1
|
Wang Z, Giedraitis E, Knoop C, Breiner DJ, Phelan VV, Van Bambeke F. Modeling reciprocal adaptation of Staphylococcus aureus and Pseudomonas aeruginosa co-isolates in artificial sputum medium. Biofilm 2025; 9:100279. [PMID: 40290724 PMCID: PMC12033965 DOI: 10.1016/j.bioflm.2025.100279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 04/01/2025] [Accepted: 04/07/2025] [Indexed: 04/30/2025] Open
Abstract
Co-infections by Staphylococcus aureus and Pseudomonas aeruginosa are frequent in the airways of patients with cystic fibrosis. These co-infections show higher antibiotic tolerance in vitro compared to mono-infections. In vitro models have been developed to study the interspecies interactions between P. aeruginosa and S. aureus. However, these model systems fail to incorporate clinical isolates with diverse phenotypes, do not reflect the nutritional environment of the CF airway mucus, and/or do not model the biofilm mode of growth observed in the CF airways. Here, we established a dual-species biofilm model grown in artificial sputum medium, where S. aureus was inoculated before P. aeruginosa to facilitate the maintenance of both species over time. It was successfully applied to ten pairs of clinical isolates exhibiting different phenotypes. Co-isolates from individual patients led to robust, stable co-cultures, supporting the theory of cross-adaptation in vivo. Investigation into the cross-adaptation of the VBB496 co-isolate pair revealed that both the P. aeruginosa and S. aureus isolates had reduced antagonism, in part due to reduced production of P. aeruginosa secondary metabolites as well as higher tolerance to those metabolites by S. aureus. Together, these results indicate that the two-species biofilm model system provides a useful tool for exploring interspecies interactions of P. aeruginosa and S. aureus in the context of CF airway infections.
Collapse
Affiliation(s)
- Zhifen Wang
- Pharmacologie Cellulaire et moléculaire, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Emily Giedraitis
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Christiane Knoop
- Erasme Hospital, Université libre de Bruxelles, Brussels, Belgium
| | - Daniel J. Breiner
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Vanessa V. Phelan
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Françoise Van Bambeke
- Pharmacologie Cellulaire et moléculaire, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
2
|
Conaway A, Mould DL, Todorovic I, Hogan DA. Loss of LasR function leads to decreased repression of Pseudomonas aeruginosa PhoB activity at physiological phosphate concentrations. J Bacteriol 2025:e0018924. [PMID: 40366151 DOI: 10.1128/jb.00189-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 03/07/2025] [Indexed: 05/15/2025] Open
Abstract
The Pseudomonas aeruginosa LasR transcription factor plays a role in quorum sensing (QS) across phylogenetically distinct lineages. However, isolates with loss-of-function mutations in lasR (LasR- strains) are commonly found in diverse settings, including infections where they are associated with worse clinical outcomes. In LasR- strains, the LasR-regulated transcription factor RhlR can also be stimulated by the activity of the two-component system PhoR-PhoB in low-inorganic phosphate (Pi) conditions. Here, we demonstrate a novel link between LasR and PhoB in which the absence of LasR increases PhoB activity at physiological Pi concentrations and increases the Pi concentration necessary for PhoB inhibition. PhoB activity was also less sensitive to repression by Pi in mutants lacking different QS regulators (RhlR and PqsR) and in mutants lacking genes required for QS-induced phenazine production, suggesting that decreased phenazine production is one reason for increased PhoB activity in LasR- strains. In addition, the CbrA-CbrB two-component system, which can be more active in LasR- strains, was necessary for increased PhoB activity in LasR- strains, and loss of the CbrA-CbrB-controlled translational repressor Crc was sufficient to activate PhoB in LasR+ P. aeruginosa. Phenazines and CbrA-CbrB affected PhoB activity independently. The ∆lasR mutant also had PhoB-dependent growth advantages in the Pi-deplete medium and increased virulence-associated gene expression at physiological Pi, in part through reactivation of QS. This work suggests PhoR-PhoB activity may contribute to the fitness and virulence of LasR- P. aeruginosa and subsequent clinical outcomes.IMPORTANCELoss-of-function mutations in the gene encoding the Pseudomonas aeruginosa quorum sensing (QS) regulator LasR occur frequently and are associated with worse clinical outcomes. We have found that LasR- P. aeruginosa have elevated PhoB activity at physiological concentrations of inorganic phosphate (Pi). PhoB activity promotes Pi acquisition as well as the expression of QS and virulence-associated genes. Previous work has shown that PhoB induces RhlR, another QS regulator, in a LasR- mutant in low-Pi conditions. Here, we demonstrate a novel relationship wherein LasR represses PhoB activity through the production of phenazines and Crc-mediated translational repression. This work suggests PhoB activity may contribute to the increased virulence of LasR- P. aeruginosa.
Collapse
Affiliation(s)
- Amy Conaway
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Dallas L Mould
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Igor Todorovic
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Deborah A Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
3
|
Huang Q, Yan K, Li G. Molecular characterization of virulent genes in Pseudomonas aeruginosa based on componential usage divergence. Sci Rep 2025; 15:11246. [PMID: 40175567 PMCID: PMC11965391 DOI: 10.1038/s41598-025-95579-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 03/21/2025] [Indexed: 04/04/2025] Open
Abstract
Genetic characteristics of virulent genes in Pseudomonas aeruginosa attracted significant attention for they could govern their drug-resistances. Studies on the componential usage divergences in the virulent genes are beneficial for further explicating their molecular characteristics. In present study, one thousand complete genomes of Pseudomonas aeruginosa were considered to study the molecular characteristics of 21 typical virulent genes. The important componential usage patterns (i.e., the base usage pattern, the codon usage pattern and their divergences) of 21 specific virulent genes were counted and calculated. The results show that (1) most virulent genes concerned in the present study are high GC sequences (overall GC ratio > 50%), especially from the codon usage perspective, the virulent genes are obviously GC3-abundant sequences (GC3 ratio > 70%); (2) the relative synonymous codon usage of all concerned virulent genes are uneven, especially in the anvM and the lptA, there is no codon for some certain amino acids, which could reveal their obvious codon usage bias; (3) some genes (i.e., the oprF and the fadD1) with lower divergence have steady effective number of codons. The findings of the present work would improve novel insights on the genetic characteristics of virulent genes in Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Qian Huang
- School of Computer Engineering, Shanxi Vocational University of Engineering Science and Technology, Jinzhong, Shanxi, China
| | - Keding Yan
- Department of Biomedical Engineering, School of Electronic Information Engineering, Xi'An Technological University, Xi'An, Shaanxi, China.
| | - Gun Li
- Department of Biomedical Engineering, School of Electronic Information Engineering, Xi'An Technological University, Xi'An, Shaanxi, China.
