1
|
Fu R, Han L, Li Q, Li Z, Dai Y, Leng J. Studies on the concerted interaction of microbes in the gastrointestinal tract of ruminants on lignocellulose and its degradation mechanism. Front Microbiol 2025; 16:1554271. [PMID: 40415943 PMCID: PMC12098361 DOI: 10.3389/fmicb.2025.1554271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 04/04/2025] [Indexed: 05/27/2025] Open
Abstract
The complex structure of lignocellulose, one of the most abundant renewable resources on earth, makes biodegradation challenging. Ruminant gastrointestinal microbiota achieves efficient lignocellulose degradation through a highly synergistic ecosystem, which provides an important research model for sustainable energy development and high value-added chemical production. This review systematically summarizes the key mechanisms of lignocellulose degradation by ruminant gastrointestinal microorganisms, focusing on the synergistic roles of rumen and hindgut (including cecum, colon, and rectum) microorganisms in cellulose, hemicellulose, and lignin degradation. The study focuses on the functional differentiation and cooperation patterns of bacteria, fungi and protozoa in lignocellulose decomposition, and summarizes the roles of carbohydrate-active enzymes (CAZymes) and their new discoveries under the histological techniques. In addition, this manuscript explores the potential application of gastrointestinal tract (GIT) microbial degradation mechanisms in improving the utilization of straw-based feeds. In the future, by revealing the mechanism of microbe-host synergy and integrating multi-omics technologies, the study of ruminant gastrointestinal microbial ecosystems will provide new solutions to promote the efficient utilization of lignocellulose and alleviate the global energy crisis.
Collapse
Affiliation(s)
- Runqi Fu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming, China
| | - Lin Han
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming, China
| | - Qian Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming, China
| | - Zhe Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yue Dai
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jing Leng
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
2
|
Zou Y, Zou X, Lin C, Han C, Zou Q. Inference of functional differentiation of intestinal microbes between two wild zokor species based on metagenomics. PEST MANAGEMENT SCIENCE 2025; 81:1860-1872. [PMID: 39628107 DOI: 10.1002/ps.8587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/28/2024] [Accepted: 11/21/2024] [Indexed: 03/15/2025]
Abstract
BACKGROUND Currently, there are fewer studies on the intestinal microbes of wild zokors, and it is unclear how zokors adapt to special underground environments by regulating their intestinal microbes. Here, we explored the function of intestinal microbes of Eospalax cansus and Eospalax rothschildi based on metagenomics. RESULTS Both zokor species have similar intestinal microbial composition, but E. cansus has a higher proportion of bacteria involved in carbohydrate degradation. Functional analysis based on KEGG and CAZy databases indicated that the intestinal microbes of E. cansus harboured stronger carbohydrate degradation ability, mainly in starch and sucrose metabolism, and further in cellulose degradation. Furthermore, the cellulase activity was significantly higher in E. cansus than that in E. rothschildi. Eospalax cansus has a stronger microbial fermentation ability due to an increase in fibre-degrading bacteria like unclassified_f_Lachnospiraceae, Ruminococcus, and Clostridium. In addition, the dominant bacteria isolated from zokor were Bacillus, some of which could degrade both cellulose and hemicellulose. CONCLUSION Metagenomic analysis and bacterial isolation experiments indicate that E. cansus has a stronger microbial cellulose-degrading capacity, possibly as an adaptation to its limited food resources underground. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yao Zou
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio-Disaster, Northwest Agriculture and Forestry University, Yangling, China
| | - Xuan Zou
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio-Disaster, Northwest Agriculture and Forestry University, Yangling, China
| | - Chen Lin
- School of Informatics, Xiamen University, Xiamen, China
| | - Chongxuan Han
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio-Disaster, Northwest Agriculture and Forestry University, Yangling, China
| | - Quan Zou
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| |
Collapse
|
3
|
Schiml VC, Walter JM, Hagen LH, Varnai A, Bergaust LL, De Leon AVP, Elsgaard L, Bakken LR, Arntzen MØ. Microbial consortia driving (ligno)cellulose transformation in agricultural woodchip bioreactors. Appl Environ Microbiol 2024; 90:e0174224. [PMID: 39526802 DOI: 10.1128/aem.01742-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
Freshwater ecosystems can be largely affected by neighboring agriculture fields where potential fertilizer nitrate run-off may leach into surrounding water bodies. To counteract this eutrophic driver, farmers in certain areas are utilizing denitrifying woodchip bioreactors (WBRs) in which a consortium of microorganisms convert the nitrate into nitrogen gases in anoxia, fueled by the degradation of lignocellulose. Polysaccharide-degrading strategies have been well described for various aerobic and anaerobic systems, including the use of carbohydrate-active enzymes, utilization of lytic polysaccharide monooxygenases (LPMOs) and other redox enzymes, as well as the use of cellulosomes and polysaccharide utilization loci (PULs). However, for denitrifying microorganisms, the lignocellulose-degrading strategies remain largely unknown. Here, we have applied a combination of enrichment techniques, gas measurements, multi-omics approaches, and amplicon sequencing of fungal ITS and procaryotic 16S rRNA genes to identify microbial drivers for lignocellulose transformation in woodchip bioreactors and their active enzymes. Our findings highlight a microbial community enriched for (ligno)cellulose-degrading denitrifiers with key players from the taxa Giesbergeria, Cellulomonas, Azonexus, and UBA5070 (Fibrobacterota). A wide substrate specificity is observed among the many expressed carbohydrate-active enzymes (CAZymes) including PULs from Bacteroidetes. This suggests a broad degradation of lignocellulose subfractions, including enzymes with auxiliary activities whose functionality is still puzzling under strict anaerobic conditions. IMPORTANCE Freshwater ecosystems face significant threats from agricultural runoff, which can lead to eutrophication and subsequent degradation of water quality. One solution to mitigate this issue is using denitrifying woodchip bioreactors (WBRs), where microorganisms convert nitrate into nitrogen gases utilizing lignocellulose as a carbon source. Despite the well-documented polysaccharide-degrading strategies in various systems, the mechanisms employed by denitrifying microorganisms in WBRs remain largely unexplored. This study fills a critical knowledge gap by revealing the degrading strategies of denitrifying microbial communities in WBRs. By integrating state-of-the-art techniques, we have identified key microbial drivers including Giesbergeria, Cellulomonas, Azonexus, and UBA5070 (Fibrobacterota) playing significant roles in lignocellulose transformation and showcasing a broad substrate specificity and complex metabolic capability. Our findings advance the understanding of microbial ecology in WBRs and by revealing the enzymatic activities, this research may inform efforts to improve water quality, protect aquatic ecosystems, and reduce greenhouse gas emissions from WBRs.
Collapse
Affiliation(s)
- Valerie C Schiml
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Juline M Walter
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Live H Hagen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Aniko Varnai
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Linda L Bergaust
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Arturo Vera Ponce De Leon
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
- Faculty of Biosciences, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Lars Elsgaard
- Department of Agroecology, Aarhus University, Tjele, Denmark
| | - Lars R Bakken
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Magnus Ø Arntzen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| |
Collapse
|
4
|
Firkins JL, Henderson EL, Duan H, Pope PB. International Symposium on Ruminant Physiology: Current perspective on rumen microbial ecology to improve fiber digestibility. J Dairy Sci 2024:S0022-0302(24)01394-8. [PMID: 39701529 DOI: 10.3168/jds.2024-25863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/17/2024] [Indexed: 12/21/2024]
Abstract
Although cellulose has received the most attention, further research is needed for a complete comprehension of other fiber components in forage and nonforage fiber sources corresponding with the array of enzymes needed for depolymerization and resulting fermentation of sugars. The carbohydrate-active enzymes (CAZymes) have been described in detail herein, although new information will no doubt accumulate in the future. Known CAZymes are attributed to taxa that are easily detected via 16S rRNA gene profiling techniques, but such approaches have limitations. We describe how closely related species or strains expand into different niches depending on diet and the dynamic availability of remaining fibrous substrates. Moreover, expression of CAZymes and other enzymes such as in fermentation pathways can shift among strains and even within strains over time of incubation. We describe unique fibrolytic components of bacteria, protozoa, and fungi while emphasizing the development of consortia that efficiently increase neutral detergent fiber degradability (NDFD). For example, more powerful genome-centric functional omics approaches combined with expanded bioinformatics and network analyses are needed to expand our current understanding of ruminal function and the bottlenecks that lead to among-study variation in NDFD. Specific examples highlighted include our lack of fundamental understanding why starch limits NDFD, whereas moderate inclusion of rumen-degraded protein, certain supplemental fatty acids (especially palmitic), and supplemental sugars sometimes stimulates NDFD. Current and future research must uncover deeper complexity in the rumen microbiome through a combination of approaches described herein to be followed by validation using novel cultivation studies and, ultimately, NDFD measured in vivo for integration with ruminant productivity traits.
Collapse
Affiliation(s)
- J L Firkins
- Department of Animal Sciences, The Ohio State University, Columbus OH 43210 USA.
| | - E L Henderson
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, QLD, Australia
| | - H Duan
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, QLD, Australia
| | - P B Pope
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, QLD, Australia; Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway; Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
5
|
Gasser MT, Liu A, Altamia MA, Brensinger BR, Brewer SL, Flatau R, Hancock ER, Preheim SP, Filone CM, Distel DL. Membrane Vesicles Can Contribute to Cellulose Degradation by Teredinibacter turnerae, a Cultivable Intracellular Endosymbiont of Shipworms. Microb Biotechnol 2024; 17:e70064. [PMID: 39659293 PMCID: PMC11632262 DOI: 10.1111/1751-7915.70064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 11/08/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024] Open
Abstract
Teredinibacter turnerae is a cultivable cellulolytic Gammaproteobacterium (Cellvibrionaceae) that commonly occurs as an intracellular endosymbiont in the gills of wood-eating bivalves of the family Teredinidae (shipworms). The genome of T. turnerae encodes a broad range of enzymes that deconstruct cellulose, hemicellulose and pectin and contribute to wood (lignocellulose) digestion in the shipworm gut. However, the mechanisms by which T. turnerae secretes lignocellulolytic enzymes are incompletely understood. Here, we show that T. turnerae cultures grown on carboxymethyl cellulose (CMC) produce membrane vesicles (MVs) that include a variety of proteins identified by liquid chromatography-mass spectrometry (LC-MS/MS) as carbohydrate-active enzymes (CAZymes) with predicted activities against cellulose, hemicellulose and pectin. Reducing sugar assays and zymography confirm that these MVs exhibit cellulolytic activity, as evidenced by the hydrolysis of CMC. Additionally, these MVs were enriched with TonB-dependent receptors, which are essential to carbohydrate and iron acquisition by free-living bacteria. These observations indicate a potential role for MVs in lignocellulose utilisation by T. turnerae in the free-living state, suggest possible mechanisms for host-symbiont interaction and may be informative for commercial applications such as enzyme production and lignocellulosic biomass conversion.
Collapse
Affiliation(s)
- Mark T. Gasser
- Johns Hopkins University Applied Physics LaboratoryLaurelMarylandUSA
| | - Annie Liu
- Johns Hopkins University Applied Physics LaboratoryLaurelMarylandUSA
| | - Marvin A. Altamia
- Ocean Genome Legacy CenterNortheastern UniversityNahantMassachusettsUSA
| | | | - Sarah L. Brewer
- Johns Hopkins University Applied Physics LaboratoryLaurelMarylandUSA
| | - Ron Flatau
- Ocean Genome Legacy CenterNortheastern UniversityNahantMassachusettsUSA
| | - Eric R. Hancock
- Johns Hopkins University Applied Physics LaboratoryLaurelMarylandUSA
| | | | | | - Daniel L. Distel
- Ocean Genome Legacy CenterNortheastern UniversityNahantMassachusettsUSA
| |
Collapse
|
6
|
Gasser MT, Liu A, Altamia M, Brensinger BR, Brewer SL, Flatau R, Hancock ER, Preheim SP, Filone CM, Distel DL. Membrane vesicles can contribute to cellulose degradation by Teredinibacter turnerae, a cultivable intracellular endosymbiont of shipworms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.587001. [PMID: 38585906 PMCID: PMC10996688 DOI: 10.1101/2024.03.27.587001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Teredinibacter turnerae is a cultivable cellulolytic Gammaproteobacterium (Cellvibrionaceae) that commonly occurs as an intracellular endosymbiont in the gills of wood-eating bivalves of the family Teredinidae (shipworms). The genome of T. turnerae encodes a broad range of enzymes that deconstruct cellulose, hemicellulose, and pectin and contribute to wood (lignocellulose) digestion in the shipworm gut. However, the mechanisms by which T. turnerae secretes lignocellulolytic enzymes are incompletely understood. Here, we show that T. turnerae cultures grown on carboxymethyl cellulose (CMC) produce membrane vesicles (MVs) that include a variety of proteins identified by LC-MS/MS as carbohydrate-active enzymes (CAZymes) with predicted activities against cellulose, hemicellulose, and pectin. Reducing sugar assays and zymography confirm that these MVs exhibit cellulolytic activity, as evidenced by the hydrolysis of CMC. Additionally, these MVs were enriched with TonB-dependent receptors, which are essential to carbohydrate and iron acquisition by free-living bacteria. These observations indicate a potential role for MVs in lignocellulose utilization by T. turnerae in the free-living state, suggest possible mechanisms for host-symbiont interaction, and may be informative for commercial applications such as enzyme production and lignocellulosic biomass conversion.
