1
|
Reyes-Ruiz JM, Chernyavsky A, Grando SA, Glabe C. Epitomic profiling and functional characteristics of pemphigus vulgaris autoantibody binding to keratinocyte M3 muscarinic acetylcholine receptor. J Biol Chem 2025; 301:108434. [PMID: 40120680 PMCID: PMC12018980 DOI: 10.1016/j.jbc.2025.108434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/04/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025] Open
Abstract
Patients with pemphigus vulgaris (PV) develop IgG autoantibodies (AuAbs) binding to keratinocyte desmogleins (Dsg), acetylcholine (ACh) receptors, mitochondrial proteins, and some other self-antigens. In this study, we identified linear and discontinuous peptide tetrameric epitope segments (ES) of M3 muscarinic ACh receptor (M3AR) targeted by different anti-M3AR AuAbs. As positive controls, we identified Dsg1 and Dsg3 ES targeted by PV sera. Healthy individuals also possessed natural antibodies targeting M3AR, Dsg1 and Dsg3 epitopes that were different from those targeted by AuAbs produced by patients with PV. The two targeted M3AR pentameric ES encompass the 10 amino acids-long epitope LSEPTITFGT included the tetramer TFGT containing Thr235 which is a part of the ACh-binding pocket. Previously, it has been demonstrated that the anti-M3AR AuAb produces an agonist-like effect on downstream signaling, but its long-term effect is receptor desensitization. In this study, we compared the functional consequences of binding anti-M3AR AuAbs that target the ACh-binding pocket with that of AuAbs that target M3AR outside of its ACh-binding pocket. While the former AuAbs induced a very high elevation of phospholipase C, inositol triphosphate and diacylglycerol, which represents an agonist-like effect, the latter AuAbs produced a much weaker signaling response. These results indicate that patients with PV develop two types of anti-M3AR AuAbs. One type attaches to orthosteric, i.e., ACh-binding, site and elicits a strong signaling response comparable to that induced by a full pharmacologic agonist, whereas another type binds to an allosteric site and elicits submaximal signaling response comparable to that induced by a partial (allosteric) agonist.
Collapse
Affiliation(s)
- Jorge Mauricio Reyes-Ruiz
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, USA
| | - Alex Chernyavsky
- Department of Dermatology, University of California Irvine, Irvine, California, USA
| | - Sergei A Grando
- Department of Dermatology, University of California Irvine, Irvine, California, USA; Department of Biological Chemistry, University of California Irvine, Irvine, California, USA; Institute for Immunology, University of California Irvine, Irvine, California, USA.
| | - Charles Glabe
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, USA
| |
Collapse
|
2
|
Tavakolpour S, Noormohammadi Z, Daneshpazhooh M, Gholami A, Mahmoudi H. IgG reactivity to different desmoglein-3 ectodomains in pemphigus vulgaris: novel panels for assessing disease severity. Front Immunol 2024; 15:1469937. [PMID: 39416775 PMCID: PMC11479927 DOI: 10.3389/fimmu.2024.1469937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Pemphigus vulgaris (PV) is an autoimmune disease characterized by IgG autoantibodies targeting desmoglein-3 (Dsg3), leading to blistering of mucous membranes and skin. Although commercial ELISA kits effectively diagnose PV, correlation with clinical phenotype remains unclear. This study assesses multiple panels for monitoring disease severity and activity by profiling IgG autoantibodies against Dsg3's various extracellular ectodomains. Method We designed and expressed different extracellular domains of Dsg3 in HEK293T cell line and developed 15 different ELISA panels, each using a single or multi ectodomains encompassing the entire extracellular region of Dsg3 to detect specific autoantibodies against the particular part of Dsg3. Results To validate our approach, we compared our ELISA panel for the full Dsg3 (EC1-5) against a commercial kit using 154 random serum samples from PV patients, demonstrating a strong correlation. For evaluation of IgG autoantibody profiles in our panels, 59 PV patients were included, along with 11 bullous pemphigoid patients, and 49 healthy controls. For all the included subjects, 15 predefined ELISA panels were tested. The IgG autoantibodies against EC1 were detected in 86% of patients with a positive full Dsg3 ectodomain (EC1-5) ELISA, with 26% against EC2, 14% for EC3, 29% for EC4, and 23% for EC5. Among the panels with multiple Dsg3 ectodomains, EC1-3 and EC1-4 were representative of the entire Dsg3 ectodomain in terms of ELISA positivity across all included patients. A significant correlation (P<0.05) was observed between ELISA optical density (OD) and Pemphigus Disease Area Index (PDAI) scores in five panels, EC1, EC2-3, EC2-5, and EC3-4 in addition to the full ectodomain. It suggests an association with disease severity. Interestingly, while the ELISA panel for the entire Dsg3 extracellular ectodomains did not differentiate disease phases, in three of our panels, including EC1, EC3-5, and EC2-5, ANOVA analysis showed a statistically significant difference between the groups of patients in remission, partial remission or persistent lesions, and those with active disease (new cases or relapse). Among these three panels, EC1 was the only one that showed a significant difference in the multiple comparisons analysis; patients in the active phase had higher levels of autoantibodies than those in 'partial remission or persistent lesions' and 'complete remission' groups. Conclusion The level of autoantibodies against EC1 was not only correlated with the full ectodomain but also associated with higher disease severity and active disease phase. This study indicates that a detailed autoantibody profile against Dsg3 ectodomains could serve as a marker for PV severity and activity which may potentially enhance early treatment initiation.
Collapse
Affiliation(s)
- Soheil Tavakolpour
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Noormohammadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Daneshpazhooh
- Autoimmune Bullous Diseases Research Center, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Gholami
- Virology Department, Pasteur Institute of Iran, Tehran, Iran
| | - Hamidreza Mahmoudi
- Autoimmune Bullous Diseases Research Center, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Vielmuth F, Radeva MY, Yeruva S, Sigmund AM, Waschke J. cAMP: A master regulator of cadherin-mediated binding in endothelium, epithelium and myocardium. Acta Physiol (Oxf) 2023; 238:e14006. [PMID: 37243909 DOI: 10.1111/apha.14006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/05/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Regulation of cadherin-mediated cell adhesion is crucial not only for maintaining tissue integrity and barrier function in the endothelium and epithelium but also for electromechanical coupling within the myocardium. Therefore, loss of cadherin-mediated adhesion causes various disorders, including vascular inflammation and desmosome-related diseases such as the autoimmune blistering skin dermatosis pemphigus and arrhythmogenic cardiomyopathy. Mechanisms regulating cadherin-mediated binding contribute to the pathogenesis of diseases and may also be used as therapeutic targets. Over the last 30 years, cyclic adenosine 3',5'-monophosphate (cAMP) has emerged as one of the master regulators of cell adhesion in endothelium and, more recently, also in epithelial cells as well as in cardiomyocytes. A broad spectrum of experimental models from vascular physiology and cell biology applied by different generations of researchers provided evidence that not only cadherins of endothelial adherens junctions (AJ) but also desmosomal contacts in keratinocytes and the cardiomyocyte intercalated discs are central targets in this scenario. The molecular mechanisms involve protein kinase A- and exchange protein directly activated by cAMP-mediated regulation of Rho family GTPases and S665 phosphorylation of the AJ and desmosome adaptor protein plakoglobin. In line with this, phosphodiesterase 4 inhibitors such as apremilast have been proposed as a therapeutic strategy to stabilize cadherin-mediated adhesion in pemphigus and may also be effective to treat other disorders where cadherin-mediated binding is compromised.
Collapse
Affiliation(s)
- Franziska Vielmuth
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Mariya Y Radeva
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Sunil Yeruva
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Anna M Sigmund
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Jens Waschke
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
| |
Collapse
|
4
|
Yuan H, Pan M, Chen H, Mao X. Immunotherapy for Pemphigus: Present and Future. Front Med (Lausanne) 2022; 9:901239. [PMID: 35783635 PMCID: PMC9240651 DOI: 10.3389/fmed.2022.901239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Pemphigus is a chronic and severe autoimmune bullous disease caused by autoantibodies targeting adhesion molecules between keratinocytes. It requires 2–3 years on average to manage the disease. To date, although Rituximab combined with short-term systemic glucocorticoids was accepted as first-line therapy, systemic glucocorticoids remain the primary therapeutic option for pemphigus patients, successfully decreasing morbidity and mortality from pemphigus. However, novel therapeutic strategies are desirable due to the low efficacy in some subset of patients and the long-term severe adverse effects of traditional therapies. Recently, immunotherapy has proved to be encouraging for disease control or cure. Based on the current understanding of the immune mechanisms of pemphigus, we review the immune targets and corresponding agents applied in practice or under clinical trials. The goals of the novel treatments are to improve the quality of life of pemphigus patients by improving efficacy and safety, minimizing side effects, achieving fast disease control, or curing the disease.
