1
|
Mahajan A, Sharma G, Thakur A, Singh B, Mehta H, Mittal N, Dogra S, Katare OP. Tofacitinib in dermatology: a potential opportunity for topical applicability through novel drug-delivery systems. Nanomedicine (Lond) 2024; 19:79-101. [PMID: 38197372 DOI: 10.2217/nnm-2023-0167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024] Open
Abstract
Tofacitinib is a first-generation JAK inhibitor approved by the US FDA for treating rheumatoid arthritis. It exhibits a broad-spectrum inhibitory effect with abilities to block JAK-STAT signalling. The primary objective of this review is to obtain knowledge about cutting-edge methods for effectively treating a variety of skin problems by including tofacitinib into formulations that are based on nanocarriers. The review also highlights clinical trials and offers an update on published clinical patents. Nanocarriers provide superior performance compared to conventional treatments in terms of efficacy, stability, drug bioavailability, target selectivity and sustained drug release. Current review has the potential to make significant contributions to the ongoing discussion involving dermatological treatments and the prospective impact of nanotechnology on transforming healthcare within this field.
Collapse
Affiliation(s)
- Akanksha Mahajan
- University Institute of Pharmaceutical Sciences, UGC-centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Gajanand Sharma
- University Institute of Pharmaceutical Sciences, UGC-centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Anil Thakur
- University Institute of Pharmaceutical Sciences, UGC-centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Bhupinder Singh
- University Institute of Pharmaceutical Sciences, UGC-centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Hitaishi Mehta
- Department of Dermatology, Venereology & Leprology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - Neeraj Mittal
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Sunil Dogra
- Department of Dermatology, Venereology & Leprology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - O P Katare
- University Institute of Pharmaceutical Sciences, UGC-centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
2
|
Merleev AA, Le ST, Alexanian C, Toussi A, Xie Y, Marusina AI, Watkins SM, Patel F, Billi AC, Wiedemann J, Izumiya Y, Kumar A, Uppala R, Kahlenberg JM, Liu FT, Adamopoulos IE, Wang EA, Ma C, Cheng MY, Xiong H, Kirane A, Luxardi G, Andersen B, Tsoi LC, Lebrilla CB, Gudjonsson JE, Maverakis E. Biogeographic and disease-specific alterations in epidermal lipid composition and single cell analysis of acral keratinocytes. JCI Insight 2022; 7:159762. [PMID: 35900871 PMCID: PMC9462509 DOI: 10.1172/jci.insight.159762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The epidermis is the outermost layer of skin. Here, we used targeted lipid profiling to characterize the biogeographic alterations of human epidermal lipids across 12 anatomically distinct body sites, and we used single-cell RNA-Seq to compare keratinocyte gene expression at acral and nonacral sites. We demonstrate that acral skin has low expression of EOS acyl-ceramides and the genes involved in their synthesis, as well as low expression of genes involved in filaggrin and keratin citrullination (PADI1 and PADI3) and corneodesmosome degradation, changes that are consistent with increased corneocyte retention. Several overarching principles governing epidermal lipid expression were also noted. For example, there was a strong negative correlation between the expression of 18-carbon and 22-carbon sphingoid base ceramides. Disease-specific alterations in epidermal lipid gene expression and their corresponding alterations to the epidermal lipidome were characterized. Lipid biomarkers with diagnostic utility for inflammatory and precancerous conditions were identified, and a 2-analyte diagnostic model of psoriasis was constructed using a step-forward algorithm. Finally, gene coexpression analysis revealed a strong connection between lipid and immune gene expression. This work highlights (a) mechanisms by which the epidermis is uniquely adapted for the specific environmental insults encountered at different body surfaces and (b) how inflammation-associated alterations in gene expression affect the epidermal lipidome.
Collapse
Affiliation(s)
- Alexander A Merleev
- Department of Dermatology, University of California, Davis, Sacramento, United States of America
| | - Stephanie T Le
- Department of Dermatology, University of California, Davis, Sacramento, United States of America
| | - Claire Alexanian
- Department of Dermatology, University of California, Davis, Sacramento, United States of America
| | - Atrin Toussi
- Department of Dermatology, University of California, Davis, Sacramento, United States of America
| | - Yixuan Xie
- Department of Chemistry, University of California, Davis, Sacramento, United States of America
| | - Alina I Marusina
- Department of Dermatology, University of California, Davis, Sacramento, United States of America
| | | | - Forum Patel
- Department of Dermatology, University of California, Davis, Sacramento, United States of America
| | - Allison C Billi
- Department of Dermatology, University of Michigan, Ann Arbor, United States of America
| | - Julie Wiedemann
- Department of Dermatology, University of California, Irvine, Irvine, United States of America
| | - Yoshihiro Izumiya
- Department of Dermatology, University of California, Davis, Sacramento, United States of America
| | - Ashish Kumar
- Department of Dermatology, University of California, Davis, Sacramento, United States of America
| | - Ranjitha Uppala
- Department of Dermatology, University of Michigan, Ann Arbor, United States of America
| | - J Michelle Kahlenberg
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, United States of America
| | - Fu-Tong Liu
- Department of Dermatology, University of California, Davis, Sacramento, United States of America
| | - Iannis E Adamopoulos
- Department of Rheumatology, University of California, Davis, Sacramento, United States of America
| | - Elizabeth A Wang
- Department of Dermatology, University of California, Davis, Sacramento, United States of America
| | - Chelsea Ma
- Department of Dermatology, University of California, Davis, Sacramento, United States of America
| | - Michelle Y Cheng
- Department of Dermatology, University of California, Davis, Sacramento, United States of America
| | - Halani Xiong
- Verso Biosciences, Davis, United States of America
| | - Amanda Kirane
- Department of Surgery, University of California, Davis, Sacramento, United States of America
| | - Guillaume Luxardi
- Department of Dermatology, University of California, Davis, Sacramento, United States of America
| | - Bogi Andersen
- Department of Dermatology, University of California, Irvine, Irvine, United States of America
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, United States of America
| | - Carlito B Lebrilla
- Department of Chemistry, University of California, Davis, Sacramento, United States of America
| | - Johann E Gudjonsson
- Department of Dermatology, University of Michigan, Ann Arbor, United States of America
| | - Emanual Maverakis
- Department of Dermatology, University of California, Davis, Sacramento, United States of America
| |
Collapse
|
3
|
Mechanisms and Implications of Bacterial Invasion across the Human Skin Barrier. Microbiol Spectr 2022; 10:e0274421. [PMID: 35532353 PMCID: PMC9241919 DOI: 10.1128/spectrum.02744-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Atopic dermatitis (AD) is associated with a deficiency of skin lipids, increased populations of Staphylococcus aureus in the microbiome, and structural defects in the stratum corneum (SC), the outermost layer of human skin. However, the pathogenesis of AD is ambiguous, as it is unclear whether observed changes are the result of AD or contribute to the pathogenesis of the disease. Previous studies have shown that S. aureus is capable of permeating across isolated human SC tissue when lipids are depleted to levels consistent with AD conditions. In this study, we expand upon this discovery to determine the mechanisms and implications of bacterial penetration into the SC barrier. Specifically, we establish if bacteria are permeating intercellularly or employing a combination of both inter- and intracellular travel. The mechanical implications of bacterial invasion, lipid depletion, and media immersion are also evaluated using a newly developed, physiologically relevant, temperature-controlled drip chamber. Results reveal for the first time that S. aureus can be internalized by corneocytes, indicating transcellular movement through the tissue during permeation, consistent with previous theoretical models. S. aureus also degrades the mechanical integrity of human SC, particularly when the tissue is partially depleted of lipids. These observed mechanical changes are likely the cause of broken or ruptured tissue seen as exudative lesions in AD flares. This work further highlights the necessity of lipids in skin microbial barrier function. IMPORTANCE Millions of people suffer from the chronic inflammatory skin disease atopic dermatitis (AD), whose symptoms are associated with a deficiency of skin lipids that exhibit antimicrobial functions and increased populations of the opportunistic pathogen Staphylococcus aureus. However, the pathogenesis of AD is ambiguous, and it remains unclear if these observed changes are merely the result of AD or contribute to the pathogenesis of the disease. In this article, we demonstrate the necessity of skin lipids in preventing S. aureus from penetrating the outermost barrier of human skin, thereby causing a degradation in tissue integrity. This bacterial permeation into the viable epidermis could act as an inflammatory trigger of the disease. When coupled with delipidated AD tissue conditions, bacterial permeation can also explain increased tissue fragility, potentially causing lesion formation in AD patients that results in further enhancing bacterial permeability across the stratum corneum and the development of chronic conditions.
Collapse
|
4
|
Fujii M. The Pathogenic and Therapeutic Implications of Ceramide Abnormalities in Atopic Dermatitis. Cells 2021; 10:2386. [PMID: 34572035 PMCID: PMC8468445 DOI: 10.3390/cells10092386] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
Ceramides play an essential role in forming a permeability barrier in the skin. Atopic dermatitis (AD) is a common chronic skin disease associated with skin barrier dysfunction and immunological abnormalities. In patients with AD, the amount and composition of ceramides in the stratum corneum are altered. This suggests that ceramide abnormalities are involved in the pathogenesis of AD. The mechanism underlying lipid abnormalities in AD has not yet been fully elucidated, but the involvement of Th2 and Th1 cytokines is implicated. Ceramide-dominant emollients have beneficial effects on skin barrier function; thus, they have been approved as an adjunctive barrier repair agent for AD. This review summarizes the current understanding of the mechanisms of ceramide abnormalities in AD. Furthermore, the potential therapeutic approaches for correcting ceramide abnormalities in AD are discussed.
Collapse
Affiliation(s)
- Masanori Fujii
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| |
Collapse
|
5
|
Meyer JM, Crumrine D, Schneider H, Dick A, Schmuth M, Gruber R, Radner FPW, Grond S, Wakefield JS, Mauro TM, Elias PM. Unbound Corneocyte Lipid Envelopes in 12R-Lipoxygenase Deficiency Support a Specific Role in Lipid-Protein Cross-Linking. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:921-929. [PMID: 33607042 PMCID: PMC8132177 DOI: 10.1016/j.ajpath.2021.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 12/15/2022]
Abstract
Loss-of-function mutations in arachidonate lipoxygenase 12B (ALOX12B) are an important cause of autosomal recessive congenital ichthyosis (ARCI). 12R-lipoxygenase (12R-LOX), the protein product of ALOX12B, has been proposed to covalently bind the corneocyte lipid envelope (CLE) to the proteinaceous corneocyte envelope, thereby providing a scaffold for the assembly of barrier-providing, mature lipid lamellae. To test this hypothesis, an in-depth ultrastructural examination of CLEs was performed in ALOX12B-/- human and Alox12b-/- mouse epidermis, extracting samples with pyridine to distinguish covalently attached CLEs from unbound (ie, noncovalently bound) CLEs. ALOX12B--/- stratum corneum contained abundant pyridine-extractable (ie, unbound) CLEs, compared with normal stratum corneum. These unbound CLEs were associated with defective post-secretory lipid processing, and were specific to 12R-LOX deficiency, because they were not observed with deficiency of the related ARCI-associated proteins, patatin-like phospholipase 1 (Pnpla1) or abhydrolase domain containing 5 (Abhd5). These results suggest that 12R-LOX contributes specifically to CLE-corneocyte envelope cross-linking, which appears to be a prerequisite for post-secretory lipid processing, and provide insights into the pathogenesis of 12R-LOX deficiency in this subtype of ARCI, as well as other conditions that display a defective CLE.
