1
|
Gentek R, Ghigo C, Hoeffel G, Jorquera A, Msallam R, Wienert S, Klauschen F, Ginhoux F, Bajénoff M. Epidermal γδ T cells originate from yolk sac hematopoiesis and clonally self-renew in the adult. J Exp Med 2018; 215:2994-3005. [PMID: 30409784 PMCID: PMC6279412 DOI: 10.1084/jem.20181206] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/13/2018] [Accepted: 10/23/2018] [Indexed: 02/03/2023] Open
Abstract
The adult turnover mechanisms and hematopoietic origin of dendritic epidermal γδ T cells (DETCs) are poorly characterized. Gentek et al. demonstrate that DETCs originate from yolk sac hematopoiesis and clonally self-renew in the adult, akin to epidermal Langerhans cells. The murine epidermis harbors two immune cell lineages, Langerhans cells (LCs) and γδ T cells known as dendritic epidermal T cells (DETCs). LCs develop from both early yolk sac (YS) progenitors and fetal liver monocytes before locally self-renewing in the adult. For DETCs, the mechanisms of homeostatic maintenance and their hematopoietic origin are largely unknown. Here, we exploited multicolor fate mapping systems to reveal that DETCs slowly turn over at steady state. Like for LCs, homeostatic maintenance of DETCs is achieved by clonal expansion of tissue-resident cells assembled in proliferative units. The same mechanism, albeit accelerated, facilitates DETC replenishment upon injury. Hematopoietic lineage tracing uncovered that DETCs are established independently of definitive hematopoietic stem cells and instead originate from YS hematopoiesis, again reminiscent of LCs. DETCs thus resemble LCs concerning their maintenance, replenishment mechanisms, and hematopoietic development, suggesting that the epidermal microenvironment exerts a lineage-independent influence on the initial seeding and homeostatic maintenance of its resident immune cells.
Collapse
Affiliation(s)
- Rebecca Gentek
- Aix-Marseille University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Clément Ghigo
- Aix-Marseille University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Guillaume Hoeffel
- Aix-Marseille University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille-Luminy, Marseille, France.,Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Audrey Jorquera
- Aix-Marseille University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Rasha Msallam
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Stephan Wienert
- Institute of Pathology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | - Florent Ginhoux
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore.,Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Marc Bajénoff
- Aix-Marseille University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| |
Collapse
|
2
|
Kashem SW, Riedl MS, Yao C, Honda CN, Vulchanova L, Kaplan DH. Nociceptive Sensory Fibers Drive Interleukin-23 Production from CD301b+ Dermal Dendritic Cells and Drive Protective Cutaneous Immunity. Immunity 2016; 43:515-26. [PMID: 26377898 DOI: 10.1016/j.immuni.2015.08.016] [Citation(s) in RCA: 330] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 06/30/2015] [Accepted: 07/28/2015] [Indexed: 12/24/2022]
Abstract
Innate resistance to Candida albicans in mucosal tissues requires the production of interleukin-17A (IL-17A) by tissue-resident cells early during infection, but the mechanism of cytokine production has not been precisely defined. In the skin, we found that dermal γδ T cells were the dominant source of IL-17A during C. albicans infection and were required for pathogen resistance. Induction of IL-17A from dermal γδ T cells and resistance to C. albicans required IL-23 production from CD301b(+) dermal dendritic cells (dDCs). In addition, we found that sensory neurons were directly activated by C. albicans. Ablation of sensory neurons increased susceptibility to C. albicans infection, which could be rescued by exogenous addition of the neuropeptide CGRP. These data define a model in which nociceptive pathways in the skin drive production of IL-23 by CD301b(+) dDCs resulting in IL-17A production from γδ T cells and resistance to cutaneous candidiasis.