Collapse
Affiliation(s)
- Huijie Yuan
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Meng Pan
- Department of Dermatology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongxiang Chen
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuming Mao
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: Xuming Mao
| |
Collapse
|
5
|
Egu DT, Schmitt T, Waschke J. Mechanisms Causing Acantholysis in Pemphigus-Lessons from Human Skin. Front Immunol 2022; 13:884067. [PMID: 35720332 PMCID: PMC9205406 DOI: 10.3389/fimmu.2022.884067] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Pemphigus vulgaris (PV) is an autoimmune bullous skin disease caused primarily by autoantibodies (PV-IgG) against the desmosomal adhesion proteins desmoglein (Dsg)1 and Dsg3. PV patient lesions are characterized by flaccid blisters and ultrastructurally by defined hallmarks including a reduction in desmosome number and size, formation of split desmosomes, as well as uncoupling of keratin filaments from desmosomes. The pathophysiology underlying the disease is known to involve several intracellular signaling pathways downstream of PV-IgG binding. Here, we summarize our studies in which we used transmission electron microscopy to characterize the roles of signaling pathways in the pathogenic effects of PV-IgG on desmosome ultrastructure in a human ex vivo skin model. Blister scores revealed inhibition of p38MAPK, ERK and PLC/Ca2+ to be protective in human epidermis. In contrast, inhibition of Src and PKC, which were shown to be protective in cell cultures and murine models, was not effective for human skin explants. The ultrastructural analysis revealed that for preventing skin blistering at least desmosome number (as modulated by ERK) or keratin filament insertion (as modulated by PLC/Ca2+) need to be ameliorated. Other pathways such as p38MAPK regulate desmosome number, size, and keratin insertion indicating that they control desmosome assembly and disassembly on different levels. Taken together, studies in human skin delineate target mechanisms for the treatment of pemphigus patients. In addition, ultrastructural analysis supports defining the specific role of a given signaling molecule in desmosome turnover at ultrastructural level.
Collapse
|
6
|
Apoptolysis: a less understood concept in the pathogenesis of Pemphigus Vulgaris. Apoptosis 2022; 27:322-328. [PMID: 35445279 DOI: 10.1007/s10495-022-01726-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2022] [Indexed: 11/02/2022]
Abstract
Pemphigus Vulgaris (PV) is a severe autoimmune disease characterized by supra-basal blisters in the skin and mucous membranes of a wide range of mammals, including humans. It not only affects the skin but also has severe oral manifestations. It has been stated that auto-antibodies are produced, for unknown reasons, which are directed against desmogleins present on the epithelium and thus leads to acantholysis and intraepithelial blistering. But the exact mechanism is still not completely understood. Here we would like to shed light on a new pathologic mechanism i.e., apoptolysis, which emphasizes that apoptotic enzymes contribute to acantholysis development both in terms of molecular events and chronologic sequence. A possible role of apoptolysis has been discussed in purview of PV.
Collapse
|
7
|
Chernyavsky A, Khylynskyi MM, Patel KG, Grando SA. Chronic exposure to the anti-M3 muscarinic acetylcholine receptor autoantibody in pemphigus vulgaris contributes to disease pathophysiology. J Biol Chem 2022; 298:101687. [PMID: 35143842 PMCID: PMC8897697 DOI: 10.1016/j.jbc.2022.101687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 12/31/2022] Open
Abstract
Pemphigus vulgaris (PV) is a potentially lethal autoimmune mucocutaneous blistering disease characterized by binding of IgG autoantibodies (AuAbs) to keratinocytes (KCs). In addition to AuAbs against adhesion molecules desmogleins 1 and 3, PV patients also produce an AuAb against the M3 muscarinic acetylcholine (ACh) receptor (M3AR) that plays an important role in regulation of vital functions of KCs upon binding endogenous ACh. This anti-M3AR AuAb is pathogenic because its adsorption eliminates the acantholytic activity of PV IgG; however, the molecular mechanism of its action is unclear. In the present study, we sought to elucidate the mode of immunopharmacologic action of the anti-M3AR AuAb in PV. Short-term exposures of cultured KCs to PV IgG or the muscarinic agonist muscarine both induced changes in the expression of keratins 5 and 10, consistent with the inhibition of proliferation and upregulated differentiation and in keeping with the biological function of M3AR. In contrast, long-term incubations induced a keratin expression pattern consistent with upregulated proliferation and decreased differentiation, in keeping with the hyperproliferative state of KCs in PV. This change could result from desensitization of the M3AR, representing the net antagonist-like effect of the AuAb. Therefore, chronic exposure of KCs to the anti-M3AR AuAb interrupts the physiological regulation of KCs by endogenous ACh, contributing to the onset of acantholysis. Since cholinergic agents have already demonstrated antiacantholytic activity in a mouse model of PV and in PV patients, our results have translational significance and can guide future development of therapies for PV patients employing cholinergic drugs.
Collapse
Affiliation(s)
- Alex Chernyavsky
- Department of Dermatology, University of California Irvine, Irvine, California, USA
| | | | - Krupa G Patel
- Department of Neurology, Oakland University William Beaumont School of Medicine, Rochester, Michigan, USA
| | - Sergei A Grando
- Department of Dermatology, University of California Irvine, Irvine, California, USA; Department of Biological Chemistry, University of California Irvine, Irvine, California, USA; Institute for Immunology, University of California Irvine, Irvine, California, USA.
| |
Collapse
|
8
|
Egu DT, Schmitt T, Sigmund AM, Waschke J. Electron microscopy reveals that phospholipase C and Ca2+ signaling regulate keratin filament uncoupling from desmosomes in Pemphigus. Ann Anat 2022; 241:151904. [DOI: 10.1016/j.aanat.2022.151904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 12/27/2022]
|
9
|
Sisto M, Ribatti D, Lisi S. Cadherin Signaling in Cancer and Autoimmune Diseases. Int J Mol Sci 2021; 22:ijms222413358. [PMID: 34948155 PMCID: PMC8704376 DOI: 10.3390/ijms222413358] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 02/07/2023] Open
Abstract
Cadherins mediate cell–cell adhesion through a dynamic process that is strongly dependent on the cellular context and signaling. Cadherin regulation reflects the interplay between fundamental cellular processes, including morphogenesis, proliferation, programmed cell death, surface organization of receptors, cytoskeletal organization, and cell trafficking. The variety of molecular mechanisms and cellular functions regulated by cadherins suggests that we have only scratched the surface in terms of clarifying the functions mediated by these versatile proteins. Altered cadherins expression is closely connected with tumorigenesis, epithelial–mesenchymal transition (EMT)-dependent fibrosis, and autoimmunity. We review the current understanding of how cadherins contribute to human health and disease, considering the mechanisms of cadherin involvement in diseases progression, as well as the clinical significance of cadherins as therapeutic targets.
Collapse
|
10
|
Schmitt T, Waschke J. Autoantibody-Specific Signalling in Pemphigus. Front Med (Lausanne) 2021; 8:701809. [PMID: 34434944 PMCID: PMC8381052 DOI: 10.3389/fmed.2021.701809] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/08/2021] [Indexed: 12/11/2022] Open
Abstract
Pemphigus is a severe autoimmune disease impairing barrier functions of epidermis and mucosa. Autoantibodies primarily target the desmosomal adhesion molecules desmoglein (Dsg) 1 and Dsg 3 and induce loss of desmosomal adhesion. Strikingly, autoantibody profiles in pemphigus correlate with clinical phenotypes. Mucosal-dominant pemphigus vulgaris (PV) is characterised by autoantibodies (PV-IgG) against Dsg3 whereas epidermal blistering in PV and pemphigus foliaceus (PF) is associated with autoantibodies against Dsg1. Therapy in pemphigus is evolving towards specific suppression of autoantibody formation and autoantibody depletion. Nevertheless, during the acute phase and relapses of the disease additional treatment options to stabilise desmosomes and thereby rescue keratinocyte adhesion would be beneficial. Therefore, the mechanisms by which autoantibodies interfere with adhesion of desmosomes need to be characterised in detail. Besides direct inhibition of Dsg adhesion, autoantibodies engage signalling pathways interfering with different steps of desmosome turn-over. With this respect, recent data indicate that autoantibodies induce separate signalling responses in keratinocytes via specific signalling complexes organised by Dsg1 and Dsg3 which transfer the signal of autoantibody binding into the cell. This hypothesis may also explain the different clinical pemphigus phenotypes.