Collapse
Affiliation(s)
- Jason M Meyer
- San Francisco Veterans Affairs Medical Center, Dermatology Service and UC San Francisco Department of Dermatology, San Francisco, California.
| | - Debra Crumrine
- San Francisco Veterans Affairs Medical Center, Dermatology Service, San Francisco, California
| | - Holm Schneider
- Department of Pediatrics, University of Erlangen-Nürnberg, Nürnberg, Germany
| | - Angela Dick
- Department of Pediatrics, University of Erlangen-Nürnberg, Nürnberg, Germany
| | - Matthias Schmuth
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Robert Gruber
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Franz P W Radner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Susanne Grond
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Joan S Wakefield
- San Francisco Veterans Affairs Medical Center, Dermatology Service and UC San Francisco Department of Dermatology, San Francisco, California
| | - Theodora M Mauro
- San Francisco Veterans Affairs Medical Center, Dermatology Service and UC San Francisco Department of Dermatology, San Francisco, California
| | - Peter M Elias
- San Francisco Veterans Affairs Medical Center, Dermatology Service and UC San Francisco Department of Dermatology, San Francisco, California
| |
Collapse
|
6
|
Wertz PW. Lipid Metabolic Events Underlying the Formation of the Corneocyte Lipid Envelope. Skin Pharmacol Physiol 2021; 34:38-50. [PMID: 33567435 DOI: 10.1159/000513261] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/22/2020] [Indexed: 11/19/2022]
Abstract
Cornified cells of the stratum corneum have a monolayer of an unusual lipid covalently attached to the outer surface. This is referred to as the corneocyte lipid envelope (CLE). It consists of a monolayer of ω-hydroxyceramides covalently attached to the outer surface of the cornified envelope. The CLE is essential for proper barrier function of the skin and is derived from linoleate-rich acylglucosylceramides synthesized in the viable epidermis. Biosynthesis of acylglucosylceramide and its conversion to the cornified envelope is complex. Acylglucosylceramide in the bounding membrane of the lamellar granule is the precursor of the CLE. The acylglucosylceramide in the limiting membrane of the lamellar granule may be oriented with the glucosyl moiety on the inside. Conversion of the acylglucosylceramide to the CLE requires removal of the glucose by action of a glucocerebrosidase. The ester-linked fatty acid may be removed by an as yet unidentified esterase, and the resulting ω-hydroxyceramide may become ester linked to the outer surface of the cornified envelope through action of transglutaminase 1. Prior to removal of ester-linked fatty acids, linoleate is oxidized to an epoxy alcohol through action of 2 lipoxygenases. This can be further oxidized to an epoxy-enone, which can spontaneously attach to the cornified envelope through Schiff's base formation. Mutations of genes coding for enzymes involved in biosynthesis of the CLE result in ichthyosis, often accompanied by neurologic dysfunction. The CLE is recognized as essential for barrier function of skin, but many questions about details of this essentiality remain. What are the relative roles of the 2 mechanisms of lipid attachment? What is the orientation of acylglucosylceramide in the bounding membrane of lamellar granules? Some evidence supports a role for CLE as a scaffold upon which intercellular lamellae unfold, but other evidence does not support this role. There is also controversial evidence for a role in stratum corneum cohesion. Evidence is presented to suggest that covalently bound ω-hydroxyceramides serve as a reservoir for free sphingosine that can serve in communicating with the viable epidermis and act as a potent broad-acting antimicrobial at the skin surface. Many questions remain.
Collapse
|
7
|
Guneri D, Voegeli R, Doppler S, Zhang C, Bankousli AL, Munday MR, Lane ME, Rawlings AV. The importance of 12R-lipoxygenase and transglutaminase activities in the hydration-dependent ex vivo maturation of corneocyte envelopes. Int J Cosmet Sci 2020; 41:563-578. [PMID: 31429091 PMCID: PMC6899781 DOI: 10.1111/ics.12574] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/18/2019] [Indexed: 12/26/2022]
Abstract
Background Terminally differentiated keratinocytes acquire corneocyte protein envelopes (CPE) complexed with corneocyte lipid envelopes (CLE). These two structural components of the corneocyte envelopes (CEs) undergo maturation by gaining in hydrophobicity, rigidity and surface area. Linoleoyl acylceramides are processed by 12R‐lipoxygenase (12R‐LOX) and other enzymes before transglutaminase (TG) attaches ω‐hydroxyceramides to involucrin in the CPE. Concurrently, structural proteins are cross‐linked by TG that has been activated by cathepsin D (CathD). Objectives The primary aim of this work was to demonstrate the impact of relative humidity (RH) during ex vivo CE maturation. Low, optimal and high RH were selected to investigate the effect of protease inhibitors (PIs) on CE maturation and TG activity; in addition, 12R‐LOX and CathD activity were measured at optimal RH. Finally, the effect of glycerol on ex vivo CE maturation was tested at low, optimal and high RH. Methods The first and ninth tape strip of photo‐exposed (PE) cheek and photo‐protected (PP) post‐auricular sites of healthy volunteers were selected. Ex vivo CE maturation was assessed via the relative CE maturity (RCEM) approach based on CE rigidity and hydrophobicity. The second and eighth tapes were exposed to RH in the presence of inhibitors. Results Irrespective of tape stripping depth, CEs from PE samples attained CE rigidity to the same extent as mature CEs from the PP site, but such improvement was lacking for CE hydrophobicity. 70% RH was optimal for ex vivo CE maturation. The inhibition of 12R‐LOX activity resulted in enhanced CE rigidity which was reduced by the TG inhibitor. CE hydrophobicity remained unchanged during ex vivo maturation in the presence of TG or 12R‐LOX inhibition. CE hydrophobicity was enhanced in the presence of glycerol at 44% RH and 100% RH but not at 70% RH. Furthermore, TG activity was significantly diminished at 100% RH compared to the commercial inhibitor LDN‐27219. However, a protease inhibitor mix reversed the negative effect of overhydration. Conclusion The study adds to the understanding of the roles of 12R‐LOX and TG activity in CE maturation and gives further insight into the effect of glycerol on the SC.
Collapse
Affiliation(s)
- D Guneri
- UCL School of Pharmacy, 29-39 Brunswick Square, WC1N 1AX, London, UK
| | - R Voegeli
- DSM Nutritional Products Ltd., Wurmisweg 576, 4303, Kaiseraugust, Switzerland
| | - S Doppler
- DSM Nutritional Products Ltd., Wurmisweg 576, 4303, Kaiseraugust, Switzerland
| | - C Zhang
- UCL School of Pharmacy, 29-39 Brunswick Square, WC1N 1AX, London, UK
| | - A L Bankousli
- UCL School of Pharmacy, 29-39 Brunswick Square, WC1N 1AX, London, UK
| | - M R Munday
- UCL School of Pharmacy, 29-39 Brunswick Square, WC1N 1AX, London, UK
| | - M E Lane
- UCL School of Pharmacy, 29-39 Brunswick Square, WC1N 1AX, London, UK
| | - A V Rawlings
- UCL School of Pharmacy, 29-39 Brunswick Square, WC1N 1AX, London, UK.,AVR Consulting Limited, 26 Shavington Way, CW98FH, Northwich, UK
| |
Collapse
|
8
|
Thakur K, Sharma G, Singh B, Katare OP. Topical Drug Delivery of Anti-infectives Employing Lipid-Based Nanocarriers: Dermatokinetics as an Important Tool. Curr Pharm Des 2019; 24:5108-5128. [PMID: 30657036 DOI: 10.2174/1381612825666190118155843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 01/11/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND The therapeutic approaches for the management of topical infections have always been a difficult approach due to lack of efficacy of conventional topical formulations, high frequency of topical applications and non-patient compliance. The major challenge in the management of topical infections lies in antibiotic resistance which leads to severe complications and hospitalizations resulting in economic burden and high mortality rates. METHODS Topical delivery employing lipid-based carriers has been a promising strategy to overcome the challenges of poor skin permeation and retention along with large doses which need to be administered systemically. The use of lipid-based delivery systems is a promising strategy for the effective topical delivery of antibiotics and overcoming drug-resistant strains in the skin. The major systems include transfersomes, niosomes, ethosomes, solid lipid nanoparticles, nanostructured lipid carriers, microemulsion and nanoemulsion as the most promising drug delivery approaches to treat infectious disorders. The main advantages of these systems include lipid bilayer structure which mimics the cell membrane and can fuse with infectious microbes. The numerous advantages associated with nanocarriers like enhanced efficacy, improvement in bioavailability, controlled drug release and ability to target the desired infectious pathogen have made these carriers successful. CONCLUSION Despite the number of strides taken in the field of topical drug delivery in infectious diseases, it still requires extensive research efforts to have a better perspective of the factors that influence drug permeation along with the mechanism of action with regard to skin penetration and deposition. The final objective of the therapy is to provide a safe and effective therapeutic approach for the management of infectious diseases affecting topical sites leading to enhanced therapeutic efficacy and patient-compliance.
Collapse
Affiliation(s)
- Kanika Thakur
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, 160 014, India
| | - Gajanand Sharma
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, 160 014, India
| | - Bhupindar Singh
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, 160 014, India
| | - Om Prakash Katare
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, 160 014, India
| |
Collapse
|
9
|
Guneri D, Voegeli R, Munday MR, Lane ME, Rawlings AV. 12R-lipoxygenase activity is reduced in photodamaged facial stratum corneum. A novel activity assay indicates a key function in corneocyte maturation. Int J Cosmet Sci 2019; 41:274-280. [PMID: 30993698 PMCID: PMC6852689 DOI: 10.1111/ics.12532] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/11/2019] [Indexed: 12/13/2022]
Abstract
Background During the late stage of keratinocyte differentiation, corneocytes gain a strong protein–lipid structure: the corneocyte envelopes (CE), composed of the inner corneocyte protein envelope (CPE) and the outer corneocyte lipid envelope (CLE). The hydrophobicity of CEs depends on the covalent attachment of linoleoyl‐acyl‐ceramides by transglutaminases (TG). These ceramides are processed by a range of other enzymes, including 12R‐lipoxygenase (12R‐LOX), before the covalent attachment of the free ω‐hydroxyceramides to the CPE surface to form the CLE. The mechanical strength of CE is obtained with the formation of isodipeptide bonds by TG. The increase in hydrophobicity and rigidity leads to CE maturation which supports the integrity and mechanical resistance of the stratum corneum (SC). Objectives The aim of this work was to develop and validate a novel enzyme activity assay for 12R‐LOX in tape strippings of photo‐exposed (PE) cheek and photo‐protected (PP) post‐auricular SC of healthy Chinese volunteers (n = 12; age 25 ± 3 years). Results A fluorescence‐based assay was developed with ethyl linoleic acid as the substrate and a polyclonal antibody against 12R‐LOX as an inhibitor. The specificity was shown by the lack of effect by a LOX inhibitor (ML351) and an epidermal‐type lipoxygenase 3 (eLOX3) antibody on the acquired 12R‐LOX activity. Reduced 12R‐LOX activity was observed in the outer compared to the inner SC layers. Moreover, dramatically lower activity was shown in the PE vs. PP samples. Furthermore, the enzyme activity has a positive correlation (r = 0.94 ± 0.03) with CE maturity, in particular hydrophobicity, and a negative correlation (r = −0.96 ± 0.01) with transepidermal water loss (TEWL). Conclusion This novel enzyme assay revealed a lower 12R‐LOX activity in tape strippings from PE cheek for the first time. This finding is in line with less mature CEs and higher TEWL compared to PP post‐auricular samples. This study indicates a strong link between 12R‐LOX activity and CE maturation and SC integrity.
