenergetics is required. In addition, the behavior of organisms in consortia along with the analytical abilities to kinetically measure their metabolic interactions will allow rational optimization of the process. This review aims to explore the metabolic bottlenecks of the microbial communities adopting latest advances of profiling and 13C tracer-based analysis using state of the art analytical platforms (GC, GC-MS, LC-MS, NMR). The review summarizes the phases of anaerobic digestion, the role of microbial communities, key process parameters of significance, syntrophic microbial interactions and the bottlenecks that are critical for optimal bioenergetics and enhanced production of valuables. Considerations into the designing of efficient synthetic microbial communities as well as the latest advances in capturing their metabolic cross talk will be highlighted. The review further explores how the presence of additives and inhibiting factors affect the metabolic pathways. The critical insight into the reaction mechanism covered in this review may be helpful to optimize and upgrade the anaerobic digestion system.
Collapse
|
50
|
Noto Guillen M, Rosener B, Sayin S, Mitchell A. Assembling stable syntrophic Escherichia coli communities by comprehensively identifying beneficiaries of secreted goods. Cell Syst 2021; 12:1064-1078.e7. [PMID: 34469744 PMCID: PMC8602757 DOI: 10.1016/j.cels.2021.08.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/18/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022]
Abstract
Metabolic cross-feeding frequently underlies mutualistic relationships in natural microbial communities and is often exploited to assemble synthetic microbial consortia. We systematically identified all single-gene knockouts suitable for imposing cross-feeding in Escherichia coli and used this information to assemble syntrophic communities. Most strains benefiting from shared goods were dysfunctional in biosynthesis of amino acids, nucleotides, and vitamins or mutants in central carbon metabolism. We tested cross-feeding potency in 1,444 strain pairs and mapped the interaction network between all functional groups of mutants. This network revealed that auxotrophs for vitamins are optimal cooperators. Lastly, we monitored how assemblies composed of dozens of auxotrophs change over time and observed that they rapidly and repeatedly coalesced to seven strain consortia composed primarily from vitamin auxotrophs. The composition of emerging consortia suggests that they were stabilized by multiple cross-feeding interactions. We conclude that vitamins are ideal shared goods since they optimize consortium growth while still imposing member co-dependence.
Collapse
Affiliation(s)
- Mariana Noto Guillen
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Brittany Rosener
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Serkan Sayin
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Amir Mitchell
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA; Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| |
Collapse
|