| |
Collapse
|
4
|
Smith E, Matthews A, Westra ER, Custodio R. Disruption of Pseudomonas aeruginosa quorum sensing influences biofilm formation without affecting antibiotic tolerance. MICROBIOLOGY (READING, ENGLAND) 2025; 171:001557. [PMID: 40279159 PMCID: PMC12032407 DOI: 10.1099/mic.0.001557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 04/07/2025] [Indexed: 04/26/2025]
Abstract
The opportunistic bacterial pathogen Pseudomonas aeruginosa is a leading cause of antimicrobial resistance-related deaths, and novel antimicrobial therapies are urgently required. P. aeruginosa infections are difficult to treat due to the bacterium's propensity to form biofilms, whereby cells aggregate to form a cooperative, protective structure. Autolysis, the self-killing of bacterial cells, and the bacterial cell-to-cell communication system, quorum sensing (QS), play essential roles in biofilm formation. Strains of P. aeruginosa that have lost the lasI/R QS system commonly develop in patients, and previous studies have characterized distinctive autolysis phenotypes in these strains. Yet, the underlying causes and implications of these autolysis phenotypes remain unknown. This study confirmed these autolysis phenotypes in the PA14 QS mutant strains, ΔlasI and ΔlasR, and investigated the consequences of QS loss and associated autolysis on biofilm formation and antibiotic susceptibility. QS mutants exhibited delayed biofilm formation but ultimately surpassed the wild-type (WT) in biofilm mass. However, the larger biofilm mass of the QS mutants was not reflected in higher live-cell numbers, indicating an altered biofilm structure. Nevertheless, QS mutant biofilms were not more susceptible to antibiotics than the WT. Artificial supplementation of ΔlasI with a QS signal molecule (autoinducer) restored the strain's QS system without the associated costs of QS, enabling ΔlasI to achieve higher pre-treatment and post-treatment live-cell numbers. Overall, the lack of QS functioning was not detrimental to biofilm antibiotic tolerance, though the artificial disruption of QS may reduce the advantages of QS mutants within in vivo mixed-strain populations. Much remains to be understood regarding the regulation and induction of the autolysis phenotypes observed in these strains, and future research to fully elucidate the control and consequences of autolysis may offer potential for novel antimicrobial therapies.
Collapse
Affiliation(s)
- Elvina Smith
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
| | - Andrew Matthews
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
| | - Edze R. Westra
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
| | - Rafael Custodio
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
5
|
Cruz RL, Freeman TS, Asfahl KL, Smalley NE, Dandekar AA. RhlR-mediated cooperation in cystic fibrosis-adapted isolates of Pseudomonas aeruginosa. J Bacteriol 2025; 207:e0034424. [PMID: 39670758 PMCID: PMC11784195 DOI: 10.1128/jb.00344-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/18/2024] [Indexed: 12/14/2024] Open
Abstract
Pseudomonas aeruginosa uses quorum sensing (QS) to regulate the expression of dozens of genes, many of which encode shared products, called "public goods." P. aeruginosa possesses two complete acyl-homoserine lactone (AHL) QS circuits: the LasR-I and RhlR-I systems. Canonically, these systems are hierarchically organized: RhlR-I activity depends on LasR-I activation. However, in contrast to laboratory strains, isolates from people with cystic fibrosis can engage in AHL QS using only the transcription factor RhlR. In these isolates, RhlR regulates AHL QS and the production of secreted public goods, such as the exoprotease elastase, which are accessible to both producing and non-producing cells. When P. aeruginosa strains that use LasR to regulate elastase production are grown on casein as the sole carbon and energy source, LasR-null mutant "cheaters" commonly arise in populations due to a selective growth advantage. We asked if these social dynamics might differ in "RhlR cooperators": populations that use RhlR, not LasR, to regulate public goods. We passaged RhlR cooperators from several genetic backgrounds in casein broth. We found that cheaters emerged among most RhlR cooperators. However, in one isolate background, E90, RhlR-null mutants were dramatically outcompeted by RhlR cooperators. In this background, the mechanism by which RhlR mutants are outcompeted by RhlR cooperators is AHL-dependent and occurs in stationary phase but is not the same as previously described "policing" mechanisms. Our data suggest that cheating, or the lack thereof, does not explain the lack of RhlR mutants observed in most infection environments.IMPORTANCEQuorum sensing (QS) mutants arise in a variety of populations of bacteria, but mutants of the gene encoding the transcription factor RhlR in Pseudomonas aeruginosa appear to be infrequent. Our work provides insight on the mechanisms through which RhlR-mediated cooperation is maintained in a LasR-null population of P. aeruginosa. Characterizing the selective pressure(s) that disfavor mutations from occurring in RhlR may enhance our understanding of P. aeruginosa evolution in chronic infections and potentially guide the development of therapeutics targeting the RhlR-I QS circuit.
Collapse
Affiliation(s)
- Renae L. Cruz
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Tiia S. Freeman
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Kyle L. Asfahl
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Nicole E. Smalley
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Ajai A. Dandekar
- Department of Microbiology, University of Washington, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
6
|
Lim T, Ham S, Kim HS, Yang JE, Lim H, Park HD, Byun Y. Developing Gingerol-Based Analogs against Pseudomonas aeruginosa Infections. ACS OMEGA 2024; 9:50281-50299. [PMID: 39741820 PMCID: PMC11683490 DOI: 10.1021/acsomega.4c06281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 01/03/2025]
Abstract
Pseudomonas aeruginosa (P. aeruginosa), a Gram-negative opportunistic pathogen, produces virulent factors and forms biofilms through a quorum sensing (QS) mechanism. Modulating QS networks is considered an effective strategy for treating P. aeruginosa infections. Particularly, the rhl system, one of the QS networks, can be a potential target in treating patients with chronic infections. We previously discovered that gingerol acts as a RhlR antagonist of P. aeruginosa. Based on the chemical structure of gingerol, we have designed and synthesized gingerol derivatives by introducing various functional groups in the middle and tail regions. A comprehensive structure-activity relationship study showed that compound 5a substituted with phenyl group in the tail region was the most potent in various biological assessments, such as RhlR binding affinity, rhl gene expression, and virulence factor production of P. aeruginosa. Furthermore, compound 5a decreased the biofilm formation and pathogenicity of P. aeruginosa. Interestingly, compound 5a also influenced las system in addition to the rhl system. Taken together, compound 5a can be utilized as a potent compound for controlling P. aeruginosa infection.