Collapse
Affiliation(s)
- Thomas Schmitt
- Ludwig-Maximilian-Universität München, Anatomische Anstalt, Lehrstuhl Anatomie I - Vegetative Anatomie, Munich, Germany
| | - Jens Waschke
- Ludwig-Maximilian-Universität München, Anatomische Anstalt, Lehrstuhl Anatomie I - Vegetative Anatomie, Munich, Germany
| |
Collapse
|
11
|
R H, Ramani P, Tilakaratne WM, Sukumaran G, Ramasubramanian A, Krishnan RP. Critical appraisal of different triggering pathways for the pathobiology of pemphigus vulgaris-A review. Oral Dis 2021; 28:1760-1769. [PMID: 34152662 DOI: 10.1111/odi.13937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/07/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022]
Abstract
Pemphigus vulgaris is an autoimmune blistering disease with an increased potential for mortality. The epithelium is key in understanding the pathobiology as it is specialized to perform functions like mechanical protection, immunological defense, and proprioception. In order to perform these array of functions, epithelial integrity is important. This integrity is maintained by a host of molecules which orchestrate the ability of the keratinocytes to function as a single unit. Desmoglein 3 antibodies formed in genetically susceptible individuals are known to cause the disruption of the intact oral mucosa leading to the formation of blisters in pemphigus vulgaris patients. However, there are underlying complex triggering pathways leading to the clinical disease. The aim of the review is to congregate and critically appraise the various triggering pathways which contribute toward the pathobiology of pemphigus vulgaris. Articles relevant to the pathobiology of pemphigus vulgaris were identified from various search databases till the year 2020. The pathogenesis of pemphigus vulgaris is complex, and it involves an in-depth understanding of the various predisposing factors, provoking factors, and progression mechanisms. Congregation of the various triggering pathways will open our minds to understand pemphigus vulgaris better and in turn develop a reliable treatment in the near future.
Collapse
Affiliation(s)
- Hannah R
- Department of Oral Pathology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Chennai, India
| | - Pratibha Ramani
- Department of Oral Pathology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Chennai, India
| | - W M Tilakaratne
- Department of Oral and Maxillofacial Clinical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.,Department of Oral Pathology, Faculty of Dental sciences, University of Peradeniya, Peradeniya, Sri Lanka
| | - Gheena Sukumaran
- Department of Oral Pathology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Chennai, India
| | - Abilasha Ramasubramanian
- Department of Oral Pathology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Chennai, India
| | - Reshma Poothakulath Krishnan
- Department of Oral Pathology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Chennai, India
| |
Collapse
|
12
|
Papara C, Zillikens D, Sadik CD, Baican A. MicroRNAs in pemphigus and pemphigoid diseases. Autoimmun Rev 2021; 20:102852. [PMID: 33971341 DOI: 10.1016/j.autrev.2021.102852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/02/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023]
Abstract
Autoimmune blistering diseases are a heterogenous group of dermatological disorders characterized by blisters and erosions of the skin and/or mucous membranes induced by autoantibodies against structural proteins of the desmosome or the dermal-epidermal adhesion complex including the hemidesmosome. They consist of the two major disease groups, pemphigus and pemphigoid diseases (PPDs). The diagnosis is based on clinical findings, histopathology, direct immunofluorescence, and detection of circulating autoantibodies. The pathogenesis is not fully elucidated, prognostic factors are lacking, and to date, there is no cure for PPDs. MicroRNAs (miRNAs) represent small, non-coding RNAs that play a pivotal role in the posttranscriptional regulation of gene expression. Their dysfunction was highlighted to play a significant role in the pathogenesis of various diseases. Even though a link between miRNAs and autoimmune blistering diseases had been suggested, the research of their involvement in the pathogenesis of PPDs is still in its infancy. miRNAs hold promise for uncovering new layers in the pathogenesis of PPDs, in order to improve diagnosis and also to develop potential therapeutic options. In the current article, we provide an overview regarding current knowledge of miRNAs in terms of complex pathogenesis of PPDs, and, also, their potential role as biomarkers, predictive factors and therapeutic targets.
Collapse
Affiliation(s)
- Cristian Papara
- Department of Dermatology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Detlef Zillikens
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany; Center for Research on Inflammation of the Skin (CRIS), University of Lübeck, Lübeck, Germany.
| | - Christian D Sadik
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany; Center for Research on Inflammation of the Skin (CRIS), University of Lübeck, Lübeck, Germany
| | - Adrian Baican
- Department of Dermatology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
13
|
Wu PY, Li TM, Chen SI, Chen CJ, Chiou JS, Lin MK, Tsai FJ, Wu YC, Lin TH, Liao CC, Huang SM, Lin YN, Liang WM, Lin YJ. Complementary Chinese Herbal Medicine Therapy Improves Survival in Patients With Pemphigus: A Retrospective Study From a Taiwan-Based Registry. Front Pharmacol 2020; 11:594486. [PMID: 33362549 PMCID: PMC7756119 DOI: 10.3389/fphar.2020.594486] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/28/2020] [Indexed: 12/26/2022] Open
Abstract
Pemphigus is a life-threatening and skin-specific inflammatory autoimmune disease, characterized by intraepidermal blistering between the mucous membranes and skin. Chinese herbal medicine (CHM) has been used as an adjunct therapy for treating many diseases, including pemphigus. However, there are still limited studies in effects of CHM treatment in pemphigus, especially in Taiwan. To more comprehensively explore the effect of long-term CHM treatment on the overall mortality of pemphigus patients, we performed a retrospective analysis of 1,037 pemphigus patients identified from the Registry for Catastrophic Illness Patients database in Taiwan. Among them, 229 and 177 patients were defined as CHM users and non-users, respectively. CHM users were young, predominantly female, and had a lesser Charlson comorbidity index (CCI) than non-CHM users. After adjusting for age, sex, prednisolone use, and CCI, CHM users had a lower overall mortality risk than non-CHM users (multivariate model: hazard ratio (HR): 0.422, 95% confidence interval (CI): 0.242–0.735, p = 0.0023). The cumulative incidence of overall survival was significantly higher in CHM users than in non-users (p = 0.0025, log rank test). Association rule mining and network analysis showed that there was one main CHM cluster with Qi–Ju–Di–Huang–Wan (QJDHW), Dan–Shen (DanS; Radix Salviae miltiorrhizae; Salvia miltiorrhiza Bunge), Jia–Wei–Xiao–Yao-–San (JWXYS), Huang–Lian (HL; Rhizoma coptidis; Coptis chinensis Franch.), and Di–Gu–Pi (DGP; Cortex lycii; Lycium barbarum L.), while the second CHM cluster included Jin–Yin–Hua (JYH; Flos lonicerae; Lonicera hypoglauca Miq.) and Lian–Qiao (LQ; Fructus forsythiae; Forsythia suspensa (Thunb.) Vahl). In Taiwan, CHMs used as an adjunctive therapy reduced the overall mortality to approximately 20% among pemphigus patients after a follow-up of more than 6 years. A comprehensive CHM list may be useful in future clinical trials and further scientific investigations to improve the overall survival in these patients.
Collapse
Affiliation(s)
- Po-Yuan Wu
- Department of Dermatology, China Medical University Hospital, Taichung, Taiwan.,School of Medicine, China Medical University, Taichung, Taiwan
| | - Te-Mao Li
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Shu-I Chen
- Department of Chinese Medicine, Asia University Hospital, Taichung, Taiwan
| | - Chao-Jung Chen
- Proteomics Core Laboratory, Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Jian-Shiun Chiou
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Ming-Kuem Lin
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Proteomics Core Laboratory, Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,Department of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan
| | - Yang-Chang Wu
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Ting-Hsu Lin
- Proteomics Core Laboratory, Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chiu-Chu Liao
- Proteomics Core Laboratory, Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Shao-Mei Huang
- Proteomics Core Laboratory, Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Ning Lin
- Proteomics Core Laboratory, Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Miin Liang
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Ying-Ju Lin
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Proteomics Core Laboratory, Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
14
|
Walter E, Vielmuth F, Wanuske MT, Seifert M, Pollmann R, Eming R, Waschke J. Role of Dsg1- and Dsg3-Mediated Signaling in Pemphigus Autoantibody-Induced Loss of Keratinocyte Cohesion. Front Immunol 2019; 10:1128. [PMID: 31178865 PMCID: PMC6543754 DOI: 10.3389/fimmu.2019.01128] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/03/2019] [Indexed: 12/13/2022] Open
Abstract
Pemphigus is an autoimmune dermatosis in which mucocutaneous blisters are induced primarily by autoantibodies against Desmoglein (Dsg) 1 and 3. Pemphigus vulgaris (PV) usually is associated with autoantibodies against Dsg3 whereas pemphigus foliaceus (PF) patients present autoantibodies against Dsg1. Several signaling pathways were proposed to cause loss of keratinocyte adhesion. However, relevance of different signaling pathways and role of Dsg1 and 3 to trigger signaling are not fully understood. Here, we show that Ca2+ chelation reduced PV-IgG- and PF-IgG-mediated loss of HaCaT keratinocyte cohesion whereas EGFR inhibition did not inhibit effects of PF-IgG. PV-IgG activated EGFR in a Src-dependent manner whereas both PV-IgG and PF-IgG caused Ca2+ influx independent of EGFR. ERK activation was Src-dependent in response to PV-IgG but not PF-IgG. To delineate the roles of Dsg isoforms to trigger signaling pathways, Dsg3- and Dsg2-deficient HaCaT keratinocyte cell lines were generated using CRISPR/Cas9. Dsg3- but not Dsg2-deficient cells were protected against PV-IgG-induced loss of cell adhesion. Ca2+ influx and ERK activation in response to PF-IgG were preserved in both cell lines.