Collapse
Affiliation(s)
- D Guneri
- UCL School of Pharmacy, London, UK
| | - R Voegeli
- DSM Nutritional Products Ltd, Kaiseraugust, Switzerland
| | | | - M E Lane
- UCL School of Pharmacy, London, UK
| | - A V Rawlings
- UCL School of Pharmacy, London, UK.,AVR Consulting Ltd, Northwich, UK
| |
Collapse
|
10
|
Crumrine D, Khnykin D, Krieg P, Man MQ, Celli A, Mauro TM, Wakefield JS, Menon G, Mauldin E, Miner JH, Lin MH, Brash AR, Sprecher E, Radner FPW, Choate K, Roop D, Uchida Y, Gruber R, Schmuth M, Elias PM. Mutations in Recessive Congenital Ichthyoses Illuminate the Origin and Functions of the Corneocyte Lipid Envelope. J Invest Dermatol 2019; 139:760-768. [PMID: 30471252 PMCID: PMC11249047 DOI: 10.1016/j.jid.2018.11.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/25/2018] [Accepted: 11/07/2018] [Indexed: 12/26/2022]
Abstract
The corneocyte lipid envelope (CLE), a monolayer of ω-hydroxyceramides whose function(s) remain(s) uncertain, is absent in patients with autosomal recessive congenital ichthyoses with mutations in enzymes that regulate epidermal lipid synthesis. Secreted lipids fail to transform into lamellar membranes in certain autosomal recessive congenital ichthyosis epidermis, suggesting the CLE provides a scaffold for the extracellular lamellae. However, because cornified envelopes are attenuated in these autosomal recessive congenital ichthyoses, the CLE may also provide a scaffold for subjacent cornified envelope formation, evidenced by restoration of cornified envelopes after CLE rescue. We provide multiple lines of evidence that the CLE originates as lamellar body-limiting membranes fuse with the plasma membrane: (i) ABCA12 patients and Abca12-/- mice display normal CLEs; (ii) CLEs are normal in Netherton syndrome, despite destruction of secreted LB contents; (iii) CLEs are absent in VSP33B-negative patients; (iv) limiting membranes of lamellar bodies are defective in lipid-synthetic autosomal recessive congenital ichthyoses; and (v) lipoxygenases, lipase activity, and LIPN co-localize within putative lamellar bodies.
Collapse
Affiliation(s)
- Debra Crumrine
- Dermatology Service, Veterans Affairs Medical Center, San Francisco, California, USA; Department of Dermatology, University of California-San Francisco, San Francisco, California, USA
| | - Denis Khnykin
- Department of Pathology, Oslo University Hospital, Oslo, Norway; Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Peter Krieg
- Molecular Diagnostics of Oncogenic Infections, German Cancer Research Center, Heidelberg, Germany
| | - Mao-Qiang Man
- Dermatology Service, Veterans Affairs Medical Center, San Francisco, California, USA; Department of Dermatology, University of California-San Francisco, San Francisco, California, USA
| | - Anna Celli
- Dermatology Service, Veterans Affairs Medical Center, San Francisco, California, USA; Department of Dermatology, University of California-San Francisco, San Francisco, California, USA
| | - Theodora M Mauro
- Dermatology Service, Veterans Affairs Medical Center, San Francisco, California, USA; Department of Dermatology, University of California-San Francisco, San Francisco, California, USA
| | - Joan S Wakefield
- Dermatology Service, Veterans Affairs Medical Center, San Francisco, California, USA; Department of Dermatology, University of California-San Francisco, San Francisco, California, USA
| | | | - Elizabeth Mauldin
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jeffrey H Miner
- Department of Medicine, Division of Nephrology, Washington University, St. Louis, Missouri, USA
| | - Meei-Hua Lin
- Department of Medicine, Division of Nephrology, Washington University, St. Louis, Missouri, USA
| | - Alan R Brash
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Eli Sprecher
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Franz P W Radner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Keith Choate
- Departments of Dermatology and Genetics, Yale University, New Haven, Connecticut, USA
| | - Dennis Roop
- Department of Dermatology, University of Colorado, Denver, Colorado, USA
| | - Yoshikazu Uchida
- Dermatology Service, Veterans Affairs Medical Center, San Francisco, California, USA; Department of Dermatology, University of California-San Francisco, San Francisco, California, USA
| | - Robert Gruber
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Matthias Schmuth
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Peter M Elias
- Dermatology Service, Veterans Affairs Medical Center, San Francisco, California, USA; Department of Dermatology, University of California-San Francisco, San Francisco, California, USA.
| |
Collapse
|
11
|
Laing S, Bielfeldt S, Wilhelm KP, Obst J. Confocal Raman Spectroscopy as a tool to measure the prevention of skin penetration by a specifically designed topical medical device. Skin Res Technol 2019; 25:578-586. [PMID: 30770595 DOI: 10.1111/srt.12689] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 01/06/2019] [Accepted: 01/12/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND/AIM The scope of this study was to utilize confocal Raman spectroscopy in the evaluation of the degree of non-penetration into the viable skin layers of a paraffin and petrolatum-based product for use in the intimate areas of the skin. The formulation was purposely designed with properties to prevent undesirable skin penetration. METHODS Product-The test product was a proprietary topical medical device comprising paraffinum liquidum, petrolatum, paraffin, and tocopheryl acetate. Volunteers-A total of 20 healthy volunteers were recruited onto the study-17 females and three males. Product Testing-Raman spectra were obtained at Baseline and 90 minutes after product application. Product Penetration-Skin penetration was calculated from Raman spectra taken at skin depths of -5, 0, 5, 10, 15, and 20 μm. RESULTS Raman spectra of the investigated product could be clearly differentiated from the skin spectrum. The minimum measurable concentration of the test product was determined at a detection level of 0.5%. In this study, the test product did not penetrate down to skin depths of 10 to 20 μm. CONCLUSIONS Within the precision range of the test method, the investigated product did not penetrate into the compact part of the stratum corneum. The study revealed Raman spectroscopy to be suitable to detect not only penetration but also non-penetration of substances into human skin.
Collapse
Affiliation(s)
- Sabrina Laing
- proDERM Institute of Applied Dermatological Research GmbH, Hamburg, Germany
| | - Stephan Bielfeldt
- proDERM Institute of Applied Dermatological Research GmbH, Hamburg, Germany
| | | | | |
Collapse
|
12
|
State of the art in Stratum Corneum research: The biophysical properties of ceramides. Chem Phys Lipids 2018; 216:91-103. [PMID: 30291856 DOI: 10.1016/j.chemphyslip.2018.09.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/10/2018] [Accepted: 09/29/2018] [Indexed: 11/20/2022]
Abstract
This review is summarizing an important part of the state of the art in stratum corneum research. A complete overview on discoveries about the general biophysical and physicochemical properties of the known ceramide species' is provided. The ceramides are one of the three major components of the lipid matrix and mainly govern its properties and structure. They are shown to exhibit very little redundancy, despite the minor differences in their chemical structure. The results are discussed, compared to each other as well as the current base of knowledge. New interesting aspects and concepts are concluded or suggested. A novel interpretation of the 3-dimensional structure of the lipid matrix and its influence on the barrier function will be discussed. The most important conclusion is the presentation of a new and up to date theoretical model of the nanostructure of the short periodicity phase. The model suggests three perpendicular layers: The rigid head group region, the rigid chain region and, a liquid-like overlapping middle layer. The general principle of the skin barrier function is highlighted in regard to this structure and the ceramides biophysical and physicochemical properties. As a result of these considerations, the entropy vs. enthalpy principle is introduced, shedding light on the function as well as the effectiveness of the skin barrier. Additionally, general ideas to effectively overcome this barrier principle for dermal and transdermal delivery of actives or how to use it for specific targeting of the stratum corneum are proposed.
Collapse
|
13
|
Fujiwara A, Morifuji M, Kitade M, Kawahata K, Fukasawa T, Yamaji T, Itoh H, Kawashima M. Age-related and seasonal changes in covalently bound ceramide content in forearm stratum corneum of Japanese subjects: determination of molecular species of ceramides. Arch Dermatol Res 2018; 310:729-735. [PMID: 30182275 DOI: 10.1007/s00403-018-1859-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/26/2017] [Accepted: 08/26/2018] [Indexed: 12/30/2022]
Abstract
The stratum corneum (SC) consists of corneocytes surrounded by a neutral lipid-enriched intercellular matrix. Ceramides represent approximately 50% of intercellular lipids, and play important roles in retaining epidermal water. The SC also contains covalently bound ceramides, which are thought to play a crucial role in the formation of lamellar structures, and are involved in maintaining skin barrier function. A previous report showed that levels of free ceramides in human SC changed with the seasons and age, although whether the content of different species of covalently bound ceramides also underwent such temporal changes was unclear. Here, SC samples were taken from 99 healthy individuals of different ages (24-64 years) and during different seasons. The content of different molecular species of covalently bound ceramides in the samples was quantified using HPLC-MS/MS. The levels of total covalently bound ceramides (Total-Cers) significantly decreased approximately 50% in autumn and winter, compared with that of spring and summer. The levels of covalently bound ceramides containing saturated fatty acids (SFA-Cers) in the spring and summer were approximately 2.3-fold higher than that seen in autumn and winter, whereas the level of covalently bound ceramides containing unsaturated fatty acids (USFA-Cers) in spring and summer were approximately 1.6-fold higher than that in autumn and winter. Furthermore, the ratio between SFA-Cers and USFA-Cers was significantly lower in spring and summer than in autumn and winter. The levels of SFA-Cers, but not USFA-Cers, were significantly lower in individuals ≥ 50 years old compared to those who are 30- and 40-years old in the spring. Our study showed for the first time that, similar to free ceramides, the level of covalently bound ceramides changed with the seasons. However, age-related changes in covalently bound ceramide content were limited in that only the amount of SFA-Cers in the spring was lower in older individuals.