Collapse
Affiliation(s)
- Taehyeong Lim
- College
of Pharmacy, Korea University, 2511 Sejong-ro, Sejong 30019, Republic
of Korea
| | - Soyoung Ham
- School
of Civil, Environmental and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic
of Korea
- Department
of Geoscience, University of Tuebingen, Schnarrenbergstraße 94−96, Tuebingen 72076, Germany
| | - Han-Shin Kim
- Division
of Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk 54596, Republic of Korea
| | - Ji-Eun Yang
- College
of Pharmacy, Korea University, 2511 Sejong-ro, Sejong 30019, Republic
of Korea
| | - Hyunwoong Lim
- College
of Pharmacy, Korea University, 2511 Sejong-ro, Sejong 30019, Republic
of Korea
| | - Hee-Deung Park
- School
of Civil, Environmental and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic
of Korea
- KU-KIST
Graduate School of Converging Science and Technology, Korea University, 145
Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Youngjoo Byun
- College
of Pharmacy, Korea University, 2511 Sejong-ro, Sejong 30019, Republic
of Korea
- Biomedical
Research Center, Korea University Guro Hospital, 148 Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea
| |
Collapse
|
7
|
Arfaoui A, Rojo-Bezares B, Fethi M, López M, Toledano P, Sayem N, Ben Khelifa Melki S, Ouzari HI, Klibi N, Sáenz Y. Molecular characterization of Pseudomonas aeruginosa from diabetic foot infections in Tunisia. J Med Microbiol 2024; 73. [PMID: 38963417 DOI: 10.1099/jmm.0.001851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024] Open
Abstract
Background. Pseudomonas aeruginosa is an invasive organism that frequently causes severe tissue damage in diabetic foot ulcers.Gap statement. The characterisation of P. aeruginosa strains isolated from diabetic foot infections has not been carried out in Tunisia.Purpose. The aim was to determine the prevalence of P. aeruginosa isolated from patients with diabetic foot infections (DFIs) in Tunisia and to characterize their resistance, virulence and molecular typing.Methods. Patients with DFIs admitted to the diabetes department of the International Hospital Centre of Tunisia, from September 2019 to April 2021, were included in this prospective study. P. aeruginosa were obtained from the wound swabs, aspiration and soft tissue biopsies during routine clinical care and were confirmed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Antimicrobial susceptibility testing, serotyping, integron and OprD characterization, virulence, biofilm production, pigment quantification, elastase activity and molecular typing were analysed in all recovered P. aeruginosa isolates by phenotypic tests, specific PCRs, sequencing, pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing.Results. Sixteen P. aeruginosa isolates (16.3 %) were recovered from 98 samples of 78 diabetic patients and were classified into 6 serotypes (O:11 the most frequent), 11 different PFGE patterns and 10 sequence types (three of them new ones). The high-risk clone ST235 was found in two isolates. The highest resistance percentages were observed to netilmicin (69 %) and cefepime (43.8 %). Four multidrug-resistant (MDR) isolates (25 %) were detected, three of them being carbapenem-resistant. The ST235-MDR strain harboured the In51 class 1 integron (intI1 +aadA6+orfD+qacED1-sul1). According to the detection of 14 genes involved in virulence or quorum sensing, 5 virulotypes were observed, including 5 exoU-positive, 9 exoS-positive and 2 exoU/exoS-positive strains. The lasR gene was truncated by ISPpu21 insertion sequence in one isolate, and a deletion of 64 bp in the rhlR gene was detected in the ST235-MDR strain. Low biofilm, pyoverdine and elastase production were detected in all P. aeruginosa; however, the lasR-truncated strain showed a chronic infection phenotype characterized by loss of serotype-specific antigenicity, high production of phenazines and high biofilm formation.Conclusions. Our study demonstrated for the first time the prevalence and the molecular characterization of P. aeruginosa strains from DFIs in Tunisia, showing a high genetic diversity, moderate antimicrobial resistance, but a high number of virulence-related traits, highlighting their pathological importance.
Collapse
Affiliation(s)
- Ameni Arfaoui
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Beatriz Rojo-Bezares
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain
| | - Meha Fethi
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Maria López
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain
| | - Paula Toledano
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain
| | - Noureddine Sayem
- Service of Biology, Carthagene International Hospital of Tunisia, Tunis, Tunisia
| | | | - Hadda-Imene Ouzari
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Naouel Klibi
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Yolanda Sáenz
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain
| |
Collapse
|
8
|
Neve RL, Giedraitis E, Akbari MS, Cohen S, Phelan VV. Secondary metabolite profiling of Pseudomonas aeruginosa isolates reveals rare genomic traits. mSystems 2024; 9:e0033924. [PMID: 38619244 PMCID: PMC11097636 DOI: 10.1128/msystems.00339-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 03/20/2024] [Indexed: 04/16/2024] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous Gram-negative opportunistic pathogen with remarkable phylogenetic and phenotypic variabilities. In this work, we applied classical molecular networking analysis to secondary metabolite profiling data from seven Pseudomonas aeruginosa strains, including five clinical isolates from the lung secretions of people with cystic fibrosis (CF). We provide three vignettes illustrating how secondary metabolite profiling aids in the identification of rare genomics traits in P. aeruginosa. First, we describe the identification of a previously unreported class of acyl putrescines produced by isolate mFLRO1. Secondary analysis of publicly available metabolomics data revealed that acyl putrescines are produced by <5% of P. aeruginosa strains. Second, we show that isolate SH3A does not produce di-rhamnolipids. Whole-genome sequencing and comparative genomics revealed that SH3A cannot produce di-rhamnolipids because its genome belongs to clade 5 of the P. aeruginosa phylogenetic tree. Previous phylogenetic analysis of thousands of P. aeruginosa strains concluded that <1% of publicly available genome sequences contribute to this clade. Last, we show that isolate SH1B does not produce the phenazine pyocyanin or rhamnolipids because it has a one-base insertion frameshift mutation (678insC) in the gene rhlR, which disrupts rhl-driven quorum sensing. Secondary analysis of the tens of thousands of publicly available genomes in the National Center for Biotechnology Information (NCBI) and the Pseudomonas Genome Database revealed that this mutation was present in only four P. aeruginosa genomes. Taken together, this study highlights that secondary metabolite profiling combined with genomic analysis can identify rare genetic traits of P. aeruginosa isolates.IMPORTANCESecondary metabolite profiling of five Pseudomonas aeruginosa isolates from cystic fibrosis sputum captured three traits present in <1%-5% of publicly available data, pointing to how our current library of P. aeruginosa strains may not represent the diversity within this species or the genetic variance that occurs in the CF lung.
Collapse
Affiliation(s)
- Rachel L. Neve
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Emily Giedraitis
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Madeline S. Akbari
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Shirli Cohen
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Vanessa V. Phelan
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
9
|
Trottier MC, de Oliveira Pereira T, Groleau MC, Hoffman LR, Dandekar AA, Déziel E. The end of the reign of a "master regulator''? A defect in function of the LasR quorum sensing regulator is a common feature of Pseudomonas aeruginosa isolates. mBio 2024; 15:e0237623. [PMID: 38315035 PMCID: PMC10936206 DOI: 10.1128/mbio.02376-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
Pseudomonas aeruginosa, a bacterium causing infections in immunocompromised individuals, regulates several of its virulence functions using three interlinked quorum sensing (QS) systems (las, rhl, and pqs). Despite its presumed importance in regulating virulence, dysfunction of the las system regulator LasR occurs frequently in strains isolated from various environments, including clinical infections. This newfound abundance of LasR-defective strains calls into question existing hypotheses regarding their selection. Indeed, current assumptions concerning factors driving the emergence of LasR-deficient isolates and the role of LasR in the QS hierarchy must be reconsidered. Here, we propose that LasR is not the primary master regulator of QS in all P. aeruginosa genetic backgrounds, even though it remains ecologically significant. We also revisit and complement current knowledge on the ecology of LasR-dependent QS in P. aeruginosa, discuss the hypotheses explaining the putative adaptive benefits of selecting against LasR function, and consider the implications of this renewed understanding.