Collapse
MESH Headings
- Animals
- Candida albicans/immunology
- Candida albicans/physiology
- Candidiasis/genetics
- Candidiasis/immunology
- Candidiasis/microbiology
- Cells, Cultured
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Dermis/cytology
- Flow Cytometry
- Host-Pathogen Interactions/immunology
- Immunity/genetics
- Immunity/immunology
- Interleukin-17/genetics
- Interleukin-17/immunology
- Interleukin-17/metabolism
- Interleukin-23/genetics
- Interleukin-23/immunology
- Interleukin-23/metabolism
- Lectins, C-Type/immunology
- Lectins, C-Type/metabolism
- Mice, Inbred Strains
- Mice, Knockout
- Mice, Transgenic
- Oligonucleotide Array Sequence Analysis
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Calcitonin Gene-Related Peptide/genetics
- Receptors, Calcitonin Gene-Related Peptide/immunology
- Receptors, Calcitonin Gene-Related Peptide/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sensory Receptor Cells/immunology
- Sensory Receptor Cells/metabolism
- Skin/immunology
- Skin/metabolism
- Skin/microbiology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Transcriptome/genetics
- Transcriptome/immunology
Collapse
Affiliation(s)
- Sakeen W Kashem
- Department of Dermatology, Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Maureen S Riedl
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Chen Yao
- Department of Dermatology, Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Christopher N Honda
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lucy Vulchanova
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel H Kaplan
- Department of Dermatology, Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
3
|
Abstract
T cell progenitors are known to arise from the foetal liver in embryos and the bone marrow in adults; however different studies have shown that a pool of T cell progenitors may also exist in the periphery. Here, we identified a lymphoid population resembling peripheral T cell progenitors which transiently seed the epidermis during late embryogenesis in both wild-type and T cell-deficient mice. We named these cells ELCs (Epidermal Lymphoid Cells). ELCs expressed Thy1 and CD2, but lacked CD3 and TCRαβ/γδ at their surface, reminiscent of the phenotype of extra- or intra- thymic T cell progenitors. Similarly to Dendritic Epidermal T Cells (DETCs), ELCs were radioresistant and capable of self-renewal. However, despite their progenitor-like phenotype and expression of T cell lineage markers within the population, ELCs did not differentiate into conventional T cells or DETCs in in vitro, ex vivo or in vivo differentiation assays. Finally, we show that ELC expressed NK markers and secreted IFN-γ upon stimulation. Therefore we report the discovery of a unique population of lymphoid cells within the murine epidermis that appears related to NK cells with as-yet-unidentified functions.
Collapse
|
4
|
Weighardt H, Förster I. Bcl-3 puts the brakes on contact hypersensitivity. Eur J Immunol 2015; 45:971-4. [PMID: 25707546 DOI: 10.1002/eji.201545524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 02/13/2015] [Accepted: 02/19/2015] [Indexed: 11/09/2022]
Abstract
B-cell lymphoma (Bcl)-3 is a nonclassical member of the IκB protein family known to interact with transcriptionally inactive NF-κB1 and NF-κB2 homodimers to modulate gene expression. Besides its action as an oncoprotein, Bcl-3 has been shown to have both proinflammatory and anti-inflammatory functions depending on the cell-type affected. In this issue of the European Journal of Immunology, Tassi et al. [Eur. J. Immunol. 2015. 45: 1059-1068] report that Bcl-3 inhibits the production of the proinflammatory chemokines CXCL9 and CXCL10 in keratinocytes, thereby restricting the influx of CD8(+) effector T cells in a mouse model of allergic contact dermatitis. In addition, mice with a global deficiency of Bcl-3 show enhanced ear swelling responses in the late phase of contact hypersensitivity responses. Besides keratinocytes, other radioresistant cell types appear to also utilize Bcl-3 to dampen the inflammatory response. This Commentary will discuss the evidence supporting Bcl-3 as a critical player in limiting inflammation during the later stages of contact hypersensitivity.
