1
|
Mitchell TM, Burdick Sanchez NC, Carroll JA, Broadway PR, Legako JF, Bowen BM, Petry AL. Prenatal lipopolysaccharide stimulation modulates gastrointestinal immunity and oxidative status in weaned pigs. Am J Physiol Gastrointest Liver Physiol 2025; 328:G197-G205. [PMID: 39853237 DOI: 10.1152/ajpgi.00268.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/21/2024] [Accepted: 01/09/2025] [Indexed: 01/26/2025]
Abstract
Gastrointestinal immunity and antioxidant defenses may be bolstered in young animals through prenatal immune stimulation (PIS), but this is largely uninvestigated in swine. This study tested the hypothesis that PIS could regulate offspring's gastrointestinal immune response and oxidative stress profile. To this end, a PIS model was utilized in sows, delivering low-dose lipopolysaccharide (LPS) during the final third of gestation to target the developing immune system. On day 78 ± 1.8 of gestation, 14 Camborough sows (parity = 2.6 ± 1.4) received either saline (Control, CON) or LPS from Escherichia coli O111:B4 (2.5 µg/kg of body wt). A subset of 34 weaned barrows (n = 17 CON, PIS), weaned at 21 ± 1.3 days, were anesthetized for subcutaneous temperature loggers and jugular catheter placement. Following recovery, all pigs received an intravenous injection of LPS (10 µg/kg·body wt) from E. coli O111:B4. Our findings demonstrate that PIS enhances the gut immune response by upregulating key inflammatory cytokines, indicative of a proinflammatory profile. Consistently across the jejunum and ileum, stem cell factor was modulated with heightened expression in PIS than CON (P ≤ 0.05). In the ileum alone, PIS exhibited heightened expression of proinflammatory cytokines and chemokines, including TNFα, IL-6, IL-1β, and CCL3L1, compared with CON (P ≤ 0.05). Exposure to PIS resulted in reduced systemic total antioxidant capacity at hours 2 and 4 postchallenge (P = 0.004). Piglets exposed to PIS had decreased jejunal tissue malondialdehyde concentrations (P = 0.049). Together, these data indicate that exposure to PIS alters the inflammatory profile of the gastrointestinal immune response and oxidative status in weaned pigs.NEW & NOTEWORTHY These studies represent novel investigations into the influence of prenatal immune stimulation (PIS) in swine on the gastrointestinal immune response and oxidative status of offspring following subsequent immune challenge. Notable alterations were observed in gut protein biomarkers, particularly the upregulation of proinflammatory cytokines TNFα, IL-6, and IL-1β in PIS-exposed pigs, but has variable effects on oxidative status. Altered intestinal immune development may contribute to an increased risk for inflammatory disease associated with prenatal immune stimulation.
Collapse
Affiliation(s)
- Ty M Mitchell
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, United States
| | - Nicole C Burdick Sanchez
- Livestock Issues Research Unit, Agriculture Research Service, United States Department of Agriculture, Lubbock, Texas, United States
| | - Jeff A Carroll
- Livestock Issues Research Unit, Agriculture Research Service, United States Department of Agriculture, Lubbock, Texas, United States
| | - Paul R Broadway
- Livestock Issues Research Unit, Agriculture Research Service, United States Department of Agriculture, Lubbock, Texas, United States
| | - Jerrad F Legako
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, Texas, United States
| | - Brooke M Bowen
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, Texas, United States
| | - Amy L Petry
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, United States
| |
Collapse
|
2
|
Romero M, Heras-Molina A, Muñoz M, Calvo L, Morales JI, Rodríguez AI, Escudero R, López-Bote C, Óvilo C, Olivares Á. Short- But Not Long-Term Effects of Creep Feeding Provided to Suckling Piglets. Animals (Basel) 2025; 15:253. [PMID: 39858254 PMCID: PMC11758645 DOI: 10.3390/ani15020253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/03/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Fifty-eight litters (16 from primiparous gilts and 42 from multiparous sows) were used, with a total number of 750 piglets involved in the study. Birth weight was stratified into three groups: low (<1.02 kg; LBW), normal (1.02-1.62 kg; NBW), and high (>1.62 kg; HBW). A creep feeding diet was offered to piglets in a creep feeder in 29 litters from day 7 until their weaning. Piglet mortality was recorded daily. Traceability was ensured up to the point of carcass splitting and subsequent meat analysis. Each carcass was eviscerated and weighed individually. Sixty-nine piglets were selected for the microbiome analysis (35 from the control group and 34 from the creep feeding group). Feces samples from the rectum were obtained at three time points (three days prior weaning, a week after weaning, and before the slaughtering of the pigs). Mortality during lactation was influenced by birth weight, with LBW piglets exhibiting a six-fold higher mortality rate than HBW. Creep feeding did not impact piglet mortality. Heavier piglets demonstrated greater weight gain when subjected to creep feeding, while the growth potential of lighter piglets was reduced. Variation in creep feeding consumption based on birth weight also affected microbiome composition, with high-birth-weight piglets displaying higher alpha diversity than low- and normal-birth-weight piglets seven days after lactation. Alpha diversity is indicative of gut health, with higher values suggesting greater stability and adaptability to different feed sources. In conclusion, the immediate impacts of creep feeding appear to be most prominent during lactation and potentially early postweaning. These short-term effects are modulated by birth weight, with HBW piglets demonstrating the greatest benefits from the implementation of creep-feeding practices.
Collapse
Affiliation(s)
- María Romero
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain; (M.R.); (A.H.-M.); (R.E.); (C.L.-B.)
- COPISO, Avda. de Valladolid, 105, 42005 Castilla y León, Spain;
| | - Ana Heras-Molina
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain; (M.R.); (A.H.-M.); (R.E.); (C.L.-B.)
| | - María Muñoz
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA, CSIC, Ctra Coruña km 7.5, 28040 Madrid, Spain; (M.M.); (C.Ó.)
| | - Luis Calvo
- Incarlopsa, Ctra. N-400, Km. 95.4, 16400 Castilla La Mancha, Spain; (L.C.); (A.I.R.)
| | | | - Ana Isabel Rodríguez
- Incarlopsa, Ctra. N-400, Km. 95.4, 16400 Castilla La Mancha, Spain; (L.C.); (A.I.R.)
| | - Rosa Escudero
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain; (M.R.); (A.H.-M.); (R.E.); (C.L.-B.)
| | - Clemente López-Bote
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain; (M.R.); (A.H.-M.); (R.E.); (C.L.-B.)
| | - Cristina Óvilo
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA, CSIC, Ctra Coruña km 7.5, 28040 Madrid, Spain; (M.M.); (C.Ó.)
| | - Álvaro Olivares
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain; (M.R.); (A.H.-M.); (R.E.); (C.L.-B.)
| |
Collapse
|
3
|
Daiy K, Wiley K, Allen J, Bailey MT, Dettmer AM. Associations among rearing environment and the infant gut microbiome with early-life neurodevelopment and cognitive development in a nonhuman primate model ( Macaca mulatta). J Dev Orig Health Dis 2025; 16:e1. [PMID: 39781670 PMCID: PMC11731890 DOI: 10.1017/s2040174424000400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Early gut microbiome development may impact brain and behavioral development. Using a nonhuman primate model (Macaca mulatta), we investigated the association between social environments and the gut microbiome on infant neurodevelopment and cognitive function. Infant rhesus monkeys (n = 33) were either mother-peer-reared (MPR) or nursery-reared (NR). Neurodevelopmental outcomes, namely emotional responsivity, visual orientation, and motor maturity, were assessed with the Primate Neonatal Neurobehavioral Assessment (PNNA) at 14-30 days. Cognitive development was assessed through tasks evaluating infant reward association, cognitive flexibility, and impulsivity at 6-8 months. The fecal microbiome was quantified from rectal swabs via 16S rRNA sequencing. Factor analysis was used to identify "co-abundance factors" describing patterns of microbial composition. We used multiple linear regressions with AIC Model Selection and differential abundance analysis (MaAsLin2) to evaluate relationships between co-abundance factors, microbiome diversity, and neuro-/cognitive development outcomes. At 30 days of age, a gut microbiome co-abundance factor, or pattern, with high Prevotella and Lactobacillus (β = -0.88, p = 0.04, AIC Weight = 68%) and gut microbiome alpha diversity as measured by Shannon diversity (β = -1.33, p = 0.02, AIC Weight = 80%) were both negatively associated with infant emotional responsivity. At 30 days of age, being NR was also associated with lower emotional responsivity (Factor 1 model: β = -3.13, p < 0.01; Shannon diversity model: β = -3.77, p < 0.01). The infant gut microbiome, along with early-rearing environments, may shape domains of neuro-/cognitive development related to temperament.
Collapse
Affiliation(s)
- Katherine Daiy
- Department of Anthropology, Yale University, New Haven, CT, USA
| | - Kyle Wiley
- Department of Sociology and Anthropology, University of Texas at El Paso, El Paso, TX, USA
| | - Jacob Allen
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Michael T Bailey
- The Research Institute at Nationwide Children's Hospital, Center for Microbial Pathogenesis, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Amanda M Dettmer
- Yale School of Medicine, Yale Child Study Center, New Haven, CT, USA
| |
Collapse
|
4
|
Swanson KS, Allenspach K, Amos G, Auchtung TA, Bassett SA, Bjørnvad CR, Everaert N, Martín-Orúe SM, Ricke SC, Ryan EP, Fahey GC. Use of biotics in animals: impact on nutrition, health, and food production. J Anim Sci 2025; 103:skaf061. [PMID: 40036559 PMCID: PMC12010704 DOI: 10.1093/jas/skaf061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/26/2025] [Indexed: 03/06/2025] Open
Abstract
Probiotics, prebiotics, and other biotic substances are not only effective ways to promote a healthy gastrointestinal tract, an effective immune system, and the overall health of humans, but also in agricultural and companion animals. Because key differences exist in regard to gastrointestinal tract anatomy and physiology, dietary management and feeding strategy, and disease susceptibility, however, biotic types and amounts often differ according to host species and life stage. Despite these differences, the literature demonstrates the value of biotics in agricultural and companion animal species. While high variability in responsiveness and efficacy has been reported, biotic substances may be effectively used to improve digestion, reduce morbidity, increase growth rate and/or efficiency in agricultural animals and promote gastrointestinal health and immune response in companion animals. As the oversight of antibiotic use intensifies, the population density of animals and humans increases, and production strategies of agricultural animals are more heavily scrutinized, the importance of biotics and other health promotors will continue to increase in the future. To date, the effects of animal biotic use have focused primarily on the farm, home, or veterinary clinic. In the future, their impact must be viewed on a larger scale. As global "One Health" approaches seek to reduce antimicrobial use and resistance and there are increasing demands for sustainable and safe food production, biotics will continue to be an important part of the solution. As knowledge of gastrointestinal microbiomes grows and the biotic field develops, more targeted and effective strategies for health promotion in these species are expected. At the 2023 International Scientific Association for Probiotics and Prebiotics meeting, experts were invited to participate in a discussion group focused on "The Use of Probiotics and Prebiotics in Agricultural and Companion Animals". This review reports the outcomes of that discussion, including the documented use of probiotics, prebiotics, and other biotic substances to promote health or treat disease in agricultural and companion animals, provide implications of animal biotic use on human health, and provide perspective on how scientific advances may impact the development and improvement of biotics in the future.