Collapse
Affiliation(s)
- Elias Walter
- Institute of Anatomy and Cell Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Franziska Vielmuth
- Institute of Anatomy and Cell Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marie-Therès Wanuske
- Institute of Anatomy and Cell Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Matthias Seifert
- Institute of Anatomy and Cell Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Robert Pollmann
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
| | - Rüdiger Eming
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
| | - Jens Waschke
- Institute of Anatomy and Cell Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
15
|
Chernyavsky A, Amber KT, Agnoletti AF, Wang C, Grando SA. Synergy among non-desmoglein antibodies contributes to the immunopathology of desmoglein antibody-negative pemphigus vulgaris. J Biol Chem 2019; 294:4520-4528. [PMID: 30692201 PMCID: PMC6433052 DOI: 10.1074/jbc.ra118.006743] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/23/2019] [Indexed: 11/06/2022] Open
Abstract
Pemphigus vulgaris (PV) is a potentially lethal mucocutaneous blistering disease characterized by IgG autoantibodies (AuAbs) binding to epidermal keratinocytes and inducing this devastating disease. Here, we observed that non-desmoglein (Dsg) AuAbs in the sera of patients with Dsg1/3 AuAb-negative acute PV are pathogenic, because IgGs from these individuals induced skin blistering in neonatal mice caused by suprabasal acantholysis. Serum levels of AuAbs to desmocollin 3 (Dsc3), M3 muscarinic acetylcholine receptor (M3AR), and secretory pathway Ca2+/Mn2+-ATPase isoform 1 (SPCA1) correlated with the disease stage of PV. Moreover, AuAb absorption on recombinant Dsc3, M3AR, or SPCA1 both prevented skin blistering in the passive transfer of AuAbs model of PV in BALB/c mice and significantly decreased the extent of acantholysis in a neonatal mouse skin explant model. Although acantholytic activities of each of these immunoaffinity-purified AuAbs could not induce a PV-like phenotype, their mixture produced a synergistic effect manifested by a positive Nikolskiy sign in the skin of neonatal mice. The downstream signaling of all pathogenic non-Dsg AuAbs involved p38 mitogen-activated protein kinase (MAPK)-mediated phosphorylation and elevation of cytochrome c release and caspase 9 activity. Anti-Dsc3 and anti-SPCA1 AuAbs also activated SRC proto-oncogene, nonreceptor tyrosine kinase (SRC). Of note, although a constellation of non-Dsg AuAbs apparently disrupted epidermal integrity, elimination of a single pathogenic AuAb could prevent keratinocyte detachment and blistering. Therefore, anti-Dsg1/3 AuAb-free PV can be a model for elucidating the roles of non-Dsg antigen-specific AuAbs in the physiological regulation of keratinocyte cell-cell adhesion and blister development.
Collapse
Affiliation(s)
| | - Kyle T Amber
- From the Departments of Dermatology and
- the Department of Dermatology, University of Illinois, Chicago, Illinois 60607
| | - Arianna F Agnoletti
- From the Departments of Dermatology and
- the DISSAL Section of Dermatology, San Martino Policlinic Hospital, 16132 Genoa, Italy, and
| | - Candice Wang
- the College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California 91766
| | - Sergei A Grando
- From the Departments of Dermatology and
- Biological Chemistry and
- the Institute for Immunology, University of California-Irvine, Irvine, California 92697
| |
Collapse
|
16
|
Waschke J. Desmogleins as signaling hubs regulating cell cohesion and tissue/organ function in skin and heart - EFEM lecture 2018. Ann Anat 2018; 226:96-100. [PMID: 30529571 DOI: 10.1016/j.aanat.2018.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 11/27/2018] [Indexed: 01/18/2023]
Abstract
Cell-cell contacts are crucial for intercellular cohesion and formation of endothelial and epithelial barriers. Desmosomes are the adhesive contacts providing mechanical strength to epithelial intercellular adhesion and therefore are most abundant in tissues subjected to high mechanical stress such as the epidermis and heart muscle. Desmogleins (Dsg) besides intercellular adhesion serve as signalling hubs regulating cell behaviour. In desmosomal diseases such as the autoimmune blistering skin disease pemphigus or arrhythmic cardiomyopathy (AC), which is caused by mutations of desmosomal components of cardiomyocyte intercalated discs, the adhesive and signalling functions of desmosomes are impaired. Therefore, our goal is to elucidate the mechanisms regulating adhesion of desmosomes in order to develop new strategies to treat desmosomal diseases. For pemphigus, we have provided evidence that intracellular signalling is required for loss of keratinocyte cohesion and have characterized a first disease-relevant adhesion receptor consisting of Dsg3 and p38MAPK. We propose that signalling patterns correlate with autoantibody profiles and thereby define the clinical phenotypes of pemphigus. Besides direct modulation of signalling pathways we have demonstrated that peptide-mediated crosslinking of Dsg molecules can abolish skin blistering in vivo. A similar approach may be effective to stabilize adhesion in cardiomyocytes of AC hearts. Since we observed that the adrenergic β1-receptor is localized at intercalated discs we evaluate signalling pathways regulating cardiomyocyte cohesion. With adrenergic signalling we have reported a first mechanism to stabilize desmosomal adhesion in intercalated discs and proposed a new function of the sympathicus in the heart we refer to as positive adhesiotropy.
Collapse
Affiliation(s)
- Jens Waschke
- Institute of Anatomy, Faculty of Medicine, LMU Munich, Pettenkoferstr. 11, 80336 Munich, Germany.
| |
Collapse
|
17
|
Sinha AA, Sajda T. The Evolving Story of Autoantibodies in Pemphigus Vulgaris: Development of the "Super Compensation Hypothesis". Front Med (Lausanne) 2018; 5:218. [PMID: 30155465 PMCID: PMC6102394 DOI: 10.3389/fmed.2018.00218] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 07/16/2018] [Indexed: 12/11/2022] Open
Abstract
Emerging data and innovative technologies are re-shaping our understanding of the scope and specificity of the autoimmune response in Pemphigus vulgaris (PV), a prototypical humorally mediated autoimmune skin blistering disorder. Seminal studies identified the desmosomal proteins Desmoglein 3 and 1 (Dsg3 and Dsg1), cadherin family proteins which function to maintain cell adhesion, as the primary targets of pathogenic autoAbs. Consequently, pathogenesis in PV has primarily considered to be the result of anti-Dsg autoAbs alone. However, accumulating data suggesting that anti-Dsg autoAbs by themselves cannot adequately explain the loss of cell-cell adhesion seen in PV, nor account for the disease heterogeneity exhibited across PV patients has spurred the notion that additional autoAb specificities may contribute to disease. To investigate the role of non-Dsg autoAbs in PV, an increasing number of studies have attempted to characterize additional targets of PV autoAbs. The recent advent of protein microarray technology, which allows for the rapid, highly sensitive, and multiplexed assessment of autoAb specificity has facilitated the comprehensive classification of the scope and specificity of the autoAb response in PV. Such detailed deconstruction of the autoimmune response in PV, beyond simply tracking anti-Dsg autoAbs, has provided invaluable new insights concerning disease mechanisms and enhanced disease classification which could directly translate into superior tools for prognostics and clinical management, as well as the development of novel, disease specific treatments.