Collapse
Affiliation(s)
- Mylène C. Trottier
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Québec, Canada
| | - Thays de Oliveira Pereira
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Québec, Canada
| | - Marie-Christine Groleau
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Québec, Canada
| | - Lucas R. Hoffman
- Departments of Pediatrics and Microbiology, University of Washington, Seattle, Washington, USA
| | - Ajai A. Dandekar
- Departments of Medicine and Microbiology, University of Washington, Seattle, Washington, USA
| | - Eric Déziel
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Québec, Canada
| |
Collapse
|
10
|
Mellini M, Letizia M, Caruso L, Guiducci A, Meneghini C, Heeb S, Williams P, Cámara M, Visca P, Imperi F, Leoni L, Rampioni G. RsaL-driven negative regulation promotes heterogeneity in Pseudomonas aeruginosa quorum sensing. mBio 2023; 14:e0203923. [PMID: 37843294 PMCID: PMC10746200 DOI: 10.1128/mbio.02039-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/05/2023] [Indexed: 10/17/2023] Open
Abstract
IMPORTANCE Single-cell analyses can reveal that despite experiencing identical physico-chemical conditions, individual bacterial cells within a monoclonal population may exhibit variations in gene expression. Such phenotypic heterogeneity has been described for several aspects of bacterial physiology, including QS activation. This study demonstrates that the transition of non-quorate cells to the quorate state is a graded process that does not occur at a specific cell density and that subpopulations of non-quorate cells also persist at high cell density. Here, we provide a mechanistic explanation for this phenomenon, showing that a negative feedback regulatory loop integrated into the las system has a pivotal role in promoting cell-to-cell variation in the QS activation state and in limiting the transition of non-quorate cells to the quorate state in P. aeruginosa.
Collapse
Affiliation(s)
- Marta Mellini
- Department of Science, University Roma Tre, Rome, Italy
| | | | | | | | | | - Stephan Heeb
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Paul Williams
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Miguel Cámara
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Paolo Visca
- Department of Science, University Roma Tre, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Francesco Imperi
- Department of Science, University Roma Tre, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Livia Leoni
- Department of Science, University Roma Tre, Rome, Italy
| | - Giordano Rampioni
- Department of Science, University Roma Tre, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
11
|
Kostylev M, Smalley NE, Chao MH, Greenberg EP. Relationship of the transcription factor MexT to quorum sensing and virulence in Pseudomonas aeruginosa. J Bacteriol 2023; 205:e0022623. [PMID: 38032211 PMCID: PMC10729655 DOI: 10.1128/jb.00226-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023] Open
Abstract
IMPORTANCE Pseudomonas aeruginosa is an opportunistic bacterial pathogen. Many of its virulence genes are regulated by quorum sensing (QS), a form of cell-to-cell communication. P. aeruginosa QS consists of three interlinked circuits, LasI-R, Rhl-R, and Pseudomonas quinolone signal (PQS). Additionally, its QS system is interconnected with other regulatory networks, which help optimize gene expression under variable conditions. The numbers of genes regulated by QS differ substantially among P. aeruginosa strains. We show that a regulatory factor MexT, which is activated in response to certain antibiotics, downregulates the RhlI-R circuit and in turn measurably lowers virulence in a nematode worm infection model. Our findings help understand how existing and future therapeutic interventions for P. aeruginosa infections may impact this bacterium's gene regulation and physiology.
Collapse
Affiliation(s)
- Maxim Kostylev
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Nicole E. Smalley
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Man Hou Chao
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - E. Peter Greenberg
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
12
|
de Oliveira Pereira T, Groleau MC, Déziel E. Surface growth of Pseudomonas aeruginosa reveals a regulatory effect of 3-oxo-C 12-homoserine lactone in the absence of its cognate receptor, LasR. mBio 2023; 14:e0092223. [PMID: 37732738 PMCID: PMC10653899 DOI: 10.1128/mbio.00922-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/26/2023] [Indexed: 09/22/2023] Open
Abstract
IMPORTANCE The bacterium Pseudomonas aeruginosa colonizes and thrives in many environments, in which it is typically found in surface-associated polymicrobial communities known as biofilms. Adaptation to this social behavior is aided by quorum sensing (QS), an intercellular communication system pivotal in the expression of social traits. Regardless of its importance in QS regulation, the loss of function of the master regulator LasR is now considered a conserved adaptation of P. aeruginosa, irrespective of the origin of the strains. By investigating the QS circuitry in surface-grown cells, we found an accumulation of QS signal 3-oxo-C12-HSL in the absence of its cognate receptor and activator, LasR. The current understanding of the QS circuit, mostly based on planktonic growing cells, is challenged by investigating the QS circuitry of surface-grown cells. This provides a new perspective on the beneficial aspects that underline the frequency of LasR-deficient isolates.
Collapse
Affiliation(s)
- Thays de Oliveira Pereira
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Québec, Canada
| | - Marie-Christine Groleau
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Québec, Canada
| | - Eric Déziel
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Québec, Canada
| |
Collapse
|
13
|
Chichón G, López M, de Toro M, Ruiz-Roldán L, Rojo-Bezares B, Sáenz Y. Spread of Pseudomonas aeruginosa ST274 Clone in Different Niches: Resistome, Virulome, and Phylogenetic Relationship. Antibiotics (Basel) 2023; 12:1561. [PMID: 37998763 PMCID: PMC10668709 DOI: 10.3390/antibiotics12111561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/25/2023] Open
Abstract
Pseudomonas aeruginosa ST274 is an international epidemic high-risk clone, mostly associated with hospital settings and appears to colonize cystic fibrosis (CF) patients worldwide. To understand the relevant mechanisms for its success, the biological and genomic characteristics of 11 ST274-P. aeruginosa strains from clinical and non-clinical origins were analyzed. The extensively drug-resistant (XDR/DTR), the non-susceptible to at least one agent (modR), and the lasR-truncated (by ISPsp7) strains showed a chronic infection phenotype characterized by loss of serotype-specific antigenicity and low motility. Furthermore, the XDR/DTR and modR strains presented low pigment production and biofilm formation, which were very high in the lasR-truncated strain. Their whole genome sequences were compared with other 14 ST274-P. aeruginosa genomes available in the NCBI database, and certain associations have been primarily detected: blaOXA-486 and blaPDC-24 genes, serotype O:3, exoS+/exoU- genotype, group V of type IV pili, and pyoverdine locus class II. Other general molecular markers highlight the absence of vqsM and pldA/tleS genes and the presence of the same mutational pattern in genes involving two-component sensor-regulator systems PmrAB and CreBD, exotoxin A, quorum-sensing RhlI, beta-lactamase expression regulator AmpD, PBP1A, or FusA2 elongation factor G. The proportionated ST274-P. aeruginosa results could serve as the basis for more specific studies focused on better antibiotic stewardship and new therapeutic developments.