Collapse
Affiliation(s)
- Anna Fujiwara
- R&D Division, Meiji Co., Ltd., Meiji Innovation Center 1-29-1 Nanakuni, Hachiouji, Tokyo, 192-0919, Japan.
| | - Masashi Morifuji
- R&D Division, Meiji Co., Ltd., Meiji Innovation Center 1-29-1 Nanakuni, Hachiouji, Tokyo, 192-0919, Japan
| | - Masami Kitade
- R&D Division, Meiji Co., Ltd., Meiji Innovation Center 1-29-1 Nanakuni, Hachiouji, Tokyo, 192-0919, Japan
| | - Keiko Kawahata
- R&D Division, Meiji Co., Ltd., Meiji Innovation Center 1-29-1 Nanakuni, Hachiouji, Tokyo, 192-0919, Japan
| | - Tomoyuki Fukasawa
- R&D Division, Meiji Co., Ltd., Meiji Innovation Center 1-29-1 Nanakuni, Hachiouji, Tokyo, 192-0919, Japan
| | - Taketo Yamaji
- R&D Division, Meiji Co., Ltd., Meiji Innovation Center 1-29-1 Nanakuni, Hachiouji, Tokyo, 192-0919, Japan
| | - Hiroyuki Itoh
- R&D Division, Meiji Co., Ltd., Meiji Innovation Center 1-29-1 Nanakuni, Hachiouji, Tokyo, 192-0919, Japan
| | - Makoto Kawashima
- Department of Dermatology, Tokyo Women's Medical University, School of Medicine, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| |
Collapse
|
14
|
Lipids and the Permeability and Antimicrobial Barriers of the Skin. J Lipids 2018; 2018:5954034. [PMID: 30245886 PMCID: PMC6139190 DOI: 10.1155/2018/5954034] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/26/2018] [Indexed: 01/13/2023] Open
Abstract
The primary purpose of the epidermis of terrestrial vertebrates is to produce the stratum corneum, which serves as the interface between the organism and the environment. As such, the stratum corneum provides a permeability barrier which both limits water loss through the skin and provides a relatively tough permeability barrier. This provides for a degree of resistance to mechanical trauma and prevents or limits penetration of potentially harmful substances from the environment. The stratum corneum consists of an array of keratinized cells embedded in a lipid matrix. It is this intercellular lipid that determines the permeability of the stratum corneum. The main lipids here are ceramides, cholesterol, and fatty acids. In addition, the skin surface of mammals, including humans, is coated by a lipid film produced by sebaceous glands in the dermis and secreted through the follicles. Human sebum consists mainly of squalene, wax monoesters, and triglycerides with small proportions of cholesterol and cholesterol esters. As sebum passes through the follicles, some of the triglycerides are hydrolyzed by bacteria to liberate free fatty acids. Likewise, near the skin surface, where water becomes available, some of the ceramides are acted upon by an epithelial ceramidase to liberate sphingosine, dihydrosphingosine, and 6-hydroxysphingosine. Some of the free fatty acids, specifically lauric acid and sapienic acid, have been shown to have antibacterial, antifungal, and antiviral activity. Also, the long-chain bases have broad spectrum antibacterial activity.
Collapse
|
15
|
Mauldin EA, Crumrine D, Casal ML, Jeong S, Opálka L, Vavrova K, Uchida Y, Park K, Craiglow B, Choate KA, Shin KO, Lee YM, Grove GL, Wakefield JS, Khnykin D, Elias PM. Cellular and Metabolic Basis for the Ichthyotic Phenotype in NIPAL4 (Ichthyin)-Deficient Canines. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1419-1429. [PMID: 29548991 DOI: 10.1016/j.ajpath.2018.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/02/2018] [Accepted: 02/08/2018] [Indexed: 12/11/2022]
Abstract
Mutations in several lipid synthetic enzymes that block fatty acid and ceramide production produce autosomal recessive congenital ichthyoses (ARCIs) and associated abnormalities in permeability barrier homeostasis. However, the basis for the phenotype in patients with NIPAL4 (ichthyin) mutations (among the most prevalent ARCIs) remains unknown. Barrier function was abnormal in an index patient and in canines with homozygous NIPAL4 mutations, attributable to extensive membrane stripping, likely from detergent effects of nonesterified free fatty acid. Cytotoxicity compromised not only lamellar body secretion but also formation of the corneocyte lipid envelope (CLE) and attenuation of the cornified envelope (CE), consistent with a previously unrecognized, scaffold function of the CLE. Together, these abnormalities result in failure to form normal lamellar bilayers, accounting for the permeability barrier abnormality and clinical phenotype in NIPA-like domain-containing 4 (NIPAL4) deficiency. Thus, NIPAL4 deficiency represents another lipid synthetic ARCI that converges on the CLE (and CE), compromising their putative scaffold function. However, the clinical phenotype only partially improved after normalization of CLE and CE structure with topical ω-O-acylceramide because of ongoing accumulation of toxic metabolites, further evidence that proximal, cytotoxic metabolites contribute to disease pathogenesis.
Collapse
Affiliation(s)
- Elizabeth A Mauldin
- Department of Dermatopathology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Debra Crumrine
- Dermatology Service, Veterans Affairs Medical Center, San Francisco, California; Department of Dermatology, University of California, San Francisco, San Francisco, California
| | - Margret L Casal
- Department of Dermatopathology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sekyoo Jeong
- Department of BioCosmetics, Seowon University, Cheongju, South Korea
| | - Lukáš Opálka
- Department of Pharmacy, Charles University, Hradec Kralove, Czech Republic
| | - Katerina Vavrova
- Department of BioCosmetics, Seowon University, Cheongju, South Korea; Department of Pharmacy, Charles University, Hradec Kralove, Czech Republic
| | - Yoshikazu Uchida
- Dermatology Service, Veterans Affairs Medical Center, San Francisco, California; Department of Dermatology, University of California, San Francisco, San Francisco, California
| | - Kyungho Park
- Dermatology Service, Veterans Affairs Medical Center, San Francisco, California; Department of Dermatology, University of California, San Francisco, San Francisco, California
| | - Brittany Craiglow
- Department of Pharmacy, Charles University, Hradec Kralove, Czech Republic; Department of Dermatology, Genetics, and Pathology, Yale University, New Haven, Connecticut
| | - Keith A Choate
- Department of Pharmacy, Charles University, Hradec Kralove, Czech Republic; Department of Dermatology, Genetics, and Pathology, Yale University, New Haven, Connecticut
| | - Kyong-Oh Shin
- College of Pharmacy, Chungbuk Natl University, Cheongju, South Korea
| | - Yong-Moon Lee
- College of Pharmacy, Chungbuk Natl University, Cheongju, South Korea
| | - Gary L Grove
- Department of Research and Development, cyberDERM, Media, Pennsylvania
| | - Joan S Wakefield
- Dermatology Service, Veterans Affairs Medical Center, San Francisco, California; Department of Dermatology, University of California, San Francisco, San Francisco, California
| | - Denis Khnykin
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Peter M Elias
- Dermatology Service, Veterans Affairs Medical Center, San Francisco, California; Department of Dermatology, University of California, San Francisco, San Francisco, California.
| |
Collapse
|
16
|
Wertz PW. Naturally occurring ω-Hydroxyacids. Int J Cosmet Sci 2017; 40:31-33. [PMID: 28994119 DOI: 10.1111/ics.12432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/05/2017] [Indexed: 01/05/2023]
Abstract
ω-Hydroxyacids are fatty acids bearing a hydroxyl group on the terminal carbon. They are found in mammals and higher plants and are often involved in providing a permeability barrier, the primary purpose of which is to reduce water loss. Some ω-hydroxyacid derivatives may be involved in waterproofing and signalling. The purpose of this review was to survey the known natural sources of ω-hydroxyacids. ω-Hydroxyacids are produced by two different P450-dependent mechanisms. The longer (30-34 carbons) ω-hydroxyacids are produced by chain extension from palmitic acid until the chain extends across the membrane in which the extension is taking place, and then the terminal carbon is hydroxylated. Shorter fatty acids can be hydroxylated directly to produce C16 and C18 ω-hydroxyacids found in plants and 20-eicosatetraenoic acid (20-HETE) by a different P450. The C16 and C18 ω-hydroxyacids are components of polymers in plants. The long-chain ω-hydroxyacids are found in epidermal sphingolipids, in giant-ring lactones from the sebum of members of the equidae, as a component of meibum and in carnauba wax and wool wax.
Collapse
Affiliation(s)
- P W Wertz
- 1412 Laurel Street, Iowa City, IA, 52242, USA
| |
Collapse
|
17
|
Oh MJ, Cho YH, Cha SY, Lee EO, Kim JW, Kim SK, Park CS. Novel phytoceramides containing fatty acids of diverse chain lengths are better than a single C18-ceramide N-stearoyl phytosphingosine to improve the physiological properties of human stratum corneum. Clin Cosmet Investig Dermatol 2017; 10:363-371. [PMID: 28979153 PMCID: PMC5602416 DOI: 10.2147/ccid.s143591] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Ceramides in the human stratum corneum (SC) are a mixture of diverse N-acylated fatty acids (FAs) with different chain lengths. C24 is the major class of FAs of ceramides. However, there are also other classes of ceramides with diverse chain lengths of FAs, and these lengths generally range from C16 to C26. This study aimed to prepare several types of phytoceramide containing diverse chain lengths of N-acylated FAs and compare them with C18-ceramide N-stearoyl phytosphingosine (NP) in terms of their effects on the physiological properties of the SC. We chose natural oils, such as horse fat oil, shea butter, sunflower oil, and a mixture of macadamia nut, shea butter, moringa, and meadowfoam seed oil, as sources of FAs and phytosphingosine as a sphingoid backbone to synthesize diverse phytoceramides. Each phytoceramide exhibited a distinctive formation of the lamellar structure, and their FA profiles were similar to those of their respective natural oil. The skin barrier properties, as analyzed in human skin, clearly demonstrated that all the phytoceramides improved the recovery rate of the damaged SC and enhanced hydration better than C18-ceramide NP did. In conclusion, natural oil-derived phytoceramides could represent a novel class of ceramides for cosmetic applications in the development of an ideal skin barrier moisturizer.