Collapse
Affiliation(s)
- Mark T. Gasser
- Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA 20723
| | - Annie Liu
- Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA 20723
| | - Marvin Altamia
- Ocean Genome Legacy Center, Northeastern University, Nahant, Massachusetts, USA 01908
| | - Bryan R. Brensinger
- Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA 20723
| | - Sarah L. Brewer
- Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA 20723
| | - Ron Flatau
- Ocean Genome Legacy Center, Northeastern University, Nahant, Massachusetts, USA 01908
| | - Eric R. Hancock
- Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA 20723
| | | | - Claire Marie Filone
- Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA 20723
| | - Dan L. Distel
- Ocean Genome Legacy Center, Northeastern University, Nahant, Massachusetts, USA 01908
| |
Collapse
|
7
|
Froidurot A, Jacotot E, Julliand S, Grimm P, Julliand V. Fibrobacter sp. HC4, a newly isolated strain, demonstrates a high cellulolytic activity as revealed by enzymatic measurements and in vitro assay. Appl Environ Microbiol 2024; 90:e0051424. [PMID: 39082812 PMCID: PMC11337828 DOI: 10.1128/aem.00514-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/17/2024] [Indexed: 08/22/2024] Open
Abstract
Despite their low quantity and abundance, the cellulolytic bacteria that inhabit the equine large intestine are vital to their host, as they enable the crucial use of forage-based diets. Fibrobacter succinogenes is one of the most important intestinal cellulolytic bacteria. In this study, Fibrobacter sp. HC4, one cellulolytic strain newly isolated from the horse cecum, was characterized for its ability to utilize plant cell wall fibers. Fibrobacter sp. HC4 consumed only cellulose, cellobiose, and glucose and produced succinate and acetate in equal amounts. Among genes coding for CAZymes, 26% of the detected glycoside hydrolases (GHs) were involved in cellulolysis. These cellulases belong to the GH5, GH8, GH9, GH44, GH45, and GH51 families. Both carboxymethyl cellulase and xylanase activities of Fibrobacter sp. HC4 were detected using the Congo red method and were higher than those of F. succinogenes S85, the type strain. The in vitro addition of Fibrobacter sp. HC4 to a fecal microbial ecosystem of horses with large intestinal acidosis significantly enhanced fibrolytic activity as measured by the increase in gas and volatile fatty acids production during the first 48 h. According to this, the pH decreased and the disappearance of dry matter increased at a faster rate with Fibrobacter sp. HC4. Our data suggest a high specialization of the new strain in cellulose degradation. Such a strain could be of interest for future exploitation of its probiotic potential, which needs to be further determined by in vivo studies.IMPORTANCECellulose is the most abundant of plant cell wall fiber and can only be degraded by the large intestine microbiota, resulting in the production of volatile fatty acids that are essential for the host nutrition and health. Consequently, cellulolytic bacteria are of major importance to herbivores. However, these bacteria are challenged by various factors, such as high starch diets, which acidify the ecosystem and reduce their numbers and activity. This can lead to an imbalance in the gut microbiota and digestive problems such as colic, a major cause of mortality in horses. In this work, we characterized a newly isolated cellulolytic strain, Fibrobacter sp. HC4, from the equine intestinal microbiota. Due to its high cellulolytic capacity, reintroduction of this strain into an equine fecal ecosystem stimulates hay fermentation in vitro. Isolating and describing cellulolytic bacteria is a prerequisite for using them as probiotics to restore intestinal balance.
Collapse
Affiliation(s)
- Alicia Froidurot
- Univ. Bourgogne Franche–Comté, L’Institut Agro Dijon, PAM UMR A 02.102, Dijon, France
| | - Emmanuel Jacotot
- Univ. Bourgogne Franche–Comté, L’Institut Agro Dijon, PAM UMR A 02.102, Dijon, France
| | | | | | - Véronique Julliand
- Univ. Bourgogne Franche–Comté, L’Institut Agro Dijon, PAM UMR A 02.102, Dijon, France
| |
Collapse
|
8
|
Casillo A, D'Amico R, Lanzetta R, Corsaro MM. Marine Delivery Vehicles: Molecular Components and Applications of Bacterial Extracellular Vesicles. Mar Drugs 2024; 22:363. [PMID: 39195479 DOI: 10.3390/md22080363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
In marine ecosystems, communication among microorganisms is crucial since the distance is significant if considered on a microbial scale. One of the ways to reduce this gap is through the production of extracellular vesicles, which can transport molecules to guarantee nutrients to the cells. Marine bacteria release extracellular vesicles (EVs), small membrane-bound structures of 40 nm to 1 µm diameter, into their surrounding environment. The vesicles contain various cellular compounds, including lipids, proteins, nucleic acids, and glycans. EVs may contribute to dissolved organic carbon, thus facilitating heterotroph growth. This review will focus on marine bacterial EVs, analyzing their structure, composition, functions, and applications.
Collapse
Affiliation(s)
- Angela Casillo
- Department of Chemical Sciences, University of Naples Federico II, Complesso Monte S. Angelo, 80126 Naples, Italy
| | - Raffaele D'Amico
- Department of Chemical Sciences, University of Naples Federico II, Complesso Monte S. Angelo, 80126 Naples, Italy
| | - Rosa Lanzetta
- Department of Chemical Sciences, University of Naples Federico II, Complesso Monte S. Angelo, 80126 Naples, Italy
| | - Maria Michela Corsaro
- Department of Chemical Sciences, University of Naples Federico II, Complesso Monte S. Angelo, 80126 Naples, Italy
| |
Collapse
|
9
|
Muñoz-Echeverri LM, Benavides-López S, Geiger O, Trujillo-Roldán MA, Valdez-Cruz NA. Bacterial extracellular vesicles: biotechnological perspective for enhanced productivity. World J Microbiol Biotechnol 2024; 40:174. [PMID: 38642254 PMCID: PMC11032300 DOI: 10.1007/s11274-024-03963-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/19/2024] [Indexed: 04/22/2024]
Abstract
Bacterial extracellular vesicles (BEVs) are non-replicative nanostructures released by Gram-negative and Gram-positive bacteria as a survival mechanism and inter- and intraspecific communication mechanism. Due to BEVs physical, biochemical, and biofunctional characteristics, there is interest in producing and using them in developing new therapeutics, vaccines, or delivery systems. However, BEV release is typically low, limiting their application. Here, we provide a biotechnological perspective to enhance BEV production, highlighting current strategies. The strategies include the production of hypervesiculating strains through gene modification, bacteria culture under stress conditions, and artificial vesicles production. We discussed the effect of these production strategies on BEVs types, morphology, composition, and activity. Furthermore, we summarized general aspects of BEV biogenesis, functional capabilities, and applications, framing their current importance and the need to produce them in abundance. This review will expand the knowledge about the range of strategies associated with BEV bioprocesses to increase their productivity and extend their application possibilities.
Collapse
Affiliation(s)
- Laura M Muñoz-Echeverri
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México AP. 70228, Ciudad de México, C.P. 04510, México
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Unidad de Posgrado, Edificio D, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán CDMX, C.P. 04510, México
| | - Santiago Benavides-López
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México AP. 70228, Ciudad de México, C.P. 04510, México
- Posgrado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Unidad de Posgrado, Edificio B, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán CDMX, C.P. 04510, México
| | - Otto Geiger
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Cuernavaca, Morelos, CP 62210, México
| | - Mauricio A Trujillo-Roldán
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México AP. 70228, Ciudad de México, C.P. 04510, México
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 Carretera, Tijuana-Ensenada, Baja California, 22860, México
| | - Norma A Valdez-Cruz
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México AP. 70228, Ciudad de México, C.P. 04510, México.
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 Carretera, Tijuana-Ensenada, Baja California, 22860, México.
| |
Collapse
|
10
|
Liang J, Zhang R, Chang J, Chen L, Nabi M, Zhang H, Zhang G, Zhang P. Rumen microbes, enzymes, metabolisms, and application in lignocellulosic waste conversion - A comprehensive review. Biotechnol Adv 2024; 71:108308. [PMID: 38211664 DOI: 10.1016/j.biotechadv.2024.108308] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/14/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
The rumen of ruminants is a natural anaerobic fermentation system that efficiently degrades lignocellulosic biomass and mainly depends on synergistic interactions between multiple microbes and their secreted enzymes. Ruminal microbes have been employed as biomass waste converters and are receiving increasing attention because of their degradation performance. To explore the application of ruminal microbes and their secreted enzymes in biomass waste, a comprehensive understanding of these processes is required. Based on the degradation capacity and mechanism of ruminal microbes and their secreted lignocellulose enzymes, this review concentrates on elucidating the main enzymatic strategies that ruminal microbes use for lignocellulose degradation, focusing mainly on polysaccharide metabolism-related gene loci and cellulosomes. Hydrolysis, acidification, methanogenesis, interspecific H2 transfer, and urea cycling in ruminal metabolism are also discussed. Finally, we review the research progress on the conversion of biomass waste into biofuels (bioethanol, biohydrogen, and biomethane) and value-added chemicals (organic acids) by ruminal microbes. This review aims to provide new ideas and methods for ruminal microbe and enzyme applications, biomass waste conversion, and global energy shortage alleviation.
Collapse
Affiliation(s)
- Jinsong Liang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Ru Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Jianning Chang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Le Chen
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Mohammad Nabi
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Haibo Zhang
- College of Resources and Environment, Shanxi Agricultural University, Taigu 030801, China
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Panyue Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
11
|
Fonoll X, Zhu K, Aley L, Shrestha S, Raskin L. Simulating Rumen Conditions Using an Anaerobic Dynamic Membrane Bioreactor to Enhance Hydrolysis of Lignocellulosic Biomass. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1741-1751. [PMID: 38184844 DOI: 10.1021/acs.est.3c06478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
An anaerobic dynamic membrane bioreactor (AnDMBR) mimicking rumen conditions was developed to enhance the hydrolysis of lignocellulosic materials and the production of volatile fatty acids (VFAs) when treating food waste. The AnDMBR was inoculated with cow rumen content and operated at a 0.5 day hydraulic retention time, 2-4 day solids retention time, a temperature of 39 °C, and a pH of 6.3, characteristics similar to those of a rumen. Removal rates of neutral detergent fiber and acid detergent fiber of 58.9 ± 8.4 and 69.0 ± 8.6%, respectively, and a VFA yield of 0.55 ± 0.12 g VFA as chemical oxygen demand g volatile solids (VS)fed-1 were observed at an organic loading rate of 18 ± 2 kg VS m-3 day-1. The composition and activity of the microbial community remained consistent after biofilm disruption, bioreactor upset, and reinoculation. Up to 66.7 ± 5.7% of the active microbial populations and 51.0 ± 7.0% of the total microbial populations present in the rumen-mimicking AnDMBR originated from the inoculum. This study offers a strategy to leverage the features of a rumen; the AnDMBR achieved high hydrolysis and fermentation rates even when treating substrates different from those fed to ruminants.
Collapse
Affiliation(s)
- Xavier Fonoll
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Energy Research & Innovation, Great Lakes Water Authority, 9300 W Jefferson Avenue, Detroit, Michigan 48209, United States
| | - Kuang Zhu
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Lucy Aley
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Shilva Shrestha
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Lutgarde Raskin
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
12
|
Ayesha A, Chow FWN, Leung PHM. Role of Legionella pneumophila outer membrane vesicles in host-pathogen interaction. Front Microbiol 2023; 14:1270123. [PMID: 37817751 PMCID: PMC10561282 DOI: 10.3389/fmicb.2023.1270123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/11/2023] [Indexed: 10/12/2023] Open
Abstract
Legionella pneumophila is an opportunistic intracellular pathogen that inhabits artificial water systems and can be transmitted to human hosts by contaminated aerosols. Upon inhalation, it colonizes and grows inside the alveolar macrophages and causes Legionnaires' disease. To effectively control and manage Legionnaires' disease, a deep understanding of the host-pathogen interaction is crucial. Bacterial extracellular vesicles, particularly outer membrane vesicles (OMVs) have emerged as mediators of intercellular communication between bacteria and host cells. These OMVs carry a diverse cargo, including proteins, toxins, virulence factors, and nucleic acids. OMVs play a pivotal role in disease pathogenesis by helping bacteria in colonization, delivering virulence factors into host cells, and modulating host immune responses. This review highlights the role of OMVs in the context of host-pathogen interaction shedding light on the pathogenesis of L. pneumophila. Understanding the functions of OMVs and their cargo provides valuable insights into potential therapeutic targets and interventions for combating Legionnaires' disease.
Collapse
Affiliation(s)
| | | | - Polly Hang-Mei Leung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| |
Collapse
|
13
|
Thakur M, Dean SN, Caruana JC, Walper SA, Ellis GA. Bacterial Membrane Vesicles for In Vitro Catalysis. Bioengineering (Basel) 2023; 10:1099. [PMID: 37760201 PMCID: PMC10525882 DOI: 10.3390/bioengineering10091099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/06/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
The use of biological systems in manufacturing and medical applications has seen a dramatic rise in recent years as scientists and engineers have gained a greater understanding of both the strengths and limitations of biological systems. Biomanufacturing, or the use of biology for the production of biomolecules, chemical precursors, and others, is one particular area on the rise as enzymatic systems have been shown to be highly advantageous in limiting the need for harsh chemical processes and the formation of toxic products. Unfortunately, biological production of some products can be limited due to their toxic nature or reduced reaction efficiency due to competing metabolic pathways. In nature, microbes often secrete enzymes directly into the environment or encapsulate them within membrane vesicles to allow catalysis to occur outside the cell for the purpose of environmental conditioning, nutrient acquisition, or community interactions. Of particular interest to biotechnology applications, researchers have shown that membrane vesicle encapsulation often confers improved stability, solvent tolerance, and other benefits that are highly conducive to industrial manufacturing practices. While still an emerging field, this review will provide an introduction to biocatalysis and bacterial membrane vesicles, highlight the use of vesicles in catalytic processes in nature, describe successes of engineering vesicle/enzyme systems for biocatalysis, and end with a perspective on future directions, using selected examples to illustrate these systems' potential as an enabling tool for biotechnology and biomanufacturing.
Collapse
Affiliation(s)
- Meghna Thakur
- College of Science, George Mason University, Fairfax, VA 22030, USA
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Scott N. Dean
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Julie C. Caruana
- American Society for Engineering Education, Washington, DC 20036, USA
| | - Scott A. Walper
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Gregory A. Ellis
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| |
Collapse
|
14
|
Taitz JJ, Tan JK, Potier-Villette C, Ni D, King NJ, Nanan R, Macia L. Diet, commensal microbiota-derived extracellular vesicles, and host immunity. Eur J Immunol 2023; 53:e2250163. [PMID: 37137164 DOI: 10.1002/eji.202250163] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/04/2023] [Accepted: 05/02/2023] [Indexed: 05/05/2023]
Abstract
The gut microbiota has co-evolved with its host, and commensal bacteria can influence both the host's immune development and function. Recently, a role has emerged for bacterial extracellular vesicles (BEVs) as potent immune modulators. BEVs are nanosized membrane vesicles produced by all bacteria, possessing the membrane characteristics of the originating bacterium and carrying an internal cargo that may include nucleic acid, proteins, lipids, and metabolites. Thus, BEVs possess multiple avenues for regulating immune processes, and have been implicated in allergic, autoimmune, and metabolic diseases. BEVs are biodistributed locally in the gut, and also systemically, and thus have the potential to affect both the local and systemic immune responses. The production of gut microbiota-derived BEVs is regulated by host factors such as diet and antibiotic usage. Specifically, all aspects of nutrition, including macronutrients (protein, carbohydrates, and fat), micronutrients (vitamins and minerals), and food additives (the antimicrobial sodium benzoate), can regulate BEV production. This review summarizes current knowledge of the powerful links between nutrition, antibiotics, gut microbiota-derived BEV, and their effects on immunity and disease development. It highlights the potential of targeting or utilizing gut microbiota-derived BEV as a therapeutic intervention.