Collapse
Affiliation(s)
- Heike Weighardt
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany; IUF Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | | |
Collapse
|
5
|
O'Brien RL, Born WK. Dermal γδ T cells--What have we learned? Cell Immunol 2015; 296:62-9. [PMID: 25649119 PMCID: PMC4466165 DOI: 10.1016/j.cellimm.2015.01.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/15/2015] [Accepted: 01/19/2015] [Indexed: 01/09/2023]
Abstract
Over the last several years, a number of papers have called attention to a distinct population of γδ T cells preferentially found in the dermis of the skin of normal mice. These cells appear to play an important role in promoting the development of psoriasis, but also are critical for host resistance to particular pathogens. They are characterized by the expression of a limited subset of γδ T cell receptors and a strong propensity to secrete IL-17. Perhaps most importantly, humans appear to carry an equivalent dermal γδ T cell population, likewise biased to secrete IL-17 and also implicated as playing a pathogenic role in psoriasis. This review will attempt to summarize and reconcile recent findings concerning the dermal γδ T cells.
Collapse
Affiliation(s)
- Rebecca L O'Brien
- Dept. of Biomedical Research, National Jewish Health, 1400 Jackson St., Denver, CO 80206, United States; Dept. of Immunology and Microbiology, University of Colorado School of Medicine, 13001 E. 17th Place, Aurora, CO 80045, United States.
| | - Willi K Born
- Dept. of Biomedical Research, National Jewish Health, 1400 Jackson St., Denver, CO 80206, United States; Dept. of Immunology and Microbiology, University of Colorado School of Medicine, 13001 E. 17th Place, Aurora, CO 80045, United States
| |
Collapse
|
6
|
Macleod BL, Bedoui S, Hor JL, Mueller SN, Russell TA, Hollett NA, Heath WR, Tscharke DC, Brooks AG, Gebhardt T. Distinct APC subtypes drive spatially segregated CD4+ and CD8+ T-cell effector activity during skin infection with HSV-1. PLoS Pathog 2014; 10:e1004303. [PMID: 25121482 PMCID: PMC4133397 DOI: 10.1371/journal.ppat.1004303] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 06/25/2014] [Indexed: 12/13/2022] Open
Abstract
Efficient infection control requires potent T-cell responses at sites of pathogen replication. However, the regulation of T-cell effector function in situ remains poorly understood. Here, we show key differences in the regulation of effector activity between CD4+ and CD8+ T-cells during skin infection with HSV-1. IFN-γ-producing CD4+ T cells disseminated widely throughout the skin and draining lymph nodes (LN), clearly exceeding the epithelial distribution of infectious virus. By contrast, IFN-γ-producing CD8+ T cells were only found within the infected epidermal layer of the skin and associated hair follicles. Mechanistically, while various subsets of lymphoid- and skin-derived dendritic cells (DC) elicited IFN-γ production by CD4+ T cells, CD8+ T cells responded exclusively to infected epidermal cells directly presenting viral antigen. Notably, uninfected cross-presenting DCs from both skin and LNs failed to trigger IFN-γ production by CD8+ T-cells. Thus, we describe a previously unappreciated complexity in the regulation of CD4+ and CD8+ T-cell effector activity that is subset-specific, microanatomically distinct and involves largely non-overlapping types of antigen-presenting cells (APC). HSV-1 is a widely distributed pathogen causing a life-long latent infection associated with periodic bouts of reactivation and severe clinical complications. Adaptive immune responses encompassing CD4+ and CD8+ T-cell activities are key to both the clearance of infectious virus and the control of latent infection. However, precisely how such T-cell responses are regulated, particularly within acutely infected peripheral tissues, remains poorly understood. Using a mouse model of HSV-1 skin infection, we describe a complex regulation of T-cell responses at the site of acute infection. These responses were subset-specific and anatomically distinct, with CD4+ and CD8+ T-cell activities being directed to distinct anatomical compartments within the skin. While IFN-γ-producing CD4+ T cells were broadly distributed, including skin regions a considerable distance away from infected cells, CD8+ T-cell activity was strictly confined to directly infected epithelial compartments. This unexpected spatial segregation was a direct consequence of the involvement of largely non-overlapping types of antigen-presenting cells in driving CD4+ and CD8+ T-cell effector activity. Our results provide novel insights into the cellular regulation of T-cell immunity within peripheral tissues and have the potential to guide the development of T-cell subset-specific approaches for therapeutic and prophylactic intervention in antimicrobial immunity and autoimmunity.