Collapse
Affiliation(s)
- Kelly S Swanson
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Karin Allenspach
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Gregory Amos
- Waltham Petcare Science Institute, Melton Mowbray LE13, UK
| | | | - Shalome A Bassett
- Fonterra Limited, Fonterra Research & Development Centre, Palmerston North 4442, New Zealand
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand
| | - Charlotte R Bjørnvad
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Susana M Martín-Orúe
- Department of Animal and Food Science, Animal Nutrition and Welfare Service, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Steven C Ricke
- Department of Animal and Dairy Sciences, Meat Science and Animal Biologics Discovery Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80524, USA
| | - George C Fahey
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
5
|
Holman DB, Gzyl KE, Kommadath A. Florfenicol administration in piglets co-selects for multiple antimicrobial resistance genes. mSystems 2024; 9:e0125024. [PMID: 39584815 DOI: 10.1128/msystems.01250-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/29/2024] [Indexed: 11/26/2024] Open
Abstract
Antimicrobial use in food-producing animals such as pigs is a significant issue due to its association with antimicrobial resistance. Florfenicol is a broad-spectrum phenicol antibiotic used in swine for various indications; however, its effect on the swine microbiome and resistome is largely unknown. This study investigated these effects in piglets treated intramuscularly with florfenicol at 1 and 7 days of age. Fecal samples were collected from treated (n = 30) and untreated (n = 30) pigs at nine different time points up until 140 days of age, and the fecal metagenomes were sequenced. The fecal microbiomes of the two groups of piglets were most dissimilar in the immediate period following florfenicol administration. These differences were driven in part by an increase in the relative abundance of Clostridium scindens, Enterococcus faecalis, and Escherichia spp. in the florfenicol-treated piglets and Fusobacterium spp., Pauljensenia hyovaginalis, and Ruminococcus gnavus in the control piglets. In addition to selecting for florfenicol resistance genes (floR, fexA, and fexB), florfenicol also selected for genes conferring resistance to the aminoglycosides, beta-lactams, or sulfonamides up until weaning at 21 days of age. Florfenicol-resistant Escherichia coli isolated from these piglets were found to carry a plasmid with floR, along with tet(A), aph(6)-Id, aph(3″)-Ib, sul2, and blaTEM-1/blaCMY-2. A plasmid carrying fexB and poxtA (phenicols and oxazolidinones) was identified in florfenicol-resistant Enterococcus avium, Enterococcus faecium, and E. faecalis isolates from the treated piglets. This study highlights the potential for co-selection and perturbation of the fecal microbial community in pre-weaned piglets administered florfenicol.IMPORTANCEAntimicrobial use remains a serious challenge in food-animal production due to its linkage with antimicrobial resistance. Antimicrobial resistance can reduce the efficacy of veterinary treatment and can potentially be transferred to humans through the food chain or direct contact with animals and their environment. In this study, early-life florfenicol treatment in piglets altered the composition of the fecal microbiome and selected for many unrelated antimicrobial resistance genes up until weaning at 21 days of age. Part of this co-selection process appeared to involve an Escherichia coli plasmid carrying a florfenicol resistance gene along with genes conferring resistance to at least four other antimicrobial classes. In addition, florfenicol selected for certain genes that provide resistance to multiple antimicrobial classes, including the oxazolidinones. These results highlight that florfenicol can co-select for multiple antimicrobial resistance genes, and their presence on mobile genetic elements suggests the potential for transfer to other bacteria.
Collapse
Affiliation(s)
- Devin B Holman
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada
| | - Katherine E Gzyl
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada
| | - Arun Kommadath
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada
| |
Collapse
|
6
|
Fredriksen S, Neila-Ibáñez C, Hennig-Pauka I, Guan X, Dunkelberger J, de Oliveira IF, Ferrando ML, Correa-Fiz F, Aragon V, Boekhorst J, van Baarlen P, Wells JM. Streptococcus suis infection on European farms is associated with an altered tonsil microbiome and resistome. Microb Genom 2024; 10. [PMID: 39699589 DOI: 10.1099/mgen.0.001334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
Abstract
Streptococcus suis is a Gram-positive opportunistic pathogen causing systemic disease in piglets around weaning age. The factors predisposing to disease are not known. We hypothesized that the tonsillar microbiota might influence disease risk via colonization resistance and/or co-infections. We conducted a cross-sectional case-control study within outbreak farms complemented by selective longitudinal sampling and comparison with control farms without disease occurrence. We found a small but significant difference in tonsil microbiota composition between case and control piglets (n=45+45). Variants of putative commensal taxa, including Rothia nasimurium, were reduced in abundance in case piglets compared to asymptomatic controls. Case piglets had higher relative abundances of Fusobacterium gastrosuis, Bacteroides heparinolyticus and uncultured Prevotella and Alloprevotella species. Piglets developing disease post-weaning had reduced alpha diversity pre-weaning. Despite case-control pairs receiving equal antimicrobial treatment, case piglets had a higher abundance of antimicrobial resistance genes conferring resistance to antimicrobial classes used to treat S. suis. This might be an adaption of disease-associated strains to frequent antimicrobial treatment.
Collapse
Affiliation(s)
- Simen Fredriksen
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University, Wageningen, Netherlands
| | - Carlos Neila-Ibáñez
- Unitat mixta dInvestigaci IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CRSA), Campus de laUniversitat Autnoma de Barcelona (UAB), Bellaterra, 08193, Catalonia, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA),, Campus de la Universitat Autnoma de Barcelona (UAB), Bellaterra, 08193, Catalonia, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, 08193, Barcelona, Spain
| | - Isabel Hennig-Pauka
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, 49456 Bakum, Germany
| | - Xiaonan Guan
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University, Wageningen, Netherlands
- Schothorst Feed Research B.V., Lelystad, Netherlands
| | | | | | - Maria Laura Ferrando
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University, Wageningen, Netherlands
| | - Florencia Correa-Fiz
- Unitat mixta dInvestigaci IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CRSA), Campus de laUniversitat Autnoma de Barcelona (UAB), Bellaterra, 08193, Catalonia, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA),, Campus de la Universitat Autnoma de Barcelona (UAB), Bellaterra, 08193, Catalonia, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, 08193, Barcelona, Spain
| | - Virginia Aragon
- Unitat mixta dInvestigaci IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CRSA), Campus de laUniversitat Autnoma de Barcelona (UAB), Bellaterra, 08193, Catalonia, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA),, Campus de la Universitat Autnoma de Barcelona (UAB), Bellaterra, 08193, Catalonia, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, 08193, Barcelona, Spain
| | - Jos Boekhorst
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University, Wageningen, Netherlands
| | - Peter van Baarlen
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University, Wageningen, Netherlands
| | - Jerry M Wells
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
7
|
Vlasblom AA, Duim B, Patel S, Luiken REC, Crespo-Piazuelo D, Eckenberger J, Huseyin CE, Lawlor PG, Elend C, Wagenaar JA, Claesson MJ, Zomer AL. The developing pig respiratory microbiome harbors strains antagonistic to common respiratory pathogens. mSystems 2024; 9:e0062624. [PMID: 39287382 PMCID: PMC11494925 DOI: 10.1128/msystems.00626-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
In the global efforts to combat antimicrobial resistance and reduce antimicrobial use in pig production, there is a continuous search for methods to prevent and/or treat infections. Within this scope, we explored the relationship between the developing piglet nasal microbiome and (zoonotic) bacterial pathogens from birth until 10 weeks of life. The nasal microbiome of 54 pigs was longitudinally studied over 16 timepoints on 9 farms in 3 European countries (Germany, Ireland, and the Netherlands) using amplicon sequencing targeting the V3-V4 16S rRNA region as well as the tuf gene for its staphylococcal discrimination power. The piglets' age, the farm, and the litter affected the nasal microbiome, with piglets' age explaining 19% of the variation in microbial composition between samples. Stabilization of the microbiome occurred around 2 weeks post-weaning. Notably, while opportunistic pathogens were ubiquitously present, they did not cause disease. The piglet nasal microbiome often carried species associated with gut, skin, or vagina, which suggests that contact with the vaginal and fecal microbiomes shapes the piglet nasal microbiome. We identified bacterial co-abundance groups of species that were present in the nasal microbiomes in all three countries over time. Anti-correlation between these species and known bacterial pathogens identified species that might be exploited for pathogen reduction. Further experimental evidence is required to confirm these findings. Overall, this study advances our understanding of the piglet nasal microbiome, the factors influencing it, and its longitudinal development, providing insights into its role in health and disease. IMPORTANCE Our study on the nasal microbiota development in piglets across farms in three European countries found that the microbiomes developed similarly in all locations. Additionally, we observed that the colonization of porcine pathogens was either positively or negatively associated with the presence of other bacterial species. These findings enhance our knowledge of co-colonizing species in the nasal cavity and the identified microbial interactions that can be explored for the development of interventions to control pathogens in porcine husbandry.
Collapse
Affiliation(s)
- Abel A. Vlasblom
- Faculty of Veterinary Medicine, Division of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Birgitta Duim
- Faculty of Veterinary Medicine, Division of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
- WHO Collaborating Centre for Reference and Research on Campylobacter and Antimicrobial Resistance from a One Health Perspective/WOAH Reference Laboratory for Campylobacteriosis, Utrecht, The Netherlands
| | - Shriram Patel
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
- SeqBiome Ltd., Cork, Ireland
| | - Roosmarijn E. C. Luiken
- Faculty of Veterinary Medicine, Division of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Daniel Crespo-Piazuelo
- Pig Development Department,Teagasc Animal & Grassland Research & Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Julia Eckenberger
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Chloe E. Huseyin
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Peadar G. Lawlor
- Pig Development Department,Teagasc Animal & Grassland Research & Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | | | - Jaap A. Wagenaar
- Faculty of Veterinary Medicine, Division of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
- WHO Collaborating Centre for Reference and Research on Campylobacter and Antimicrobial Resistance from a One Health Perspective/WOAH Reference Laboratory for Campylobacteriosis, Utrecht, The Netherlands
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Marcus J. Claesson
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Aldert L. Zomer
- Faculty of Veterinary Medicine, Division of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
- WHO Collaborating Centre for Reference and Research on Campylobacter and Antimicrobial Resistance from a One Health Perspective/WOAH Reference Laboratory for Campylobacteriosis, Utrecht, The Netherlands
| |
Collapse
|
8
|
Guitart-Matas J, Ballester M, Fraile L, Darwich L, Giler-Baquerizo N, Tarres J, López-Soria S, Ramayo-Caldas Y, Migura-Garcia L. Gut microbiome and resistome characterization of pigs treated with commonly used post-weaning diarrhea treatments. Anim Microbiome 2024; 6:24. [PMID: 38702766 PMCID: PMC11067243 DOI: 10.1186/s42523-024-00307-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/05/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND The global burden of antimicrobial resistance demands additional measures to ensure the sustainable and conscious use of antimicrobials. For the swine industry, the post-weaning period is critical and for many years, antimicrobials have been the most effective strategy to control and treat post-weaning related infections. Among them, post-weaning diarrhea causes vast economic losses, as it severely compromises piglets' health and growth performance. In this study, 210 piglets were transferred from a farm with recurrent cases of post-weaning diarrhea to an experimental farm and divided into six different treatment groups to determine the effect of the different treatments on the growth performance and survival, the microbiome, and the resistome in a cross-sectional and longitudinal study. The different treatments included antimicrobials trimethoprim/sulfamethoxazole, colistin, and gentamicin, an oral commercial vaccine, a control with water acidification, and an untreated control. An extra group remained at the farm of origin following the implemented amoxicillin routine treatment. A total of 280 fecal samples from pigs at four different sampling times were selected for metagenomics: before weaning-treatment at the farm of origin, and three days, two weeks, and four weeks post-treatment. RESULTS The control group with water acidification showed a reduced death risk in the survival analyses and non-significant differences in average daily weight gain in comparison to the antibiotic-treated groups. However, the growth-promoting effect among antibiotic-treated groups was demonstrated when comparing against the untreated control group at the experimental farm. After four weeks of treatment, diversity indexes revealed significantly decreased diversity for the untreated control and the group that remained at the farm of origin treated with amoxicillin. For this last group, impaired microbial diversity could be related to the continuous amoxicillin treatment carried out at the farm. Analysis of the resistome showed that both gentamicin and amoxicillin treatments significantly contributed to the emergence of resistance, while trimethoprim/sulphonamide and colistin did not, suggesting that different treatments contribute differently to the emergence of resistance. CONCLUSIONS Overall, this shotgun longitudinal metagenomics analysis demonstrates that non-antibiotic alternatives, such as water acidification, can contribute to reducing the emergence of antimicrobial resistance without compromising pig growth performance and gut microbiome.