Collapse
Affiliation(s)
- Myoung Jin Oh
- Department of Chemical and Biochemical Engineering, Dongguk University, Chung-gu, Seoul
| | - Young Hoon Cho
- Department of Chemical and Biochemical Engineering, Dongguk University, Chung-gu, Seoul
| | - So Yoon Cha
- Department of Chemical and Biochemical Engineering, Dongguk University, Chung-gu, Seoul
| | - Eun Ok Lee
- LCS Biotech, Gwonseon-gu, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Jin Wook Kim
- LCS Biotech, Gwonseon-gu, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Sun Ki Kim
- LCS Biotech, Gwonseon-gu, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Chang Seo Park
- Department of Chemical and Biochemical Engineering, Dongguk University, Chung-gu, Seoul
| |
Collapse
|
18
|
A synthetic C16 omega-hydroxyphytoceramide improves skin barrier functions from diversely perturbed epidermal conditions. Arch Dermatol Res 2016; 308:563-74. [PMID: 27402316 DOI: 10.1007/s00403-016-1674-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/03/2016] [Accepted: 07/01/2016] [Indexed: 10/21/2022]
Abstract
Omega-hydroxyceramides (ω-OH-Cer) play a crucial role in maintaining the integrity of skin barrier. ω-OH-Cer are the primary lipid constituents of the corneocyte lipid envelope (CLE) covalently attached to the outer surface of the cornified envelope linked to involucrin to become bound form lipids in stratum corneum (SC). CLE becomes a hydrophobic impermeable layer of matured corneocyte preventing loss of natural moisturizing factor inside the corneocytes. More importantly, CLE may also play an important role in the formation of proper orientation of intercellular lipid lamellar structure by interdigitating with the intercellular lipids in a comb-like fashion. Abnormal barrier conditions associated with atopic dermatitis but also UVB-irradiated skins are known to have lowered level of bound lipids, especially ω-OH-Cer, which indicate that ω-OH-Cer play an important role in maintaining the integrity of skin barrier. In this study, protective effects of a novel synthetic C16 omega-hydroxyphytoceramides (ω-OH-phytoceramide) on skin barrier function were investigated. Epidermal barrier disruption was induced by UVB irradiation, tape-stripping in hairless mouse and human skin. Protective effect of damaged epidermis was evaluated using the measurement of transepidermal water loss and cohesion of SC. Increased keratinocyte differentiation was verified using cultured keratinocyte through western blot. Results clearly demonstrated that a synthetic C16 ω-OH-phytoceramide enhanced the integrity of SC and accelerated the recovery of damaged skin barrier function by stimulating differentiation process. In a conclusion, a synthetic C16 ω-OH-phytoceramide treatment improved epidermal homeostasis in several disrupted conditions.
Collapse
|
19
|
|
20
|
Understanding age-induced alterations to the biomechanical barrier function of human stratum corneum. J Dermatol Sci 2015; 80:94-101. [PMID: 26276440 DOI: 10.1016/j.jdermsci.2015.07.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/23/2015] [Accepted: 07/29/2015] [Indexed: 11/22/2022]
Abstract
BACKGROUND The appearance and function of human skin are dramatically altered with aging, resulting in higher rates of severe xerosis and other skin complaints. The outermost layer of the epidermis, the stratum corneum (SC), is responsible for the biomechanical barrier function of skin and is also adversely transformed with age. With age the keratin filaments within the corneocytes are prone to crosslinking, the amount of intercellular lipids decreases resulting in fewer lipid bilayers, and the rate of corneocyte turnover decreases. OBJECTIVES The effect of these structural changes on the mechanical properties of the SC has not been determined. Here we determine how several aspects of the SC's mechanical properties are dramatically degraded with age. METHODS We performed a range of biomechanical experiments, including micro-tension, bulge, double cantilever beam, and substrate curvature testing on abdominal stratum corneum from cadaveric female donors ranging in age from 29 to 93 years old. RESULTS We found that the SC stiffens with age, indicating that the keratin fibers stiffen, similarly to collagen fibers in the dermis. The cellular cohesion also increases with age, a result of the altered intercellular lipid structure. The kinetics of water movement through the SC is also decreased. CONCLUSIONS Our results indicate that the combination of structural and mechanical property changes that occur with age are quite significant and may contribute to the prevalence of skin disorders among the elderly.
Collapse
|
21
|
Hornby S, Walters R, Tierney N, Appa Y, Dorfman G, Kamath Y. Effect of commercial cleansers on skin barrier permeability. Skin Res Technol 2015; 22:196-202. [DOI: 10.1111/srt.12250] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2015] [Indexed: 12/01/2022]
Affiliation(s)
- S. Hornby
- JOHNSON & JOHNSON Consumer Companies, Inc.; Skillman NJ USA
| | - R. Walters
- JOHNSON & JOHNSON Consumer Companies, Inc.; Skillman NJ USA
| | - N. Tierney
- JOHNSON & JOHNSON Consumer Companies, Inc.; Skillman NJ USA
| | - Y. Appa
- JOHNSON & JOHNSON Consumer Companies, Inc.; Skillman NJ USA
| | - G. Dorfman
- Department of Biomedical Engineering; Rutgers University; Piscataway NJ USA
| | - Y. Kamath
- Kamath Consulting Inc.; Monmouth NJ USA
| |
Collapse
|
22
|
van Smeden J, Janssens M, Gooris GS, Bouwstra JA. The important role of stratum corneum lipids for the cutaneous barrier function. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:295-313. [PMID: 24252189 DOI: 10.1016/j.bbalip.2013.11.006] [Citation(s) in RCA: 357] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/08/2013] [Accepted: 11/10/2013] [Indexed: 01/28/2023]
Abstract
The skin protects the body from unwanted influences from the environment as well as excessive water loss. The barrier function of the skin is located in the stratum corneum (SC). The SC consists of corneocytes embedded in a lipid matrix. This lipid matrix is crucial for the lipid skin barrier function. This paper provides an overview of the reported SC lipid composition and organization mainly focusing on healthy and diseased human skin. In addition, an overview is provided on the data describing the relation between lipid modulations and the impaired skin barrier function. Finally, the use of in vitro lipid models for a better understanding of the relation between the lipid composition, lipid organization and skin lipid barrier is discussed. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.
Collapse
Affiliation(s)
- J van Smeden
- Department of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - M Janssens
- Department of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - G S Gooris
- Department of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - J A Bouwstra
- Department of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
23
|
Elias PM, Gruber R, Crumrine D, Menon G, Williams ML, Wakefield JS, Holleran WM, Uchida Y. Formation and functions of the corneocyte lipid envelope (CLE). Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:314-8. [PMID: 24076475 DOI: 10.1016/j.bbalip.2013.09.011] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/11/2013] [Accepted: 09/18/2013] [Indexed: 10/26/2022]
Abstract
Corneocytes in mammalian stratum corneum are surrounded by a monolayer of covalently bound ω-OH-ceramides that form the corneocyte (-bound) lipid envelope (CLE). We review here the structure, composition, and possible functions of this structure, with insights provided by inherited and acquired disorders of lipid metabolism. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.
Collapse
Affiliation(s)
- Peter M Elias
- Dermatology Services, Veterans Affairs Medical Center, San Francisco, CA, USA; Department of Dermatology, University of California, San Francisco, CA, USA.
| | - Robert Gruber
- Dermatology Services, Veterans Affairs Medical Center, San Francisco, CA, USA; Department of Dermatology, Innsbruck Medical University, Innsbruck, Austria; Department of Dermatology, University of California, San Francisco, CA, USA
| | - Debra Crumrine
- Dermatology Services, Veterans Affairs Medical Center, San Francisco, CA, USA; Department of Dermatology, University of California, San Francisco, CA, USA
| | - Gopinathan Menon
- Department of Ornithology & Mammals, California Academy of Sciences, San Francisco, CA, USA
| | - Mary L Williams
- Departments of Dermatology and Pediatrics, University of California, San Francisco, CA, USA
| | - Joan S Wakefield
- Dermatology Services, Veterans Affairs Medical Center, San Francisco, CA, USA; Department of Dermatology, University of California, San Francisco, CA, USA
| | - Walter M Holleran
- Dermatology Services, Veterans Affairs Medical Center, San Francisco, CA, USA; Department of Dermatology, University of California, San Francisco, CA, USA
| | - Yoshikazu Uchida
- Dermatology Services, Veterans Affairs Medical Center, San Francisco, CA, USA; Department of Dermatology, University of California, San Francisco, CA, USA
| |
Collapse
|
24
|
Williams JB, Muñoz-Garcia A, Champagne A. Climate change and cutaneous water loss of birds. ACTA ACUST UNITED AC 2012; 215:1053-60. [PMID: 22399649 DOI: 10.1242/jeb.054395] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
There is a crucial need to understand how physiological systems of animals will respond to increases in global air temperature. Water conservation may become more important for some species of birds, especially those living in deserts. Lipids of the stratum corneum (SC), the outer layer of the epidermis, create the barrier to water vapor diffusion, and thus control cutaneous water loss (CWL). An appreciation of the ability of birds to change CWL by altering lipids of the skin will be important to predict responses of birds to global warming. The interactions of these lipids are fundamental to the modulation of water loss through skin. Cerebrosides, with their hexose sugar moiety, are a key component of the SC in birds, but how these lipids interact with other lipids of the SC, or how they form hydrogen bonds with water molecules, to form a barrier to water vapor diffusion remains unknown. An understanding of how cerebrosides interact with other lipids of the SC, and of how the hydroxyl groups of cerebrosides interact with water molecules, may be a key to elucidating the control of CWL by the SC.
Collapse
Affiliation(s)
- Joseph B Williams
- Department of Evolution, Ecology and Organismal Biology, Ohio State University, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
25
|
Champagne AM, Muñoz-Garcia A, Shtayyeh T, Tieleman BI, Hegemann A, Clement ME, Williams JB. Lipid composition of the stratum corneum and cutaneous water loss in birds along an aridity gradient. J Exp Biol 2012; 215:4299-307. [DOI: 10.1242/jeb.077016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Intercellular and covalently bound lipids within the stratum corneum (SC), the outermost layer of the epidermis, are the primary barrier to cutaneous water loss (CWL) in birds. We compared CWL and intercellular SC lipid composition in 20 species of birds from desert and mesic environments. Furthermore, we compared covalently bound lipids with CWL and intercellular lipids in the lark family (Alaudidae). We found that CWL increases in birds from more mesic environments, and this increase was related to changes in intercellular SC lipid composition. The most consistent pattern that emerged was a decrease in the relative amount of cerebrosides as CWL increased, a pattern that is counterintuitive based on studies of mammals with Gaucher disease. Although covalently bound lipids in larks did not correlate with CWL, we found that covalently bound cerebrosides correlated positively with intercellular cerebrosides and intercellular cholesterol ester, and intercellular cerebrosides correlated positively with covalently bound free fatty acids. Our results led us to propose a new model for the organization of lipids in the avian SC, in which the sugar moieties of cerebrosides lie outside of intercellular lipid layers, where they may interdigitate with adjacent intercellular cerebrosides or with covalently bound cerebrosides.
Collapse
|
26
|
Jiang H, Jans R, Xu W, Rorke EA, Lin CY, Chen YW, Fang S, Zhong Y, Eckert RL. Type I transglutaminase accumulation in the endoplasmic reticulum may be an underlying cause of autosomal recessive congenital ichthyosis. J Biol Chem 2010; 285:31634-46. [PMID: 20663883 DOI: 10.1074/jbc.m110.128645] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Type I transglutaminase (TG1) is an enzyme that is responsible for assembly of the keratinocyte cornified envelope. Although TG1 mutation is an underlying cause of autosomal recessive congenital ichthyosis, a debilitating skin disease, the pathogenic mechanism is not completely understood. In the present study we show that TG1 is an endoplasmic reticulum (ER) membrane-associated protein that is trafficked through the ER for ultimate delivery to the plasma membrane. Mutation severely attenuates this processing and a catalytically inactive point mutant, TG1-FLAG(C377A), accumulates in the endoplasmic reticulum and in aggresome-like structures where it is ubiquitinylated. This accumulation results from protein misfolding, as treatment with a chemical chaperone permits it to exit the endoplasmic reticulum and travel to the plasma membrane. ER accumulation is also observed for ichthyosis-associated TG1 mutants. Our findings suggest that misfolding of TG1 mutants leads to ubiquitinylation and accumulation in the ER and aggresomes, and that abnormal intracellular processing of TG1 mutants may be an underlying cause of ichthyosis.