Collapse
Affiliation(s)
- Animesh A Sinha
- Department of Dermatology, University at Buffalo, Buffalo, NY, United States
| | - Thomas Sajda
- Department of Dermatology, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
18
|
Sajda T, Sinha AA. Autoantibody Signaling in Pemphigus Vulgaris: Development of an Integrated Model. Front Immunol 2018; 9:692. [PMID: 29755451 PMCID: PMC5932349 DOI: 10.3389/fimmu.2018.00692] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/21/2018] [Indexed: 01/10/2023] Open
Abstract
Pemphigus vulgaris (PV) is an autoimmune skin blistering disease effecting both cutaneous and mucosal epithelia. Blister formation in PV is known to result from the binding of autoantibodies (autoAbs) to keratinocyte antigens. The primary antigenic targets of pathogenic autoAbs are known to be desmoglein 3, and to a lesser extent, desmoglein 1, cadherin family proteins that partially comprise the desmosome, a protein structure responsible for maintaining cell adhesion, although additional autoAbs, whose role in blister formation is still unclear, are also known to be present in PV patients. Nevertheless, there remain large gaps in knowledge concerning the precise mechanisms through which autoAb binding induces blister formation. Consequently, the primary therapeutic interventions for PV focus on systemic immunosuppression, whose side effects represent a significant health risk to patients. In an effort to identify novel, disease-specific therapeutic targets, a multitude of studies attempting to elucidate the pathogenic mechanisms downstream of autoAb binding, have led to significant advancements in the understanding of autoAb-mediated blister formation. Despite this enhanced characterization of disease processes, a satisfactory explanation of autoAb-induced acantholysis still does not exist. Here, we carefully review the literature investigating the pathogenic disease mechanisms in PV and, taking into account the full scope of results from these studies, provide a novel, comprehensive theory of blister formation in PV.
Collapse
Affiliation(s)
- Thomas Sajda
- Department of Dermatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Animesh A Sinha
- Department of Dermatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
19
|
Spindler V, Waschke J. Pemphigus-A Disease of Desmosome Dysfunction Caused by Multiple Mechanisms. Front Immunol 2018; 9:136. [PMID: 29449846 PMCID: PMC5799217 DOI: 10.3389/fimmu.2018.00136] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/16/2018] [Indexed: 02/01/2023] Open
Abstract
Pemphigus is a severe autoimmune-blistering disease of the skin and mucous membranes caused by autoantibodies reducing desmosomal adhesion between epithelial cells. Autoantibodies against the desmosomal cadherins desmogleins (Dsgs) 1 and 3 as well as desmocollin 3 were shown to be pathogenic, whereas the role of other antibodies is unclear. Dsg3 interactions can be directly reduced by specific autoantibodies. Autoantibodies also alter the activity of signaling pathways, some of which regulate cell cohesion under baseline conditions and alter the turnover of desmosomal components. These pathways include Ca2+, p38MAPK, PKC, Src, EGFR/Erk, and several others. In this review, we delineate the mechanisms relevant for pemphigus pathogenesis based on the histology and the ultrastructure of patients’ lesions. We then dissect the mechanisms which can explain the ultrastructural hallmarks detectable in pemphigus patient skin. Finally, we reevaluate the concept that the spectrum of mechanisms, which induce desmosome dysfunction upon binding of pemphigus autoantibodies, finally defines the clinical phenotype.
Collapse
Affiliation(s)
- Volker Spindler
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Jens Waschke
- Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| |
Collapse
|
20
|
Ahmed AR, Carrozzo M, Caux F, Cirillo N, Dmochowski M, Alonso AE, Gniadecki R, Hertl M, López-Zabalza MJ, Lotti R, Pincelli C, Pittelkow M, Schmidt E, Sinha AA, Sprecher E, Grando SA. Monopathogenic vs multipathogenic explanations of pemphigus pathophysiology. Exp Dermatol 2018; 25:839-846. [PMID: 27305362 DOI: 10.1111/exd.13106] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2016] [Indexed: 01/31/2023]
Abstract
This viewpoint highlights major, partly controversial concepts about the pathogenesis of pemphigus. The monopathogenic theory explains intra-epidermal blistering through the "desmoglein (Dsg) compensation" hypothesis, according to which an antibody-dependent disabling of Dsg 1- and/or Dsg 3-mediated cell-cell attachments of keratinocytes (KCs) is sufficient to disrupt epidermal integrity and cause blistering. The multipathogenic theory explains intra-epidermal blistering through the "multiple hit" hypothesis stating that a simultaneous and synchronized inactivation of the physiological mechanisms regulating and/or mediating intercellular adhesion of KCs is necessary to disrupt epidermal integrity. The major premise for a multipathogenic theory is that a single type of autoantibody induces only reversible changes, so that affected KCs can recover due to a self-repair. The damage, however, becomes irreversible when the salvage pathway and/or other cell functions are altered by a partnering autoantibody and/or other pathogenic factors. Future studies are needed to (i) corroborate these findings, (ii) characterize in detail patient populations with non-Dsg-specific autoantibodies, and (iii) determine the extent of the contribution of non-Dsg antibodies in disease pathophysiology.
Collapse
Affiliation(s)
- A Razzaque Ahmed
- Department of Dermatology of Tufts University and Center for Blistering Diseases, Boston, MA, USA
| | - Marco Carrozzo
- School of Dental Sciences, University of Newcastle upon Tyne, Newcastle upon Tyne, UK
| | - Frédéric Caux
- Department of Dermatology, University Paris 13, Avicenne Hospital, APHP, Bobigny, France
| | - Nicola Cirillo
- Melbourne Dental School and Oral Health CRC, The University of Melbourne, Melbourne, Vic., Australia
| | - Marian Dmochowski
- Autoimmune Blistering Dermatoses Section, Department of Dermatology, Poznan University of Medical Sciences, Poznan, Poland
| | - Agustín España Alonso
- Department of Dermatology, School of Medicine, University Clinic of Navarra, University of Navarra, Navarra, Spain
| | - Robert Gniadecki
- Division of Dermatology, University of Alberta, Edmonton, AB, Canada
| | - Michael Hertl
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany
| | | | - Roberta Lotti
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
| | - Carlo Pincelli
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
| | - Mark Pittelkow
- Department of Dermatology, Mayo Clinic, Scottsdale, AZ, USA
| | - Enno Schmidt
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Animesh A Sinha
- Department of Dermatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Eli Sprecher
- Department of Dermatology, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Sergei A Grando
- Institute for Immunology and Departments of Dermatology and Biological Chemistry, University of California, Irvine, CA, USA.
| |
Collapse
|
21
|
Walter E, Vielmuth F, Rotkopf L, Sárdy M, Horváth ON, Goebeler M, Schmidt E, Eming R, Hertl M, Spindler V, Waschke J. Different signaling patterns contribute to loss of keratinocyte cohesion dependent on autoantibody profile in pemphigus. Sci Rep 2017; 7:3579. [PMID: 28620161 PMCID: PMC5472593 DOI: 10.1038/s41598-017-03697-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/02/2017] [Indexed: 12/19/2022] Open
Abstract
Pemphigus is an autoimmune blistering skin disease caused primarily by autoantibodies against desmoglein (Dsg)1 and 3. Here, we characterized the mechanisms engaged by pemphigus IgG from patients with different clinical phenotypes and autoantibody profiles. All pemphigus vulgaris (PV) and pemphigus foliaceus (PF) IgG and AK23, a monoclonal mouse antibody against Dsg3, caused loss of cell cohesion, cytokeratin retraction and p38MAPK activation. Strong alterations in Dsg3 distribution were caused by mucosal (aDsg3 antibodies), mucocutaneous (aDsg1 + aDsg3) as well as atypical (aDsg3) PV-IgG. All PV-IgG fractions and AK23 compromised Dsg3 but not Dsg1 binding and enhanced Src activity. In contrast, rapid Ca2+ influx and Erk activation were induced by mucocutaneous PV-IgG and pemphigus foliaceus (PF) IgG (aDsg1) whereas cAMP was increased by mucosal and mucocutaneous PV-IgG only. Selective inhibition of p38MAPK, Src or PKC blocked loss of keratinocyte cohesion in response to all autoantibody fractions whereas Erk inhibition was protective against mucocutaneous PV-IgG and PF-IgG only. These results demonstrate that signaling patterns parallel the clinical phenotype as some mechanisms involved in loss of cell cohesion are caused by antibodies targeting Dsg3 whereas others correlate with autoantibodies against Dsg1. The concept of key desmosome regulators may explain observations from several experimental models of pemphigus.