Collapse
Affiliation(s)
- Judith Guitart-Matas
- Joint Research Unit IRTA-UAB in Animal Health, Animal Health Research Centre (CReSA), Autonomous University of Barcelona (UAB), Catalonia, Spain
- Institute of Agrifood Research and Technology (IRTA), Animal Health Program (CReSA), WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe, Autonomous University of Barcelona (UAB), Catalonia, Spain
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), Catalonia, Spain
| | - Maria Ballester
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), Catalonia, Spain
| | - Lorenzo Fraile
- School of Agrifood and Forestry Science and Engineering (ETSEA), Department of Animal Production, University of Lleida, Catalonia, Spain
| | - Laila Darwich
- Department of Animal Health and Anatomy, Autonomous University of Barcelona (UAB), Catalonia, Spain
| | - Noemí Giler-Baquerizo
- Joint Research Unit IRTA-UAB in Animal Health, Animal Health Research Centre (CReSA), Autonomous University of Barcelona (UAB), Catalonia, Spain
- Institute of Agrifood Research and Technology (IRTA), Animal Health Program (CReSA), WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe, Autonomous University of Barcelona (UAB), Catalonia, Spain
| | - Joaquim Tarres
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), Catalonia, Spain
| | - Sergio López-Soria
- Joint Research Unit IRTA-UAB in Animal Health, Animal Health Research Centre (CReSA), Autonomous University of Barcelona (UAB), Catalonia, Spain
- Institute of Agrifood Research and Technology (IRTA), Animal Health Program (CReSA), WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe, Autonomous University of Barcelona (UAB), Catalonia, Spain
| | - Yuliaxis Ramayo-Caldas
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), Catalonia, Spain
| | - Lourdes Migura-Garcia
- Joint Research Unit IRTA-UAB in Animal Health, Animal Health Research Centre (CReSA), Autonomous University of Barcelona (UAB), Catalonia, Spain.
- Institute of Agrifood Research and Technology (IRTA), Animal Health Program (CReSA), WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe, Autonomous University of Barcelona (UAB), Catalonia, Spain.
| |
Collapse
|
9
|
Dierick M, Ongena R, Vanrompay D, Devriendt B, Cox E. Exploring the modulatory role of bovine lactoferrin on the microbiome and the immune response in healthy and Shiga toxin-producing E. coli challenged weaned piglets. J Anim Sci Biotechnol 2024; 15:39. [PMID: 38449023 PMCID: PMC10916201 DOI: 10.1186/s40104-023-00985-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/22/2023] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Post-weaned piglets suffer from F18+ Escherichia coli (E. coli) infections resulting in post-weaning diarrhoea or oedema disease. Frequently used management strategies, including colistin and zinc oxide, have contributed to the emergence and spread of antimicrobial resistance. Novel antimicrobials capable of directly interacting with pathogens and modulating the host immune responses are being investigated. Lactoferrin has shown promising results against porcine enterotoxigenic E. coli strains, both in vitro and in vivo. RESULTS We investigated the influence of bovine lactoferrin (bLF) on the microbiome of healthy and infected weaned piglets. Additionally, we assessed whether bLF influenced the immune responses upon Shiga toxin-producing E. coli (STEC) infection. Therefore, 2 in vivo trials were conducted: a microbiome trial and a challenge infection trial, using an F18+ STEC strain. BLF did not affect the α- and β-diversity. However, bLF groups showed a higher relative abundance (RA) for the Actinobacteria phylum and the Bifidobacterium genus in the ileal mucosa. When analysing the immune response upon infection, the STEC group exhibited a significant increase in F18-specific IgG serum levels, whereas this response was absent in the bLF group. CONCLUSION Taken together, the oral administration of bLF did not have a notable impact on the α- and β-diversity of the gut microbiome in weaned piglets. Nevertheless, it did increase the RA of the Actinobacteria phylum and Bifidobacterium genus, which have previously been shown to play an important role in maintaining gut homeostasis. Furthermore, bLF administration during STEC infection resulted in the absence of F18-specific serum IgG responses.
Collapse
Affiliation(s)
- Matthias Dierick
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Ruben Ongena
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Daisy Vanrompay
- Laboratory for Immunology and Animal Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium
| | - Bert Devriendt
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Eric Cox
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| |
Collapse
|
10
|
Galgano S, Conway L, Fellows A, Houdijk J. Impact of precursor-derived peracetic acid on post-weaning diarrhea, intestinal microbiota, and predicted microbial functional genes in weaned pigs. Front Microbiol 2024; 15:1356538. [PMID: 38333588 PMCID: PMC10850238 DOI: 10.3389/fmicb.2024.1356538] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/08/2024] [Indexed: 02/10/2024] Open
Abstract
Post-weaning diarrhea affects piglets in the nursery phase of production, leading to a substantial impact both at the farm and financial levels. The multifactorial etiology of this disease includes housing conditions, pig genetics, microbial composition, and metagenomic assets. Among the common therapeutic approaches, the widely used zinc oxide underwent a European Union ban in 2022 due to its negative environmental impact and correlation to increased antimicrobial resistance. During this study, we have tested two levels of inclusion of the potential antimicrobial alternative peracetic acid, delivered in water via the hydrolysis of the precursors sodium percarbonate and tetraacetylethylenediamine, in comparison to zinc oxide and an untreated control during a 2-week animal study. We assessed the microbial composition and predicted the metagenome, together with performance and physiological parameters, in order to describe the microbial functional role in etiopathology. Both zinc oxide and peracetic acid resulted in amelioration of the diarrheal status by the end of the trial period, with noticeable zinc oxide effects visible from the first week. This was accompanied by improved performance when compared to the first-week figures and a decreased stomach pH in both peracetic acid levels. A significant reduction in both stomach and caecal Proteobacteria was recorded in the zinc oxide group, and a significant reduction of Campylobacter in the stomach was reported for both zinc oxide and one of the peracetic acid concentrations. Among other functional differences, we found that the predicted ortholog for the zonula occludens toxin, a virulence factor present in pathogens like Escherichia coli and Campylobacter jejuni, was less abundant in the stomach of treated pigs compared to the control group. In water, peracetic acid delivered via precursor hydrolysis has the potential to be a valid intervention, an alternative to antimicrobial, to assist the weaning of piglets. Our findings support the view that post-weaning diarrhea is a complex multifactorial disease with an important metagenomic component characterized by the differential abundance of specific predicted orthologs and microbial genera in the stomach and caecum of pigs.
Collapse
Affiliation(s)
- Salvatore Galgano
- Monogastric Science Research Centre, Scotland's Rural College (SRUC), Edinburgh, United Kingdom
| | | | | | - Jos Houdijk
- Monogastric Science Research Centre, Scotland's Rural College (SRUC), Edinburgh, United Kingdom
| |
Collapse
|
11
|
Su H, Jiang X, Liu H, Bai H, Bai X, Xu Y, Du Z. Comparison of Intestinal Microbiota of Blue Fox before and after Weaning. Animals (Basel) 2024; 14:210. [PMID: 38254379 PMCID: PMC10812593 DOI: 10.3390/ani14020210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/25/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Intestinal flora plays an important role in maintaining the internal stability and health of the intestine. Currently, intestinal microbes are considered an important "organ" but are mostly ignored by people. This study evaluated the flora structure of each intestinal segment of blue foxes pre-weaning and explored the differences between the fecal flora and intestinal flora structure of each segment after weaning. Samples of intestinal contents from three blue foxes at 45 days of age (before weaning) and intestinal contents and feces samples from at 80 days (after weaning) were collected for 16s rRNA flora analysis. The species and distribution characteristics of microorganisms in different intestinal segments of blue foxes before and after weaning were different. Except for the rectum, the dominant flora of each intestinal segment of blue fox changed significantly after experiencing weaning, and the fecal flora structure of young fox at the weaning stage did not represent the whole intestinal flora structure but was highly similar to that of the colon and rectum. To sum up, the intestinal flora of blue foxes changed systematically before and after weaning. When performing non-invasive experiments, the microflora structure of the colon and rectum of blue foxes can be predicted by collecting fecal samples.
Collapse
Affiliation(s)
| | | | | | | | | | - Yuan Xu
- College of Animal Sciences and Technology, Northeast Agricultural University, Harbin 150030, China; (H.S.); (X.J.); (H.L.); (H.B.); (X.B.)
| | - Zhiheng Du
- College of Animal Sciences and Technology, Northeast Agricultural University, Harbin 150030, China; (H.S.); (X.J.); (H.L.); (H.B.); (X.B.)
| |
Collapse
|
12
|
Zentek J, Vahjen W, Grześkowiak Ł, Martínez-Vallespín B, Holthausen JS, Saliu EM. The Gut Microbiome in Pigs and Its Impact on Animal Health. PRODUCTION DISEASES IN FARM ANIMALS 2024:157-177. [DOI: 10.1007/978-3-031-51788-4_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
13
|
Dong W, Ricker N, Holman DB, Johnson TA. Meta-analysis reveals the predictable dynamic development of the gut microbiota in commercial pigs. Microbiol Spectr 2023; 11:e0172223. [PMID: 37815394 PMCID: PMC10715009 DOI: 10.1128/spectrum.01722-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/24/2023] [Indexed: 10/11/2023] Open
Abstract
IMPORTANCE The swine gut microbiome undergoes an age-dependent assembly pattern with a developmental phase at early ages and a stabilization phase at later ages. Shorter time intervals and a wider range of data sources provided a clearer understanding of the gut microbiota colonization and succession and their associations with pig growth and development. The rapidly changing microbiota of suckling and weaning pigs implies potential time targets for growth and health regulation through gut microbiota manipulation. Since swine gut microbiota development is predictable, swine microbiota age can be calculated and compared between animal treatment groups rather than relying only on static time-matched comparisons.
Collapse
Affiliation(s)
- Wenxuan Dong
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Nicole Ricker
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Devin B. Holman
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada
| | - Timothy A. Johnson
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
14
|
Meyer S, Hüttig N, Zenk M, Jäckel U, Pöther D. Bioaerosols in swine confinement buildings: A metaproteomic view. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:684-697. [PMID: 37919246 PMCID: PMC10667663 DOI: 10.1111/1758-2229.13208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 10/02/2023] [Indexed: 11/04/2023]
Abstract
Swine confinement buildings represent workplaces with high biological air pollution. It is suspected that individual components of inhalable air are causatives of chronic respiratory disease that are regularly detected among workers. In order to understand the relationship between exposure and stress, it is necessary to study the components of bioaerosols in more detail. For this purpose, bioaerosols from pig barns were collected on quartz filters and analysed via a combinatorial approach of 16S rRNA amplicon sequencing and metaproteomics. The study reveals the presence of peptides from pigs, their feed and microorganisms. The proportion of fungal peptides detected is considered to be underrepresented compared to bacterial peptides. In addition, the metaproteomic workflow enabled functional predictions about the discovered peptides. Housekeeping proteins were found in particular, but also evidence for the presence of bacterial virulence factors (e.g., serralysin-like metalloprotease) as well as plant (e.g., chitinase) and fungal allergens (e.g., alt a10). Metaproteomic analyses can thus be used to identify factors that may be relevant to the health of pig farmers. Accordingly, such studies could be used in the future to assess the adverse health potential of an occupationally relevant bioaerosol and help consider defined protective strategies for workers.