Collapse
Affiliation(s)
- Jemma J Taitz
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Jian K Tan
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Camille Potier-Villette
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Duan Ni
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Nicholas Jc King
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Ralph Nanan
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- Nepean Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Laurence Macia
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Sydney Cytometry, University of Sydney and Centenary Institute, Sydney, NSW, Australia
| |
Collapse
|
15
|
Fakih I, Got J, Robles-Rodriguez CE, Siegel A, Forano E, Muñoz-Tamayo R. Dynamic genome-based metabolic modeling of the predominant cellulolytic rumen bacterium Fibrobacter succinogenes S85. mSystems 2023; 8:e0102722. [PMID: 37289026 PMCID: PMC10308913 DOI: 10.1128/msystems.01027-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/14/2023] [Indexed: 06/09/2023] Open
Abstract
Fibrobacter succinogenes is a cellulolytic bacterium that plays an essential role in the degradation of plant fibers in the rumen ecosystem. It converts cellulose polymers into intracellular glycogen and the fermentation metabolites succinate, acetate, and formate. We developed dynamic models of F. succinogenes S85 metabolism on glucose, cellobiose, and cellulose on the basis of a network reconstruction done with the automatic reconstruction of metabolic model workspace. The reconstruction was based on genome annotation, five template-based orthology methods, gap filling, and manual curation. The metabolic network of F. succinogenes S85 comprises 1,565 reactions with 77% linked to 1,317 genes, 1,586 unique metabolites, and 931 pathways. The network was reduced using the NetRed algorithm and analyzed for the computation of elementary flux modes. A yield analysis was further performed to select a minimal set of macroscopic reactions for each substrate. The accuracy of the models was acceptable in simulating F. succinogenes carbohydrate metabolism with an average coefficient of variation of the root mean squared error of 19%. The resulting models are useful resources for investigating the metabolic capabilities of F. succinogenes S85, including the dynamics of metabolite production. Such an approach is a key step toward the integration of omics microbial information into predictive models of rumen metabolism. IMPORTANCE F. succinogenes S85 is a cellulose-degrading and succinate-producing bacterium. Such functions are central for the rumen ecosystem and are of special interest for several industrial applications. This work illustrates how information of the genome of F. succinogenes can be translated to develop predictive dynamic models of rumen fermentation processes. We expect this approach can be applied to other rumen microbes for producing a model of rumen microbiome that can be used for studying microbial manipulation strategies aimed at enhancing feed utilization and mitigating enteric emissions.
Collapse
Affiliation(s)
- Ibrahim Fakih
- Université Clermont Auvergne, INRAE, UMR454 Microbiologie Environnement Digestif et Santé, 63000 Clermont-Ferrand, France
- Université Paris-Saclay, INRAE, AgroParisTech, UMR Modélisation Systémique Appliquée aux Ruminants, 91120 Palaiseau, France
| | - Jeanne Got
- Université Rennes, Inria, CNRS, IRISA, Dyliss team, 35042 Rennes, France
| | | | - Anne Siegel
- Université Rennes, Inria, CNRS, IRISA, Dyliss team, 35042 Rennes, France
| | - Evelyne Forano
- Université Clermont Auvergne, INRAE, UMR454 Microbiologie Environnement Digestif et Santé, 63000 Clermont-Ferrand, France
| | - Rafael Muñoz-Tamayo
- Université Paris-Saclay, INRAE, AgroParisTech, UMR Modélisation Systémique Appliquée aux Ruminants, 91120 Palaiseau, France
| |
Collapse
|
16
|
Gharechahi J, Vahidi MF, Sharifi G, Ariaeenejad S, Ding XZ, Han JL, Salekdeh GH. Lignocellulose degradation by rumen bacterial communities: New insights from metagenome analyses. ENVIRONMENTAL RESEARCH 2023; 229:115925. [PMID: 37086884 DOI: 10.1016/j.envres.2023.115925] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/26/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
Ruminant animals house a dense and diverse community of microorganisms in their rumen, an enlarged compartment in their stomach, which provides a supportive environment for the storage and microbial fermentation of ingested feeds dominated by plant materials. The rumen microbiota has acquired diverse and functionally overlapped enzymes for the degradation of plant cell wall polysaccharides. In rumen Bacteroidetes, enzymes involved in degradation are clustered into polysaccharide utilization loci to facilitate coordinated expression when target polysaccharides are available. Firmicutes use free enzymes and cellulosomes to degrade the polysaccharides. Fibrobacters either aggregate lignocellulose-degrading enzymes on their cell surface or release them into the extracellular medium in membrane vesicles, a mechanism that has proven extremely effective in the breakdown of recalcitrant cellulose. Based on current metagenomic analyses, rumen Bacteroidetes and Firmicutes are categorized as generalist microbes that can degrade a wide range of polysaccharides, while other members adapted toward specific polysaccharides. Particularly, there is ample evidence that Verrucomicrobia and Spirochaetes have evolved enzyme systems for the breakdown of complex polysaccharides such as xyloglucans, peptidoglycans, and pectin. It is concluded that diversity in degradation mechanisms is required to ensure that every component in feeds is efficiently degraded, which is key to harvesting maximum energy by host animals.
Collapse
Affiliation(s)
- Javad Gharechahi
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Farhad Vahidi
- Animal Science Research Department, Qom Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Qom, Iran
| | - Golandam Sharifi
- Department of Basic Sciences, Encyclopedia Research Center, Institute for Humanities and Cultural Studies, Tehran, Iran
| | - Shohreh Ariaeenejad
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, And Extension Organization, Karaj, Iran
| | - Xue-Zhi Ding
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, 730050, China
| | - Jian-Lin Han
- Livestock Genetics Program, International Livestock Research, Institute (ILRI), 00100, Nairobi, Kenya; CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.
| | - Ghasem Hosseini Salekdeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, And Extension Organization, Karaj, Iran; School of Natural Sciences, Macquarie University, North Ryde, NSW, Australia.
| |
Collapse
|
17
|
Chaudhari YB, Várnai A, Sørlie M, Horn SJ, Eijsink VGH. Engineering cellulases for conversion of lignocellulosic biomass. Protein Eng Des Sel 2023; 36:gzad002. [PMID: 36892404 PMCID: PMC10394125 DOI: 10.1093/protein/gzad002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/13/2023] [Accepted: 02/24/2023] [Indexed: 03/10/2023] Open
Abstract
Lignocellulosic biomass is a renewable source of energy, chemicals and materials. Many applications of this resource require the depolymerization of one or more of its polymeric constituents. Efficient enzymatic depolymerization of cellulose to glucose by cellulases and accessory enzymes such as lytic polysaccharide monooxygenases is a prerequisite for economically viable exploitation of this biomass. Microbes produce a remarkably diverse range of cellulases, which consist of glycoside hydrolase (GH) catalytic domains and, although not in all cases, substrate-binding carbohydrate-binding modules (CBMs). As enzymes are a considerable cost factor, there is great interest in finding or engineering improved and robust cellulases, with higher activity and stability, easy expression, and minimal product inhibition. This review addresses relevant engineering targets for cellulases, discusses a few notable cellulase engineering studies of the past decades and provides an overview of recent work in the field.
Collapse
Affiliation(s)
- Yogesh B Chaudhari
- Faculty of Chemistry, Biotechnology, and Food Science, NMBU-Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Anikó Várnai
- Faculty of Chemistry, Biotechnology, and Food Science, NMBU-Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Morten Sørlie
- Faculty of Chemistry, Biotechnology, and Food Science, NMBU-Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Svein J Horn
- Faculty of Chemistry, Biotechnology, and Food Science, NMBU-Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology, and Food Science, NMBU-Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| |
Collapse
|
18
|
Regulation of Dietary Protein Solubility Improves Ruminal Nitrogen Metabolism In Vitro: Role of Bacteria-Protozoa Interactions. Nutrients 2022; 14:nu14142972. [PMID: 35889928 PMCID: PMC9325197 DOI: 10.3390/nu14142972] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 01/01/2023] Open
Abstract
Precision dietary interventions (e.g., altering proportions of dietary protein fractions) has significant implications for the efficiency of nutrient use in ruminants, as well as lowering their environmental footprint, specifically nitrogen (N) emissions. Soluble protein (SP) is defined as the protein fraction that is rapidly degraded in the rumen (e.g., non-protein N and true protein), and our previous study found that regulating SP levels could improve N efficiency in Hu sheep. Thus, the present study was conducted to explore in vitro how protein fractions with different SP levels modulate the rumen microbial community and its association with N metabolism. Four dietary treatments with different SP proportions and similar crude protein (CP) content (~14%) were formulated (% of CP): 20 (S20), 30 (S30), 40 (S40) and 50 (S50). Results showed that NH3-N content increased with increasing SP levels at 4, 12 and 24 h; TVFA, acetate, propionate and valerate were higher in S30 and S40 (p < 0.05) and had quadratic effects (p < 0.05). Moreover, dry matter digestibility (DMD) and N digestibility (ND) were all decreased with S20 and S50 (p < 0.05). The S30 and S40 treatments increased the abundance of Bacteroidetes and Prevotella (Prevotella_ruminicola) but decreased the abundance of Firmicutes and Proteobacteria (p < 0.05). Bacterial pathways related to amino acid and fatty acid metabolism also were enriched with S30 and S40. The abundance of Entodinium was increased with S30 and S40 and had a positive correlation with Prevotella, and these two genera also played an important role in N metabolism and VFA synthesis of this study. In conclusion, bacterial and protozoal communities were altered by the level of SP (% of CP), with higher SP levels (~50% of CP) increasing the microbial diversity but being detrimental to rumen N metabolism.
Collapse
|
19
|
Abstract
The utilization of dietary cellulose by resident bacteria in the large intestine of mammals, both herbivores and omnivores (including humans), has been a subject of interest since the nineteenth century. Cellulolytic bacteria are key participants in this breakdown process of cellulose, which is otherwise indigestible by the host. They critically contribute to host nutrition and health through the production of short-chain fatty acids, in addition to maintaining the balance of intestinal microbiota. Despite this key role, cellulolytic bacteria have not been well studied. In this review, we first retrace the history of the discovery of cellulolytic bacteria in the large intestine. We then focus on the current knowledge of cellulolytic bacteria isolated from the large intestine of various animal species and humans and discuss the methods used for isolating these bacteria. Moreover, we summarize the enzymes and the mechanisms involved in cellulose degradation. Finally, we present the contribution of these bacteria to the host.
Collapse
Affiliation(s)
- Alicia Froidurot
- Université Bourgogne Franche–Comté, Institut Agro Dijon, PAM UMR A 02.102, Dijon, France,CONTACT Alicia Froidurot Université Bourgogne Franche–Comté, Institut Agro Dijon, PAM UMR A 02.102Dijon, France
| | - Véronique Julliand
- Université Bourgogne Franche–Comté, Institut Agro Dijon, PAM UMR A 02.102, Dijon, France
| |
Collapse
|
20
|
Guo X, Sha Y, Lv W, Pu X, Liu X, Luo Y, Hu J, Wang J, Li S, Zhao Z. Sex differences in rumen fermentation and microbiota of Tibetan goat. Microb Cell Fact 2022; 21:55. [PMID: 35392919 PMCID: PMC8991483 DOI: 10.1186/s12934-022-01783-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/26/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The gut microbiota play an important role in maintaining host metabolism, the immune system and health, while sex, genotype, diet and health have specific effects on the composition of the gut microbiota. Therefore, to explore the sex differences in the structure and function of rumen microbiota in Tibetan goats, herein we analyzed sex differences in rumen fermentation parameters, rumen microbiota and the expression of genes related to VFA transport in Tibetan goats. RESULTS The results showed that the contents of acetic acid and propionic acid in the rumen of TGM (Tibetan goat male) were significantly higher than those in TGFm (Tibetan goat female) (P < 0.05), and total VFAs was significantly higher in TGM than TGFm (P < 0.05). Expression of the VFA transport-related genes DRA, AE2, MCT-1, NHE1, and NHE2 in the rumen epithelium of TGFm was significantly higher than that in TGM. Analysis of the composition and structure of the rumen microbiota revealed significant sex differences. At the phylum level, Firmicutes and Bacteroidetes were the dominant phyla in Tibetan goats. In addition, Fibrobacteres and Spirochaetes had significantly greater relative abundances in TGFm than in TGM (P < 0.05). At the genus level, the relative abundance of Fibrobacter, Ruminococcus_1 and Pyramidobacter was significantly higher in TGFm than in TGM (P < 0.05). The functional prediction results showed that replication, recombination and repair, RNA processing and modification were mainly enriched in TGFm (P < 0.05). CONCLUSIONS Correlation analysis revealed significant associations of some rumen microbiota with the fermentation product VFAs and VFA transport-related genes. We concluded that yearling TGM and TGFm have distinct fermentation and metabolism abilities when adapting to the plateau environment, which provides a certain sex reference basis for Tibetan goat adaptation to the plateau environment.