Collapse
Affiliation(s)
- Haibing Jiang
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Affiliation(s)
- Stefan Balaz
- Department of Pharmaceutical Sciences, College of Pharmacy, North Dakota State University, Fargo, North Dakota 58105, USA.
| |
Collapse
|
28
|
Pasquariello N, Oddi S, Malaponti M, Maccarrone M. Regulation of gene transcription and keratinocyte differentiation by anandamide. VITAMINS AND HORMONES 2009; 81:441-67. [PMID: 19647122 DOI: 10.1016/s0083-6729(09)81017-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Anandamide (AEA) is a member of an endogenous class of lipid mediators, known as endocannabinoids, which are involved in various biological processes. In particular, AEA regulates cell growth, differentiation, and death. Accumulating evidence demonstrates that AEA controls also epidermal differentiation, one of the best characterized mechanisms of cell specialization. Indeed, the epidermis is a keratinized multistratified epithelium that functions as a barrier to protect the organism from dehydration, mechanical trauma, and microbial insults. Its function is established during embryogenesis and is maintained during the whole life span of the organism, through a complex and tightly controlled program, termed epidermal terminal differentiation (or cornification). Whereas the morphological changes that occur during cornification have been extensively studied, the molecular mechanisms that underlie this process remain poorly understood. In this chapter, we summarize current knowledge about the molecular regulation of proliferation and terminal differentiation in mammalian epidermis. In this context, we show that endocannabinoids are finely regulated by, and can interfere with, the differentiation program. In addition, we review the role of AEA in the control of cornification, and show that it occurs by maintaining a transcriptional repression of gene expression through increased DNA methylation.
Collapse
|
29
|
Jungersted JM, Hellgren LI, Jemec GBE, Agner T. Lipids and skin barrier function--a clinical perspective. Contact Dermatitis 2008; 58:255-62. [PMID: 18416754 DOI: 10.1111/j.1600-0536.2008.01320.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The stratum corneum (SC) protects us from dehydration and external dangers. Much is known about the morphology of the SC and penetration of drugs through it, but the data are mainly derived from in vitro and animal experiments. In contrast, only a few studies have the human SC lipids as their focus and in particular, the role of barrier function in the pathogenesis of skin disease and its subsequent treatment protocols. The 3 major lipids in the SC of importance are ceramides, free fatty acids, and cholesterol. Human studies comparing levels of the major SC lipids in patients with atopic dermatitis and healthy controls have suggested a possible role for ceramide 1 and to some extent ceramide 3 in the pathogenesis of the disease. Therapies used in diseases involving barrier disruption have been sparely investigated from a lipid perspective. It has been suggested that ultraviolet light as a treatment increases the amount of all 3 major SC lipids, while topical glucocorticoids may lead to a decrease. Such effects may influence the clinical outcome of treatment in diseases with impaired barrier function. We have, therefore, conducted a review of the literature on SC lipids from a clinical perspective. It may be concluded that the number of human studies is very limited, and in the perspective of how important diseases of impaired barrier function are in dermatology, further research is needed.
Collapse
Affiliation(s)
- Jakob Mutanu Jungersted
- Department of Dermatology, Roskilde Hospital, University of Copenhagen, Køgevej 7-13, DK-4000 Roskilde, Denmark.
| | | | | | | |
Collapse
|
30
|
Gu Y, Muñoz-Garcia A, Brown JC, Ro J, Williams JB. Cutaneous water loss and sphingolipids covalently bound to corneocytes in the stratum corneum of house sparrows Passer domesticus. J Exp Biol 2008; 211:1690-5. [DOI: 10.1242/jeb.017186] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
The barrier to water loss from the skin of birds and mammals is localized in the stratum corneum (SC), the outer layer of the epidermis. The SC consists of corneocytes, each surrounded by a protein envelope, and a lipid compartment, formed by an extracellular matrix of lipids and by lipids covalently bound to the protein envelope. In mammals, covalently bound lipids in the SC consist of ω-hydroxyceramides attached to the outer surface of corneocytes. Evidence suggests that covalently bound lipids in the SC might be crucial for the establishment of a competent permeability barrier. In this study we assessed the composition of covalently bound lipids of the avian SC and their relationship to cutaneous water loss (CWL) in two populations of house sparrows, one living in the deserts of Saudi Arabia and the other in mesic Ohio. Previously, we showed that CWL of adult desert sparrows was 25%lower than that of mesic birds. In the present study we characterize covalently bound lipids of the SC using thin layer chromatography and high performance liquid chromatography coupled with atmospheric pressure Photospray® ionization mass spectrometry. Our study is the first to demonstrate the existence of sphingolipids covalently bound to corneocytes in the SC of birds. Although ω-hydroxyceramides occurred in the lipid envelope surrounding corneocytes, the major constituent of the covalently bound lipid envelope in house sparrows was ω-hydroxycerebrosides,ceramides with a hexose molecule attached. Sparrows from Saudi Arabia had more covalently bound cerebrosides, fewer covalently bound ceramides and a lower ceramide to cerebroside ratio than sparrows living in Ohio; these differences were associated with CWL.
Collapse
Affiliation(s)
- Yu Gu
- Department of Evolution, Ecology and Organismal Biology, 318 W. 12th Avenue,Aronoff Laboratory, Ohio State University, Columbus, OH 43210, USA
| | - Agustí Muñoz-Garcia
- Department of Evolution, Ecology and Organismal Biology, 318 W. 12th Avenue,Aronoff Laboratory, Ohio State University, Columbus, OH 43210, USA
| | - Johnie C. Brown
- Applied Biosystems, 500 Old Connecticut Path, Framingham, MA 01710, USA
| | - Jennifer Ro
- Department of Evolution, Ecology and Organismal Biology, 318 W. 12th Avenue,Aronoff Laboratory, Ohio State University, Columbus, OH 43210, USA
| | - Joseph B. Williams
- Department of Evolution, Ecology and Organismal Biology, 318 W. 12th Avenue,Aronoff Laboratory, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
31
|
Jans R, Sturniolo MT, Eckert RL. Localization of the TIG3 transglutaminase interaction domain and demonstration that the amino-terminal region is required for TIG3 function as a keratinocyte differentiation regulator. J Invest Dermatol 2008; 128:517-29. [PMID: 17762858 DOI: 10.1038/sj.jid.5701035] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tazarotene-induced gene 3 (TIG3) regulates keratinocyte terminal differentiation by activating type I transglutaminase (TG1). TIG3 consists of an amino-terminal (N-terminal) segment, that encodes several conserved motifs, and a carboxy-terminal (C-terminal) membrane-anchoring domain. By producing a series of truncation mutants that remove segments of the N-terminal region, and monitoring the ability of each mutant to co-precipitate TG1, function as a TG1 substrate, or functionally localize with TG1 in cells, we show that the TIG3 domain that interacts with TG1 is located within a TIG3 segment spanning amino acids 112-164. Although they bind TG1, TIG3 mutants lacking the conserved N-terminal region drive apoptosis-like cell death characterized by cell rounding, membrane blebbing, cytochrome c release, procaspase-3 and poly(ADP-ribose)polymerase (PARP) cleavage, and reduced p53 and p21 levels. Compared with TIG3, these truncated mutants have an increased tendency to associate with membranes. A mutant lacking the C-terminal membrane-anchoring domain is inactive. These findings suggest that TIG3 interaction with TG1 does not require the N-terminal conserved domains, that the TIG3 N-terminal region is required for TIG3-dependent keratinocyte differentiation, that its removal converts TIG3 into a proapoptotic protein, and that this change in action of TIG3 is associated with an intracellular redistribution.
Collapse
Affiliation(s)
- Ralph Jans
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | |
Collapse
|
32
|
Herkenne C, Alberti I, Naik A, Kalia YN, Mathy FX, Préat V, Guy RH. In vivo methods for the assessment of topical drug bioavailability. Pharm Res 2008; 25:87-103. [PMID: 17985216 PMCID: PMC2217624 DOI: 10.1007/s11095-007-9429-7] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Accepted: 07/24/2007] [Indexed: 11/26/2022]
Abstract
This paper reviews some current methods for the in vivo assessment of local cutaneous bioavailability in humans after topical drug application. After an introduction discussing the importance of local drug bioavailability assessment and the limitations of model-based predictions, the focus turns to the relevance of experimental studies. The available techniques are then reviewed in detail, with particular emphasis on the tape stripping and microdialysis methodologies. Other less developed techniques, including the skin biopsy, suction blister, follicle removal and confocal Raman spectroscopy techniques are also described.
Collapse
Affiliation(s)
- Christophe Herkenne
- School of Pharmaceutical Sciences, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
- Debio Recherche Pharmaceutique S.A., Route du Levant 146, CH-1920 Martigny, Switzerland
| | - Ingo Alberti
- School of Pharmaceutical Sciences, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
- Antares Pharma AG, Gewerbestrasse 18, 4123 Allschwil, Switzerland
| | - Aarti Naik
- School of Pharmaceutical Sciences, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Yogeshvar N. Kalia
- School of Pharmaceutical Sciences, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - François-Xavier Mathy
- Université catholique de Louvain, Unité de pharmacie galénique, industrielle et officinale, Avenue E. Mounier 73, 1200 Brussels, Belgium
- UCB SA, Chemin du Foriest 1, 1420 Braine-l’Alleud, Belgium
| | - Véronique Préat
- Université catholique de Louvain, Unité de pharmacie galénique, industrielle et officinale, Avenue E. Mounier 73, 1200 Brussels, Belgium
| | - Richard H. Guy
- School of Pharmaceutical Sciences, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY Allschwil, UK
| |
Collapse
|
33
|
Jensen JM, Pfeiffer S, Akaki T, Schröder JM, Kleine M, Neumann C, Proksch E, Brasch J. Barrier Function, Epidermal Differentiation, and Human β-Defensin 2 Expression in Tinea Corporis. J Invest Dermatol 2007; 127:1720-7. [PMID: 17392834 DOI: 10.1038/sj.jid.5700788] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Tinea corporis is a superficial mycotic infection resulting in substantial epidermal changes. We determined skin barrier function, epidermal differentiation, and human-beta-defensin 2 (hBD-2) protein expression in 10 patients with tinea corporis caused by Trichophyton rubrum (T. rubrum). We found disturbed skin barrier function as shown by a significant increase in transepidermal water loss (TEWL) and specific ultrastructural changes including disturbed formation of extracellular lipid bilayers, lamellar body extrusion, and deposit of clotted material at the stratum granulosum/stratum corneum interface. Epidermal proliferation in tinea increased several fold and accordingly, proliferation and inflammation-associated keratins K6, K16, and K17 were expressed. Expression of basal keratins K5 and K14 increased, whereas differentiation-associated K10 was reduced. Reduction of the cornified envelope proteins involucrin, loricrin, and the S100 protein filaggrin was also seen. Reduced filaggrin expression correlated with reduced skin hydration; protein breakdown products of filaggrin have been shown to be important for water binding. Surprisingly, we found pronounced epidermal protein expression of hBD-2, which may be related to disturbed epidermal differentiation and inflammation. hBD-2 showed a weak, although significant, antifungal activity against T. rubrum in the turbidimetric assay and the immunohistological staining was somewhat less pronounced in areas directly underneath fungal hyphae in the stratum corneum. Together, we describe profound changes in skin barrier structure and function, epidermal proliferation, and differentiation including pronounced protein expression of hBD-2 in tinea corporis.