Collapse
Affiliation(s)
- Susann Meyer
- Federal Institute for Occupational Safety and HealthBerlinGermany
| | - Nicole Hüttig
- Federal Institute for Occupational Safety and HealthBerlinGermany
| | - Marianne Zenk
- Research Institute for Farm Animal Biology (FBN)DummerstorfGermany
| | - Udo Jäckel
- Federal Institute for Occupational Safety and HealthBerlinGermany
| | | |
Collapse
|
15
|
Quan J, Xu C, Ruan D, Ye Y, Qiu Y, Wu J, Zhou S, Luan M, Zhao X, Chen Y, Lin D, Sun Y, Yang J, Zheng E, Cai G, Wu Z, Yang J. Composition, function, and timing: exploring the early-life gut microbiota in piglets for probiotic interventions. J Anim Sci Biotechnol 2023; 14:143. [PMID: 37957747 PMCID: PMC10641937 DOI: 10.1186/s40104-023-00943-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/20/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND The establishment of a robust gut microbiota in piglets during their early developmental stage holds the potential for long-term advantageous effects. However, the optimal timeframe for introducing probiotics to achieve this outcome remains uncertain. RESULTS In the context of this investigation, we conducted a longitudinal assessment of the fecal microbiota of 63 piglets at three distinct pre-weaning time points. Simultaneously, we gathered vaginal and fecal samples from 23 sows. Employing 16S rRNA gene and metagenomic sequencing methodologies, we conducted a comprehensive analysis of the fluctuation patterns in microbial composition, functional capacity, interaction networks, and colonization resistance within the gut microbiota of piglets. As the piglets progressed in age, discernible modifications in intestinal microbial diversity, composition, and function were observed. A source-tracking analysis unveiled the pivotal role of fecal and vaginal microbiota derived from sows in populating the gut microbiota of neonatal piglets. By D21, the microbial interaction network displayed a more concise and efficient configuration, accompanied by enhanced colonization resistance relative to the other two time points. Moreover, we identified three strains of Ruminococcus sp. at D10 as potential candidates for improving piglets' weight gain during the weaning phase. CONCLUSIONS The findings of this study propose that D10 represents the most opportune juncture for the introduction of external probiotic interventions during the early stages of piglet development. This investigation augments our comprehension of the microbiota dynamics in early-life of piglets and offers valuable insights for guiding forthcoming probiotic interventions.
Collapse
Affiliation(s)
- Jianping Quan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, Guangdong, China
- Yunfu Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu, Guangdong, China
- National Engineering Research Center for Breeding Swine Industry, Wens Foodstuff Group Co., Ltd., Yunfu, Guangdong, People's Republic of China
| | - Cineng Xu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Donglin Ruan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Yong Ye
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Yibin Qiu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Jie Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Shenping Zhou
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Menghao Luan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Xiang Zhao
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Yue Chen
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Danyang Lin
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Ying Sun
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Jifei Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Enqin Zheng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Gengyuan Cai
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, Guangdong, China
- Yunfu Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu, Guangdong, China
| | - Zhenfang Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China.
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, Guangdong, China.
- Yunfu Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu, Guangdong, China.
- National Engineering Research Center for Breeding Swine Industry, Wens Foodstuff Group Co., Ltd., Yunfu, Guangdong, People's Republic of China.
| | - Jie Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China.
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, Guangdong, China.
| |
Collapse
|
16
|
Edmunds CE, Welch CB, Lourenco JM, Callaway TR, Pringle TD, Dove CR. The Effects of Dietary Manganese and Selenium on Growth and the Fecal Microbiota of Nursery Piglets. Vet Sci 2023; 10:650. [PMID: 37999473 PMCID: PMC10675067 DOI: 10.3390/vetsci10110650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
The objective of this study was to determine the impact of varying dietary manganese and selenium concentrations, antioxidant cofactors, on the growth performance and fecal microbial populations of nursery pigs. The piglets (N = 120) were blocked by weight (5.22 ± 0.7 kg) and sex. The pens (n = 5/treatment) within a block were randomly assigned to diets in a 2 × 3 factorial design to examine the effects of Se (0.1 and 0.3 mg/kg added Se) and Mn (0, 12, and 24 mg/kg added Mn) and were fed in three phases (P1 = d 1-7, P2 = d 8-21, P3 = d 22-35). The pigs and orts were weighed weekly. Fecal samples were collected d 0 and 35 for 16S rRNA bacterial gene sequencing and VFA analysis. The data were analyzed as factorial via GLM in SAS. There was a linear response (p < 0.05) in overall ADG across dietary Mn. Supplementing 24 mg/kg Mn tended to decrease (p < 0.10) the relative abundance of many bacteria possessing pathogenic traits relative to Mn controls. Meanwhile, increasing Mn concentration tended to foster the growth of bacteria correlated with gut health and improved growth (p < 0.10). The data from this study provide preliminary evidence on the positive effects of manganese on growth and gut health of nursery pigs.
Collapse
Affiliation(s)
- Clint E. Edmunds
- School of Sciences, Clayton State University, Morrow, GA 30260, USA
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA; (C.B.W.); (J.M.L.); (T.R.C.); (C.R.D.)
| | - Christina B. Welch
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA; (C.B.W.); (J.M.L.); (T.R.C.); (C.R.D.)
| | - Jeferson M. Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA; (C.B.W.); (J.M.L.); (T.R.C.); (C.R.D.)
| | - Todd R. Callaway
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA; (C.B.W.); (J.M.L.); (T.R.C.); (C.R.D.)
| | - T. Dean Pringle
- North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Quincy, FL 32351, USA;
| | - C. Robert Dove
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA; (C.B.W.); (J.M.L.); (T.R.C.); (C.R.D.)
| |
Collapse
|
17
|
He H, Yang M, Li W, Lu Z, Wang Y, Jin M. Fecal microbial and metabolic characteristics of swine from birth to market. Front Microbiol 2023; 14:1191392. [PMID: 37789849 PMCID: PMC10543884 DOI: 10.3389/fmicb.2023.1191392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023] Open
Abstract
Introduction Recently, the research on pig intestinal microbiota has become a hot topic in the field of animal husbandry. There are few articles describing the dynamic changes of porcine fecal microbiota and metabolites at different time points from birth to market. Methods In the present study, 381 fecal samples were collected from 633 commercial pigs at 7 time points, including the 1st day, the 10th day, the 25th day, the 45th day, the 70th day, the 120th day, and the 180th day after the birth of swine, were used for microbiome analysis by Illumina MiSeq sequencing methods while 131 fecal samples from 3 time points, the 10th day, the 25th day, and 70th day after birth, were used for metabolome analysis by LC-MS methods. Results For the microbiome analysis, the fecal microbial richness increased over time from day 1 to 180 and the β-diversity of fecal microbiota was separated significantly at different time points. Firmicutes were the main phyla from day 10 to 180, followed by Bacteroides. The abundance of Lactobacillus increased significantly on day 120 compared with the previous 4 time points. From day 120 to day 180, the main porcine fecal microbes were Lactobacillus, Clostridium_sensu_stricto_1, Terrisporobacter and Streptococcus. Clostridium_sensu_stricto_1 and Terrisporobacter increased over time, while Lactobacillus, Escherichia-Shigella, Lachnoclostridium decreased with the time according to the heatmap, which showed the increase or decrease in microbial abundance over time. For the metabolome analysis, the PLS-DA plot could clearly distinguish porcine fecal metabolites on day 10, 25, and 70. The most different metabolic pathways of the 3 time points were Tryptophan metabolism, Sphingolipid signaling pathway, Protein digestion and absorption. Some metabolites increased significantly over time, such as Sucrose, L-Arginine, Indole, 2,3-Pyridinedicarboxylic acid and so on, while D-Maltose, L-2-Aminoadipic acid, 2,6-diaminohexanoic acid, L-Proline were opposite. The correlation between fecal metabolites and microbiota revealed that the microbes with an increasing trend were positively correlated with the metabolites affecting the tryptophan metabolic pathway from the overall trend, while the microbes with a decreasing trend were opposite. In addition, the microbes with an increasing trend were negatively correlated with the metabolites affecting the lysine pathway. Discussion In conclusion, this study elucidated the dynamic changes of porcine fecal microbiota and metabolites at different stages from birth to market, which may provide a reference for a comprehensive understanding of the intestinal health status of pigs at different growth stages.
Collapse
Affiliation(s)
- Huan He
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, China
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang, China
- College of Animal Sciences, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mingzhi Yang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, China
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang, China
- College of Animal Sciences, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wentao Li
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, China
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang, China
- College of Animal Sciences, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zeqing Lu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, China
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang, China
- College of Animal Sciences, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yizhen Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, China
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang, China
- College of Animal Sciences, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mingliang Jin
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, China
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang, China
- College of Animal Sciences, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
18
|
Beaumont M, Lencina C, Bertide A, Gallo L, Barilly C, Marrauld C, Cauquil L, Samson A, Combes S. The Early Life Microbiota Is Not a Major Factor Underlying the Susceptibility to Postweaning Diarrhea in Piglets. Microbiol Spectr 2023; 11:e0069423. [PMID: 37358441 PMCID: PMC10433861 DOI: 10.1128/spectrum.00694-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/09/2023] [Indexed: 06/27/2023] Open
Abstract
Postweaning diarrhea (PWD) in piglets impair welfare, induce economic losses and lead to overuse of antibiotics. The early life gut microbiota was proposed to contribute to the susceptibility to PWD. The objective of our study was to evaluate in a large cohort of 116 piglets raised in 2 separate farms whether the gut microbiota composition and functions during the suckling period were associated with the later development of PWD. The fecal microbiota and metabolome were analyzed by 16S rRNA gene amplicon sequencing and nuclear magnetic based resonance at postnatal day 13 in male and female piglets. The later development of PWD was recorded for the same animals from weaning (day 21) to day 54. The gut microbiota structure and α-diversity during the suckling period were not associated with the later development of PWD. There was no significant difference in the relative abundances of bacterial taxa in suckling piglets that later developed PWD. The predicted functionality of the gut microbiota and the fecal metabolome signature during the suckling period were not linked to the later development of PWD. Trimethylamine was the bacterial metabolite which fecal concentration during the suckling period was the most strongly associated with the later development of PWD. However, experiments in piglet colon organoids showed that trimethylamine did not disrupt epithelial homeostasis and is thus not likely to predispose to PWD through this mechanism. In conclusion, our data suggest that the early life microbiota is not a major factor underlying the susceptibility to PWD in piglets. IMPORTANCE This study shows that the fecal microbiota composition and metabolic activity are similar in suckling piglets (13 days after birth) that either later develop post-weaning diarrhea (PWD) or not, which is a major threat for animal welfare that also causes important economic losses and antibiotic treatments in pig production. The aim of this work was to study a large cohort of piglets raised in separates environments, which is a major factor influencing the early life microbiota. One of the main findings is that, although the fecal concentration of trimethylamine in suckling piglets was associated with the later development of PWD, this gut microbiota-derived metabolite did not disrupt the epithelial homeostasis in organoids derived from the pig colon. Overall, this study suggests that the gut microbiota during the suckling period is not a major factor underlying the susceptibility of piglets to PWD.
Collapse
Affiliation(s)
- Martin Beaumont
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | - Corinne Lencina
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | - Allan Bertide
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | - Lise Gallo
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | - Céline Barilly
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | | | - Laurent Cauquil
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | | | - Sylvie Combes
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| |
Collapse
|
19
|
St-Pierre B, Perez Palencia JY, Samuel RS. Impact of Early Weaning on Development of the Swine Gut Microbiome. Microorganisms 2023; 11:1753. [PMID: 37512925 PMCID: PMC10385335 DOI: 10.3390/microorganisms11071753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Considering that pigs are naturally weaned between 12 and 18 weeks of age, the common practice in the modern swine industry of weaning as early as between two and four weeks of age increases challenges during this transition period. Indeed, young pigs with an immature gut are suddenly separated from the sow, switched from milk to a diet consisting of only solid ingredients, and subjected to a new social hierarchy from mixing multiple litters. From the perspective of host gut development, weaning under these conditions causes a regression in histological structure as well as in digestive and barrier functions. While the gut is the main center of immunity in mature animals, the underdeveloped gut of early weaned pigs has yet to contribute to this function until seven weeks of age. The gut microbiota or microbiome, an essential contributor to the health and nutrition of their animal host, undergoes dramatic alterations during this transition, and this descriptive review aims to present a microbial ecology-based perspective on these events. Indeed, as gut microbial communities are dependent on cross-feeding relationships, the change in substrate availability triggers a cascade of succession events until a stable composition is reached. During this process, the gut microbiota is unstable and prone to dysbiosis, which can devolve into a diseased state. One potential strategy to accelerate maturation of the gut microbiome would be to identify microbial species that are critical to mature swine gut microbiomes, and develop strategies to facilitate their establishment in early post-weaning microbial communities.