Collapse
Affiliation(s)
- Gabriela Chichón
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), C/Piqueras 98, 26006 Logroño, Spain
| | - María López
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), C/Piqueras 98, 26006 Logroño, Spain
| | - María de Toro
- Plataforma de Genómica y Bioinformática, Centro de Investigación Biomédica de La Rioja (CIBIR), C/Piqueras 98, 26006 Logroño, Spain
| | - Lidia Ruiz-Roldán
- Joint Research Unit “Infection and Public Health” FISABIO-University of Valencia, Institute for Integrative Systems Biology I2SysBio (CSIC-UV), Av. de Catalunya 21, 46020 Valencia, Spain
| | - Beatriz Rojo-Bezares
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), C/Piqueras 98, 26006 Logroño, Spain
| | - Yolanda Sáenz
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), C/Piqueras 98, 26006 Logroño, Spain
| |
Collapse
|
14
|
Quiroz-Morales SE, Muriel-Millán LF, Ponce-Soto GY, González-Valdez A, Castillo-Juárez I, Servín-González L, Soberón-Chávez G. Pseudomonas aeruginosa strains belonging to phylogroup 3 frequently exhibit an atypical quorum sensing response: the case of MAZ105, a tomato rhizosphere isolate. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001401. [PMID: 37819040 PMCID: PMC10634362 DOI: 10.1099/mic.0.001401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023]
Abstract
Pseudomonas aeruginosa is a widespread γ-proteobacterium and an important opportunistic pathogen. The genetically diverse P. aeruginosa phylogroup 3 strains are characterized by producing the pore-forming ExlA toxin and by their lack of a type III secretion system. However, like all strains of this species, they produce several virulence-associated traits, such as elastase, rhamnolipids and pyocyanin, which are regulated by quorum sensing (QS). The P. aeruginosa QS response comprises three systems (Las, Rhl and Pqs, respectively) that hierarchically regulate these virulence factors. The Pqs QS system is composed of the PqsR transcriptional factor, which, coupled with the alkyl-quinolones HHQ or PQS, activates the transcription of the pqsABCDE operon. The products of the first four genes of this operon produce HHQ, which is then converted to PQS by PqsH, while PqsE forms a complex with RhlR and stabilizes it. In this study we report that mutations affecting the Pqs system are particularly common in phylogroup 3 strains. To better understand QS in phylogroup 3 strains we studied strain MAZ105 isolated from tomato rhizosphere and showed that it contains mutations in the central QS transcriptional regulator, LasR, and in the gene encoding the PqsA enzyme involved in the synthesis of PQS. However, it can still produce QS-regulated virulence factors and is virulent in Galleria mellonella and mildly pathogenic in the mouse abscess/necrosis model; our results show that this may be due to the expression of pqsE from a different PqsR-independent promoter than the pqsA promoter. Our results indicate that using anti-virulence therapy based on targeting the PQS system will not be effective against infections by P. aeruginosa phylogroup 3 strains.
Collapse
Affiliation(s)
- Sara E. Quiroz-Morales
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apdo, Postal 70228, C. P. 04510, CDMX, Mexico
| | - Luis Felipe Muriel-Millán
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos CP 62210, Mexico
| | - Gabriel Y. Ponce-Soto
- Microbial Paleogenomics Unit, Department of Genomes and Genetics, Pasteur Institute, 75015 Paris, France
| | - Abigail González-Valdez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apdo, Postal 70228, C. P. 04510, CDMX, Mexico
| | - Israel Castillo-Juárez
- Laboratorio de Investigación y Aplicación de Fitoquímicos Bioactivos, Colegio de Postgraduados, 56230, Campus Montecillo, Texcoco, Mexico
| | - Luis Servín-González
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apdo, Postal 70228, C. P. 04510, CDMX, Mexico
| | - Gloria Soberón-Chávez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apdo, Postal 70228, C. P. 04510, CDMX, Mexico
| |
Collapse
|
15
|
García-Diéguez L, Diaz-Tang G, Marin Meneses E, Cruise V, Barraza I, Craddock TJ, Smith RP. Periodically disturbing biofilms reduces expression of quorum sensing-regulated virulence factors in Pseudomonas aeruginosa. iScience 2023; 26:106843. [PMID: 37255658 PMCID: PMC10225924 DOI: 10.1016/j.isci.2023.106843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 06/01/2023] Open
Abstract
Pseudomonas aeruginosa uses quorum sensing to regulate the expression of virulence factors. In static environments, spatial structures, such as biofilms, can increase the expression of these virulence factors. However, in natural settings, biofilms are exposed to physical forces that disrupt spatial structure, which may affect the expression of virulence factors regulated by quorum sensing. We show that periodically disturbing biofilms composed of P. aeruginosa using a physical force reduces the expression of quorum sensing-regulated virulence factors. At an intermediate disturbance frequency, the expression of virulence factors in the las, rhl, and pqs regulons is reduced. Mathematical modeling suggests that perturbation of the pqsR receptor is critical for this reduction. Removing the lasR receptor enhances the reduction in the expression of virulence factors as a result of disturbance. Our results allow identification of environments where virulence is reduced and implicate the lasR receptor as having a buffering role against disturbance.
Collapse
Affiliation(s)
- Laura García-Diéguez
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale FL 33314, USA
| | - Gabriela Diaz-Tang
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale FL 33314, USA
| | - Estefania Marin Meneses
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale FL 33314, USA
| | - Vanessa Cruise
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale FL 33314, USA
| | - Ivana Barraza
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale FL 33314, USA
| | - Travis J.A. Craddock
- Clinical Systems Biology Group, Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale FL 33314, USA
- Department of Psychology & Neuroscience, College of Psychology, Nova Southeastern University, Fort Lauderdale FL 33314, USA
- Department of Computer Science, College of Engineering and Computing, Nova Southeastern University, Fort Lauderdale FL 33314, USA
- Department of Clinical Immunology, College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale FL 33314, USA
| | - Robert P. Smith
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale FL 33314, USA
- Cell Therapy Institute, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale FL 33314, USA
| |
Collapse
|
16
|
Jean-Pierre F, Hampton TH, Schultz D, Hogan DA, Groleau MC, Déziel E, O'Toole GA. Community composition shapes microbial-specific phenotypes in a cystic fibrosis polymicrobial model system. eLife 2023; 12:81604. [PMID: 36661299 PMCID: PMC9897730 DOI: 10.7554/elife.81604] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 01/19/2023] [Indexed: 01/21/2023] Open
Abstract
Interspecies interactions can drive the emergence of unexpected microbial phenotypes that are not observed when studying monocultures. The cystic fibrosis (CF) lung consists of a complex environment where microbes, living as polymicrobial biofilm-like communities, are associated with negative clinical outcomes for persons with CF (pwCF). However, the current lack of in vitro models integrating the microbial diversity observed in the CF airway hampers our understanding of why polymicrobial communities are recalcitrant to therapy in this disease. Here, integrating computational approaches informed by clinical data, we built a mixed community of clinical relevance to the CF lung composed of Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus sanguinis, and Prevotella melaninogenica. We developed and validated this model biofilm community with multiple isolates of these four genera. When challenged with tobramycin, a front-line antimicrobial used to treat pwCF, the microorganisms in the polymicrobial community show altered sensitivity to this antibiotic compared to monospecies biofilms. We observed that wild-type P. aeruginosa is sensitized to tobramycin in a mixed community versus monoculture, and this observation holds across a range of community relative abundances. We also report that LasR loss-of-function, a variant frequently detected in the CF airway, drives tolerance of P. aeruginosa to tobramycin specifically in the mixed community. Our data suggest that the molecular basis of this community-specific recalcitrance to tobramycin for the P. aeruginosa lasR mutant is increased production of phenazines. Our work supports the importance of studying a clinically relevant model of polymicrobial biofilms to understand community-specific traits relevant to infections.