Collapse
Affiliation(s)
- Xinyu Guo
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yuzhu Sha
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Weibing Lv
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xiaoning Pu
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xiu Liu
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Yuzhu Luo
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jiang Hu
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jiqing Wang
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Shaobin Li
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhidong Zhao
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
21
|
La Rosa SL, Ostrowski MP, Vera-Ponce de León A, McKee LS, Larsbrink J, Eijsink VG, Lowe EC, Martens EC, Pope PB. Glycan processing in gut microbiomes. Curr Opin Microbiol 2022; 67:102143. [PMID: 35338908 DOI: 10.1016/j.mib.2022.102143] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/10/2022] [Accepted: 02/21/2022] [Indexed: 12/16/2022]
Abstract
Microbiomes and their enzymes process many of the nutrients accessible in the gastrointestinal tract of bilaterians and play an essential role in host health and nutrition. In this review, we describe recent insights into nutrient processing in microbiomes across three exemplary yet contrasting gastrointestinal ecosystems (humans, ruminants and insects), with focus on bacterial mechanisms for the utilization of common and atypical dietary glycans as well as host-derived mucus glycans. In parallel, we discuss findings from multi-omic studies that have provided new perspectives on understanding glycan-dependent interactions and the complex food-webs of microbial populations in their natural habitat. Using key examples, we emphasize how increasing understanding of glycan processing by gut microbiomes can provide critical insights to assist 'microbiome reprogramming', a growing field that seeks to leverage diet to improve animal growth and host health.
Collapse
Affiliation(s)
| | - Matthew P Ostrowski
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, 48109, MI, USA
| | - Arturo Vera-Ponce de León
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, 1433, Norway
| | - Lauren S McKee
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, 106 91, Sweden
| | - Johan Larsbrink
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, 412 96, Sweden
| | - Vincent G Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, 1433, Norway
| | | | - Eric C Martens
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, 48109, MI, USA
| | - Phillip B Pope
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, 1433, Norway; Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, 1433, Norway
| |
Collapse
|
22
|
Cabral L, Persinoti GF, Paixão DAA, Martins MP, Morais MAB, Chinaglia M, Domingues MN, Sforca ML, Pirolla RAS, Generoso WC, Santos CA, Maciel LF, Terrapon N, Lombard V, Henrissat B, Murakami MT. Gut microbiome of the largest living rodent harbors unprecedented enzymatic systems to degrade plant polysaccharides. Nat Commun 2022; 13:629. [PMID: 35110564 PMCID: PMC8810776 DOI: 10.1038/s41467-022-28310-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/14/2022] [Indexed: 12/12/2022] Open
Abstract
The largest living rodent, capybara, can efficiently depolymerize and utilize lignocellulosic biomass through microbial symbiotic mechanisms yet elusive. Herein, we elucidate the microbial community composition, enzymatic systems and metabolic pathways involved in the conversion of dietary fibers into short-chain fatty acids, a main energy source for the host. In this microbiota, the unconventional enzymatic machinery from Fibrobacteres seems to drive cellulose degradation, whereas a diverse set of carbohydrate-active enzymes from Bacteroidetes, organized in polysaccharide utilization loci, are accounted to tackle complex hemicelluloses typically found in gramineous and aquatic plants. Exploring the genetic potential of this community, we discover a glycoside hydrolase family of β-galactosidases (named as GH173), and a carbohydrate-binding module family (named as CBM89) involved in xylan binding that establishes an unprecedented three-dimensional fold among associated modules to carbohydrate-active enzymes. Together, these results demonstrate how the capybara gut microbiota orchestrates the depolymerization and utilization of plant fibers, representing an untapped reservoir of enzymatic mechanisms to overcome the lignocellulose recalcitrance, a central challenge toward a sustainable and bio-based economy.
Collapse
Affiliation(s)
- Lucelia Cabral
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - Gabriela F Persinoti
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil.
| | - Douglas A A Paixão
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - Marcele P Martins
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
- Graduate Program in Functional and Molecular Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Mariana A B Morais
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - Mariana Chinaglia
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
- Graduate Program in Functional and Molecular Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Mariane N Domingues
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - Mauricio L Sforca
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - Renan A S Pirolla
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - Wesley C Generoso
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - Clelton A Santos
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - Lucas F Maciel
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - Nicolas Terrapon
- The Institut National de la Recherche Agronomique, USC 1408 AFMB, 13288, Marseille, France
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille, France
| | - Vincent Lombard
- The Institut National de la Recherche Agronomique, USC 1408 AFMB, 13288, Marseille, France
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille, France
| | - Bernard Henrissat
- Department of Biotechnology and Biomedicine (DTU Bioengineering), Technical University of Denmark, 2800 Kgs, Lyngby, Denmark
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mario T Murakami
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil.
| |
Collapse
|
23
|
Perlman D, Martínez-Álvaro M, Moraïs S, Altshuler I, Hagen LH, Jami E, Roehe R, Pope PB, Mizrahi I. Concepts and Consequences of a Core Gut Microbiota for Animal Growth and Development. Annu Rev Anim Biosci 2021; 10:177-201. [PMID: 34941382 DOI: 10.1146/annurev-animal-013020-020412] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Animal microbiomes are occasionally considered as an extension of host anatomy, physiology, and even their genomic architecture. Their compositions encompass variable and constant portions when examined across multiple hosts. The latter, termed the core microbiome, is viewed as more accommodated to its host environment and suggested to benefit host fitness. Nevertheless, discrepancies in its definitions, characteristics, and importance to its hosts exist across studies. We survey studies that characterize the core microbiome, detail its current definitions and available methods to identify it, and emphasize the crucial need to upgrade and standardize the methodologies among studies. We highlight ruminants as a case study and discuss the link between the core microbiome and host physiology and genetics, as well as potential factors that shape it. We conclude with main directives of action to better understand the host-core microbiome axis and acquire the necessary insights into its controlled modulation. Expected final online publication date for the Annual Review of Animal Biosciences, Volume 10 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Daphne Perlman
- Department of Life Sciences, Ben-Gurion University of the Negev and the National Institute for Biotechnology in the Negev, Be'er-Sheva, Israel;
| | - Marina Martínez-Álvaro
- Department of Agriculture, Horticulture and Engineering Sciences, SRUC (Scotland's Rural College), Edinburgh, Scotland, United Kingdom
| | - Sarah Moraïs
- Department of Life Sciences, Ben-Gurion University of the Negev and the National Institute for Biotechnology in the Negev, Be'er-Sheva, Israel;
| | - Ianina Altshuler
- Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway;
| | - Live H Hagen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | - Elie Jami
- Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Rainer Roehe
- Department of Agriculture, Horticulture and Engineering Sciences, SRUC (Scotland's Rural College), Edinburgh, Scotland, United Kingdom
| | - Phillip B Pope
- Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway; .,Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | - Itzhak Mizrahi
- Department of Life Sciences, Ben-Gurion University of the Negev and the National Institute for Biotechnology in the Negev, Be'er-Sheva, Israel;
| |
Collapse
|
24
|
Liu G, Qu Y. Integrated engineering of enzymes and microorganisms for improving the efficiency of industrial lignocellulose deconstruction. ENGINEERING MICROBIOLOGY 2021; 1:100005. [PMID: 39629162 PMCID: PMC11610957 DOI: 10.1016/j.engmic.2021.100005] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/17/2021] [Accepted: 10/04/2021] [Indexed: 12/07/2024]
Abstract
Bioconversion of lignocellulosic biomass to fuels and chemicals represents a new manufacturing paradigm that can help address society's energy, resource, and environmental problems. However, the low efficiency and high cost of lignocellulolytic enzymes currently used hinder their use in the industrial deconstruction of lignocellulose. To overcome these challenges, research efforts have focused on engineering the properties, synergy, and production of lignocellulolytic enzymes. First, lignocellulolytic enzymes' catalytic efficiency, stability, and tolerance to inhibitory compounds have been improved through enzyme mining and engineering. Second, synergistic actions between different enzyme components have been strengthened to construct customized enzyme cocktails for the degradation of specific lignocellulosic substrates. Third, biological processes for protein synthesis and cell morphogenesis in microorganisms have been engineered to achieve a high level and low-cost production of lignocellulolytic enzymes. In this review, the relevant progresses and challenges in these fields are summarized. Integrated engineering is proposed to be essential to achieve cost-effective enzymatic deconstruction of lignocellulose in the future.
Collapse
Affiliation(s)
- Guodong Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
| | - Yinbo Qu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
| |
Collapse
|
25
|
Mizrahi I, Wallace RJ, Moraïs S. The rumen microbiome: balancing food security and environmental impacts. Nat Rev Microbiol 2021; 19:553-566. [PMID: 33981031 DOI: 10.1038/s41579-021-00543-6] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2021] [Indexed: 02/03/2023]
Abstract
Ruminants produce edible products and contribute to food security. They house a complex rumen microbial community that enables the host to digest their plant feed through microbial-mediated fermentation. However, the rumen microbiome is also responsible for the production of one of the most potent greenhouse gases, methane, and contributes about 18% of its total anthropogenic emissions. Conventional methods to lower methane production by ruminants have proved successful, but to a limited and often temporary extent. An increased understanding of the host-microbiome interactions has led to the development of new mitigation strategies. In this Review we describe the composition, ecology and metabolism of the rumen microbiome, and the impact on host physiology and the environment. We also discuss the most pertinent methane mitigation strategies that emerged to balance food security and environmental impacts.
Collapse
Affiliation(s)
- Itzhak Mizrahi
- Department of Life Sciences, Ben-Gurion University of the Negev and the National Institute for Biotechnology in the Negev, Marcus Family Campus, Be'er-Sheva, Israel.
| | - R John Wallace
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Sarah Moraïs
- Department of Life Sciences, Ben-Gurion University of the Negev and the National Institute for Biotechnology in the Negev, Marcus Family Campus, Be'er-Sheva, Israel
| |
Collapse
|
26
|
Zou Y, Liang N, Zhang X, Han C, Nan X. Functional differentiation related to decomposing complex carbohydrates of intestinal microbes between two wild zokor species based on 16SrRNA sequences. BMC Vet Res 2021; 17:216. [PMID: 34116670 PMCID: PMC8196462 DOI: 10.1186/s12917-021-02911-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/20/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The intestinal microbes in mammals play a key role in host metabolism and adaptation. As a subterranean rodent, zokor digs tunnels for foraging and mating. These digging activities of zokors increase the energy expenditure relative to their aboveground counterparts. However, relatively little is known regarding intestinal microbes of zokor and how they make full use of limited food resources underground for high energy requirements. RESULTS Eospalax cansus and Eospalax rothschildi had distinct intestinal microbes. Although the composition of intestinal microbes is similar in two species, the proportion of bacterium are distinctly different between them. At phylum level, 11 phyla were shared between two species. Firmicutes and Bacteroidota were two dominant microbes in both of two species, while Eospalax cansus have a significantly high proportion of Firmicutes/Bacteroidota than that of Eospalax rothschildi. At genus level, norank_f_Muribaculaceae were dominant microbes in both of two zokor species. The relative abundance of 12 genera were significantly different between two species. Some bacterium including unclassified_f__Lachnospiraceae, Lachnospiraceae_NK4A136_group, Ruminococcus and Eubacterium_siraeum_group associated with cellulose degradation were significantly enriched in Eospalax cansus. Although alpha diversity was with no significant differences between Eospalax cansus and Eospalax rothschildi, the intestinal microbes between them are significant distinct in PCoA analysis. We have found that trapping location affected the alpha diversity values, while sex and body measurements had no effect on alpha diversity values. PICRUSt metagenome predictions revealed significant enrichment of microbial genes involved in carbohydrate metabolism in Eospalax cansus rather than Eospalax rothschildi. CONCLUSIONS Our results demonstrate that Eospalax cansus harbor a stronger ability of fermentation for dietary plants than Eospalax rothschildi. The stronger ability of fermentation and degradation of cellulose of intestinal microbes of Eospalax cansus may be a long-time adaptation to limited food resources underground.
Collapse
Affiliation(s)
- Yao Zou
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio-Disaster, Northwest Agriculture and Forestry University, Yangling, 712100, China
| | - Nannan Liang
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio-Disaster, Northwest Agriculture and Forestry University, Yangling, 712100, China
| | - Xuxin Zhang
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio-Disaster, Northwest Agriculture and Forestry University, Yangling, 712100, China
| | - Chongxuan Han
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio-Disaster, Northwest Agriculture and Forestry University, Yangling, 712100, China.
| | - Xiaoning Nan
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio-Disaster, Northwest Agriculture and Forestry University, Yangling, 712100, China.
| |
Collapse
|
27
|
Dürwald A, Zühlke MK, Schlüter R, Gebbe R, Bartosik D, Unfried F, Becher D, Schweder T. Reaching out in anticipation: bacterial membrane extensions represent a permanent investment in polysaccharide sensing and utilization. Environ Microbiol 2021; 23:3149-3163. [PMID: 33876569 DOI: 10.1111/1462-2920.15537] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 01/03/2023]
Abstract
Outer membrane extensions are common in many marine bacteria. However, the function of these surface enlargements or extracellular compartments is poorly understood. Using a combined approach of microscopy and subproteome analyses, we therefore examined Pseudoalteromonas distincta ANT/505, an Antarctic polysaccharide degrading gamma-proteobacterium. P. distincta produced outer membrane vesicles (MV) and vesicle chains (VC) on polysaccharide and non-polysaccharide carbon sources during the exponential and stationary growth phase. Surface structures of carbohydrate-grown cells were equipped with increased levels of highly substrate-specific proteins. At the same time, proteins encoded in all other polysaccharide degradation-related genomic regions were also detected in MV and VC samples under all growth conditions, indicating a basal expression. In addition, two alkaline phosphatases were highly abundant under non-limiting phosphate conditions. Surface structures may thus allow rapid sensing and fast responses in nutritionally deprived environments. It may also facilitate efficient carbohydrate processing and reduce loss of substrates and enzymes by diffusion as important adaptions to the aquatic ecosystem.