Collapse
Affiliation(s)
- Benoit St-Pierre
- Department of Animal Science, South Dakota State University, Animal Science Complex, Box 2170, Brookings, SD 57007, USA
| | - Jorge Yair Perez Palencia
- Department of Animal Science, South Dakota State University, Animal Science Complex, Box 2170, Brookings, SD 57007, USA
| | - Ryan S Samuel
- Department of Animal Science, South Dakota State University, Animal Science Complex, Box 2170, Brookings, SD 57007, USA
| |
Collapse
|
20
|
Lindberg JE. Review: Nutrient and energy supply in monogastric food producing animals with reduced environmental and climatic footprint and improved gut health. Animal 2023; 17 Suppl 3:100832. [PMID: 37210231 DOI: 10.1016/j.animal.2023.100832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 05/22/2023] Open
Abstract
With more efficient utilisation of dietary nutrients and energy, diversified production systems, modifications of diet composition with respect to feedstuffs included and the use of free amino acids, the negative impact of animal food production on the environment and climate can be reduced. Accurate requirements for nutrients and energy for animals with differing physiological needs, and the use of robust and accurate feed evaluation systems are key for more efficient feed utilisation. Data on CP and amino acid requirements in pigs and poultry indicate that it should be possible to implement indispensable amino acid-balanced diets with low- or reduced-protein content without any reduction in animal performance. Potential feed resources, not competing with human food security, can be derived from the traditional food- and agroindustry, such as various waste streams and co-products of different origins. In addition, novel feedstuffs emerging from aquaculture, biotechnology and innovative new technologies may have potential to provide the lack of indispensable amino acids in organic animal food production. High fibre content is a nutritional limitation of using waste streams and co-products as feed for monogastric animals as it is associated with decreased nutrient digestibility and reduced dietary energy values. However, minimum levels of dietary fibre are needed to maintain the normal physiological function of the gastro-intestinal tract. Moreover, there may be positive effects of fibre in the diet such as improved gut health, increased satiety, and an overall improvement of behaviour and well-being.
Collapse
Affiliation(s)
- J E Lindberg
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, PO Box 7024, 75007 Uppsala, Sweden.
| |
Collapse
|
21
|
Skoufos I, Nelli A, Venardou B, Lagkouvardos I, Giannenas I, Magklaras G, Zacharis C, Jin L, Wang J, Gouva E, Skoufos S, Bonos E, Tzora A. Use of an Innovative Silage of Agro-Industrial Waste By-Products in Pig Nutrition: A Pilot Study of Its Effects on the Pig Gastrointestinal Microbiota. Microorganisms 2023; 11:1723. [PMID: 37512895 PMCID: PMC10384456 DOI: 10.3390/microorganisms11071723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
The aim of this study was to evaluate whether dietary supplementation with an innovative silage (IS) created using 60% olive mill waste, 20% grape pomace, and 20% deproteinised feta cheese waste solids can modulate the composition of the intestinal microbiota in weaned (Exp. 1) and finishing (Exp. 2) pigs. In Exp. 1 (40 day supplementation), forty-five crossbred weaned pigs were randomly assigned to the 0% (Control), 5%, or 10% IS groups (15 replicates/experimental diet). In Exp. 2 (60 day supplementation), eighteen finishing pigs from Exp. 1 were fed the control diet for 8 weeks before being re-assigned to their original experimental groups and fed with the 0% (Control), 5%, or 10% IS diets (six replicates/experimental diet). Performance parameters were recorded. Ileal and caecal digesta and mucosa were collected at the end of each experiment for microbiota analysis using 16S rRNA gene sequencing (five pigs/experimental diet for Exp. 1 and six pigs/experimental diet for Exp. 2). No significant effects on pig growth parameters were observed in both experiments. In Exp. 1, 5% IS supplementation increased the relative abundance of the Prevotellaceae family, Coprococcus genus, and Alloprevotella rava (OTU_48) and reduced the relative abundance of Lactobacillus genus in the caecum compared to the control and/or 10% IS diets (p < 0.05). In Exp. 2, 5% IS supplementation led to compositionally more diverse and different ileal and caecal microbiota compared to the control group (p < 0.05; p = 0.066 for β-diversity in ileum). Supplementation with the 5% IS increased the relative abundance of Clostridium celatum/disporicum/saudiense (OTU_3) in the ileum and caecum and Bifidobacterium pseudolongum (OTU_17) in the caecum and reduced the relative abundance of Streptococcus gallolyticus/alactolyticus (OTU_2) in the caecum compared to the control diet (p < 0.05). Similar effects on C. celatum/disporicum/saudiense and S. gallolyticus/alactolyticus were observed with the 10% IS diet in the caecum (p < 0.05). IS has the potential to beneficially alter the composition of the gastrointestinal microbiota in pigs.
Collapse
Affiliation(s)
- Ioannis Skoufos
- Laboratory of Animal Science, Nutrition and Biotechnology, Department of Agriculture, School of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece
| | - Aikaterini Nelli
- Laboratory of Animal Health, Hygiene and Food Quality, Department of Agriculture, School of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece
| | - Brigkita Venardou
- Laboratory of Animal Health, Hygiene and Food Quality, Department of Agriculture, School of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece
| | - Ilias Lagkouvardos
- Laboratory of Animal Health, Hygiene and Food Quality, Department of Agriculture, School of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece
| | - Ilias Giannenas
- Laboratory of Nutrition, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Georgios Magklaras
- Laboratory of Animal Science, Nutrition and Biotechnology, Department of Agriculture, School of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece
| | - Christos Zacharis
- Laboratory of Animal Science, Nutrition and Biotechnology, Department of Agriculture, School of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece
| | - Lizhi Jin
- Meritech (Asia Pacific) Biotech Pte Ltd., Singapore 079903, Singapore
| | - Jin Wang
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Evangelia Gouva
- Laboratory of Animal Health, Hygiene and Food Quality, Department of Agriculture, School of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece
| | - Stylianos Skoufos
- Laboratory of Animal Health, Hygiene and Food Quality, Department of Agriculture, School of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece
| | - Eleftherios Bonos
- Laboratory of Animal Science, Nutrition and Biotechnology, Department of Agriculture, School of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece
| | - Athina Tzora
- Laboratory of Animal Health, Hygiene and Food Quality, Department of Agriculture, School of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece
| |
Collapse
|
22
|
Choudhury R, Gu Y, Bolhuis JE, Kleerebezem M. Early feeding leads to molecular maturation of the gut mucosal immune system in suckling piglets. Front Immunol 2023; 14:1208891. [PMID: 37304274 PMCID: PMC10248722 DOI: 10.3389/fimmu.2023.1208891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Diet-microbiota-host interactions are increasingly studied to comprehend their implications in host metabolism and overall health. Keeping in mind the importance of early life programming in shaping intestinal mucosal development, the pre-weaning period can be utilised to understand these interactions in suckling piglets. The objective of this study was to investigate the consequences of early life feeding on the time-resolved mucosal transcriptional program as well as mucosal morphology. Methods A customised fibrous feed was provided to piglets (early-fed or EF group; 7 litters) from five days of age until weaning (29 days of age) in addition to sow's milk, whereas control piglets (CON; 6 litters) suckled mother's milk only. Rectal swabs, intestinal content, and mucosal tissues (jejunum, colon) were obtained pre- and post-weaning for microbiota analysis (16S amplicon sequencing) and host transcriptome analysis (RNA sequencing). Results Early feeding accelerated both microbiota colonisation as well as host transcriptome, towards a more "mature state", with a more pronounced response in colon compared to jejunum. Early feeding elicited the largest impact on the colon transcriptome just before weaning (compared to post-weaning time-points), exemplified by the modulation of genes involved in cholesterol and energy metabolism and immune response. The transcriptional impact of early feeding persisted during the first days post-weaning and was highlighted by a stronger mucosal response to the weaning stress, via pronounced activation of barrier repair reactions, which is a combination of immune activation, epithelial migration and "wound-repair" like processes, compared to the CON piglets. Discussion Our study demonstrates the potential of early life nutrition in neonatal piglets as a means to support their intestinal development during the suckling period, and to improve adaptation during the weaning transition.
Collapse
Affiliation(s)
- Raka Choudhury
- Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Yuner Gu
- Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - J. Elizabeth Bolhuis
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Michiel Kleerebezem
- Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
23
|
René R, Sebastian V, Marlies D, Lukas S, Annemarie K, Andrea L. Risk factors associated with post-weaning diarrhoea in Austrian piglet-producing farms. Porcine Health Manag 2023; 9:20. [PMID: 37170128 PMCID: PMC10176918 DOI: 10.1186/s40813-023-00315-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 04/19/2023] [Indexed: 05/13/2023] Open
Abstract
Post-weaning diarrhoea (PWD) is a frequent, multifactorial disease of piglets leading to increased mortality rates and high economic losses. Due to the emergence of multi-resistant Escherichia coli isolates and the ban of zinc oxide (ZnO) in the EU since June 2022, alternative measures to prevent PWD are urgently needed. While an abundance of feed supplements is described to prevent PWD, there are hardly any studies reflecting the current situation of PWD in the field. Thus, we aimed to identify differences in management practices, housing and feeding strategies between farms with PWD and farms without PWD. Data were personally collected using a semi-structured questionnaire in 257 Austrian piglet-producing farms. Farms with PWD in more than 10% of all weaned groups within twelve months prior to data collection were defined as case farms (n = 101), while the remaining 136 farms were defined as control farms. Data from 237 farms and 69 explanatory variables were analysed via penalized binary logistic regression using elastic-net in 100 different splits into randomly selected training and test datasets (80:20). Treatment with ZnO and/or colistin (136 farms) was negatively associated with PWD in all splits and had the biggest estimated absolute log odds ratio out of all tested variables. Implementation of an all-in/all-out system in the nursery units and administration of probiotics or horseradish also had preventive effects in most splits (≥ 97%). A higher number of feeding phases for piglets within the first seven weeks of life and housing on fully slatted floors was associated negatively with the occurrence of PWD as well in > 95% of all splits. PWD was more likely to occur on farms having problems with neonatal diarrhoea or postpartum dysgalactia syndrome. While our data demonstrate that treatment with ZnO or colistin had the biggest statistical effect on PWD, we were able to identify other preventive measures like supplementation with probiotics or horseradish. Since implementation of all-in/all-out measures and fully slatted floors were also negatively associated with the occurrence of PWD on visited farms, we assume that reduction of bacterial load by the implementation of simple hygiene measures are still crucial to prevent PWD.