Collapse
Affiliation(s)
- Fabrice Jean-Pierre
- Department of Microbiology and Immunology, Geisel School of Medicine at DartmouthHanoverUnited States
| | - Thomas H Hampton
- Department of Microbiology and Immunology, Geisel School of Medicine at DartmouthHanoverUnited States
| | - Daniel Schultz
- Department of Microbiology and Immunology, Geisel School of Medicine at DartmouthHanoverUnited States
| | - Deborah A Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at DartmouthHanoverUnited States
| | - Marie-Christine Groleau
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche ScientifiqueLavalCanada
| | - Eric Déziel
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche ScientifiqueLavalCanada
| | - George A O'Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at DartmouthHanoverUnited States
| |
Collapse
|
17
|
Borgert SR, Henke S, Witzgall F, Schmelz S, Zur Lage S, Hotop SK, Stephen S, Lübken D, Krüger J, Gomez NO, van Ham M, Jänsch L, Kalesse M, Pich A, Brönstrup M, Häussler S, Blankenfeldt W. Moonlighting chaperone activity of the enzyme PqsE contributes to RhlR-controlled virulence of Pseudomonas aeruginosa. Nat Commun 2022; 13:7402. [PMID: 36456567 PMCID: PMC9715718 DOI: 10.1038/s41467-022-35030-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022] Open
Abstract
Pseudomonas aeruginosa is a major cause of nosocomial infections and also leads to severe exacerbations in cystic fibrosis or chronic obstructive pulmonary disease. Three intertwined quorum sensing systems control virulence of P. aeruginosa, with the rhl circuit playing the leading role in late and chronic infections. The majority of traits controlled by rhl transcription factor RhlR depend on PqsE, a dispensable thioesterase in Pseudomonas Quinolone Signal (PQS) biosynthesis that interferes with RhlR through an enigmatic mechanism likely involving direct interaction of both proteins. Here we show that PqsE and RhlR form a 2:2 protein complex that, together with RhlR agonist N-butanoyl-L-homoserine lactone (C4-HSL), solubilizes RhlR and thereby renders the otherwise insoluble transcription factor active. We determine crystal structures of the complex and identify residues essential for the interaction. To corroborate the chaperone-like activity of PqsE, we design stability-optimized variants of RhlR that bypass the need for C4-HSL and PqsE in activating PqsE/RhlR-controlled processes of P. aeruginosa. Together, our data provide insight into the unique regulatory role of PqsE and lay groundwork for developing new P. aeruginosa-specific pharmaceuticals.
Collapse
Affiliation(s)
- Sebastian Roman Borgert
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Steffi Henke
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Florian Witzgall
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Stefan Schmelz
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Susanne Zur Lage
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Sven-Kevin Hotop
- Department Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Steffi Stephen
- Department Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Dennis Lübken
- Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1B, 30167, Hannover, Germany
| | - Jonas Krüger
- Department Molecular Bacteriology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Nicolas Oswaldo Gomez
- Department Molecular Bacteriology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Marco van Ham
- Cellular Proteomics, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Lothar Jänsch
- Cellular Proteomics, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Markus Kalesse
- Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1B, 30167, Hannover, Germany
| | - Andreas Pich
- Institute for Toxicology, Core Facility Proteomics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Mark Brönstrup
- Department Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Susanne Häussler
- Department Molecular Bacteriology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Wulf Blankenfeldt
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany.
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany.
| |
Collapse
|
18
|
Jayakumar P, Figueiredo ART, Kümmerli R. Evolution of Quorum Sensing in Pseudomonas aeruginosa Can Occur via Loss of Function and Regulon Modulation. mSystems 2022; 7:e0035422. [PMID: 36190124 PMCID: PMC9600717 DOI: 10.1128/msystems.00354-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/12/2022] [Indexed: 12/24/2022] Open
Abstract
Pseudomonas aeruginosa populations evolving in cystic fibrosis lungs, animal hosts, natural environments and in vitro undergo extensive genetic adaption and diversification. A common mutational target is the quorum sensing (QS) system, a three-unit regulatory system that controls the expression of virulence factors and secreted public goods. Three evolutionary scenarios have been advocated to explain selection for QS mutants: (i) disuse of the regulon, (ii) cheating through the exploitation of public goods, or (ii) modulation of the QS regulon. Here, we examine these scenarios by studying a set of 61 QS mutants from an experimental evolution study. We observed nonsynonymous mutations in all three QS systems: Las, Rhl, and Pseudomonas Quinolone Signal (PQS). The majority of the Las mutants had large deletions of the Las regulon, resulting in loss of QS function and the inability to produce QS-regulated traits, thus supporting the first or second scenarios. Conversely, phenotypic and gene expression analyses of Rhl mutants support network modulation (third scenario), as these mutants overexpressed the Las and Rhl receptors and showed an altered QS-regulated trait production profile. PQS mutants also showed patterns of regulon modulation leading to strain diversification and phenotypic tradeoffs, where the upregulation of certain QS traits is associated with the downregulation of others. Overall, our results indicate that mutations in the different QS systems lead to diverging effects on the QS trait profile in P. aeruginosa populations. These mutations might not only affect the plasticity and diversity of evolved populations but could also impact bacterial fitness and virulence in infections. IMPORTANCE Pseudomonas aeruginosa uses quorum sensing (QS), a three-unit multilayered network, to coordinate expression of traits required for growth and virulence in the context of infections. Despite its importance for bacterial fitness, the QS regulon appears to be a common mutational target during long-term adaptation of P. aeruginosa in the host, natural environments, and experimental evolutions. This raises questions of why such an important regulatory system is under selection and how mutations change the profile of QS-regulated traits. Here, we examine a set of 61 experimentally evolved QS mutants to address these questions. We found that mutations involving the master regulator, LasR, resulted in an almost complete breakdown of QS, while mutations in RhlR and PqsR resulted in modulations of the regulon, where both the regulon structure and the QS-regulated trait profile changed. Our work reveals that natural selection drives diversification in QS activity patterns in evolving populations.
Collapse
Affiliation(s)
- Priyanikha Jayakumar
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Alexandre R. T. Figueiredo
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Rolf Kümmerli
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
19
|
Bernabè G, Marzaro G, Di Pietra G, Otero A, Bellato M, Pauletto A, Scarpa M, Sut S, Chilin A, Dall’Acqua S, Brun P, Castagliuolo I. A novel phenolic derivative inhibits AHL-dependent quorum sensing signaling in Pseudomonas aeruginosa. Front Pharmacol 2022; 13:996871. [PMID: 36204236 PMCID: PMC9531014 DOI: 10.3389/fphar.2022.996871] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing antibiotic resistance and the decline in the pharmaceutical industry’s investments have amplified the need for novel treatments for multidrug-resistant bacteria. Quorum sensing (QS) inhibitors reduce pathogens’ virulence without selective pressure on bacteria and provide an alternative to conventional antibiotic-based therapies. P. aeruginosa uses complex QS signaling to control virulence and biofilm formation. We aimed to identify inhibitors of P. aeruginosa QS acting on acyl-homoserine lactones (AHL)-mediated circuits. Bioluminescence and qRT-PCR assays were employed to screen a library of 81 small phenolic derivatives to reduce AHL-dependent signaling. We identified GM-50 as the most active compound inhibiting the expression of AHL-regulated genes but devoid of cytotoxic activity in human epithelial cells and biocidal effects on bacteria. GM-50 reduces virulence factors such as rhamnolipids, pyocyanin, elastase secretion, and swarming motility in P. aeruginosa PAO1 laboratory strain. By molecular docking, we provide evidence that GM-50 highly interacts with RhlR. GM-50 significantly improved aztreonam-mediated biofilm disruption. Moreover, GM-50 prevents adhesion of PAO1 and inflammatory damage in the human A549 cell line and protects Galleria mellonella from PAO1-mediated killing. GM-50 significantly reduces virulence factors in 20 P. aeruginosa clinical isolates from patients with respiratory tract infections. In conclusion, GM-50 inhibits AHL-signaling, reduces virulence factors, enhances the anti-biofilm activity of aztreonam, and protects G. mellonella larvae from damage induced by P. aeruginosa. Since GM-50 is active on clinical strains, it represents a starting point for identifying and developing new phenolic derivatives acting as QS-inhibitors in P. aeruginosa infections.