Collapse
Affiliation(s)
- Alexandra Dürwald
- Pharmaceutical Biotechnology, Institute of Pharmacy, University Greifswald, Greifswald, 17487, Germany
| | - Marie-Katherin Zühlke
- Pharmaceutical Biotechnology, Institute of Pharmacy, University Greifswald, Greifswald, 17487, Germany.,Institute of Marine Biotechnology, Greifswald, 17489, Germany
| | - Rabea Schlüter
- Imaging Center of the Department of Biology, University of Greifswald, Greifswald, 17489, Germany
| | - Rebecca Gebbe
- Pharmaceutical Biotechnology, Institute of Pharmacy, University Greifswald, Greifswald, 17487, Germany
| | - Daniel Bartosik
- Pharmaceutical Biotechnology, Institute of Pharmacy, University Greifswald, Greifswald, 17487, Germany
| | - Frank Unfried
- Pharmaceutical Biotechnology, Institute of Pharmacy, University Greifswald, Greifswald, 17487, Germany.,Institute of Marine Biotechnology, Greifswald, 17489, Germany
| | - Dörte Becher
- Institute of Marine Biotechnology, Greifswald, 17489, Germany.,Microbial Proteomics, Institute of Microbiology, University Greifswald, Greifswald, 17487, Germany
| | - Thomas Schweder
- Pharmaceutical Biotechnology, Institute of Pharmacy, University Greifswald, Greifswald, 17487, Germany.,Institute of Marine Biotechnology, Greifswald, 17489, Germany
| |
Collapse
|
28
|
Allen NR, Taylor-Mew AR, Wilkinson TJ, Huws S, Phillips H, Morphew RM, Brophy PM. Modulation of Rumen Microbes Through Extracellular Vesicle Released by the Rumen Fluke Calicophoron daubneyi. Front Cell Infect Microbiol 2021; 11:661830. [PMID: 33959516 PMCID: PMC8096352 DOI: 10.3389/fcimb.2021.661830] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022] Open
Abstract
Parasite derived extracellular vesicles (EVs) have been proposed to play key roles in the establishment and maintenance of infection. Calicophoron daubneyi is a newly emerging parasite of livestock with many aspects of its underpinning biology yet to be resolved. This research is the first in-depth investigation of EVs released by adult C. daubneyi. EVs were successfully isolated using both differential centrifugation and size exclusion chromatography (SEC), and morphologically characterized though transmission electron microscopy (TEM). EV protein components were characterized using a GeLC approach allowing the elucidation of comprehensive proteomic profiles for both their soluble protein cargo and surface membrane bound proteins yielding a total of 378 soluble proteins identified. Notably, EVs contained Sigma-class GST and cathepsin L and B proteases, which have previously been described in immune modulation and successful establishment of parasitic flatworm infections. SEC purified C. daubneyi EVs were observed to modulate rumen bacterial populations by likely increasing microbial species diversity via antimicrobial activity. This data indicates EVs released from adult C. daubneyi have a role in establishment within the rumen through the regulation of microbial populations offering new routes to control rumen fluke infection and to develop molecular strategies to improve rumen efficiency.
Collapse
Affiliation(s)
- Nathan R Allen
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Aspen R Taylor-Mew
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Toby J Wilkinson
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Sharon Huws
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Helen Phillips
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Russell M Morphew
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Peter M Brophy
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| |
Collapse
|
29
|
Ichikawa S, Tsuge Y, Karita S. Metabolome Analysis of Constituents in Membrane Vesicles for Clostridium thermocellum Growth Stimulation. Microorganisms 2021; 9:microorganisms9030593. [PMID: 33805707 PMCID: PMC8002186 DOI: 10.3390/microorganisms9030593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/06/2021] [Accepted: 03/11/2021] [Indexed: 11/24/2022] Open
Abstract
The cultivation of the cellulolytic bacterium, Clostridium thermocellum, can have cost-effective cellulosic biomass utilizations, such as consolidated bioprocessing, simultaneous biological enzyme production and saccharification. However, these processes require a longer cultivation term of approximately 1 week. We demonstrate that constituents of the C. thermocellum membrane vesicle fraction significantly promoted the growth rate of C. thermocellum. Similarly, cell-free Bacillus subtilis broth was able to increase C. thermocellum growth rate, while several B. subtilis single-gene deletion mutants, e.g., yxeJ, yxeH, ahpC, yxdK, iolF, decreased the growth stimulation ability. Metabolome analysis revealed signal compounds for cell–cell communication in the C. thermocellum membrane vesicle fraction (ethyl 2-decenoate, ethyl 4-decenoate, and 2-dodecenoic acid) and B. subtilis broth (nicotinamide, indole-3-carboxaldehyde, urocanic acid, nopaline, and 6-paradol). These findings suggest that the constituents in membrane vesicles from C. thermocellum and B. subtilis could promote C. thermocellum growth, leading to improved efficiency of cellulosic biomass utilization.
Collapse
Affiliation(s)
- Shunsuke Ichikawa
- Graduate School of Education, Mie University, 1577 Kurimamachiya-cho Tsu, Mie 514-8507, Japan
- Correspondence: ; Tel.: +89-59-231-9254; Fax: +89-59-231-9352
| | - Yoichiro Tsuge
- Faculty of Education, Mie University, 1577 Kurimamachiya-cho Tsu, Mie 514-8507, Japan;
| | - Shuichi Karita
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya-cho Tsu, Mie 514-8507, Japan;
| |
Collapse
|
30
|
Yeoman CJ, Fields CJ, Lepercq P, Ruiz P, Forano E, White BA, Mosoni P. In Vivo Competitions between Fibrobacter succinogenes, Ruminococcus flavefaciens, and Ruminoccus albus in a Gnotobiotic Sheep Model Revealed by Multi-Omic Analyses. mBio 2021; 12:e03533-20. [PMID: 33658330 PMCID: PMC8092306 DOI: 10.1128/mbio.03533-20] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022] Open
Abstract
Fibrobacter succinogenes, Ruminococcus albus, and Ruminococcus flavefaciens are the three predominant cellulolytic bacterial species found in the rumen. In vitro studies have shown that these species compete for adherence to, and growth upon, cellulosic biomass. Yet their molecular interactions in vivo have not heretofore been examined. Gnotobiotically raised lambs harboring a 17-h-old immature microbiota devoid of culturable cellulolytic bacteria and methanogens were inoculated first with F. succinogenes S85 and Methanobrevibacter sp. strain 87.7, and 5 months later, the lambs were inoculated with R. albus 8 and R. flavefaciens FD-1. Longitudinal samples were collected and profiled for population dynamics, gene expression, fibrolytic enzyme activity, in sacco fibrolysis, and metabolite profiling. Quantitative PCR, metagenome and metatranscriptome data show that F. succinogenes establishes at high levels initially but is gradually outcompeted following the introduction of the ruminococci. This shift resulted in an increase in carboxymethyl cellulase (CMCase) and xylanase activities but not in greater fibrolysis, suggesting that F. succinogenes and ruminococci deploy different but equally effective means to degrade plant cell walls. Expression profiles showed that F. succinogenes relied upon outer membrane vesicles and a diverse repertoire of CAZymes, while R. albus and R. flavefaciens preferred type IV pili and either CBM37-harboring or cellulosomal carbohydrate-active enzymes (CAZymes), respectively. The changes in cellulolytics also affected the rumen metabolome, including an increase in acetate and butyrate at the expense of propionate. In conclusion, this study provides the first demonstration of in vivo competition between the three predominant cellulolytic bacteria and provides insight on the influence of these ecological interactions on rumen fibrolytic function and metabolomic response.IMPORTANCE Ruminant animals, including cattle and sheep, depend on their rumen microbiota to digest plant biomass and convert it into absorbable energy. Considering that the extent of meat and milk production depends on the efficiency of the microbiota to deconstruct plant cell walls, the functionality of predominant rumen cellulolytic bacteria, Fibrobacter succinogenes, Ruminococcus albus, and Ruminococcus flavefaciens, has been extensively studied in vitro to obtain a better knowledge of how they operate to hydrolyze polysaccharides and ultimately find ways to enhance animal production. This study provides the first evidence of in vivo competitions between F. succinogenes and the two Ruminococcus species. It shows that a simple disequilibrium within the cellulolytic community has repercussions on the rumen metabolome and fermentation end products. This finding will have to be considered in the future when determining strategies aiming at directing rumen fermentations for animal production.
Collapse
Affiliation(s)
- Carl J Yeoman
- Department of Animal and Range Sciences, Montana State University, Bozeman, Montana, USA
| | - Christopher J Fields
- Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Pascale Lepercq
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Philippe Ruiz
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, Clermont-Ferrand, France
| | - Evelyne Forano
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, Clermont-Ferrand, France
| | - Bryan A White
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Animal Sciences, University of Illinois, Urbana, Illinois, USA
| | - Pascale Mosoni
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, Clermont-Ferrand, France
| |
Collapse
|
31
|
Wang M, Nie Y, Wu XL. Extracellular heme recycling and sharing across species by novel mycomembrane vesicles of a Gram-positive bacterium. THE ISME JOURNAL 2021; 15:605-617. [PMID: 33037324 PMCID: PMC8027190 DOI: 10.1038/s41396-020-00800-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/16/2020] [Accepted: 09/28/2020] [Indexed: 12/26/2022]
Abstract
Microbes spontaneously release membrane vesicles (MVs), which play roles in nutrient acquisition and microbial interactions. Iron is indispensable for microbes, but is a difficult nutrient to acquire. However, whether MVs are also responsible for efficient iron uptake and therefore involved in microbial interaction remains to be elucidated. Here, we used a Gram-positive strain, Dietzia sp. DQ12-45-1b, to analyze the function of its MVs in heme-iron recycling and sharing between species. We determined the structure and constituent of MVs and showed that DQ12-45-1b releases MVs originating from the mycomembrane. When comparing proteomes of MVs between iron-limiting and iron-rich conditions, we found that under iron-limiting conditions, heme-binding proteins are enriched. Next, we proved that MVs participate in extracellular heme capture and transport, especially in heme recycling from environmental hemoproteins. Finally, we found that the heme carried in MVs is utilized by multiple species, and we further verified that membrane fusion efficiency and species evolutionary distance determine heme delivery. Together, our findings strongly suggest that MVs act as a newly identified pathway for heme recycling, and represent a public good shared between phylogenetically closely related species.
Collapse
Affiliation(s)
- Meng Wang
- College of Engineering, Peking University, 100871, Beijing, China
| | - Yong Nie
- College of Engineering, Peking University, 100871, Beijing, China.
| | - Xiao-Lei Wu
- College of Engineering, Peking University, 100871, Beijing, China.
- Institute of Ocean Research, Peking University, 100871, Beijing, China.
- Institute of Ecology, Peking University, 100871, Beijing, China.
| |
Collapse
|
32
|
Arntzen MØ, Bengtsson O, Várnai A, Delogu F, Mathiesen G, Eijsink VGH. Quantitative comparison of the biomass-degrading enzyme repertoires of five filamentous fungi. Sci Rep 2020; 10:20267. [PMID: 33219291 PMCID: PMC7679414 DOI: 10.1038/s41598-020-75217-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 10/07/2020] [Indexed: 12/26/2022] Open
Abstract
The efficiency of microorganisms to degrade lignified plants is of great importance in the Earth's carbon cycle, but also in industrial biorefinery processes, such as for biofuel production. Here, we present a large-scale proteomics approach to investigate and compare the enzymatic response of five filamentous fungi when grown on five very different substrates: grass (sugarcane bagasse), hardwood (birch), softwood (spruce), cellulose and glucose. The five fungi included the ascomycetes Aspergillus terreus, Trichoderma reesei, Myceliophthora thermophila, Neurospora crassa and the white-rot basidiomycete Phanerochaete chrysosporium, all expressing a diverse repertoire of enzymes. In this study, we present comparable quantitative protein abundance values across five species and five diverse substrates. The results allow for direct comparison of fungal adaptation to the different substrates, give indications as to the substrate specificity of individual carbohydrate-active enzymes (CAZymes), and reveal proteins of unknown function that are co-expressed with CAZymes. Based on the results, we present a quantitative comparison of 34 lytic polysaccharide monooxygenases (LPMOs), which are crucial enzymes in biomass deconstruction.
Collapse
Affiliation(s)
- Magnus Ø Arntzen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway.
| | - Oskar Bengtsson
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway
| | - Anikó Várnai
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway
| | - Francesco Delogu
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway
| | - Geir Mathiesen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway
| |
Collapse
|
33
|
Wang M, Nie Y, Wu XL. Membrane vesicles from a Dietzia bacterium containing multiple cargoes and their roles in iron delivery. Environ Microbiol 2020; 23:1009-1019. [PMID: 33048442 DOI: 10.1111/1462-2920.15278] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/06/2020] [Accepted: 10/11/2020] [Indexed: 11/29/2022]
Abstract
Membrane vesicles (MVs) released from bacteria act as extracellular vehicles carrying various functional cargoes between cells. MVs with different cargoes play multiple roles in stress adaptation, nutrient acquisition and microbial interactions. However, previous studies have primarily focused on MVs from Gram-negative bacteria, while the characteristics of cargoes in MVs from Gram-positive bacteria and their involvement in microbial interactions remain to be elucidated. Here, we used a Gram-positive strain, Dietzia sp. DQ12-45-1b from Corynebacteriales, to analyse the characteristics and functions of MVs. We identified the 'antioxidant' canthaxanthin is stored within MVs by LC-MS/MS. In addition, nearly the entire genomic content of strain DQ12-45-1b are evenly distributed in MVs, suggesting that MVs from DQ12-45-1b might involve in horizontal gene transfer. Finally, the mycobactin-type siderophores were detected in MVs. The iron-loaded MVs effectively mediate iron binding and delivery to homologous bacteria from the order Corynebacteriales, but not to more distantly related species from the orders Pseudomonadales, Bacillales and Enterobacterales. These results revealed that the iron-loaded MVs are shared between homologous species. Together, we report the Gram-positive bacterium Dietzia sp. DQ12-45-1b released MVs that contain canthaxanthin, DNA and siderophores and prove that MVs act as public goods between closely related species.
Collapse
Affiliation(s)
- Meng Wang
- College of Engineering, Peking University, Beijing, China
| | - Yong Nie
- College of Engineering, Peking University, Beijing, China
| | - Xiao-Lei Wu
- College of Engineering, Peking University, Beijing, China.,Institute of Ocean Research, Peking University, Beijing, China.,Institute of Ecology, Peking University, Beijing, China
| |
Collapse
|
34
|
Zhao ZM, Liu ZH, Pu Y, Meng X, Xu J, Yuan JS, Ragauskas AJ. Emerging Strategies for Modifying Lignin Chemistry to Enhance Biological Lignin Valorization. CHEMSUSCHEM 2020; 13:5423-5432. [PMID: 32750220 DOI: 10.1002/cssc.202001401] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/19/2020] [Indexed: 06/11/2023]
Abstract
Biological lignin valorization represents a promising approach contributing to sustainable and economic biorefineries. The low level of valuable lignin-derived products remains a major challenge hindering the implementation of microbial lignin conversion. Lignin's properties play a significant role in determining the efficiency of lignin bioconversion. To date, despite significant progress in the development of biomass pretreatment, lignin fractionation, and fermentation over the last few decades, little efforts have gone into identifying the ideal lignin substrates for an efficient microbial metabolism. In this Minireview, emerging and state-of-the-art strategies for biomass pretreatment and lignin fractionation are summarized to elaborate their roles in modifying lignin structure for bioconversion. Fermentation strategies aimed at enhancing lignin depolymerization for microbial utilization are systematically reviewed as well. With an improved understanding of the ideal lignin structure elucidated by comprehensive metabolic pathways and/or big data analysis, modifying lignin chemistry could be more directional and effective. Ultimately, together with the progress of fermentation process optimization, biological lignin valorization will become more competitive in biorefineries.