Collapse
Affiliation(s)
- Renzhammer René
- Department for Farm Animals and Veterinary Public Health, University Clinic for Swine, University of Veterinary Medicine, Veterinärplatz 1, Vienna, 1210, Austria.
| | - Vetter Sebastian
- Unit of Veterinary Public Health and Epidemiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, Vienna, 1210, Austria
| | - Dolezal Marlies
- Platform for Bioinformatics and Biostatistics, Department of Biomedical Sciences, University of Veterinary Medicine, Veterinärplatz 1, Vienna, 1210, Austria
| | - Schwarz Lukas
- Department for Farm Animals and Veterinary Public Health, University Clinic for Swine, University of Veterinary Medicine, Veterinärplatz 1, Vienna, 1210, Austria
| | - Käsbohrer Annemarie
- Unit of Veterinary Public Health and Epidemiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, Vienna, 1210, Austria
| | - Ladinig Andrea
- Department for Farm Animals and Veterinary Public Health, University Clinic for Swine, University of Veterinary Medicine, Veterinärplatz 1, Vienna, 1210, Austria
| |
Collapse
|
24
|
Wilburn AN, McAlees JW, Haslam DB, Graspeuntner S, Schmudde I, Laumonnier Y, Rupp J, Chougnet CA, Deshmukh H, Zacharias WJ, König P, Lewkowich IP. Delayed Microbial Maturation Durably Exacerbates Th17-driven Asthma in Mice. Am J Respir Cell Mol Biol 2023; 68:498-510. [PMID: 36622830 PMCID: PMC10174167 DOI: 10.1165/rcmb.2022-0367oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/09/2023] [Indexed: 01/10/2023] Open
Abstract
Microbial maturation disrupted by early-life dysbiosis has been linked with increased asthma risk and severity; however, the immunological mechanisms underpinning this connection are poorly understood. We sought to understand how delaying microbial maturation drives worsened asthma outcomes later in life and its long-term durability. Drinking water was supplemented with antibiotics on Postnatal Days 10-20. To assess the immediate and long-term effects of delaying microbial maturation on experimental asthma, we initiated house dust mite exposure when bacterial diversity was either at a minimum or had recovered. Airway hyperresponsiveness, histology, pulmonary leukocyte recruitment, flow cytometric analysis of cytokine-producing lymphocytes, and assessment of serum IgG1 (Immunoglobulin G1) and IgE (Immunoglobulin E) concentrations were performed. RT-PCR was used to measure IL-13 (Interleukin 13)-induced gene expression in sequentially sorted mesenchymal, epithelial, endothelial, and leukocyte cell populations from the lung. Delayed microbial maturation increased allergen-driven airway hyperresponsiveness and Th17 frequency compared with allergen-exposed control mice, even when allergen exposure began after bacterial diversity recovered. Blockade of IL-17A (Interleukin 17A) reversed the airway hyperresponsiveness phenotype. In addition, allergen exposure in animals that experienced delayed microbial maturation showed signs of synergistic signaling between IL-13 and IL-17A in the pulmonary mesenchymal compartment. Delaying microbial maturation in neonates promotes the development of more severe asthma by increasing Th17 frequency, even if allergen exposure is initiated weeks after microbial diversity is normalized. In addition, IL-17A-aggravated asthma is associated with increased expression of IL-13-induced genes in mesenchymal, but not epithelial cells.
Collapse
Affiliation(s)
| | | | | | - Simon Graspeuntner
- Department of Infectious Diseases and Microbiology
- German Center for Infection Research (DZIF), partner-site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany; and
| | - Inken Schmudde
- Institute of Anatomy, and
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Lübeck, Germany
| | - Yves Laumonnier
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Lübeck, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology
- German Center for Infection Research (DZIF), partner-site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany; and
| | - Claire A. Chougnet
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
- Division of Immunobiology
| | - Hitesh Deshmukh
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
- Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - William J. Zacharias
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
- Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Peter König
- Institute of Anatomy, and
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Lübeck, Germany
| | - Ian P. Lewkowich
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
- Division of Immunobiology
| |
Collapse
|
25
|
Uddin MK, Mahmud MR, Hasan S, Peltoniemi O, Oliviero C. Dietary micro-fibrillated cellulose improves growth, reduces diarrhea, modulates gut microbiota, and increases butyrate production in post-weaning piglets. Sci Rep 2023; 13:6194. [PMID: 37062780 PMCID: PMC10106463 DOI: 10.1038/s41598-023-33291-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 04/11/2023] [Indexed: 04/18/2023] Open
Abstract
Dietary fiber (DF) supplementation is one of the strategies to prevent on-farm infections; it has the capability to improve gut health and piglet performance. Among the beneficial DFs, micro-fibrillated cellulose (MFC) is a new-generation plant-derived innovative feed ingredient; MFC, originating from sugar-beet pulp, has a hyper-branched structure with the ability to form shear-thinning hydrogel and has a high water-binding capacity. We aimed to determine the effects of MFC supplementation on piglets' performance before and after weaning. We included 45 sows and their piglets in this trial and monitored the results until the piglets were 7 weeks old. Piglets supplemented with MFC had higher body weight and average daily growth (ADG) than did control piglets, both pre- and post-weaning. In addition, MFC supplementation in post-weaning piglets improved butyrate content, and reduced diarrhea incidence. These phenomena, perhaps due to the MFC supplementation at different stages until age 7 weeks. In addition, after weaning, MFC supplementation stimulated the growth of butyrate-producing bacteria such as Ruminococcus.2, Ruminococcaceae.UCG.014, Intestinibacter, Roseburia, and Oribacterium genera, as well as reduced the pathogenic bacteria, such as Campylobacter, and Escherichia. Evidently, supplementation of MFC in feed to young piglets can improve growth performance and butyric acid content and reduce post-weaning diarrhea.
Collapse
Affiliation(s)
- Md Karim Uddin
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
| | - Md Rayhan Mahmud
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Shah Hasan
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Olli Peltoniemi
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Claudio Oliviero
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
26
|
Arapovic L, Huang Y, Manell E, Verbeek E, Keeling L, Sun L, Landberg R, Lundh T, Lindberg JE, Dicksved J. Age Rather Than Supplementation with Oat β-Glucan Influences Development of the Intestinal Microbiota and SCFA Concentrations in Suckling Piglets. Animals (Basel) 2023; 13:ani13081349. [PMID: 37106912 PMCID: PMC10135274 DOI: 10.3390/ani13081349] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
The effects of early supplementation with oat β-glucan during the suckling period on piglet gut microbiota composition, concentrations of short-chain fatty acids, and gut physiological markers were assessed. Fifty piglets from five litters, balanced for sex and birth weight, were divided within litters into two treatment groups: β-glucan and control. Piglets in the β-glucan group received the supplement three times/week from day 7 of age until weaning. Rectal swab samples were collected from 10 piglets per treatment group (balanced across litters) from week 1 to week 4, and plasma samples were collected at 1, 3, and 4 weeks of age. Additional samples of intestinal tissues and jugular and portal vein plasma were collected from 10 animals at weaning (one per treatment group and litter). The concentrations of short-chain fatty acids in plasma and the microbiota composition in rectal swabs were mainly influenced by piglet age, rather than the supplement. There were significant differences in microbiota composition between litters and several correlations between concentrations of short-chain fatty acids in plasma and specific microbial taxa in rectal swabs. Overall, β-glucan supplementation did not have any clear impact on the gut environment in suckling piglets, whereas a clear age-related pattern emerged.
Collapse
Affiliation(s)
- Lidija Arapovic
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Yi Huang
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
- Department of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Elin Manell
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Else Verbeek
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Linda Keeling
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Li Sun
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Rikard Landberg
- Department of Biology and Biological Engineering, Division of Food and Nutrition Science, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Torbjörn Lundh
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Jan Erik Lindberg
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Johan Dicksved
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| |
Collapse
|
27
|
Proteomic changes associated with maternal dietary low ω6:ω3 ratio in piglets supplemented with seaweed. Part I: Serum proteomes. J Proteomics 2023; 270:104740. [PMID: 36191802 DOI: 10.1016/j.jprot.2022.104740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 02/01/2023]
Abstract
This study examines whether maternal low ω6:ω3 ratio diet and offspring SW supplementation can improve offspring immunity and performance by elucidating the effects on piglet serum proteome. A total of 16 sows were given either a standard (CR, 13:1) or low ω6:ω3 ratio diet (LR, 4:1) during pregnancy and lactation and their male weaned piglets were supplemented with SW powder (4 g/kg, SW) or not (CT) in a 21-day post-weaning (PW) diet. Four PW piglet groups were then identified based on dam and piglet treatment, namely CRCT, CRSW, LRCT, and LRSW (n = 10 each). Piglet serum collected at weaning and d21 PW were analysed (n = 5 each) using TMT-based quantitative proteomics and validated by appropriate assays. The differentially abundant proteins (n = 122) displayed positive effects of maternal LR diet on anti-inflammatory properties and innate immune stimulation. Progeny SW diet activated the innate immunity and enhance the host defence during inflammation. These data demonstrate the value of decreasing ω6:ω3 ratio in maternal diet and SW supplementation in PW piglet's diet to boost their immunity and anti-inflammation properties. SIGNIFICANCE: This novel proteomic study in post-weaned piglets addresses the interplay between maternal and offspring nutritional interventions in a context of rapid and dynamic alterations in piglet metabolic status around weaning. Decreasing ω6:ω3 ratio in maternal diet and SW supplementation in PW piglet's diet can boost their immunity and anti-inflammation properties. This study also provides new insights into piglet serum proteome regulation during post-weaning, a critical development period in swine.
Collapse
|
28
|
Guo G, Yang W, Fan C, Lan R, Gao Z, Gan S, Yu H, Yin F, Wang Z. The effects of fucoidan as a dairy substitute on diarrhea rate and intestinal barrier function of the large intestine in weaned lambs. Front Vet Sci 2022; 9:1007346. [PMID: 36337209 PMCID: PMC9630570 DOI: 10.3389/fvets.2022.1007346] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/29/2022] [Indexed: 08/13/2023] Open
Abstract
This paper explores the effects of fucoidan on the frequency of diarrhea, colon morphology, colon antioxidant status, cytokine content, short-chain fatty acids, and microflora of cecal contents in early weaned lambs in order to provide a reference for the intestinal health of young ruminants. Fucoidan is a natural active polysaccharide extracted from kelp and other large brown algae. It has many biological effects, such as improving immunity, nourishing the stomach and intestines, and anti-tumor properties. This study investigated the effects of fucoidan supplementation in milk replacer on the large intestine's ability to act as an intestinal barrier in weaned lambs. With six duplicate pens and one lamb per pen, a total of 24 weaned lambs (average starting body weight of 7.32 ± 0.37 kg) were randomly assigned to one of four milk replacer treatments. Four concentrations of fucoidan supplementation (0, 0.1, 0.3, and 0.6% dry matter intake) were employed to investigate the effects of fucoidan on cecal fermentation and colon microbial organization. The test period lasted 37 days (1 week before the test and 1 month after the test), and lamb cecal contents and colon organization were collected for examination. In addition, the fecal status of all lambs was observed and recorded daily, allowing us to calculate the incidence of diarrhea in weaned lambs. The findings demonstrated that fucoidan may significantly increase the concentration of short-chain fatty acids (propionic acid and butyric acid) in the cecal digesta of weaned lambs. In weaned lambs, 16S rDNA testing showed that fucoidan at 0.3-0.6% (dry matter intake) was beneficial for boosting the variety of the intestinal bacteria and modifying the relative abundance of a few bacterial strains. In addition, fucoidan enhanced colon antioxidant and immune functions and decreased the diarrhea rate to relieve weaning stress. This result demonstrates that milk replacer supplementation with fucoidan contributes to the improvement in the large intestinal health of weaned lambs.