Collapse
Affiliation(s)
- Giulia Bernabè
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Giovanni Marzaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | | | - Ana Otero
- Departamento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Massimo Bellato
- Department of Information Engineering, University of Padua, Padua, Italy
| | - Anthony Pauletto
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Melania Scarpa
- Laboratory of Advanced Translational Research, Veneto Institute of Oncology IOV—IRCCS, Padua, Italy
| | - Stefania Sut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Adriana Chilin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Stefano Dall’Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Paola Brun
- Department of Molecular Medicine, University of Padua, Padua, Italy
- *Correspondence: Paola Brun,
| | | |
Collapse
|
20
|
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen that usually causes difficult-to-treat infections due to its low intrinsic antibiotic susceptibility and outstanding capacity for becoming resistant to antibiotics. In addition, it has a remarkable metabolic versatility, being able to grow in different habitats, from natural niches to different and changing inpatient environments. Study of the environmental conditions that shape genetic and phenotypic changes of P. aeruginosa toward antibiotic resistance supposes a novelty, since experimental evolution assays are usually performed with well-defined antibiotics in regular laboratory growth media. Therefore, in this work we address the extent to which the nutrients’ availability may constrain the evolution of antibiotic resistance. We determined that P. aeruginosa genetic trajectories toward resistance to tobramycin, ceftazidime, and ceftazidime-avibactam are different when evolving in laboratory rich medium, urine, or synthetic sputum. Furthermore, our study, linking genotype with phenotype, showed a clear impact of each analyzed environment on both the fitness and resistance level associated with particular resistance mutations. This indicates that the phenotype associated with specific resistance mutations is variable and dependent on the bacterial metabolic state in each particular habitat. Our results support that the design of evolution-based strategies to tackle P. aeruginosa infections should be based on robust patterns of evolution identified within each particular infection and body location. IMPORTANCE Predicting evolution toward antibiotic resistance (AR) and its associated trade-offs, such as collateral sensitivity, is important to design evolution-based strategies to tackle AR. However, the effect of nutrients' availability on such evolution, particularly those that can be found under in vivo infection conditions, has been barely addressed. We analyzed the evolutionary patterns of P. aeruginosa in the presence of antibiotics in different media, including urine and synthetic sputum, whose compositions are similar to the ones in infections, finding that AR evolution differs, depending on growth conditions. Furthermore, the representative mutants isolated under each condition tested render different AR levels and fitness costs, depending on nutrients’ availability, supporting the idea that environmental constraints shape the phenotypes associated with specific AR mutations. Consequently, the selection of AR mutations that render similar phenotypes is environment dependent. The analysis of evolution patterns toward AR requires studying growth conditions mimicking those that bacteria face during in vivo evolution.
Collapse
|
21
|
Collalto D, Giallonardi G, Fortuna A, Meneghini C, Fiscarelli E, Visca P, Imperi F, Rampioni G, Leoni L. In vitro Activity of Antivirulence Drugs Targeting the las or pqs Quorum Sensing Against Cystic Fibrosis Pseudomonas aeruginosa Isolates. Front Microbiol 2022; 13:845231. [PMID: 35547141 PMCID: PMC9083110 DOI: 10.3389/fmicb.2022.845231] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/16/2022] [Indexed: 01/24/2023] Open
Abstract
The chronic lung infection caused by Pseudomonas aeruginosa is a major cause of morbidity and mortality in cystic fibrosis (CF) patients. Antivirulence drugs targeting P. aeruginosa quorum sensing (QS) systems are intensively studied as antibiotics substitutes or adjuvants. Previous studies, carried out in non-CF P. aeruginosa reference strains, showed that the old drugs niclosamide and clofoctol could be successfully repurposed as antivirulence drugs targeting the las and pqs QS systems, respectively. However, frequent emergence of QS-defective mutants in the CF lung undermines the use of QS inhibitors in CF therapy. Here, QS signal production and susceptibility to niclosamide and clofoctol have been investigated in 100 P. aeruginosa CF isolates, with the aim of broadening current knowledge on the potential of anti-QS compounds in CF therapy. Results showed that 85, 78, and 69% of the CF isolates from our collection were proficient for the pqs, rhl, and las QS systems, respectively. The ability of both niclosamide and clofoctol to inhibit QS and virulence in vitro was highly variable and strain-dependent. Niclosamide showed an overall low range of activity and its negative effect on las signal production did not correlate with a decreased production of virulence factors. On the other hand, clofoctol displayed a broader QS inhibitory effect in CF isolates, with consequent reduction of the pqs-controlled virulence factor pyocyanin. Overall, this study highlights the importance of testing new antivirulence drugs against large panels of P. aeruginosa CF clinical isolates before proceeding to further pre-clinical studies and corroborates previous evidence that strains naturally resistant to QS inhibitors occur among CF isolates. However, it is also shown that resistance to pqs inhibitors is less frequent than resistance to las inhibitors, thus supporting the development of pqs inhibitors for antivirulence therapy in CF.