Collapse
Affiliation(s)
- Elias Walter
- Institute of Anatomy and Cell Biology, Ludwig-Maximilians-Universität München, Munich, 80336, Germany
| | - Franziska Vielmuth
- Institute of Anatomy and Cell Biology, Ludwig-Maximilians-Universität München, Munich, 80336, Germany
| | - Lukas Rotkopf
- Institute of Anatomy and Cell Biology, Ludwig-Maximilians-Universität München, Munich, 80336, Germany
| | - Miklós Sárdy
- Department of Dermatology and Allergology, Ludwig-Maximilians-Universität München, Munich, 80336, Germany
| | - Orsolya N Horváth
- Department of Dermatology and Allergology, Ludwig-Maximilians-Universität München, Munich, 80336, Germany
| | - Matthias Goebeler
- Department of Dermatology, Venerology and Allergology, University Hospital Würzburg, Würzburg, 97080, Germany
| | - Enno Schmidt
- Lübeck Institute of Experimental Dermatology (Lied), University of Lübeck, Lübeck, 23562, Germany
| | - Rüdiger Eming
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, 35037, Germany
| | - Michael Hertl
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, 35037, Germany
| | - Volker Spindler
- Institute of Anatomy and Cell Biology, Ludwig-Maximilians-Universität München, Munich, 80336, Germany.
| | - Jens Waschke
- Institute of Anatomy and Cell Biology, Ludwig-Maximilians-Universität München, Munich, 80336, Germany.
| |
Collapse
|
22
|
Desmoglein 3-Dependent Signaling Regulates Keratinocyte Migration and Wound Healing. J Invest Dermatol 2016; 136:301-10. [DOI: 10.1038/jid.2015.380] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 09/01/2015] [Accepted: 09/11/2015] [Indexed: 12/21/2022]
|
23
|
Rötzer V, Breit A, Waschke J, Spindler V. Adducin is required for desmosomal cohesion in keratinocytes. J Biol Chem 2014; 289:14925-40. [PMID: 24711455 DOI: 10.1074/jbc.m113.527127] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adducin is a protein organizing the cortical actin cytoskeleton and a target of RhoA and PKC signaling. However, the role for intercellular cohesion is unknown. We found that adducin silencing induced disruption of the actin cytoskeleton, reduced intercellular adhesion of human keratinocytes, and decreased the levels of the desmosomal adhesion molecule desmoglein (Dsg)3 by reducing its membrane incorporation. Because loss of cell cohesion and Dsg3 depletion is observed in the autoantibody-mediated blistering skin disease pemphigus vulgaris (PV), we applied antibody fractions of PV patients. A rapid phosphorylation of adducin at serine 726 was detected in response to these autoantibodies. To mechanistically link autoantibody binding and adducin phosphorylation, we evaluated the role of several disease-relevant signaling molecules. Adducin phosphorylation at serine 726 was dependent on Ca(2+) influx and PKC but occurred independent of p38 MAPK and PKA. Adducin phosphorylation is protective, because phosphorylation-deficient mutants resulted in loss of cell cohesion and Dsg3 fragmentation. Thus, PKC elicits both positive and negative effects on cell adhesion, since its contribution to cell dissociation in pemphigus is well established. We additionally evaluated the effect of RhoA on adducin phosphorylation because RhoA activation was shown to block pemphigus autoantibody-induced cell dissociation. Our data demonstrate that the protective effect of RhoA activation was dependent on the presence of adducin and its phosphorylation at serine 726. These experiments provide novel mechanisms for regulation of desmosomal adhesion by RhoA- and PKC-mediated adducin phosphorylation in keratinocytes.
Collapse
Affiliation(s)
- Vera Rötzer
- From the Institute of Anatomy and Cell Biology, Ludwig-Maximilians-Universität, Munich D-80336 and
| | - Andreas Breit
- the Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Munich D-80336, Germany
| | - Jens Waschke
- From the Institute of Anatomy and Cell Biology, Ludwig-Maximilians-Universität, Munich D-80336 and
| | - Volker Spindler
- From the Institute of Anatomy and Cell Biology, Ludwig-Maximilians-Universität, Munich D-80336 and
| |
Collapse
|
24
|
Spindler V, Waschke J. Desmosomal Cadherins and Signaling: Lessons from Autoimmune Disease. ACTA ACUST UNITED AC 2014; 21:77-84. [DOI: 10.3109/15419061.2013.877000] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
25
|
España A, Mòdol T, Gil MP, López-Zabalza MJ. Neural nitric oxide synthase participates in pemphigus vulgaris acantholysis through upregulation of Rous sarcoma, mammalian target of rapamycin and focal adhesion kinase. Exp Dermatol 2013; 22:125-30. [PMID: 23362871 DOI: 10.1111/exd.12088] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2013] [Indexed: 01/29/2023]
Abstract
Pemphigus vulgaris (PV) is an autoimmune blistering skin disease characterized by suprabasal acantholysis produced as a consequence of desmoglein (Dsg) and non-Dsg autoantibodies binding to several targeting molecules localized on the membrane of keratinocytes. Nitric oxide (NO) may exert a pathogenic function in several immunological processes. We have previously demonstrated that neural nitric oxide synthase (nNOS) plays part in PV acantholysis. Also, our group has described a relevant role for HER [human epidermal growth factor receptor (EGFR) related] isoforms and several kinases such as Src (Rous sarcoma), mammalian target of rapamycin (mTOR) and focal adhesion kinase (FAK), as well as caspases in PV development. Using a passive transfer mouse model of PV, we aimed to investigate the relationship between the increase in nNOS and EGFR, Src, mTOR and FAK kinase upregulation observed in PV lesions. Our results revealed a new function for nNOS, which contributes to EGFR-mediated PV acantholysis through the upregulation of Src, mTOR and FAK. In addition, we found that nNOS participates actively in PV at least in part by increasing caspase-9 and caspase-3 activities. These findings underline the important issue that in PV acantholysis, caspase activation is a nNOS-linked process downstream of Src, mTOR and FAK kinase upregulation.
Collapse
Affiliation(s)
- Agustín España
- Department of Dermatology, University Clinic of Navarra, School of Medicine, University of Navarra, Navarra, Spain.
| | | | | | | |
Collapse
|
26
|
Yazdanpanah MJ, Taji AR, Javidi Z, Pezeshkpoor F, Rahsepar AA, Tavallaie S, Momenzadeh A, Shojaie-Noori S, Khoddami M, Rahsepar S, Ghayour-Mobarhan M, Ferns GAA. High levels of anti-heat shock protein 27 antibody in pemphigus vulgaris. Ann Dermatol 2013; 25:266-268. [PMID: 23717032 PMCID: PMC3662934 DOI: 10.5021/ad.2013.25.2.266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 09/02/2012] [Accepted: 09/09/2012] [Indexed: 11/08/2022] Open
Affiliation(s)
- Mohammad Javad Yazdanpanah
- Research Center for Skin Diseases and Cutaneous Leishmaniasis, Faculty of Medicine, Ghaem Hospital, Gordon Ashley Anthony Ferns, Mashhad University of Medical Science, Mashhad, Iran
| | - Ali Reza Taji
- Research Center for Skin Diseases and Cutaneous Leishmaniasis, Faculty of Medicine, Ghaem Hospital, Gordon Ashley Anthony Ferns, Mashhad University of Medical Science, Mashhad, Iran
| | - Zari Javidi
- Research Center for Skin Diseases and Cutaneous Leishmaniasis, Faculty of Medicine, Ghaem Hospital, Gordon Ashley Anthony Ferns, Mashhad University of Medical Science, Mashhad, Iran
| | - Fakhrozaman Pezeshkpoor
- Research Center for Skin Diseases and Cutaneous Leishmaniasis, Faculty of Medicine, Ghaem Hospital, Gordon Ashley Anthony Ferns, Mashhad University of Medical Science, Mashhad, Iran
| | - Amir Ali Rahsepar
- Biochemistry of Nutrition Research Center, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Shima Tavallaie
- Biochemistry of Nutrition Research Center, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Akram Momenzadeh
- Research Center for Skin Diseases and Cutaneous Leishmaniasis, Faculty of Medicine, Ghaem Hospital, Gordon Ashley Anthony Ferns, Mashhad University of Medical Science, Mashhad, Iran
| | - Saber Shojaie-Noori
- Research Center for Skin Diseases and Cutaneous Leishmaniasis, Faculty of Medicine, Ghaem Hospital, Gordon Ashley Anthony Ferns, Mashhad University of Medical Science, Mashhad, Iran
| | - Mohsen Khoddami
- Research Center for Skin Diseases and Cutaneous Leishmaniasis, Faculty of Medicine, Ghaem Hospital, Gordon Ashley Anthony Ferns, Mashhad University of Medical Science, Mashhad, Iran
| | - Sara Rahsepar
- Research Center for Skin Diseases and Cutaneous Leishmaniasis, Faculty of Medicine, Ghaem Hospital, Gordon Ashley Anthony Ferns, Mashhad University of Medical Science, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Biochemistry of Nutrition Research Center, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Gordon Ashley Anthony Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Mayfield House, Falmer, Brighton, Sussex, UK
| |
Collapse
|
27
|
Pemphigus vulgaris autoantibody profiling by proteomic technique. PLoS One 2013; 8:e57587. [PMID: 23505434 PMCID: PMC3591405 DOI: 10.1371/journal.pone.0057587] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 01/23/2013] [Indexed: 11/24/2022] Open
Abstract
Pemphigus vulgaris (PV) is a mucocutaneous blistering disease characterized by IgG autoantibodies against the stratified squamous epithelium. Current understanding of PV pathophysiology does not explain the mechanism of acantholysis in patients lacking desmoglein antibodies, which justifies a search for novel targets of pemphigus autoimmunity. We tested 264 pemphigus and 138 normal control sera on the multiplexed protein array platform containing 701 human genes encompassing many known keratinocyte cell-surface molecules and members of protein families targeted by organ-non-specific PV antibodies. The top 10 antigens recognized by the majority of test patients’ sera were proteins encoded by the DSC1, DSC3, ATP2C1, PKP3, CHRM3, COL21A1, ANXA8L1, CD88 and CHRNE genes. The most common combinations of target antigens included at least one of the adhesion molecules DSC1, DSC3 or PKP3 and/or the acetylcholine receptor CHRM3 or CHRNE with or without the MHC class II antigen DRA. To identify the PV antibodies most specific to the disease process, we sorted the data based on the ratio of patient to control frequencies of antigen recognition. The frequency of antigen recognition by patients that exceeded that of control by 10 and more times were the molecules encoded by the CD33, GP1BA, CHRND, SLC36A4, CD1B, CD32, CDH8, CDH9, PMP22 and HLA-E genes as well as mitochondrial proteins encoded by the NDUFS1, CYB5B, SOD2, PDHA1 and FH genes. The highest specificity to PV showed combinations of autoantibodies to the calcium pump encoded by ATP2C1 with C5a receptor plus DSC1 or DSC3 or HLA-DRA. The results identified new targets of pemphigus autoimmunity. Novel autoantibody signatures may help explain individual variations in disease severity and treatment response, and serve as sensitive and specific biomarkers for new diagnostic assays in PV patients.