Collapse
|
34
|
Stratum corneum hydration: phase transformations and mobility in stratum corneum, extracted lipids and isolated corneocytes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:2647-59. [PMID: 17927949 DOI: 10.1016/j.bbamem.2007.05.028] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 05/24/2007] [Accepted: 05/29/2007] [Indexed: 01/08/2023]
Abstract
The outermost layer of skin, stratum corneum (SC), functions as the major barrier to diffusion. SC has the architecture of dead keratin filled cells embedded in a lipid matrix. This work presents a detailed study of the hydration process in extracted SC lipids, isolated corneocytes and intact SC. Using isothermal sorption microcalorimetry and relaxation and wideline (1)H NMR, we study these systems at varying degrees of hydration/relative humidities (RH) at 25 degrees C. The basic findings are (i) there is a substantial swelling both of SC lipids, the corneocytes and the intact SC at high RH. At low RHs corneocytes take up more water than SC lipids do, while at high RHs swelling of SC lipids is more pronounced than that of corneocytes. (ii) Lipids in a fluid state are present in both extracted SC lipids and in the intact SC. (iii) The fraction of fluid lipids is lower at 1.4% water content than at 15% but remains virtually constant as the water content is further increased. (iv) Three exothermic phase transitions are detected in the SC lipids at RH=91-94%, and we speculate that the lipid re-organization is responsible for the hydration-induced variations in SC permeability. (v) The hydration causes swelling in the corneocytes, while it does not affect the mobility of solid components (keratin filaments).
Collapse
|
35
|
Farwanah H, Pierstorff B, Schmelzer CEH, Raith K, Neubert RHH, Kolter T, Sandhoff K. Separation and mass spectrometric characterization of covalently bound skin ceramides using LC/APCI-MS and Nano-ESI-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 852:562-70. [PMID: 17368999 DOI: 10.1016/j.jchromb.2007.02.030] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 02/06/2007] [Accepted: 02/12/2007] [Indexed: 11/28/2022]
Abstract
Ceramides covalently bound to keratinocytes are essential for the barrier function of the skin, which can be disturbed in diseases, such as psoriasis and atopic dermatitis. These ceramides of the classes omega-hydroxyacyl-sphingosine and omega-hydroxyacyl-6-hydroxysphingosine contain an omega-hydroxy fatty acid. For their separation and identification, a new analytical approach based on normal phase liquid chromatography coupled to atmospheric pressure chemical ionization mass spectrometry and tandem nano-electrospray mass spectrometry, respectively, is presented here. Tandem mass spectrometry provided structural information about the sphingoid base as well as the fatty acid moieties. The chain lengths of the bases ranged from C12 to C22, the chain lengths of the fatty acids varied between C28 and C36. In total, 67 ceramide species have been identified in human skin. The analytical methods presented in this work can be helpful for investigating alterations in the ceramide composition of the skin as seen in psoriasis, atopic dermatitis, and diseases with impaired epidermal barrier function.
Collapse
Affiliation(s)
- Hany Farwanah
- LIMES-Life and Medical Sciences Bonn, Program Unit Membrane and Lipid Biochemistry, Laboratory of Biology & Lipid Biochemistry, Friedrichs-Wilhelm-University, Gerhard-Domagk-Strasse 1, D-53121 Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Friberg SE, Ma ZN. PARTITION OF FREE AMINO ACIDS BETWEEN STRATUM CORNEUM MODEL LIPIDS AND CORNEOCYTES. J DISPER SCI TECHNOL 2007. [DOI: 10.1080/01932699308943419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Stig E. Friberg
- a Center for Advanced Materials Processing and Department of Chemistry , Clarkson University , Potsdam , New York , 13699-5814 , USA
| | - Zhu-ning Ma
- a Center for Advanced Materials Processing and Department of Chemistry , Clarkson University , Potsdam , New York , 13699-5814 , USA
| |
Collapse
|
37
|
López O, Cócera M, Wertz PW, López-Iglesias C, de la Maza A. New arrangement of proteins and lipids in the stratum corneum cornified envelope. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:521-9. [PMID: 17292323 DOI: 10.1016/j.bbamem.2006.11.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 11/15/2006] [Accepted: 11/16/2006] [Indexed: 10/23/2022]
Abstract
A new arrangement of proteins and lipids of stratum corneum (SC) cornified envelope (CE) is proposed. The chemical analysis of CE revealed the presence of free fatty acids (FFA), ceramides (Cer), and important percentages of glutamic acid/glutamine (Glx) and serine (Ser) residues. The molecular structure of these components suggests the existence of covalent links not only between Cer and Glx but also between FFA and Ser. The protein distribution of extracellular surface of CE, i.e., the proteins that could be involved in the bonds with lipids, was studied using post- and pre-embedding immunolabeling electron microscopy. Some loricrin (protein rich in Ser) was detected in the outermost part of the CE protein layer. The external arrangement of some domains of this protein may give rise to form linkages with FFA, yielding further insight into the CE arrangement in which Cer-Glx bonds and FFA-Ser bonds would be involved. Although the importance of fatty acids in the cohesion and barrier function of SC has been widely demonstrated, their role could be associated not only to the presence of these lipids in the intercellular lamellae but also in the CE, in the same way that Cer.
Collapse
Affiliation(s)
- O López
- Departament de Tecnologia de Tensioactius, Institut de Investigacions Químiques i Ambientals de Barcelona (I.I.Q.A.B.), Consejo Superior de Investigaciones Científicas (C.S.I.C.), C/ Jordi Girona 18-26, 08034 Barcelona, Spain.
| | | | | | | | | |
Collapse
|
38
|
Wu KS, Stefik MM, Ananthapadmanabhan KP, Dauskardt RH. Graded delamination behavior of human stratum corneum. Biomaterials 2006; 27:5861-70. [PMID: 16934326 DOI: 10.1016/j.biomaterials.2006.08.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Accepted: 08/04/2006] [Indexed: 11/21/2022]
Abstract
An in vitro adhesion test method has been adapted to quantify the through-thickness intercellular delamination energy of isolated human stratum corneum (SC). Both untreated and delipidized tissues were tested. Measured delamination energies were found to increase from approximately 3 J/m(2) near the surface to approximately 15 J/m(2) for the inner layers of the tissue. For delipidized SC, the location of the initial debond was located closer to the center of the tissue. Delamination energy values were elevated compared to untreated specimens, increasing from approximately 7 J/m(2) near the surface to approximately 18 J/m(2) for the inner layers of the SC. Further tests were run to measure delamination energies of SC as a function of hydration (15-100% relative humidity (RH)) at approximately 25 degrees C and as a function of temperature (10-90 degrees C) at several hydrations (15, 45, 100% RH). Delamination energies were observed to decrease with increasing hydration and increasing temperature with the most significant changes occurring for 100% RH conditioned SC. Additional SC was treated with pH-buffered solutions (pH 4.2, 6.7, 9.9) and selected surfactant solutions (1%, 10% wt/wt sodium dodecyl sulfate (SDS)) for comparison to untreated controls. While statistically significant differences were observed, the SC was found to be resistant to large changes in delamination energy with pH and 1% wt/wt SDS treatments with values in the range 4.2-5.1J/m(2) compared to control values of 4.4 J/m(2). More substantially elevated values were observed for SC treated with a 10%wt/wt SDS solution (6.6J/m(2)) and a chloroform-methanol extraction (11.2J/m(2)).
Collapse
Affiliation(s)
- Kenneth S Wu
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
39
|
Herkenne C, Naik A, Kalia YN, Hadgraft J, Guy RH. Ibuprofen transport into and through skin from topical formulations: in vitro-in vivo comparison. J Invest Dermatol 2006; 127:135-42. [PMID: 16858418 DOI: 10.1038/sj.jid.5700491] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The goal was to compare ibuprofen transport into and through skin in vivo in man and in vitro (across silicone membranes and freshly excised pig skin) from four marketed formulations. Ibuprofen gels were administered in vivo for 30 minutes. The stratum corneum (SC) at the application site was then tape-stripped, quantified gravimetrically, and extracted for drug analysis. Together with concomitant transepidermal water loss measurements, SC drug concentration-depth profiles were reproducibly determined and fitted mathematically to obtain a partition coefficient, a first-order rate constant related to ibuprofen diffusivity, and the total drug amount in the SC at the end of the application. All derived parameters were consistent across formulations. Ibuprofen permeation data through both silicone membrane and pig ear skin were also fitted to yield partitioning and diffusion parameters. The former revealed that ibuprofen partitioned differently from the gels into this model barrier. Across pig skin, however, better correlation with in vivo results was found. The dermatopharmacokinetic approach, using SC tape-stripping, offers a valid method to assess equivalency between topical drug formulations. In vitro experiments must be extrapolated cautiously to the clinic, especially when complex interactions between real formulations, which deliver both drug and excipients, and the skin occur.
Collapse
Affiliation(s)
- Christophe Herkenne
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
40
|
Hill J, Paslin D, Wertz PW. A new covalently bound ceramide from human stratum corneum -omega-hydroxyacylphytosphingosine. Int J Cosmet Sci 2006; 28:225-30. [DOI: 10.1111/j.1467-2494.2006.00324.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Abstract
Most epidermal functions can be considered as protective, or more specifically, as defensive in nature. Yet, the term "barrier function" is often used synonymously with only one such defensive function, though arguably its most important, i.e., permeability barrier homeostasis. Regardless of their relative importance, these protective cutaneous functions largely reside in the stratum corneum (SC). In this review, I first explore the ways in which the multiple defensive functions of the SC are linked and interrelated, either by their shared localization or by common biochemical processes; how they are co-regulated in response to specific stressors; and how alterations in one defensive function impact other protective functions. Then, the structural and biochemical basis for these defensive functions is reviewed, including metabolic responses and signaling mechanisms of barrier homeostasis. Finally, the clinical consequences and therapeutic implications of this integrated perspective are provided.