Collapse
Affiliation(s)
| | - Giulia Giallonardi
- Department of Science, Roma Tre University, Rome, Italy.,Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | | | | | - Ersilia Fiscarelli
- Laboratory of Cystic Fibrosis Microbiology, Diagnostic Medicine and Laboratory, Bambino Gesú Hospital, Rome, Italy
| | - Paolo Visca
- Department of Science, Roma Tre University, Rome, Italy.,Santa Lucia Foundation (IRCCS), Rome, Italy
| | - Francesco Imperi
- Department of Science, Roma Tre University, Rome, Italy.,Santa Lucia Foundation (IRCCS), Rome, Italy
| | - Giordano Rampioni
- Department of Science, Roma Tre University, Rome, Italy.,Santa Lucia Foundation (IRCCS), Rome, Italy
| | - Livia Leoni
- Department of Science, Roma Tre University, Rome, Italy
| |
Collapse
|
22
|
Mould DL, Stevanovic M, Ashare A, Schultz D, Hogan DA. Metabolic basis for the evolution of a common pathogenic Pseudomonas aeruginosa variant. eLife 2022; 11:e76555. [PMID: 35502894 PMCID: PMC9224983 DOI: 10.7554/elife.76555] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/24/2022] [Indexed: 11/21/2022] Open
Abstract
Microbes frequently evolve in reproducible ways. Here, we show that differences in specific metabolic regulation rather than inter-strain interactions explain the frequent presence of lasR loss-of-function (LOF) mutations in the bacterial pathogen Pseudomonas aeruginosa. While LasR contributes to virulence through its role in quorum sensing, lasR mutants have been associated with more severe disease. A model based on the intrinsic growth kinetics for a wild type strain and its LasR- derivative, in combination with an experimental evolution based genetic screen and further genetics analyses, indicated that differences in metabolism were sufficient to explain the rise of these common mutant types. The evolution of LasR- lineages in laboratory and clinical isolates depended on activity of the two-component system CbrAB, which modulates substrate prioritization through the catabolite repression control pathway. LasR- lineages frequently arise in cystic fibrosis lung infections and their detection correlates with disease severity. Our analysis of bronchoalveolar lavage fluid metabolomes identified compounds that negatively correlate with lung function, and we show that these compounds support enhanced growth of LasR- cells in a CbrB-controlled manner. We propose that in vivo metabolomes contribute to pathogen evolution, which may influence the progression of disease and its treatment.
Collapse
Affiliation(s)
- Dallas L Mould
- Department of Microbiology and Immunology, Geisel School of Medicine at DartmouthHanoverUnited States
| | - Mirjana Stevanovic
- Department of Microbiology and Immunology, Geisel School of Medicine at DartmouthHanoverUnited States
| | - Alix Ashare
- Department of Microbiology and Immunology, Geisel School of Medicine at DartmouthHanoverUnited States
- Department of Medicine, Dartmouth-Hitchock Medical CenterLebanonUnited States
| | - Daniel Schultz
- Department of Microbiology and Immunology, Geisel School of Medicine at DartmouthHanoverUnited States
| | - Deborah A Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at DartmouthHanoverUnited States
| |
Collapse
|
23
|
Genetic and Transcriptomic Characteristics of RhlR-Dependent Quorum Sensing in Cystic Fibrosis Isolates of Pseudomonas aeruginosa. mSystems 2022; 7:e0011322. [PMID: 35471121 PMCID: PMC9040856 DOI: 10.1128/msystems.00113-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In people with the genetic disease cystic fibrosis (CF), bacterial infections involving the opportunistic pathogen Pseudomonas aeruginosa are a significant cause of morbidity and mortality. P. aeruginosa uses a cell-cell signaling mechanism called quorum sensing (QS) to regulate many virulence functions. One type of QS consists of acyl-homoserine lactone (AHL) signals produced by LuxI-type signal synthases, which bind a cognate LuxR-type transcription factor. In laboratory strains and conditions, P. aeruginosa employs two AHL synthase/receptor pairs arranged in a hierarchy, with the LasI/R system controlling the RhlI/R system and many downstream virulence factors. However, P. aeruginosa isolates with inactivating mutations in lasR are frequently isolated from chronic CF infections. We and others have shown that these isolates frequently use RhlR as the primary QS regulator. RhlR is rarely mutated in CF and environmental settings. We were interested in determining whether there were reproducible genetic characteristics of these isolates and whether there was a central group of genes regulated by RhlR in all isolates. We examined five isolates and found signatures of adaptation common to CF isolates. We did not identify a common genetic mechanism to explain the switch from Las- to Rhl-dominated QS. We describe a core RhlR regulon encompassing 20 genes encoding 7 products. These results suggest a key group of QS-regulated factors important for pathogenesis of chronic infections and position RhlR as a target for anti-QS therapeutics. Our work underscores the need to sample a diversity of isolates to understand QS beyond what has been described in laboratory strains. IMPORTANCE The bacterial pathogen Pseudomonas aeruginosa can cause chronic infections that are resistant to treatment in immunocompromised individuals. Over the course of these infections, the original infecting organism adapts to the host environment. P. aeruginosa uses a cell-cell signaling mechanism termed quorum sensing (QS) to regulate virulence factors and cooperative behaviors. The key QS regulator in laboratory strains, LasR, is frequently mutated in infection-adapted isolates, leaving another transcription factor, RhlR, in control of QS gene regulation. Such isolates provide an opportunity to understand Rhl-QS regulation without the confounding effects of LasR, as well as the scope of QS in the context of within-host evolution. We show that a core group of virulence genes is regulated by RhlR in a variety of infection-adapted LasR-null isolates. Our results reveal commonalities in infection-adapted QS gene regulation and key QS factors that may serve as therapeutic targets in the future.
Collapse
|
24
|
Abstract
In the opportunistic pathogenic bacterium Pseudomonas aeruginosa acyl-homoserine lactone quorum sensing (QS) can activate expression of dozens to hundreds of genes depending on the strain under investigation. Many QS-activated genes code for extracellular products. P. aeruginosa has become a model for studies of cell-cell communication and coordination of cooperative activities, which result from production of extracellular products. We hypothesized that strain variation in the size of the QS regulon might reflect the environmental history of an isolate. We tested the hypothesis by performing long-term growth experiments with the well-studied strain PAO1, which has a relatively large QS regulon, under conditions where only limited QS-controlled functions are required. We grew P. aeruginosa for about 1000 generations in a condition where expression of QS-activated genes was required, and emergence of QS mutants was constrained and compared the QS regulons of populations after 35 generations to those after about 1000 generations in two independent lineages by using quorum quenching and RNA-seq technology. In one lineage the number of QS-activated genes identified was reduced by over 60% and in the other by about 30% in 1000-generation populations compared to 35-generation populations. Our results provide insight about the variations in the number of QS-activated genes reported for different P. aeruginosa environmental and clinical isolates and, about how environmental conditions might influence social evolution. IMPORTANCE Pseudomonas aeruginosa uses quorum sensing (QS) to activate expression of dozens of genes (the QS regulon). Because there is strain-to-strain variation in the size and content of the QS regulon, we asked how the regulon might evolve during long-term P. aeruginosa growth when cells require some but not all the functions activated by QS. We demonstrate that the P. aeruginosa QS-regulon can undergo a reductive adaptation in response to continuous QS-dependent growth. Our results provide insights into why there is strain-to-strain variability in the size and content of the P. aeruginosa QS regulon.
Collapse
|
25
|
Recent Advance in Small Molecules Targeting RhlR of Pseudomonas aeruginosa. Antibiotics (Basel) 2022; 11:antibiotics11020274. [PMID: 35203876 PMCID: PMC8868144 DOI: 10.3390/antibiotics11020274] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/02/2022] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic gram-negative pathogen that can cause various infections, particularly in patients with compromised host defenses. P. aeruginosa forms biofilms and produces virulence factors through quorum sensing (QS) network, resulting in resistance to antibiotics. RhlI/RhlR, one of key QS systems in P. aeruginosa, is considered an attractive target for inhibiting biofilm formation and attenuating virulence factors. Several recent studies examined small molecules targeting the RhlI/RhlR system and their in vitro and in vivo biological activities. In this review, RhlR-targeted modulators, including agonists and antagonists, are discussed with particular focus on structure-activity relationship studies and outlook for next-generation anti-biofilm agents.
Collapse
|