Collapse
Affiliation(s)
- Zhi-Min Zhao
- School of Ecology and Environment, Inner Mongolia Key Laboratory of Environmental Pollution Controlling and Wastes Recycling, Inner Mongolia University, Hohhot, 010021, P. R. China
- Department of Chemical & Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, TN 37996, USA
| | - Zhi-Hua Liu
- Synthetic and Systems Biology Innovation Hub (SSBiH), Texas A&M University, College Station, TX 77843, USA
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| | - Yunqiao Pu
- Center for Bioenergy Innovation, Joint Institute of Biological Science, Biosciences Division, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, USA
| | - Xianzhi Meng
- Department of Chemical & Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, TN 37996, USA
| | - Jifei Xu
- School of Ecology and Environment, Inner Mongolia Key Laboratory of Environmental Pollution Controlling and Wastes Recycling, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Joshua S Yuan
- Synthetic and Systems Biology Innovation Hub (SSBiH), Texas A&M University, College Station, TX 77843, USA
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| | - Arthur J Ragauskas
- Department of Chemical & Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, TN 37996, USA
- Center for Bioenergy Innovation, Joint Institute of Biological Science, Biosciences Division, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, USA
- Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA
| |
Collapse
|
35
|
Hagen LH, Brooke CG, Shaw CA, Norbeck AD, Piao H, Arntzen MØ, Olson HM, Copeland A, Isern N, Shukla A, Roux S, Lombard V, Henrissat B, O'Malley MA, Grigoriev IV, Tringe SG, Mackie RI, Pasa-Tolic L, Pope PB, Hess M. Proteome specialization of anaerobic fungi during ruminal degradation of recalcitrant plant fiber. ISME JOURNAL 2020; 15:421-434. [PMID: 32929206 PMCID: PMC8026616 DOI: 10.1038/s41396-020-00769-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 08/21/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022]
Abstract
The rumen harbors a complex microbial mixture of archaea, bacteria, protozoa, and fungi that efficiently breakdown plant biomass and its complex dietary carbohydrates into soluble sugars that can be fermented and subsequently converted into metabolites and nutrients utilized by the host animal. While rumen bacterial populations have been well documented, only a fraction of the rumen eukarya are taxonomically and functionally characterized, despite the recognition that they contribute to the cellulolytic phenotype of the rumen microbiota. To investigate how anaerobic fungi actively engage in digestion of recalcitrant fiber that is resistant to degradation, we resolved genome-centric metaproteome and metatranscriptome datasets generated from switchgrass samples incubated for 48 h in nylon bags within the rumen of cannulated dairy cows. Across a gene catalog covering anaerobic rumen bacteria, fungi and viruses, a significant portion of the detected proteins originated from fungal populations. Intriguingly, the carbohydrate-active enzyme (CAZyme) profile suggested a domain-specific functional specialization, with bacterial populations primarily engaged in the degradation of hemicelluloses, whereas fungi were inferred to target recalcitrant cellulose structures via the detection of a number of endo- and exo-acting enzymes belonging to the glycoside hydrolase (GH) family 5, 6, 8, and 48. Notably, members of the GH48 family were amongst the highest abundant CAZymes and detected representatives from this family also included dockerin domains that are associated with fungal cellulosomes. A eukaryote-selected metatranscriptome further reinforced the contribution of uncultured fungi in the ruminal degradation of recalcitrant fibers. These findings elucidate the intricate networks of in situ recalcitrant fiber deconstruction, and importantly, suggest that the anaerobic rumen fungi contribute a specific set of CAZymes that complement the enzyme repertoire provided by the specialized plant cell wall degrading rumen bacteria.
Collapse
Affiliation(s)
- Live H Hagen
- Faculty of Biotechnology, Chemistry and Food Science, Norwegian University of Life Sciences, Aas, Norway.
| | | | | | | | - Hailan Piao
- Washington State University, Richland, WA, USA
| | - Magnus Ø Arntzen
- Faculty of Biotechnology, Chemistry and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | - Heather M Olson
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, CA, USA
| | - Alex Copeland
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Nancy Isern
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, CA, USA
| | - Anil Shukla
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Simon Roux
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Vincent Lombard
- CNRS, UMR 7257, Université Aix-Marseille, 13288, Marseille, France.,Institut National de la Recherche Agronomique, USC 1408 Architecture et Fonction des Macromolécules Biologiques, 13288, Marseille, France
| | - Bernard Henrissat
- CNRS, UMR 7257, Université Aix-Marseille, 13288, Marseille, France.,Institut National de la Recherche Agronomique, USC 1408 Architecture et Fonction des Macromolécules Biologiques, 13288, Marseille, France.,Department of Biological Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Michelle A O'Malley
- Department of Chemical Engineering, University of California, Santa Barbara, CA, USA
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Susannah G Tringe
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Roderick I Mackie
- Department of Animal Science, University of Illinois, Urbana-Champaign, IL, USA
| | - Ljiljana Pasa-Tolic
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, CA, USA
| | - Phillip B Pope
- Faculty of Biotechnology, Chemistry and Food Science, Norwegian University of Life Sciences, Aas, Norway.,Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway
| | | |
Collapse
|
36
|
Lagos L, Leanti La Rosa S, Ø. Arntzen M, Ånestad R, Terrapon N, Gaby JC, Westereng B. Isolation and Characterization of Extracellular Vesicles Secreted In Vitro by Porcine Microbiota. Microorganisms 2020; 8:microorganisms8070983. [PMID: 32630095 PMCID: PMC7409281 DOI: 10.3390/microorganisms8070983] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 12/23/2022] Open
Abstract
The secretion of extracellular vesicles, EVs, is a common process in both prokaryotic and eukaryotic cells for intercellular communication, survival, and pathogenesis. Previous studies have illustrated the presence of EVs in supernatants from pure cultures of bacteria, including Gram-positive and Gram-negative glycan-degrading gut commensals. However, the isolation and characterization of EVs secreted by a complex microbial community have not been clearly reported. In a recent paper, we showed that wood-derived, complex β-mannan, which shares a structural similarity with conventional dietary fibers, can be used to modulate the porcine gut microbiota composition and activity. In this paper, we investigated the production, size, composition, and proteome of EVs secreted by pig fecal microbiota after 24 h enrichment on complex β-mannan. Using transmission electron microscopy and nanoparticle tracking analysis, we identified EVs with an average size of 165 nm. We utilized mass spectrometry-based metaproteomic profiling of EV proteins against a database of 355 metagenome-assembled genomes (MAGs) from the porcine colon and thereby identified 303 proteins. For EVs isolated from the culture grown on β-mannan, most proteins mapped to two MAGs, MAG53 and MAG272, belonging to the orders Clostridiales and Bacilli, respectively. Furthermore, the MAG with the third-most-detected protein was MAG 343, belonging to the order Enterobacteriales. The most abundant proteins detected in the β-mannan EVs proteome were involved in translation, energy production, amino acid, and carbohydrate transport, as well as metabolism. Overall, this proof-of-concept study demonstrates the successful isolation of EVs released from a complex microbial community; furthermore, the protein content of the EVs reflects the response of specific microbes to the available carbohydrate source.
Collapse
Affiliation(s)
- Leidy Lagos
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1433 Aas, Norway;
- Correspondence:
| | - Sabina Leanti La Rosa
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, 1433 Aas, Norway; (S.L.L.R.); (M.Ø.A.); (J.C.G.); (B.W.)
| | - Magnus Ø. Arntzen
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, 1433 Aas, Norway; (S.L.L.R.); (M.Ø.A.); (J.C.G.); (B.W.)
| | - Ragnhild Ånestad
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1433 Aas, Norway;
| | - Nicolas Terrapon
- Architecture et Fonction des Macromolécules Biologiques, UMR7257 CNRS AMU, USC1408 INRAE, 13288 Marseille, France;
| | - John Christian Gaby
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, 1433 Aas, Norway; (S.L.L.R.); (M.Ø.A.); (J.C.G.); (B.W.)
| | - Bjørge Westereng
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, 1433 Aas, Norway; (S.L.L.R.); (M.Ø.A.); (J.C.G.); (B.W.)
| |
Collapse
|
37
|
Lelchat F, Mocaer PY, Ojima T, Michel G, Sarthou G, Bucciarelli E, Cérantola S, Colliec-Jouault S, Boisset C, Baudoux AC. Viral degradation of marine bacterial exopolysaccharides. FEMS Microbiol Ecol 2020; 95:5498295. [PMID: 31125051 DOI: 10.1093/femsec/fiz079] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/23/2019] [Indexed: 11/14/2022] Open
Abstract
The identification of the mechanisms by which marine dissolved organic matter (DOM) is produced and regenerated is critical to develop robust prediction of ocean carbon cycling. Polysaccharides represent one of the main constituents of marine DOM and their degradation is mainly attributed to polysaccharidases derived from bacteria. Here, we report that marine viruses can depolymerize the exopolysaccharides (EPS) excreted by their hosts using five bacteriophages that infect the notable EPS producer, Cobetia marina DSMZ 4741. Degradation monitorings as assessed by gel electrophoresis and size exclusion chromatography showed that four out of five phages carry structural enzymes that depolymerize purified solution of Cobetia marina EPS. The depolymerization patterns suggest that these putative polysaccharidases are constitutive, endo-acting and functionally diverse. Viral adsorption kinetics indicate that the presence of these enzymes provides a significant advantage for phages to adsorb onto their hosts upon intense EPS production conditions. The experimental demonstration that marine phages can display polysaccharidases active on bacterial EPS lead us to question whether viruses could also contribute to the degradation of marine DOM and modify its bioavailability. Considering the prominence of phages in the ocean, such studies may unveil an important microbial process that affects the marine carbon cycle.
Collapse
Affiliation(s)
- F Lelchat
- Laboratoire BMM, centre Ifremer de Brest, ZI pointe du diable, 29280 Plouzané, France
| | - P Y Mocaer
- Sorbonne Université, CNRS, UMR7144 Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Roscoff, France
| | - T Ojima
- Laboratory of Marine Biotechnology and Microbiology, Graduate School of Fisheries Sciences, Hokkaido University, Minato-cho 3-1-1, Hakodate 041-8611, Japan
| | - G Michel
- Sorbonne Université, CNRS, Laboratoire de Biologie Intégrative des Modèles Marins UMR 8227, Station Biologique de Roscoff, Roscoff, France
| | - G Sarthou
- CNRS, Université de Brest, IRD, Ifremer, UMR 6539/LEMAR/IUEM, Technopôle Brest Iroise, Place Nicolas Copernic, 29280 Plouzané, France
| | - E Bucciarelli
- CNRS, Université de Brest, IRD, Ifremer, UMR 6539/LEMAR/IUEM, Technopôle Brest Iroise, Place Nicolas Copernic, 29280 Plouzané, France
| | - S Cérantola
- Service commun de résonnance magnétique nucléaire, Faculté de science de Brest, Université de Bretagne Occidentale, 6 av. Victor Le Gorgeu, 29238 Brest Cedex 3, France
| | - S Colliec-Jouault
- Laboratoire EM3B, Centre Ifremer Atlantique - Rue de l'Ile d'Yeu - 44311 Nantes, France
| | - C Boisset
- Service commun de chromatographie, CERMAV-CNRS, 601 rue de la chimie, St Martin d'Hère, 38041 Grenoble, France
| | - A-C Baudoux
- Sorbonne Université, CNRS, UMR7144 Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Roscoff, France
| |
Collapse
|
38
|
He P, Xie L, Zhang X, Li J, Lin X, Pu X, Yuan C, Tian Z, Li J. Microbial Diversity and Metabolic Potential in the Stratified Sansha Yongle Blue Hole in the South China Sea. Sci Rep 2020; 10:5949. [PMID: 32249806 PMCID: PMC7136235 DOI: 10.1038/s41598-020-62411-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/11/2020] [Indexed: 01/08/2023] Open
Abstract
The Sansha Yongle Blue Hole is the world’s deepest (301 m) underwater cave and has a sharp redox gradient, with oligotrophic, anoxic, and sulfidic bottom seawater. In order to discover the microbial communities and their special biogeochemical pathways in the blue hole, we analyzed the 16S ribosomal RNA amplicons and metagenomes of microbials from seawater depths with prominent physical, chemical, and biological features. Redundancy analysis showed that dissolved oxygen was the most important factor affecting the microbial assemblages of the blue hole and surrounding open sea waters, and significantly explained 44.7% of the total variation, followed by silicate, temperature, sulfide, ammonium, methane, nitrous oxide, nitrate, dissolved organic carbon, salinity, particulate organic carbon, and chlorophyll a. We identified a bloom of Alteromonas (34.9%) at the primary nitrite maximum occurring in close proximity to the chlorophyll a peak in the blue hole. Genomic potential for nitrate reduction of Alteromonas might contribute to this maximum under oxygen decrease. Genes that would allow for aerobic ammonium oxidation, complete denitrification, and sulfur-oxidization were enriched at nitrate/nitrite-sulfide transition zone (90 and 100 m) of the blue hole, but not anammox pathways. Moreover, γ-Proteobacterial clade SUP05, ε-Proteobacterial genera Sulfurimonas and Arcobacter, and Chlorobi harbored genes for sulfur-driven denitrification process that mediated nitrogen loss and sulfide removal. In the anoxic bottom seawater (100-300 m), high levels of sulfate reducers and dissimilatory sulfite reductase gene (dsrA) potentially created a sulfidic zone of ~200 m thickness. Our findings suggest that in the oligotrophic Sansha Yongle Blue Hole, O2 deficiency promotes nitrogen- and sulfur-cycling processes mediated by metabolically versatile microbials.