Collapse
Affiliation(s)
- Guangzhen Guo
- College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang, China
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Department of Animal Science, Guangdong Ocean University, Zhanjiang, China
| | - Weiguang Yang
- College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang, China
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Department of Animal Science, Guangdong Ocean University, Zhanjiang, China
| | - Chaojie Fan
- College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang, China
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Department of Animal Science, Guangdong Ocean University, Zhanjiang, China
| | - Ruixia Lan
- College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang, China
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Department of Animal Science, Guangdong Ocean University, Zhanjiang, China
| | - Zhenhua Gao
- College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang, China
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Department of Animal Science, Guangdong Ocean University, Zhanjiang, China
| | - Shangquan Gan
- College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang, China
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Department of Animal Science, Guangdong Ocean University, Zhanjiang, China
| | - Haibin Yu
- College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang, China
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Department of Animal Science, Guangdong Ocean University, Zhanjiang, China
| | - Fuquan Yin
- College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang, China
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Department of Animal Science, Guangdong Ocean University, Zhanjiang, China
| | - Zhijing Wang
- Animal Disease Prevention and Control Center, Guangdong Qingyuan Agricultural Bureau, Qingyuan, China
| |
Collapse
|
29
|
Canibe N, Højberg O, Kongsted H, Vodolazska D, Lauridsen C, Nielsen TS, Schönherz AA. Review on Preventive Measures to Reduce Post-Weaning Diarrhoea in Piglets. Animals (Basel) 2022; 12:2585. [PMID: 36230326 PMCID: PMC9558551 DOI: 10.3390/ani12192585] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 02/08/2023] Open
Abstract
In many countries, medical levels of zinc (typically as zinc oxide) are added to piglet diets in the first two weeks post-weaning to prevent the development of post-weaning diarrhoea (PWD). However, high levels of zinc constitute an environmental polluting agent, and may contribute to the development and/or maintenance of antimicrobial resistance (AMR) among bacteria. Consequently, the EU banned administering medical levels of zinc in pig diets as of June 2022. However, this may result in an increased use of antibiotic therapeutics to combat PWD and thereby an increased risk of further AMR development. The search for alternative measures against PWD with a minimum use of antibiotics and in the absence of medical levels of zinc has therefore been intensified over recent years, and feed-related measures, including feed ingredients, feed additives, and feeding strategies, are being intensively investigated. Furthermore, management strategies have been developed and are undoubtedly relevant; however, these will not be addressed in this review. Here, feed measures (and vaccines) are addressed, these being probiotics, prebiotics, synbiotics, postbiotics, proteobiotics, plants and plant extracts (in particular essential oils and tannins), macroalgae (particularly macroalgae-derived polysaccharides), dietary fibre, antimicrobial peptides, specific amino acids, dietary fatty acids, milk replacers, milk components, creep feed, vaccines, bacteriophages, and single-domain antibodies (nanobodies). The list covers measures with a rather long history and others that require significant development before their eventual use can be extended. To assess the potential of feed-related measures in combating PWD, the literature reviewed here has focused on studies reporting parameters of PWD (i.e., faeces score and/or faeces dry matter content during the first two weeks post-weaning). Although the impact on PWD (or related parameters) of the investigated measures may often be inconsistent, many studies do report positive effects. However, several studies have shown that control pigs do not suffer from diarrhoea, making it difficult to evaluate the biological and practical relevance of these improvements. From the reviewed literature, it is not possible to rank the efficacy of the various measures, and the efficacy most probably depends on a range of factors related to animal genetics and health status, additive doses used, composition of the feed, etc. We conclude that a combination of various measures is probably most recommendable in most situations. However, in this respect, it should be considered that combining strategies may lead to additive (e.g., synbiotics), synergistic (e.g., plant materials), or antagonistic (e.g., algae compounds) effects, requiring detailed knowledge on the modes of action in order to design effective strategies.
Collapse
Affiliation(s)
- Nuria Canibe
- Department of Animal and Veterinary Sciences, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark
| | | | | | | | | | | | | |
Collapse
|
30
|
Varada VV, Kumar S, Chhotaray S, Tyagi AK. Host-specific probiotics feeding influence growth, gut microbiota, and fecal biomarkers in buffalo calves. AMB Express 2022; 12:118. [PMID: 36103095 PMCID: PMC9475018 DOI: 10.1186/s13568-022-01460-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022] Open
Abstract
The current study is aimed to evaluate the effect of host-specific probiotics on the gut microbiome, performance, and select fecal biomarkers of gut health in preruminant buffalo calves. Eight Murrah buffalo calves (3–5 days old; 32.52 ± 0.43 kg average body weight (BW)) were randomly allocated into two groups as follows; 1) Group I (n = 4) fed basal diet alone (CON); 2) Group II (n = 4) supplemented with a lyophilized probiotic formulation at a dose rate of 1 g/day/head (1 × 109 CFU/g) having Limosilactobacillus reuteri BF-E7 and Ligilactobacillus salivarius BF-17 along with basal diet (PF) for 30 days. Results revealed that final BW (kg), average daily gain (g/day), average dry matter intake (g/day), and structural growth measurements were significantly (P < 0.05) increased in the probiotics supplemented group (PF) compared to the control (CON). Fecal pH, fecal moisture, and fecal score were reduced (P < 0.05) in PF than in CON. Moreover, levels of fecal propionate, lactate, and ammonia altered positively in PF compared with CON. The relative abundance of Firmicutes tended to be higher (P = 0.10) in the probiotics fed group than CON. However, the relative abundance of Proteobacteria was significantly lower (P = 0.03) for calves fed probiotics on day 15. A trend was observed in Bacteroides (P = 0.07) and Lactobacillus (P = 0.08) abundances in the feces of the PF than in CON. Overall, it can be concluded that the administration of probiotic formulations significantly improved the performance and gut health of buffalo calves via modulating the gut microbiota composition.
Collapse
|
31
|
Van de Vliet M, Joossens M. The Resemblance between Bacterial Gut Colonization in Pigs and Humans. Microorganisms 2022; 10:1831. [PMID: 36144433 PMCID: PMC9500663 DOI: 10.3390/microorganisms10091831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/02/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Thorough understanding of the initial colonization process of human intestines is important to optimize the prevention of microbiota-associated diseases, and also to further improve the current microbial therapies. In recent years, therefore, colonization of the human gut has gained renewed interest. However, due to a lack of standardization of life events that might influence this early colonization process in humans, many generally accepted insights are based on deduction and assumption. In our review, we compare knowledge on colonization in humans with research in piglets, because the intestinal tract of pigs is remarkably similar to that of humans and the early-life events are more standardized. We assess potential similarities and challenge some concepts that have been widely accepted in human microbiota research. Bacterial colonization of the human gut is characterized by successive waves in a progressive process, to a complex gut microbiota community. After re-analyzing available data from piglets, we found that the bacterial colonization process is very similar in terms of the wave sequence and functionality of each wave. Moreover, based on the piglet data, we found that, in addition to external factors such as suckling and nutrition, the bacterial community itself appears to have a major influence on the colonization success of additional bacteria in the intestine. Thus, the colonization process in piglets might rely, at least in part, on niche dependency, an ecological principle to be considered in the intestinal colonization process in humans.
Collapse
Affiliation(s)
| | - Marie Joossens
- Laboratory of Microbiology, Department of Biochemistry and Microbiology (WE10), Faculty of Sciences, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
32
|
Exploring the association between microbiota and behaviour in suckling piglets. Sci Rep 2022; 12:12322. [PMID: 35854042 PMCID: PMC9296644 DOI: 10.1038/s41598-022-16259-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/07/2022] [Indexed: 11/08/2022] Open
Abstract
It is increasingly recognised that the microbes residing in the gastrointestinal tract can influence brain physiology and behaviour, via the microbiota-gut-brain axis. Here, we made a first explorative evaluation at the association between the gut microbiota and behaviour in suckling piglets. 16S microbiota profiling information was obtained from two independent replicate experiments at 2 and 4 weeks of age. Piglets underwent a backtest to assess their personality or coping style at 2 weeks of age, and were subjected to a combined open field and novel object test at 3.5 weeks of age, recording anxiety-related and exploratory behaviour. The number of squeals vocalised during the open field test was associated with microbial groups such as Coprococcus 3 and CAG-873, whereas in the novel object test, explorative behaviour was significantly associated with microbial genera like Atopobium and Prevotella. Overall, this study explores the microbiota-behavioural relation by employing multivariate analysis and exemplifies the importance of individualised analyses when evaluating such relationships.
Collapse
|
33
|
Supplementation of xylo-oligosaccharides to suckling piglets promotes the growth of fiber-degrading gut bacterial populations during the lactation and nursery periods. Sci Rep 2022; 12:11594. [PMID: 35804098 PMCID: PMC9270449 DOI: 10.1038/s41598-022-15963-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/01/2022] [Indexed: 12/29/2022] Open
Abstract
Modulating early-life microbial colonization through xylo-oligosacharides (XOS) supplementation represents an opportunity to accelerate the establishment of fiber-degrading microbial populations and improve intestinal health. Ninety piglets from 15 litters were orally administered once a day from d7 to d27 of lactation with either 5 mL of water (CON) or 5 mL of a solution containing 30 to 60 mg of XOS (XOS). Supplementation ceased at weaning (d28) when all piglets were fed the same commercial pre-starter diet. Growth performance did not differ between treatments during the experimental period (d7 to d40). Piglet’s fecal microbiota (n = 30) shifted significantly from the end of lactation (d27) to nursery period (d40) exhibiting an increase in microbial alpha diversity. Animals supplemented with XOS showed higher richness and abundance of fiber-degrading bacteria and short-chain fatty acid (SCFA) production at d27 and d40. Additionally, the predicted abundance of the pyruvate to butanoate fermentation pathway was increased in the XOS group at d40. These results show that supplementation of XOS to lactating piglets promotes fiber-degrading bacterial populations in their hindgut. Moreover, differences observed in the nursery period suggest that XOS can influence the microbiota in the long-term.
Collapse
|
34
|
Early Introduction of Plant Polysaccharides Drives the Establishment of Rabbit Gut Bacterial Ecosystems and the Acquisition of Microbial Functions. mSystems 2022; 7:e0024322. [PMID: 35674393 PMCID: PMC9239267 DOI: 10.1128/msystems.00243-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In mammals, the introduction of solid food is pivotal for the establishment of the gut microbiota. However, the effects of the first food consumed on long-term microbiota trajectory and host response are still largely unknown. This study aimed to investigate the influences of (i) the timing of first solid food ingestion and (ii) the consumption of plant polysaccharides on bacterial community dynamics and host physiology using a rabbit model. To modulate the first exposure to solid nutrients, solid food was provided to suckling rabbits from two different time points (3 or 15 days of age). In parallel, food type was modulated with the provision of diets differing in carbohydrate content throughout life: the food either was formulated with a high proportion of rapidly fermentable fibers (RFF) or was starch-enriched. We found that access to solid food as of 3 days of age accelerated the gut microbiota maturation. Our data revealed differential effects according to the digestive segment: precocious solid food ingestion influenced to a greater extent the development of bacterial communities of the appendix vermiformis, whereas life course polysaccharides ingestion had marked effects on the cecal microbiota. Greater ingestion of RFF was assumed to promote pectin degradation as revealed by metabolomics analysis. However, transcriptomic and phenotypic host responses remained moderately affected by experimental treatments, suggesting little outcomes of the observed microbiome modulations on healthy subjects. In conclusion, our work highlighted the timing of solid food introduction and plant polysaccharides ingestion as two different tools to modulate microbiota implantation and functionality. IMPORTANCE Our study was designed to gain a better understanding of how different feeding patterns affect the dynamics of gut microbiomes and microbe–host interactions. This research showed that the timing of solid food introduction is a key component of the gut microbiota shaping in early developmental stages, though with lower impact on settled gut microbiota profiles in older individuals. This study also provided in-depth analysis of dietary polysaccharide effects on intestinal microbiota. The type of plant polysaccharides reaching the gut through the lifetime was described as an important modulator of the cecal microbiome and its activity. These findings will contribute to better define the interventions that can be employed for modulating the ecological succession of young mammal gut microbiota.