Collapse
Affiliation(s)
- Bethany L. Macleod
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Sammy Bedoui
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jyh Liang Hor
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Scott N. Mueller
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Tiffany A. Russell
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Natasha A. Hollett
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - William R. Heath
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - David C. Tscharke
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Andrew G. Brooks
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Thomas Gebhardt
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
7
|
Sumaria N, Roediger B, Ng LG, Qin J, Pinto R, Cavanagh LL, Shklovskaya E, Fazekas de St Groth B, Triccas JA, Weninger W. Cutaneous immunosurveillance by self-renewing dermal gammadelta T cells. ACTA ACUST UNITED AC 2011; 208:505-18. [PMID: 21339323 PMCID: PMC3058585 DOI: 10.1084/jem.20101824] [Citation(s) in RCA: 231] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The dermis contains a novel population of γδT cells that are distinct from epidermal γδT cells and produce IL-17 in response to mycobacterial infection. The presence of γδ T cell receptor (TCR)–expressing cells in the epidermis of mice, termed dendritic epidermal T cells (DETCs), is well established. Because of their strict epidermal localization, it is likely that DETCs primarily respond to epithelial stress, such as infections or the presence of transformed cells, whereas they may not participate directly in dermal immune responses. In this study, we describe a prominent population of resident dermal γδ T cells, which differ from DETCs in TCR usage, phenotype, and migratory behavior. Dermal γδ T cells are radioresistant, cycle in situ, and are partially depend on interleukin (IL)-7, but not IL-15, for their development and survival. During mycobacterial infection, dermal γδ T cells are the predominant dermal cells that produce IL-17. Absence of dermal γδ T cells is associated with decreased expansion in skin draining lymph nodes of CD4+ T cells specific for an immunodominant Mycobacterium tuberculosis epitope. Decreased CD4+ T cell expansion is related to a reduction in neutrophil recruitment to the skin and decreased BCG shuttling to draining lymph nodes. Thus, dermal γδ T cells are an important part of the resident cutaneous immunosurveillance program. Our data demonstrate functional specialization of T cells in distinct microcompartments of the skin.
Collapse
Affiliation(s)
- Nital Sumaria
- The Centenary Institute, Newtown, NSW 2042, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Dandie GW, Clydesdale GJ, Radcliff FJ, Muller HK. Migration of Langerhans cells and gammadelta dendritic cells from UV-B-irradiated sheep skin. Immunol Cell Biol 2001; 79:41-8. [PMID: 11168622 DOI: 10.1046/j.1440-1711.2001.00975.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Depletion of dendritic cells from UV-B-irradiated sheep skin was investigated by monitoring migration of these cells towards regional lymph nodes. By creating and cannulating pseudoafferent lymphatic vessels draining a defined region of skin, migrating cells were collected and enumerated throughout the response to UV-B irradiation. In the present study, the effects of exposing sheep flank skin to UV-B radiation clearly demonstrated a dose-dependent increase in the migration of Langerhans cells (LC) from the UV-B-exposed area to the draining lymph node. The range of UV-B doses assessed in this study included 2.7 kJ/m2, a suberythemal dose; 8 kJ/m2, 1 minimal erythemal dose (MED); 20.1 kJ/m2; 40.2 kJ/m2; and 80.4 kJ/m2, 10 MED. The LC were the cells most sensitive to UV-B treatment, with exposure to 8 kJ/m2 or greater reproducibly causing a significant increase in migration. Migration of gammadelta+ dendritic cells (gammadelta+ DC) from irradiated skin was also triggered by exposure to UV-B radiation, but dose dependency was not evident within the range of UV-B doses examined. This, in conjunction with the lack of any consistent correlation between either the timing or magnitude of migration peaks of these two cell types, suggests that different mechanisms govern the egress of LC and gammadelta+ DC from the skin. It is concluded that the depression of normal immune function in the skin after exposure to erythemal doses of UV-B radiation is associated with changes in the migration patterns of epidermal dendritic cells to local lymph nodes.