Collapse
Affiliation(s)
- Peiqing He
- Key Laboratory of Science and Technology for Marine Ecology and Environment, First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao, 266061, China. .,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China. .,Key Laboratory of Natural Products of Qingdao, Qingdao, 266061, China.
| | - Linping Xie
- Key Laboratory of Science and Technology for Marine Ecology and Environment, First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao, 266061, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Xuelei Zhang
- Key Laboratory of Science and Technology for Marine Ecology and Environment, First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao, 266061, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Jiang Li
- Key Laboratory of Science and Technology for Marine Ecology and Environment, First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao, 266061, China.,Key Laboratory of Natural Products of Qingdao, Qingdao, 266061, China
| | - Xuezheng Lin
- Key Laboratory of Science and Technology for Marine Ecology and Environment, First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao, 266061, China.,Key Laboratory of Natural Products of Qingdao, Qingdao, 266061, China
| | - Xinming Pu
- Key Laboratory of Science and Technology for Marine Ecology and Environment, First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao, 266061, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Chao Yuan
- Key Laboratory of Science and Technology for Marine Ecology and Environment, First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao, 266061, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Ziwen Tian
- Research Center for Islands and Coastal Zone, First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao, 266061, China
| | - Jie Li
- Marine Engineering Environment and Geomatic Center, First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao, 266061, China
| |
Collapse
|
39
|
Outer membrane vesicles catabolize lignin-derived aromatic compounds in Pseudomonas putida KT2440. Proc Natl Acad Sci U S A 2020; 117:9302-9310. [PMID: 32245809 DOI: 10.1073/pnas.1921073117] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Lignin is an abundant and recalcitrant component of plant cell walls. While lignin degradation in nature is typically attributed to fungi, growing evidence suggests that bacteria also catabolize this complex biopolymer. However, the spatiotemporal mechanisms for lignin catabolism remain unclear. Improved understanding of this biological process would aid in our collective knowledge of both carbon cycling and microbial strategies to valorize lignin to value-added compounds. Here, we examine lignin modifications and the exoproteome of three aromatic-catabolic bacteria: Pseudomonas putida KT2440, Rhodoccocus jostii RHA1, and Amycolatopsis sp. ATCC 39116. P. putida cultivation in lignin-rich media is characterized by an abundant exoproteome that is dynamically and selectively packaged into outer membrane vesicles (OMVs). Interestingly, many enzymes known to exhibit activity toward lignin-derived aromatic compounds are enriched in OMVs from early to late stationary phase, corresponding to the shift from bioavailable carbon to oligomeric lignin as a carbon source. In vivo and in vitro experiments demonstrate that enzymes contained in the OMVs are active and catabolize aromatic compounds. Taken together, this work supports OMV-mediated catabolism of lignin-derived aromatic compounds as an extracellular strategy for nutrient acquisition by soil bacteria and suggests that OMVs could potentially be useful tools for synthetic biology and biotechnological applications.
Collapse
|
40
|
van Eerde A, Várnai A, Jameson JK, Paruch L, Moen A, Anonsen JH, Chylenski P, Steen HS, Heldal I, Bock R, Eijsink VGH, Liu‐Clarke J. In-depth characterization of Trichoderma reesei cellobiohydrolase TrCel7A produced in Nicotiana benthamiana reveals limitations of cellulase production in plants by host-specific post-translational modifications. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:631-643. [PMID: 31373133 PMCID: PMC7004914 DOI: 10.1111/pbi.13227] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/01/2019] [Accepted: 07/26/2019] [Indexed: 05/17/2023]
Abstract
Sustainable production of biofuels from lignocellulose feedstocks depends on cheap enzymes for degradation of such biomass. Plants offer a safe and cost-effective production platform for biopharmaceuticals, vaccines and industrial enzymes boosting biomass conversion to biofuels. Production of intact and functional protein is a prerequisite for large-scale protein production, and extensive host-specific post-translational modifications (PTMs) often affect the catalytic properties and stability of recombinant enzymes. Here we investigated the impact of plant PTMs on enzyme performance and stability of the major cellobiohydrolase TrCel7A from Trichoderma reesei, an industrially relevant enzyme. TrCel7A was produced in Nicotiana benthamiana using a vacuum-based transient expression technology, and this recombinant enzyme (TrCel7Arec ) was compared with the native fungal enzyme (TrCel7Anat ) in terms of PTMs and catalytic activity on commercial and industrial substrates. We show that the N-terminal glutamate of TrCel7Arec was correctly processed by N. benthamiana to a pyroglutamate, critical for protein structure, while the linker region of TrCel7Arec was vulnerable to proteolytic digestion during protein production due to the absence of O-mannosylation in the plant host as compared with the native protein. In general, the purified full-length TrCel7Arec had 25% lower catalytic activity than TrCel7Anat and impaired substrate-binding properties, which can be attributed to larger N-glycans and lack of O-glycans in TrCel7Arec . All in all, our study reveals that the glycosylation machinery of N. benthamiana needs tailoring to optimize the production of efficient cellulases.
Collapse
Affiliation(s)
| | - Anikó Várnai
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
| | - John Kristian Jameson
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
| | - Lisa Paruch
- NIBIONorwegian Institute of Bioeconomy ResearchÅsNorway
| | - Anders Moen
- Department of BiosciencesFaculty of Mathematics and Natural SciencesUniversity of Oslo (UiO)OsloNorway
| | - Jan Haug Anonsen
- Department of BiosciencesFaculty of Mathematics and Natural SciencesUniversity of Oslo (UiO)OsloNorway
| | - Piotr Chylenski
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
| | | | - Inger Heldal
- NIBIONorwegian Institute of Bioeconomy ResearchÅsNorway
| | - Ralph Bock
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Vincent G. H. Eijsink
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
| | | |
Collapse
|
41
|
Raut MP, Couto N, Karunakaran E, Biggs CA, Wright PC. Deciphering the unique cellulose degradation mechanism of the ruminal bacterium Fibrobacter succinogenes S85. Sci Rep 2019; 9:16542. [PMID: 31719545 PMCID: PMC6851124 DOI: 10.1038/s41598-019-52675-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 10/22/2019] [Indexed: 02/04/2023] Open
Abstract
Fibrobacter succinogenes S85, isolated from the rumen of herbivores, is capable of robust lignocellulose degradation. However, the mechanism by which it achieves this is not fully elucidated. In this study, we have undertaken the most comprehensive quantitative proteomic analysis, to date, of the changes in the cell envelope protein profile of F. succinogenes S85 in response to growth on cellulose. Our results indicate that the cell envelope proteome undergoes extensive rearrangements to accommodate the cellulolytic degradation machinery, as well as associated proteins involved in adhesion to cellulose and transport and metabolism of cellulolytic products. Molecular features of the lignocellulolytic enzymes suggest that the Type IX secretion system is involved in the translocation of these enzymes to the cell envelope. Finally, we demonstrate, for the first time, that cyclic-di-GMP may play a role in mediating catabolite repression, thereby facilitating the expression of proteins involved in the adhesion to lignocellulose and subsequent lignocellulose degradation and utilisation. Understanding the fundamental aspects of lignocellulose degradation in F. succinogenes will aid the development of advanced lignocellulosic biofuels.
Collapse
Affiliation(s)
- Mahendra P Raut
- The ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - Narciso Couto
- The ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK.,Centre for Applied Pharmacokinetic Research, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK
| | - Esther Karunakaran
- The ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - Catherine A Biggs
- School of Engineering, Faculty of Science, Agriculture & Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Phillip C Wright
- School of Engineering, Faculty of Science, Agriculture & Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| |
Collapse
|
42
|
Moraïs S, Mizrahi I. Islands in the stream: from individual to communal fiber degradation in the rumen ecosystem. FEMS Microbiol Rev 2019; 43:362-379. [PMID: 31050730 PMCID: PMC6606855 DOI: 10.1093/femsre/fuz007] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 04/05/2019] [Indexed: 12/20/2022] Open
Abstract
The herbivore rumen ecosystem constitutes an extremely efficient degradation machinery for the intricate chemical structure of fiber biomass, thus, enabling the hosting animal to digest its feed. The challenging task of deconstructing and metabolizing fiber is performed by microorganisms inhabiting the rumen. Since most of the ingested feed is comprised of plant fiber, these fiber-degrading microorganisms are of cardinal importance to the ecology of the rumen microbial community and to the hosting animal, and have a great impact on our environment and food sustainability. We summarize herein the enzymological fundamentals of fiber degradation, how the genes encoding these enzymes are spread across fiber-degrading microbes, and these microbes' interactions with other members of the rumen microbial community and potential effect on community structure. An understanding of these concepts has applied value for agriculture and our environment, and will also contribute to a better understanding of microbial ecology and evolution in anaerobic ecosystems.
Collapse
Affiliation(s)
- Sarah Moraïs
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Sderot Ben Gurion 1, Beer-Sheva 8499000, Israel
| | - Itzhak Mizrahi
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Sderot Ben Gurion 1, Beer-Sheva 8499000, Israel
| |
Collapse
|
43
|
Ichikawa S, Ogawa S, Nishida A, Kobayashi Y, Kurosawa T, Karita S. Cellulosomes localise on the surface of membrane vesicles from the cellulolytic bacterium Clostridium thermocellum. FEMS Microbiol Lett 2019; 366:5526221. [DOI: 10.1093/femsle/fnz145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/27/2019] [Indexed: 12/21/2022] Open
Abstract
ABSTRACTMembrane vesicles released from bacteria contribute to cell–cell communication by carrying various cargos such as proteins, nucleic acids and signaling molecules. Cellulolytic bacteria have been isolated from many environments, yet the function of membrane vesicles for cellulolytic ability has been rarely described. Here, we show that a Gram-positive cellulolytic bacterium Clostridium thermocellum released membrane vesicles, each approximately 50–300 nm in diameter, into the broth. The observations with immunoelectron microscopy also revealed that cellulosomes, which are carbohydrate-active enzyme complexes that give C. thermocellum high cellulolytic activity, localized on the surface of the membrane vesicles. The membrane vesicles collected by ultracentrifugation maintained the cellulolytic activity. Supplementation with the biosurfactant surfactin or sonication treatment disrupted the membrane vesicles in the exoproteome of C. thermocellum and significantly decreased the degradation activity of the exoproteome for microcrystalline cellulose. However, these did not affect the degradation activity for soluble carboxymethyl cellulose. These results suggest a novel function of membrane vesicles: C. thermocellum releases cellulolytic enzymes on the surface of membrane vesicles to enhance the cellulolytic activity of C. thermocellum for crystalline cellulose.
Collapse
Affiliation(s)
- Shunsuke Ichikawa
- Graduate School of Education, Mie University, 1577 Kurimamachiya-cho Tsu, Mie 514-8507, Japan
| | - Satoru Ogawa
- Faculty of Medicine, Mie University, 1577 Kurimamachiya-cho Tsu, Mie 514-8507, Japan
| | - Ayami Nishida
- Graduate School of Education, Mie University, 1577 Kurimamachiya-cho Tsu, Mie 514-8507, Japan
| | - Yuzuki Kobayashi
- Faculty of Education, Mie University, 1577 Kurimamachiya-cho Tsu, Mie 514-8507, Japan
| | - Toshihito Kurosawa
- Advanced Science Research Promotion Center, Mie University, 1577 Kurimamachiya-cho Tsu, Mie 514-8507, Japan
| | - Shuichi Karita
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya-cho Tsu, Mie 514-8507, Japan
| |
Collapse
|
44
|
Naval P, Chandra TS. Characterization of membrane vesicles secreted by seaweed associated bacterium Alteromonas macleodii KS62. Biochem Biophys Res Commun 2019; 514:422-427. [PMID: 31053303 DOI: 10.1016/j.bbrc.2019.04.148] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 04/20/2019] [Indexed: 02/04/2023]
Abstract
Recent studies have reported abundant presence of bacterial extracellular membrane vesicles in the marine environment. However, the ecological significance of these bacterial vesicles in the marine environment is only beginning to be explored. In present study, for the first time we report and characterize membrane vesicles secreted by a seaweed associated bacterium, Alteromonas macleodii KS62. Proteomics studies revealed that the vesicle proteome was rich in hydrolytic enzymes (30%) like glycoside hydrolases, proteases, sulphatases, lipases, nucleases and phosphatases. Zymography experiments and enzyme assays established that the vesicles carry active κ-carrageenan degrading enzymes. κ-carrageenan is a major polysaccharide of cell walls of certain red seaweeds like Kappaphycus. Purified membrane vesicles were successfully able to degrade Kappaphycus biomass. Based on these results, we discuss how the hydrolase-rich vesicles may play a role in red seaweed cell wall degradation so that the bacteria can invade and colonise the seaweed biomass establishing a saprophytic lifestyle. We also discuss the role of these vesicles in nutrient acquisition and their ecological significance in the marine environment.
Collapse
Affiliation(s)
- Prajakta Naval
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600 036, Tamil Nadu, India
| | - T S Chandra
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600 036, Tamil Nadu, India.
| |
Collapse
|
45
|
de Paula RG, Antoniêto ACC, Nogueira KMV, Ribeiro LFC, Rocha MC, Malavazi I, Almeida F, Silva RN. Extracellular vesicles carry cellulases in the industrial fungus Trichoderma reesei. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:146. [PMID: 31223336 PMCID: PMC6570945 DOI: 10.1186/s13068-019-1487-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 06/07/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND Trichoderma reesei is the most important industrial producer of lignocellulolytic enzymes. These enzymes play an important role in biomass degradation leading to novel applications of this fungus in the biotechnology industry, specifically biofuel production. The secretory pathway of fungi is responsible for transporting proteins addressed to different cellular locations involving some cellular endomembrane systems. Although protein secretion is an extremely efficient process in T. reesei, the mechanisms underlying protein secretion have remained largely uncharacterized in this organism. RESULTS Here, we report for the first time the isolation and characterization of T. reesei extracellular vesicles (EVs). Using proteomic analysis under cellulose culture condition, we have confidently identified 188 vesicular proteins belonging to different functional categories. Also, we characterized EVs production using transmission electron microscopy in combination with light scattering analysis. Biochemical assays revealed that T. reesei extracellular vesicles have an enrichment of filter paper (FPase) and β-glucosidase activities in purified vesicles from 24, 72 and 96, and 72 and 96 h, respectively. Furthermore, our results showed that there is a slight enrichment of small RNAs inside the vesicles after 96 h and 120 h, and presence of hsp proteins inside the vesicles purified from T. reesei grown in the presence of cellulose. CONCLUSIONS This work points to important insights into a better understanding of the cellular mechanisms underlying the regulation of cellulolytic enzyme secretion in this fungus.