Collapse
|
35
|
Yang N, Li M, Huang Y, Liang X, Quan Z, Liu H, Li J, Yue X. Comparative Efficacy of Fish Meal Replacement With Enzymatically Treated Soybean Meal on Growth Performance, Immunity, Oxidative Capacity and Fecal Microbiota in Weaned Pigs. Front Vet Sci 2022; 9:889432. [PMID: 35711799 PMCID: PMC9195130 DOI: 10.3389/fvets.2022.889432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/26/2022] [Indexed: 11/23/2022] Open
Abstract
This study investigated the growth performance, immunity, antioxidant capacity and fecal microbiota of weaned pigs by partially or completely replacing dietary fish meal with enzymatically treated soybean meal. A total of 144 piglets (initial body weight of 7.19 ± 0.11 kg) weaned at 28 d were allotted to 3 dietary treatments (6 replicates per treatment): 4% fish meal diet (FM); 2% fishmeal plus 6% enzymatically treated soybean meal (ESBM1); and 6% enzymatically treated soybean meal without fish meal (ESBM2). The experimental period was 28 d, serum was collected at day 14 and day 28 for biochemical parameters analysis, feces was obtained for microbiota analysis at 28d. The body weight, average daily gain and average daily feed intake of piglets in the ESBM2 group were significantly increased compared with those in the FM and ESBM1 groups from 0 to 28 d, respectively (P < 0.05). The diets with enzymatically treated soybean meal in ESBM1 and ESBM2 groups decreased the diarrhea rate (P < 0.05). Compared with FM, ESBM1 and ESBM2 decreased 5-hydroxytryptamine (5-HT) (P < 0.05). ESBM1 decreased diamine oxidase (DAO) and Interleukin 6 (IL-6) compared with FM and ESBM2 (P < 0.05). ESBM1 decreased serum Interleukin 1β (IL-1β) compared with FM at d 14 (P < 0.05). The serum Immunoglobulin E (IgE), secretory curl associated protein 5 (sFRP-5) were higher in ESBM1 compared with FM and ESBM2 (P < 0.05). ESBM2 increased super oxidase dismutase (SOD) level and decreased malondialdehyde (MDA) content compared with FM and ESBM1, the concentration of SOD in ESBM1was higher than that in FM (P < 0.05). ESBM1 decreased cortisol and caspase 3 (Casp-3) (P < 0.05). FM showed a higher content of tri-iodothyronine (T3) (P < 0.05) and a lower thyroxine/ tri-iodothyronine ratio compared with those in the other two groups (P < 0.05). The concentration of leptin was lower in ESBM2 (P < 0.05). ESBM1 had a higher α-diversity than ESBM2 (P < 0.05). The microbiota composition was different among three treatments (difference between FM and ESBM1, p = 0.005; FM and ESBM2, p = 0.009; ESBM1 and ESBM2, p = 0.004). ESBM2 tend to increase the abundance of Firmicutes (P = 0.070) and decrease Bacteroidetes (P = 0.069). ESBM2 decreased the abundance of Parabacteroides and increased SMB53 compared with FM (P < 0.05). The spearman correlation analysis revealed that the abundance of Parabacteroides enriched in FM group was negatively correlated with SOD, Megasphaera enriched in ESBM2 group were positively correlated with SOD. The abundance of Lachnospira enriched in ESBM2 group were negatively correlated with serum concentration of D-lactate, DAO, IL-6, and NO. In conclusion, under the conditions of this study, diet with only ESBM demonstrate the beneficial impact on intestinal microbiota developments, antioxidant capacity as well as growth performance for weaned pigs.
Collapse
Affiliation(s)
- Ning Yang
- Animal Food Processing Laboratory, College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Mohan Li
- Animal Food Processing Laboratory, College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Yuetong Huang
- Animal Food Processing Laboratory, College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Xiaona Liang
- Animal Food Processing Laboratory, College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Zhizhong Quan
- Liaoning Complete Biotechnology Co., Ltd., Tieling, China
| | - Haiying Liu
- Animal Nutrition Laboratory, College of Animal Science and Medicine, Shenyang Agricultural University, Shenyang, China
| | - Jiantao Li
- Animal Nutrition Laboratory, College of Animal Science and Medicine, Shenyang Agricultural University, Shenyang, China
| | - Xiqing Yue
- Animal Food Processing Laboratory, College of Food Science, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
36
|
Xia B, Zhong R, Meng Q, Wu W, Chen L, Zhao X, Zhang H. Multi-omics unravel the compromised mucosal barrier function linked to aberrant mucin O-glycans in a pig model. Int J Biol Macromol 2022; 207:952-964. [PMID: 35364208 DOI: 10.1016/j.ijbiomac.2022.03.173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 11/16/2022]
Abstract
Early weaning stress (EWS) in piglets is associated with intestinal dysfunction. Here, utilizing a pig EWS model to mimic early-life stress (ELS) in humans, we investigated the mechanism of ELS-induced intestinal diseases through integrated multi-omics analyses of proteome, glycome, and microbiome. Our results demonstrated that EWS resulted in disrupted the ileal barrier integrity by reducing tight junction-related gene expression and interfering with cell-cell adhesion paralleled the increased proportion of pathogens such as Escherichia_Shigella and Helicobacter. Furthermore, Proteome data revealed that the accumulation of unfolded proteins and insufficient unfolded protein response (UPR) process caused by EWS led to ER stress. Data from proteome and glycome found that EWS induced aberrant mucin O-glycans, including truncated glycans, reduction in acidic glycans, and increased in fucosylated glycans. In addition, correlation test by taking fucose and inflammatory response into account suggested that enhancement of fucose expression might be a compensatory host response. Taken together, these results extend the comprehensive knowledge of the detrimental impacts and pathogenesis of EWS and help to provide intervention targets for ELS-induced intestinal diseases in the future.
Collapse
Affiliation(s)
- Bing Xia
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Qingshi Meng
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Weida Wu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xin Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Department of Animal Science, McGill University, Montreal, Quebec H9X3V9, Canada.
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
37
|
Van Daele E, Kamphorst K, Vlieger AM, Hermes G, Milani C, Ventura M, Belzer C, Smidt H, van Elburg RM, Knol J. Effect of antibiotics in the first week of life on faecal microbiota development. Arch Dis Child Fetal Neonatal Ed 2022; 107:fetalneonatal-2021-322861. [PMID: 35534183 PMCID: PMC9606546 DOI: 10.1136/archdischild-2021-322861] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 03/17/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Infants are frequently exposed to antibiotics (AB) in the first week of life for suspected bacterial infections. Little is known about the effect of AB on the developing intestinal microbiota. Therefore, we studied intestinal microbiota development with and without AB exposure in the first week of life in term born infants. METHODS We analysed the faecal microbiota from birth until 2.5 years of age by 16S rRNA gene amplicon sequencing in a cohort with 56 term born infants, exposed to AB in the first week of life (AB+) (AB for 2-3 days (AB2, n=20), AB for 7 days (AB7, n=36)), compared with 126 healthy controls (AB-). The effects of AB and duration were examined in relation to delivery and feeding mode. RESULTS AB+ was associated with significantly increased relative abundance of Enterobacteriaceae at 3 weeks and 1 year and a decrease of Bifidobacteriaceae, from 1 week until 3 months of age only in vaginally delivered, but not in C-section born infants. Similar deviations were noted in AB7, but not in AB2. After AB, breastfed infants had lower relative abundance of potentially pathogenic Enterobacteriaceae compared with formula fed infants and recovered 2 weeks faster towards controls. CONCLUSIONS AB exposure in the first week of life alters faecal microbiota development with deviations in the relative abundance of individual taxa until 1 year of age. These alterations can have long-term health consequences, which emphasises the need for future studies aiming at restoring intestinal microbiota after AB administration.
Collapse
Affiliation(s)
- Emmy Van Daele
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Kim Kamphorst
- Pediatrics, Amsterdam Gastroenterology, Metabolism & Nutrition, Amsterdam Reproduction & Development, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
- Pediatrics, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - Arine M Vlieger
- Pediatrics, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - Gerben Hermes
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma Department of Chemical Life Sciences and Environmental Sustainability, Parma, Emilia-Romagna, Italy
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Emilia-Romagna, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma Department of Chemical Life Sciences and Environmental Sustainability, Parma, Emilia-Romagna, Italy
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Emilia-Romagna, Italy
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Ruurd M van Elburg
- Pediatrics, Amsterdam Gastroenterology, Metabolism & Nutrition, Amsterdam Reproduction & Development Amsterdam, Amsterdam UMC Locatie AMC, Amsterdam, North Holland, The Netherlands
| | - Jan Knol
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Nutricia Research BV, Utrecht, The Netherlands
| |
Collapse
|
38
|
Choudhury R, Kleerebezem M. Assessing the Impact of Diet on the Mucosa-Adhered Microbiome in Piglets Using Comparative Analysis of Rectal Swabs and Colon Content. Front Microbiol 2022; 13:804986. [PMID: 35273582 PMCID: PMC8902596 DOI: 10.3389/fmicb.2022.804986] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Previously, we demonstrated that rectal swabs provide a legitimate alternative to faecal sampling for the assessment of the intestinal microbiota in young piglets. However, we also reported that mucosa-adhered microbial populations were more represented in rectal swabs compared to faecal samples, albeit to a degree that varied per swab-sample. Here, we explored the possibility to exploit this variable enrichment of adhered populations in the rectal swabs to assess the impact of diet on mucosa-adhered microbiota in pre-weaning piglets. Paired samples of rectal swabs and colon luminal contents were collected from piglets just before weaning during two independent but similarly designed animal experiments [n = 28 piglets (experiment 1); n = 16 piglets (experiment 2)], with an early feeding treatment (EF) group that had access to customised fibrous feed in addition to sow's milk and a control (CON) group exclusively reared on sow's milk. The intestinal microbiome composition in rectal swabs and colon samples collected at 29 days of age were subjected to metataxonomic analysis. The results identified the genera Escherichia-Shigella, Anaerococcus, Peptostreptococcus, Enterococcus, Trueperella, Actinomyces, and Peptoniphilus as discriminative taxa enriched in rectal swabs compared to colon. Apart from Escherichia-Shigella (10-11% average relative abundance), most of these mucosa-adhered microbial genera display relatively low abundance. Rectal swab microbiota was found to be more variable, which is likely due to variable enrichment of mucosa-adhered microbes. Although almost exclusively driven by one of the experiments, the post-weaning diarrhoea-associated taxa Escherichia-Shigella, was enriched in CON compared to the EF group, suggesting that early life feeding may suppress post-weaning-diarrhoea-related problems in piglets. Our findings demonstrate that rectal swabs allow the investigation of the mucosa-adhered microbial populations as a function of dietary treatment in piglets. This offers opportunities to further study dietary approaches that suppress the abundance of the post-weaning diarrhoea associated adherent microbes like Escherichia-Shigella. Furthermore, we demonstrate that the paired swab-colon microbiota information (obtained from a subset of animals) can predict the mucosa-adhered populations or "mucosity factor" in rectal swab samples, facilitating the analysis of the adhered microbiota in large animal cohort studies using readily obtainable rectal swabs.
Collapse
Affiliation(s)
- Raka Choudhury
- Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Michiel Kleerebezem
- Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
39
|
Correa F, Luise D, Bosi P, Trevisi P. Weaning differentially affects the maturation of piglet peripheral blood and jejunal Peyer's patches. Sci Rep 2022; 12:1604. [PMID: 35102264 PMCID: PMC8803882 DOI: 10.1038/s41598-022-05707-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 01/03/2022] [Indexed: 11/09/2022] Open
Abstract
The study aimed to assess how the post-weaning condition changes piglet peripheral blood (PB) and jejunal Peyer's patches (JPPs) as compared to the suckling period, and how these changes are associated with intestinal microbiota evolution. Sixteen pigs were slaughtered and sampled for PB, JPPs and jejunal content (JC) at weaning (26 days) or at 12 days fed on a pre-starter diet. The PB and JPP transcriptomes were analysed using mRNA-seq. The Gene Set Enrichment Analysis was used to demonstrate enriched gene clusters, depending on sampling time. Jejunal microbiota was profiled using 16S rRNA gene sequencing. Post-weaning JPPs were enriched for processes related to the activation of IFN-γ and major histocompatibility complex (MHC) class I antigen processing which clustered with the reduced abundance of the Weisella genus and Faecalibacterium prausnitzii in JC. The post-weaning microbiome differed from that seen in just-weaned pigs. For just-weaned PB, the enrichment of genes related to hemoglobin and the iron metabolism indicated the greater presence of reticulocytes and immature erythrocytes. The JPP genes involved in the I MHC and IFN-γ activations were markers of the post-weaning phase. Several genes attributable to reticulocyte and erythrocyte maturation could be interesting for testing the iron nutrition of piglets.
Collapse
Affiliation(s)
- Federico Correa
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy
| | - Diana Luise
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy
| | - Paolo Bosi
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy.
| | - Paolo Trevisi
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy
| |
Collapse
|