Collapse
|
28
|
Cirillo N, Al-Jandan BA. Desmosomal adhesion and pemphigus vulgaris: the first half of the story. ACTA ACUST UNITED AC 2013; 20:1-10. [PMID: 23368972 DOI: 10.3109/15419061.2013.763799] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pemphigus vulgaris (PV) is a paradigm of autoimmune disease affecting intercellular adhesion. The mechanisms that lead to cell-cell detachment (acantholysis) have crucial therapeutic implications and are currently undergoing major scrutiny. The first part of this review focuses on the classical view of the pathogenesis of PV, which is dominated by the cell adhesion molecules of the desmosome, namely desmogleins (Dsgs). Cloning of the DSG3 gene, generation DSG3 knock-out mice and isolation of monoclonal anti-Dsg3 IgG have aided to clarify the pathogenic mechanisms of PV, which are in part dependent on the fate of desmosomal molecules. These include perturbation of the desmosomal network at the transcriptional, translational, and interaction level, kinase activation, proteinase-mediated degradation, and hyper-adhesion. By the use of PV models, translational research has in turn helped shed light into the basic structure, function, and dynamics of assembly of desmosomal cadherins. The combined efforts of basic and applied research has resulted in tremendous advance into the understanding of epidermal adhesion and helped debunk old myths on the supposedly unique role of desmogleins in the mechanisms of cell-cell detachment in PV.
Collapse
Affiliation(s)
- Nicola Cirillo
- Melbourne Dental School, The University of Melbourne, Melbourne, Victoria 3053, Australia.
| | | |
Collapse
|
29
|
Abstract
Desmosomes are intercellular adhesive junctions that are particularly prominent in tissues experiencing mechanical stress, such as the heart and epidermis. Whereas the related adherens junction links actin to calcium-dependent adhesion molecules known as classical cadherins, desmosomes link intermediate filaments (IF) to the related subfamily of desmosomal cadherins. By tethering these stress-bearing cytoskeletal filaments to the plasma membrane, desmosomes serve as integrators of the IF cytoskeleton throughout a tissue. Recent evidence suggests that IF attachment in turn strengthens desmosomal adhesion. This collaborative arrangement results in formation of a supracellular network, which is critical for imparting mechanical integrity to tissues. Diseases and animal models targeting desmosomal components highlight the importance of desmosomes in development and tissue integrity, while the downregulation of individual protein components in cancer metastasis and wound healing suggests their importance in cell homeostasis. This chapter will provide an update on desmosome composition, function, and regulation, and will also discuss recent work which raises the possibility that desmosome proteins do more than play a structural role in tissues where they reside.
Collapse
|
30
|
Abstract
Pemphigus vulgaris (PV) is the most common type of pemphigus. PV pathogenesis is still debated, and treatment remains challenging. We investigated five controversial topics: (1) What are the target antigens in PV? (2) Do desmogleins adequately address PV pathophysiology? (3) How does acantholysis occur in PV? (4) Is PV still a lethal disease? (5) What is the role of rituximab (RTX) in PV treatment? Results from extensive literature searches suggested the following: (1) Target antigens of PV include a variety of molecules and receptors that are not physically compartmentalized within the epidermis. (2) PV is caused by a variety of autoantibodies to keratinocyte self-antigens, which concur to cause blistering by acting synergistically. (3) The concept of apoptolysis distinguishes the unique mechanism of autoantibody-induced keratinocyte damage in PV from other known forms of cell death. (4) PV remains potentially life-threatening largely because of treatment side effects, but it is uncertain which therapies carry the highest likelihood of lethal risk. (5) RTX is a very promising treatment option in patients with widespread recalcitrant or life-threatening PV. RTX's cost is an issue, its long-term side effects are still unknown, and randomized controlled trials are needed to establish the optimal dosing regimen.
Collapse
Affiliation(s)
- N Cirillo
- Department of Oral and Dental Sciences, University of Bristol, Bristol, UK.
| | | | | | | |
Collapse
|
31
|
Gil MP, Modol T, España A, López-Zabalza MJ. Inhibition of FAK prevents blister formation in the neonatal mouse model of pemphigus vulgaris. Exp Dermatol 2012; 21:254-9. [DOI: 10.1111/j.1600-0625.2012.01441.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
32
|
A hypothesis concerning a potential involvement of ceramide in apoptosis and acantholysis induced by pemphigus autoantibodies. Dermatol Res Pract 2010; 2010:702409. [PMID: 20585604 PMCID: PMC2879861 DOI: 10.1155/2010/702409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 02/23/2010] [Indexed: 11/17/2022] Open
Abstract
Autoimmune diseases affect more than 50 million Americans, resulting in significant healthcare costs. Most autoimmune diseases occur sporadically; however, endemic pemphigus foliaceus (EPF) is an autoimmune skin disease localized to specific geographic loci. EPF, and the related diseases pemphigus vulgaris (PV) and pemphigus foliaceus (PF), are characterized by skin lesions and autoantibodies to molecules found on epidermal keratinocytes. A variant of EPF in patients from El Bagre, Colombia, South America, has recently been reported to be distinct from previously described loci in Brazil and Tunisia epidemiologically and immunologically. As in PF and EPF, El Bagre EPF patients exhibit autoantibodies towards desmoglein-1, a cell adhesion molecule critical for maintaining epidermal integrity. An association of El Bagre EPF with sun exposure has been detected, and ultraviolet irradiation also exacerbates symptoms in PV, PF and EPF. Our hypothesis is that: (1) the autoantibodies generate pathology through an alteration in ceramide metabolism in targeted keratinocytes, resulting in apoptosis and/or cell death and acantholysis, but only when the cell's ability to metabolize ceramide is exceeded, and (2) apoptosis in response to this altered ceramide metabolism is initiated and/or exacerbated by other agents that increase ceramide levels, such as cytokines, ultraviolet irradiation, and senescence.
Collapse
|
33
|
Abstract
Pemphigus is a group of human autoimmune blistering diseases of the skin in which autoantibodies to desmosome cadherins induce loss of cell-cell adhesion (acantholysis). In addition to steric hindrance and activation of intracellular signaling, apoptosis has been suggested to contribute to the mechanism by which pathogenic IgG induces acantholysis. We review the current literature examining the role of apoptosis in pemphigus. Current data suggest that apoptosis is not required for blister induction, but that activation of proapoptotic proteins, including caspase cysteine proteinases, may sensitize cells to the acantholytic effects of pemphigus IgG.