Collapse
Affiliation(s)
- Renato Graciano de Paula
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, São Paulo, 14049-900 Brazil
| | - Amanda Cristina Campos Antoniêto
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, São Paulo, 14049-900 Brazil
| | - Karoline Maria Vieira Nogueira
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, São Paulo, 14049-900 Brazil
| | - Liliane Fraga Costa Ribeiro
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, São Paulo, 14049-900 Brazil
| | - Marina Campos Rocha
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Paulo, Brazil
| | - Iran Malavazi
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Paulo, Brazil
| | - Fausto Almeida
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, São Paulo, 14049-900 Brazil
| | - Roberto Nascimento Silva
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, São Paulo, 14049-900 Brazil
| |
Collapse
|
46
|
Tuveng TR, Eijsink VGH, Arntzen MØ. Proteomic Detection of Carbohydrate-Active Enzymes (CAZymes) in Microbial Secretomes. Methods Mol Biol 2019; 1871:159-177. [PMID: 30276740 DOI: 10.1007/978-1-4939-8814-3_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Secretomes from microorganisms growing on biomass contain carbohydrate-active enzymes (CAZymes) of potential biotechnological interest. By analyzing such secretomes, we may discover key enzymes involved in degradation processes and potentially infer the mode-of-action of biomass conversion. Some of these enzymes may have predicted functions in carbohydrate degradation, while others may not, while yet exhibiting a similar expression pattern; these latter enzymes constitute potential novel enzymes involved in the degradation process and provide a basis for further biochemical exploration. Hence, secretomes represent an important source for the study of both predicted and novel CAZymes. Here we describe a plate-based culturing technique that allows for collection of protein fractions that are highly enriched for secreted proteins, bound or unbound to the substrate, and which minimizes contamination by intracellular proteins trough unwanted cell lysis.
Collapse
Affiliation(s)
- Tina R Tuveng
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Magnus Ø Arntzen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway.
| |
Collapse
|
47
|
Tokuda G, Mikaelyan A, Fukui C, Matsuura Y, Watanabe H, Fujishima M, Brune A. Fiber-associated spirochetes are major agents of hemicellulose degradation in the hindgut of wood-feeding higher termites. Proc Natl Acad Sci U S A 2018; 115:E11996-E12004. [PMID: 30504145 PMCID: PMC6304966 DOI: 10.1073/pnas.1810550115] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Symbiotic digestion of lignocellulose in wood-feeding higher termites (family Termitidae) is a two-step process that involves endogenous host cellulases secreted in the midgut and a dense bacterial community in the hindgut compartment. The genomes of the bacterial gut microbiota encode diverse cellulolytic and hemicellulolytic enzymes, but the contributions of host and bacterial symbionts to lignocellulose degradation remain ambiguous. Our previous studies of Nasutitermes spp. documented that the wood fibers in the hindgut paunch are consistently colonized not only by uncultured members of Fibrobacteres, which have been implicated in cellulose degradation, but also by unique lineages of Spirochaetes. Here, we demonstrate that the degradation of xylan, the major component of hemicellulose, is restricted to the hindgut compartment, where it is preferentially hydrolyzed over cellulose. Metatranscriptomic analysis documented that the majority of glycoside hydrolase (GH) transcripts expressed by the fiber-associated bacterial community belong to family GH11, which consists exclusively of xylanases. The substrate specificity was further confirmed by heterologous expression of the gene encoding the predominant homolog. Although the most abundant transcripts of GH11 in Nasutitermes takasagoensis were phylogenetically placed among their homologs of Firmicutes, immunofluorescence microscopy, compositional binning of metagenomics contigs, and the genomic context of the homologs indicated that they are encoded by Spirochaetes and were most likely obtained by horizontal gene transfer among the intestinal microbiota. The major role of spirochetes in xylan degradation is unprecedented and assigns the fiber-associated Treponema clades in the hindgut of wood-feeding higher termites a prominent part in the breakdown of hemicelluloses.
Collapse
Affiliation(s)
- Gaku Tokuda
- Tropical Biosphere Research Center, Center of Molecular Biosciences, University of the Ryukyus, Nishihara, 903-0213 Okinawa, Japan;
- Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, 903-0213 Okinawa, Japan
| | - Aram Mikaelyan
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27607
| | - Chiho Fukui
- Tropical Biosphere Research Center, Center of Molecular Biosciences, University of the Ryukyus, Nishihara, 903-0213 Okinawa, Japan
| | - Yu Matsuura
- Tropical Biosphere Research Center, Center of Molecular Biosciences, University of the Ryukyus, Nishihara, 903-0213 Okinawa, Japan
| | - Hirofumi Watanabe
- Biomolecular Mimetics Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, 305-8634 Ibaraki, Japan
| | - Masahiro Fujishima
- Department of Sciences, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yoshida 1677-1, 753-8512 Yamaguchi, Japan
| | - Andreas Brune
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| |
Collapse
|
48
|
Cai W, Kesavan DK, Wan J, Abdelaziz MH, Su Z, Xu H. Bacterial outer membrane vesicles, a potential vaccine candidate in interactions with host cells based. Diagn Pathol 2018; 13:95. [PMID: 30537996 PMCID: PMC6290530 DOI: 10.1186/s13000-018-0768-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/07/2018] [Indexed: 02/07/2023] Open
Abstract
Both Gram-Positive and Gram-Negative bacteria can secrete outer membrane vesicles (OMVs) in their growth and metabolism process. Originally, OMVs were considered as a by-product of bacterial merisis. However, many scientists have reported the important role of OMVs in many fields recently. In this review, we briefly introduce OMVs biological functions and then summarize the findings about the OMVs interactions with host cells. At last, we will make an expectation about the prospects of the application of OMVs as vaccines.
Collapse
Affiliation(s)
- Wei Cai
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | | | - Jie Wan
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | | | - Zhaoliang Su
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.,The Central Laboratory, the Fourth Affiliated of Jiangsu University, Zhenjiang, 212001, China
| | - Huaxi Xu
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
49
|
Proteomic Dissection of the Cellulolytic Machineries Used by Soil-Dwelling Bacteroidetes. mSystems 2018; 3:mSystems00240-18. [PMID: 30505945 PMCID: PMC6247017 DOI: 10.1128/msystems.00240-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 11/02/2018] [Indexed: 11/20/2022] Open
Abstract
Bacteria of the phylum Bacteroidetes are regarded as highly efficient carbohydrate metabolizers, but most species are limited to (semi)soluble glycans. The soil Bacteroidetes species Cytophaga hutchinsonii and Sporocytophaga myxococcoides have long been known as efficient cellulose metabolizers, but neither species conforms to known cellulolytic mechanisms. Both species require contact with their substrate but do not encode cellulosomal systems of cell surface-attached enzyme complexes or the polysaccharide utilization loci found in many other Bacteroidetes species. Here, we have fractionated the cellular compartments of each species from cultures growing on crystalline cellulose and pectin, respectively, and analyzed them using label-free quantitative proteomics as well as enzymatic activity assays. The combined results enabled us to highlight enzymes likely to be important for cellulose conversion and to infer their cellular localization. The combined proteomes represent a wide array of putative cellulolytic enzymes and indicate specific and yet highly redundant mechanisms for cellulose degradation. Of the putative endoglucanases, especially enzymes of hitherto-unstudied glycoside hydrolase family, 8 were abundant, indicating an overlooked important role during cellulose metabolism. Furthermore, both species generated a large number of abundant hypothetical proteins during cellulose conversion, providing a treasure trove of targets for future enzymology studies. IMPORTANCE Cellulose is the most abundant renewable polymer on earth, but its recalcitrance limits highly efficient conversion methods for energy-related and material applications. Though microbial cellulose conversion has been studied for decades, recent advances showcased that large knowledge gaps still exist. Bacteria of the phylum Bacteroidetes are regarded as highly efficient carbohydrate metabolizers, but most species are limited to (semi)soluble glycans. A few species, including the soil bacteria C. hutchinsonii and S. myxococcoides, are regarded as cellulose specialists, but their cellulolytic mechanisms are not understood, as they do not conform to the current models for enzymatic cellulose turnover. By unraveling the proteome setups of these two bacteria during growth on both crystalline cellulose and pectin, we have taken a significant step forward in understanding their idiosyncratic mode of cellulose conversion. This report provides a plethora of new enzyme targets for improved biomass conversion.
Collapse
|
50
|
Huws SA, Creevey CJ, Oyama LB, Mizrahi I, Denman SE, Popova M, Muñoz-Tamayo R, Forano E, Waters SM, Hess M, Tapio I, Smidt H, Krizsan SJ, Yáñez-Ruiz DR, Belanche A, Guan L, Gruninger RJ, McAllister TA, Newbold CJ, Roehe R, Dewhurst RJ, Snelling TJ, Watson M, Suen G, Hart EH, Kingston-Smith AH, Scollan ND, do Prado RM, Pilau EJ, Mantovani HC, Attwood GT, Edwards JE, McEwan NR, Morrisson S, Mayorga OL, Elliott C, Morgavi DP. Addressing Global Ruminant Agricultural Challenges Through Understanding the Rumen Microbiome: Past, Present, and Future. Front Microbiol 2018; 9:2161. [PMID: 30319557 PMCID: PMC6167468 DOI: 10.3389/fmicb.2018.02161] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/23/2018] [Indexed: 12/24/2022] Open
Abstract
The rumen is a complex ecosystem composed of anaerobic bacteria, protozoa, fungi, methanogenic archaea and phages. These microbes interact closely to breakdown plant material that cannot be digested by humans, whilst providing metabolic energy to the host and, in the case of archaea, producing methane. Consequently, ruminants produce meat and milk, which are rich in high-quality protein, vitamins and minerals, and therefore contribute to food security. As the world population is predicted to reach approximately 9.7 billion by 2050, an increase in ruminant production to satisfy global protein demand is necessary, despite limited land availability, and whilst ensuring environmental impact is minimized. Although challenging, these goals can be met, but depend on our understanding of the rumen microbiome. Attempts to manipulate the rumen microbiome to benefit global agricultural challenges have been ongoing for decades with limited success, mostly due to the lack of a detailed understanding of this microbiome and our limited ability to culture most of these microbes outside the rumen. The potential to manipulate the rumen microbiome and meet global livestock challenges through animal breeding and introduction of dietary interventions during early life have recently emerged as promising new technologies. Our inability to phenotype ruminants in a high-throughput manner has also hampered progress, although the recent increase in “omic” data may allow further development of mathematical models and rumen microbial gene biomarkers as proxies. Advances in computational tools, high-throughput sequencing technologies and cultivation-independent “omics” approaches continue to revolutionize our understanding of the rumen microbiome. This will ultimately provide the knowledge framework needed to solve current and future ruminant livestock challenges.
Collapse
Affiliation(s)
- Sharon A Huws
- Institute for Global Food Security, Queen's University of Belfast, Belfast, United Kingdom
| | - Christopher J Creevey
- Institute for Global Food Security, Queen's University of Belfast, Belfast, United Kingdom
| | - Linda B Oyama
- Institute for Global Food Security, Queen's University of Belfast, Belfast, United Kingdom
| | - Itzhak Mizrahi
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Stuart E Denman
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Queensland Bioscience Precinct, St Lucia, QLD, Australia
| | - Milka Popova
- Institute National de la Recherche Agronomique, UMR1213 Herbivores, Clermont Université, VetAgro Sup, UMR Herbivores, Clermont-Ferrand, France
| | - Rafael Muñoz-Tamayo
- UMR Modélisation Systémique Appliquée aux Ruminants, INRA, AgroParisTech, Université Paris-Saclay, Paris, France
| | - Evelyne Forano
- UMR 454 MEDIS, INRA, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Sinead M Waters
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Grange, Ireland
| | - Matthias Hess
- College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA, United States
| | - Ilma Tapio
- Natural Resources Institute Finland, Jokioinen, Finland
| | - Hauke Smidt
- Department of Agrotechnology and Food Sciences, Wageningen, Netherlands
| | - Sophie J Krizsan
- Department of Agricultural Research for Northern Sweden, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - David R Yáñez-Ruiz
- Estacion Experimental del Zaidin, Consejo Superior de Investigaciones Cientificas, Granada, Spain
| | - Alejandro Belanche
- Estacion Experimental del Zaidin, Consejo Superior de Investigaciones Cientificas, Granada, Spain
| | - Leluo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Robert J Gruninger
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Tim A McAllister
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | | | - Rainer Roehe
- Scotland's Rural College, Edinburgh, United Kingdom
| | | | - Tim J Snelling
- The Rowett Institute, University of Aberdeen, Aberdeen, United Kingdom
| | - Mick Watson
- The Roslin Institute and the Royal (Dick) School of Veterinary Studies (R(D)SVS), University of Edinburgh, Edinburgh, United Kingdom
| | - Garret Suen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| | - Elizabeth H Hart
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Alison H Kingston-Smith
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Nigel D Scollan
- Institute for Global Food Security, Queen's University of Belfast, Belfast, United Kingdom
| | - Rodolpho M do Prado
- Laboratório de Biomoléculas e Espectrometria de Massas-Labiomass, Departamento de Química, Universidade Estadual de Maringá, Maringá, Brazil
| | - Eduardo J Pilau
- Laboratório de Biomoléculas e Espectrometria de Massas-Labiomass, Departamento de Química, Universidade Estadual de Maringá, Maringá, Brazil
| | | | - Graeme T Attwood
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Joan E Edwards
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Neil R McEwan
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, United Kingdom
| | - Steven Morrisson
- Sustainable Livestock, Agri-Food and Bio-Sciences Institute, Hillsborough, United Kingdom
| | - Olga L Mayorga
- Colombian Agricultural Research Corporation, Mosquera, Colombia
| | - Christopher Elliott
- Institute for Global Food Security, Queen's University of Belfast, Belfast, United Kingdom
| | - Diego P Morgavi
- Institute National de la Recherche Agronomique, UMR1213 Herbivores, Clermont Université, VetAgro Sup, UMR Herbivores, Clermont-Ferrand, France
| |
Collapse
|