Collapse
Affiliation(s)
- G W Dandie
- Department of Pathology, University of Tasmania, Hobart, Tasmania, Australia.
| | | | | | | |
Collapse
|
9
|
Payer E, Kutil R, Stingl G. Phenotypic changes that TCR V gamma 3+ fetal thymocytes undergo during their maturation into dendritic epidermal T cells. J Invest Dermatol 1995; 105:54S-57S. [PMID: 7542299 DOI: 10.1111/1523-1747.ep12315347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Murine Thy-1+, TCR V gamma 3/V delta 1+ dendritic epidermal T cells (DETC) express CD2 antigens, but differ from most other T-cell subsets in their absence of CD4, CD5, and CD8 antigens. To determine whether negativity for those antigens is an intrinsic feature of a given T-cell population or whether such triple-negative T cells go through a maturational stage during which they express these antigens, we determined the phenotype of TCR V gamma 3+ fetal thymocytes, which are the precursor cells of DETC. We found that TCR V gamma 3+ fetal thymocytes at day 17 of gestation are CD2+, CD5+, mostly CD8+, and partly CD4+. The expression of CD5 is highest on early TCR V gamma 3+ thymocytes; these cells express intermediate levels of CD5 when they leave the thymus and lose CD5 expression until or shortly after arrival in the epidermis. A similar loss of CD5 expression by TCR V gamma 3+ cells was observed in vitro under various culture conditions. To determine whether expression of CD5 is important for the maturation of DETC, we searched for these cells in the epidermis of CD5-deficient mice. There was no alteration in the number of Thy-1+/TCR V gamma 3+ dendritic cells in the epidermis of CD5-/- mice. Even though the latter finding speaks against a pivotal role of CD5 during the maturation of DETC, the described cell system may serve as a useful tool in further experiments aimed to clarify the function of the CD5 glycoprotein as well as the mechanism(s) regulating its expression.
Collapse
Affiliation(s)
- E Payer
- Department of Dermatology, University of Vienna Medical School, Austria
| | | | | |
Collapse
|
10
|
Kawai K, Kishihara K, Molina TJ, Wallace VA, Mak TW, Ohashi PS. Impaired development of V gamma 3 dendritic epidermal T cells in p56lck protein tyrosine kinase-deficient and CD45 protein tyrosine phosphatase-deficient mice. J Exp Med 1995; 181:345-9. [PMID: 7807014 PMCID: PMC2191823 DOI: 10.1084/jem.181.1.345] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
To determine whether p56lck protein tyrosine kinase and CD45 protein tyrosine phosphatase are involved in the signal transduction during intrathymic differentiation of gamma/delta T cells, we have examined the development of T cells expressing V gamma 3 T cell receptor (TCR) in mice deficient for either protein. The skin from both mice contained significantly reduced numbers of dendritic epidermal T cells expressing decreased levels of V gamma 3 TCR at the cell surface. Analysis of the fetal thymus from these mice suggested that maturation of V gamma 3 thymocytes was blocked at the immature stage that was characterized by the low level of V gamma 3 TCR and the high level of heat stable antigen. These results imply that both p56lck and CD45 are involved in the signal transduction during maturation of V gamma 3 T cells in the fetal thymus.