Collapse
Affiliation(s)
- Peter M Elias
- Dermatology Service, Veterans Affairs Medical Center, University of California, San Francisco, California 94121, USA.
| |
Collapse
|
42
|
Wu KS, van Osdol WW, Dauskardt RH. Mechanical properties of human stratum corneum: effects of temperature, hydration, and chemical treatment. Biomaterials 2005; 27:785-95. [PMID: 16095683 DOI: 10.1016/j.biomaterials.2005.06.019] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Accepted: 06/24/2005] [Indexed: 11/30/2022]
Abstract
An in vitro mechanics approach to quantify the intercellular delamination energy and mechanical behavior of isolated human stratum corneum (SC) in a direction perpendicular to the skin surface is presented. The effects of temperature, hydration, and a chloroform-methanol treatment to remove intercellular lipids were explored. The delamination energy for debonding of cells within the SC layer was found to be sensitive to the moisture content of the tissue and to the test temperature. Delamination energies for untreated stratum corneum were measured in the range of 1-8J/m(2) depending on test temperature. Fully hydrated specimen energies decreased with increasing temperature, while room-humidity-hydrated specimens exhibited more constant values of 2-4J/m(2). Lipid-extracted specimens exhibited higher delamination energies of approximately 12J/m(2), with values decreasing to approximately 4J/m(2) with increasing test temperature. The peak separation stress decreased with increasing temperature and hydration, but lipid-extracted specimens exhibited higher peak stresses than untreated controls. The delaminated surfaces revealed an intercellular failure path with no evidence of tearing or fracture of cells. The highly anisotropic mechanical behavior of the SC is discussed in relation to the underlying SC structure.
Collapse
Affiliation(s)
- Kenneth S Wu
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | | | | |
Collapse
|
43
|
Abstract
Surface epithelial cells, such as the epidermal keratinocyte, undergo a process of terminal cell differentiation that results in the construction of a multilayered epithelium. This epithelium functions to protect the organism from the environment. Transglutaminases, enzymes that catalyze the formation of isopeptide protein-protein cross-links, are key enzymes involved in the construction of this structure. This brief review will focus on the role of these enzymes in constructing the epidermal surface.
Collapse
Affiliation(s)
- Richard L Eckert
- Department of Physiology and Biophysics, Case School of Medicine, Cleveland, Ohio 44106, USA.
| | | | | | | | | |
Collapse
|
44
|
Milstone LM. Epidermal desquamation. J Dermatol Sci 2004; 36:131-40. [PMID: 15541634 DOI: 10.1016/j.jdermsci.2004.05.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Revised: 04/23/2004] [Accepted: 05/11/2004] [Indexed: 10/26/2022]
Abstract
Epidermal desquamation, a continuous but insensible bodily activity, is largely ignored unless the rate or amount of scale production becomes abnormal. It is the last topic to be considered in any serious discussion of epidermal growth and differentiation, but is becoming an increasingly fertile ground for investigation. This review summarizes: (a) methods for measuring desquamation; (b) variables that affect normal desquamation; (c) mechanisms of desquamation; (d) the role of desquamation in nutritional homeostasis; and (e) the role of desquamation as a first line of defense. Consideration is given to whether desquamation might be harnessed to eliminate or remediate toxins that have accumulated in the body.
Collapse
Affiliation(s)
- Leonard M Milstone
- Department of Dermatology, Yale University School of Medicine, P.O. Box 208059, New Haven, CT 06520-8059, USA.
| |
Collapse
|
45
|
Jensen JM, Fölster-Holst R, Baranowsky A, Schunck M, Winoto-Morbach S, Neumann C, Schütze S, Proksch E. Impaired sphingomyelinase activity and epidermal differentiation in atopic dermatitis. J Invest Dermatol 2004; 122:1423-31. [PMID: 15175033 DOI: 10.1111/j.0022-202x.2004.22621.x] [Citation(s) in RCA: 220] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A defective permeability barrier leads to the penetration of environmental allergens into the skin and initiates immunological reactions and inflammation crucially involved in the pathogenesis of atopic dermatitis (AD). Decreased stratum corneum ceramide content may cause the defect in permeability barrier function consistently found in AD. Acid and neutral sphingomyelinase (A- and N-SMase) generate ceramides with structural and signal transduction functions in epidermal proliferation and differentiation. We determined epidermal SMase activities, DNA synthesis, involucrin, loricrin, filaggrin, and keratin expression in lesional and non-lesional skin of AD patients. We found decreased epidermal A-SMase activity in lesional and non-lesional skin, correlating with reduced stratum corneum ceramide content and disturbed barrier function. N-SMase activity was reduced in non-lesional skin and more significantly reduced in lesional skin, correlating with impaired expression of cornified envelope proteins and keratins, important for skin barrier function. Changes in involucrin, loricrin, filaggrin, keratin K 5 (basal) and K 16 (proliferation associated) were noticed in non-lesional and lesional skin, whereas changes in K 10 (suprabasal), K 6 (proliferation associated), and K 17 (inflammation associated) were found only in lesional skin. In summary, reduction in SMase-generating ceramides and impaired differentiation are involved in the defective barrier function found in AD.
Collapse
|
46
|
Schmuth M, Fluhr JW, Crumrine DC, Uchida Y, Hachem JP, Behne M, Moskowitz DG, Christiano AM, Feingold KR, Elias PM. Structural and functional consequences of loricrin mutations in human loricrin keratoderma (Vohwinkel syndrome with ichthyosis). J Invest Dermatol 2004; 122:909-22. [PMID: 15102081 DOI: 10.1111/j.0022-202x.2004.22431.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although loricrin is the predominant protein of the cornified envelope (CE) in keratinocytes, loss or gain of loricrin function in mouse models produces only modest skin phenotypes. In contrast, insertional mutations resulting in a frameshift in the C-terminal domain of loricrin produce the characteristic ichthyosis of loricrin keratoderma in mouse and man. To ascertain the basis for the loricrin keratoderma phenotype, we assessed epidermal structure and stratum corneum (SC) function in a previously genotyped human loricrin keratoderma kindred. Our studies revealed abnormal corneocyte fragility and basal permeability barrier function, but accelerated repair kinetics. Despite fragility, increased water loss occurred predominantly via extracellular domains, which correlated with disorganized lamellar bilayers that were linked spatially to discontinuities of the CE. Accelerated barrier recovery was explicable by amplified lamellar body secretion, while partial normalization of the CE in the outer SC correlated with persistence of abundant calcium in the extracellular spaces (positioned to activate transglutaminase-1). These results show that the barrier abnormality in loricrin keratoderma is linked to a defective CE scaffold, resulting in increased extracellular permeability, as shown previously for another "scaffold disorder", lamellar ichthyosis. But in contrast to lamellar ichthyosis, the CE scaffold partially normalizes in the outer SC in loricrin keratoderma.
Collapse
Affiliation(s)
- Matthias Schmuth
- Dermatology and Metabolism (Medicine) Services, Veterans Affairs Medical Center, San Francisco, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Gasser P, Peno-Mazzarino L, Lati E, Djian B. Original semiologic standardized evaluation of stratum corneum hydration by DiagnoskinR stripping sample. Int J Cosmet Sci 2004; 26:117-27. [DOI: 10.1111/j.1467-2494.2004.00209.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
48
|
Jiang SJ, Zhou XJ, Sun GQ, Zhang Y, Jiang SJ, Sun GQ, Zhang Y. Morphological alterations of the stratum corneum lipids induced by sodium lauryl sulfate treatment in hairless mice. J Dermatol Sci 2003; 32:243-6. [PMID: 14507452 DOI: 10.1016/s0923-1811(03)00134-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
49
|
Abstract
The primary function of the epidermis is to produce the protective, semi-permeable stratum corneum that permits terrestrial life. The barrier function of the stratum corneum is provided by patterned lipid lamellae localized to the extracellular spaces between corneocytes. Anucleate corneocytes contain keratin filaments bound to a peripheral cornified envelope composed of cross-linked proteins. The many layers of these specialized cells in the stratum corneum provide a tough and resilient framework for the intercellular lipid lamellae. The lamellae are derived from disk-like lipid membranes extruded from lamellar granules into the intercellular spaces of the upper granular layer. Lysosomal and other enzymes present in the extracellular compartment are responsible for the lipid remodeling required to generate the barrier lamellae as well as for the reactions that result in desquamation. Lamellar granules likely originate from the Golgi apparatus and are currently thought to be elements of the tubulo-vesicular trans-Golgi network. The regulation of barrier lipid synthesis has been studied in a variety of models, with induction of several enzymes demonstrated during fetal development and keratinocyte differentiation, but an understanding of this process at the molecular genetic level awaits further study. Certain genetic defects in lipid metabolism or in the protein components of the stratum corneum produce scaly or ichthyotic skin with abnormal barrier lipid structure and function. The inflammatory skin diseases psoriasis and atopic dermatitis also show decreased barrier function, but the underlying mechanisms remain under investigation. Topically applied "moisturizers" work by acting as humectants or by providing an artificial barrier to trans-epidermal water loss; current work has focused on developing a more physiologic mix of lipids for topical application to skin. Recent studies in genetically engineered mice have suggested an unexpected role for tight junctions in epidermal barrier function and further developments in this area are expected. Ultimately, more sophisticated understanding of epidermal barrier function will lead to more rational therapy of a host of skin conditions in which the barrier is impaired.
Collapse
Affiliation(s)
- Kathi C Madison
- Marshall Dermatology Research Laboratories, Department of Dermatology, University of Iowa, Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa, USA.
| |
Collapse
|
50
|
Abstract
Culturing of normal human keratinocytes at the air-liquid interface results in the formation of fully differentiated epidermis under in vitro conditions. Although the reconstructed epidermis shows a close resemblance to native tissue, there are still some differences in the stratum corneum lipid profile and intercellular lipid organization. As ceramides belong to one of the major stratum corneum lipid classes, the aim of this study was to characterize this fraction in more detail. For this purpose, individual ceramide fractions were isolated by column chromatography and characterized by a combination of nuclear magnetic resonance spectroscopy, high-performance thin-layer chromatography, and gas chromatography. The results of this study show that in both the native and reconstructed human epidermis the extractable ceramide fraction contains, in addition to the well known acylceramides (EOS, EOH), a new acylceramide in which the omega-O-acylhydroxyacid is amide-linked to phytosphingosine (EOP). The same three sphingoid base moieties (S, P, H) are also found in ceramides with amide-linked nonhydroxy and alpha-hydroxyacids. Whereas the same types of ceramides were present in both tissues, some differences in their fatty acid profiles have been found. In reconstructed epidermis the content of linoleic acid in all three acylceramides fraction was significantly lower; the ceramide(NS) fraction was enriched in short fatty acids and the ceramide(AS) fraction was enriched in long chain alpha-hydroxyacids. These differences together with a lower content of free fatty acids may explain the differences between native and reconstructed tissue in stratum corneum lipid organization observed earlier by X-ray diffraction.
Collapse
Affiliation(s)
- Maria Ponec
- Department of Dermatology, Leiden University Medical Center, the Netherlands.
| | | | | | | |
Collapse
|