Collapse
Affiliation(s)
- K Kawai
- Department of Medical Biophysics, University of Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
11
|
The Thymus Bypass Model: A New Hypothesis for the Etiopathogenesis of Mycosis Fungoides and Related Disorders. Dermatol Clin 1994. [DOI: 10.1016/s0733-8635(18)30177-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
12
|
Peterseim UM, Sarkar SN, Kupper TS. Production of IL-3 by non-transformed primary neonatal murine keratinocytes: evidence for constitutive IL-3 gene expression in neonatal epidermis. Cytokine 1993; 5:240-9. [PMID: 8218937 DOI: 10.1016/1043-4666(93)90011-s] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Interleukin 3 (IL-3) is a cytokine produced by activated T lymphocytes that is best understood as a hematopoietic growth and differentiation factor. Production of IL-3 by other cell types is controversial; while certain transformed non-lymphocyte cell lines can produce IL-3, it is generally assumed that their non-transformed counterparts do not. It has been previously reported that Pam 212, a transformed murine keratinocyte cell line, produces IL-3. In this study we report that IL-3 can also be secreted by normal murine keratinocytes. Using a cell line (FL5.12) which is responsive to IL-3 and not to other keratinocyte derived cytokines, (e.g. GM-CSF, IL-1 and IL-6), we tested conditioned media from cultures of normal neonatal keratinocytes for biologically active IL-3. These media stimulated the proliferation of FL5.12, and the effect could be neutralized by specific antibodies to IL-3. The presence of IL-3 mRNA was demonstrated by polymerase chain reaction (PCR) amplification of reverse transcribed IL-3 mRNA from cultured normal neonatal keratinocytes and confirmed by Southern blot analysis. By similar techniques, IL-3 mRNA could be identified in freshly isolated neonatal epidermis but not dermis. These data indicated that IL-3 is produced by keratinocytes in the skin of normal neonatal mice, raising the likelihood that the neonatal epidermal microenvironment may have hematopoietic or lymphopoietic properties.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Cell Line
- Cell Line, Transformed
- Cells, Cultured
- Culture Media, Conditioned
- Culture Techniques/methods
- Cytokines/pharmacology
- DNA, Complementary/isolation & purification
- Electrophoresis, Agar Gel
- Epidermis/metabolism
- Gene Expression
- Interleukin-2/analysis
- Interleukin-3/analysis
- Interleukin-3/biosynthesis
- Interleukin-3/pharmacology
- Interleukin-4/analysis
- Keratinocytes/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Inbred Strains
- Polymerase Chain Reaction/methods
- RNA, Messenger/analysis
- RNA, Messenger/biosynthesis
- Recombinant Proteins/pharmacology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- U M Peterseim
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | |
Collapse
|
13
|
Stingl G, Elbe A, Paer E, Kilgus O, Strohal R, Schreiber S. The role of fetal epithelial tissues in the maturation/differentiation of bone marrow-derived precursors into dendritic epidermal T cells (DETC) of the mouse. Curr Top Microbiol Immunol 1991; 173:269-77. [PMID: 1833153 DOI: 10.1007/978-3-642-76492-9_37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Our attempts to clarify the contribution of the thymic vs. the cutaneous microenvironment in the maturation of dendritic epidermal T cell (DETC) precursors into DETC gave diverse results. In one series of experiments, we found that i.v. injection of fetal thymocytes (containing a TCR V gamma 3-expressing subpopulation), but not of adult thymocytes (containing no TCR V gamma 3+ cells) results in the appearance of CD3/TCR V gamma 3+ dendritic epidermal cells (=DETC). In other experiments, we have obtained evidence that transplantation of day 16 fetal skin onto a Thy-1-disparate recipient results in the appearance of donor-type DETC. Our further observation that the transplanted skin contains CD45+/Thy-1+/CD3- lymphocytes, but no mature T cells, therefore implies that fetal skin can provide stimuli promoting the expression of CD3/TCR genes in immature (CD3-) DETC precursors. It remains to be seen whether both or only one of these maturational pathways are (is) followed under physiological conditions.
Collapse
Affiliation(s)
- G Stingl
- Department of Dermatology I, University of Vienna Medical School
| | | | | | | | | | | |
Collapse
|