Collapse
|
34
|
Panasiti V, Rossi M, Devirgiliis V, Curzio M, Bottoni U, Calvieri S. Amoxicillin-clavulanic acid-induced linear immunoglobulin A bullous dermatosis: case report and review of the literature. Int J Dermatol 2009; 48:1006-10. [DOI: 10.1111/j.1365-4632.2009.04104.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Bektas M, Rubenstein DS. Perp and pemphigus: a disease of desmosome destabilization. J Invest Dermatol 2009; 129:1606-8. [PMID: 19521407 DOI: 10.1038/jid.2009.117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this issue, Nguyen et al. demonstrate a role for Perp in desmosome assembly and trafficking and pemphigus IgG-mediated acantholysis, providing further insights into the complexity of desmosome structure and regulation.
Collapse
Affiliation(s)
- Meryem Bektas
- Department of Dermatology, University of North Carolina, Chapel Hill, North Carolina 27599-7287, USA
| | | |
Collapse
|
36
|
Abstract
The pemphigus family of autoimmune blistering diseases is characterized by an autoantibody response to desmosomal cadherins in epithelia. Autoantibodies against desmogleins, desmosome cell adhesion molecules, induce loss of cell-cell adhesion that is characterized clinically by blister formation. The mechanism by which these autoantibodies induce loss of cell-cell adhesion is under active investigation, but appears to involve a coordinated intracellular response including activation of intracellular signaling and phosphorylation of a number of proteins in the target keratinocyte. Activation of p38 mitogen activated protein kinase may have a critical role in the acantholytic mechanism as inhibitors of p38MAPK block the ability of pemphigus IgG to induce blistering in pemphigus animal models.
Collapse
Affiliation(s)
- David S Rubenstein
- Department of Dermatology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599-7287, USA.
| | | |
Collapse
|
37
|
Lee HE, Berkowitz P, Jolly PS, Diaz LA, Chua MP, Rubenstein DS. Biphasic activation of p38MAPK suggests that apoptosis is a downstream event in pemphigus acantholysis. J Biol Chem 2009; 284:12524-32. [PMID: 19270308 PMCID: PMC2673318 DOI: 10.1074/jbc.m808204200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 02/18/2009] [Indexed: 11/06/2022] Open
Abstract
In pemphigus vulgaris and pemphigus foliaceus (PF), autoantibodies against desmoglein-3 and desmoglein-1 induce epidermal cell detachment (acantholysis) and blistering. Activation of keratinocyte intracellular signaling pathways is emerging as an important component of pemphigus IgG-mediated acantholysis. We previously reported activation of p38 mitogen-activated protein kinase (MAPK) in response to pathogenic pemphigus vulgaris and PF IgG. Inhibition of p38MAPK blocked pemphigus IgG-induced cytoskeletal reorganization in tissue culture and blistering in pemphigus mouse models. We now extend these observations by demonstrating two peaks of p38MAPK activation in pemphigus tissue culture and mouse models. Administration of the p38MAPK inhibitor SB202190 before PF IgG injection blocked both peaks of p38MAPK phosphorylation and blister formation, consistent with our previous findings; however, administration of the inhibitor 4 h after PF IgG injection blocked only the later peak of p38MAPK activation but failed to block blistering. Examination of the temporal relationship of p38MAPK phosphorylation and apoptosis showed that apoptosis occurs at or after the second peak of p38MAPK activation. The time course of p38MAPK activation and apoptotic markers, as well as the ability of inhibitors of p38MAPK to block activation of the proapoptotic proteinase caspase-3, suggest that activation of apoptosis is downstream to, and a consequence of, p38MAPK activation in pemphigus acantholysis. Furthermore, these observations suggest that the earlier peak of p38MAPK activation is part of the mechanism leading to acantholysis, whereas the later peak of p38MAPK and apoptosis may not be essential for acantholysis.
Collapse
Affiliation(s)
- Hua En Lee
- Department of Dermatology, The University of North Carolina School of Medicine, Chapel Hill, NC 27599-7287, USA
| | | | | | | | | | | |
Collapse
|
38
|
Culton DA, Qian Y, Li N, Rubenstein D, Aoki V, Filhio GH, Rivitti EA, Diaz LA. Advances in pemphigus and its endemic pemphigus foliaceus (Fogo Selvagem) phenotype: a paradigm of human autoimmunity. J Autoimmun 2008; 31:311-24. [PMID: 18838249 PMCID: PMC2704386 DOI: 10.1016/j.jaut.2008.08.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 08/08/2008] [Accepted: 08/10/2008] [Indexed: 11/22/2022]
Abstract
Pemphigus encompasses a group of organ specific, antibody mediated autoimmune diseases of the skin characterized by keratinocyte detachment that leads to the development of blisters and erosions, which can become life-threatening. The pathogenic autoantibodies recognize desmogleins, which are members of the desmosomal cadherin family of cell adhesion molecules. Desmoglein 3 is targeted in pemphigus vulgaris while desmoglein 1 is targeted in pemphigus foliaceus and its endemic form, Fogo Selvagem. This review will briefly define the salient features of pemphigus and the proposed steps in pathogenesis. We will then summarize the most recent advances in three important areas of investigation: (i) epidemiologic, genetic, and immunologic features of Fogo Selvagem, (ii) molecular mechanisms of injury to the epidermis, and (iii) novel therapeutic strategies targeting specific steps in disease pathogenesis. The advances in each of these three seemingly separate areas contribute to the overall understanding of the pemphigus disease model. These recent advancements also underscore the dynamic interplay between the treatment of patients in a clinical setting and basic science research and have led to an integrative understanding of disease pathogenesis and treatment, allowing pemphigus to serve as a paradigm of human autoimmunity.
Collapse
Affiliation(s)
- Donna A. Culton
- Department of Dermatology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Ye Qian
- Department of Dermatology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Ning Li
- Department of Dermatology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - David Rubenstein
- Department of Dermatology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Valeria Aoki
- Departamento de Dermatologia, Universidade de Sao Paulo, Brazil
| | - Gunter Hans Filhio
- Departamento de Dermatologia, Universidade Federal de Mato Grosso do Sul, Brazil
| | | | - Luis A. Diaz
- Department of Dermatology, University of North Carolina at Chapel Hill, NC 27599, USA
| |
Collapse
|
39
|
Berkowitz P, Chua M, Liu Z, Diaz LA, Rubenstein DS. Autoantibodies in the autoimmune disease pemphigus foliaceus induce blistering via p38 mitogen-activated protein kinase-dependent signaling in the skin. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:1628-36. [PMID: 18988808 DOI: 10.2353/ajpath.2008.080391] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Pemphigus foliaceus (PF) is a human autoimmune blistering disease in which a humoral immune response targeting the skin results in a loss of keratinocyte cell-cell adhesion in the superficial layers of the epidermal epithelium. In PF, desmoglein-1-specific autoantibodies induce blistering. Evidence is beginning to accumulate that activation of signaling may have an important role in the ability of pathogenic pemphigus IgGs to induce blistering and that both p38 mitogen-activated protein kinase (MAPK) and heat shock protein (HSP) 27 are part of this signaling pathway. This study was undertaken to investigate the ability of PF IgGs to activate signaling as well as the contribution of this signaling pathway to blister induction in an in vivo model of PF. Phosphorylation of both p38 MAPK and HSP25, the murine HSP27 homolog, was observed in the skin of PF IgG-treated mice. Furthermore, inhibition of p38 MAPK blocked the ability of PF IgGs to induce blistering in vivo. These results indicate that PF IgG-induced blistering is dependent on activation of p38 MAPK in the target keratinocyte. Rather than influencing the immune system, limiting the autoantibody-induced intracellular signaling response that leads to target end-organ damage may be a more viable therapeutic strategy for the treatment of autoimmune diseases. Inhibition of p38 MAPK may be an effective strategy for the treatment of PF.
Collapse
Affiliation(s)
- Paula Berkowitz
- Department of Dermatology, The University of North Carolina School of Medicine, Chapel Hill, NC 27599-7287, USA
| | | | | | | | | |
Collapse
|
40
|
Liu Z, Rubenstein DS. Pathophysiology of autoimmune bullous diseases. J Invest Dermatol 2008; 128 Suppl 3:E22-4. [PMID: 21233825 DOI: 10.1038/skinbio.2008.4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhi Liu
- Department of Dermatology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | | |
Collapse
|
41
|
Heupel WM, Zillikens D, Drenckhahn D, Waschke J. Pemphigus Vulgaris IgG Directly Inhibit Desmoglein 3-Mediated Transinteraction. THE JOURNAL OF IMMUNOLOGY 2008; 181:1825-34. [DOI: 10.4049/jimmunol.181.3.1825] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
42
|
Marquina M, España A, Fernández-Galar M, López-Zabalza M. The role of nitric oxide synthases in pemphigus vulgaris in a mouse model. Br J Dermatol 2008; 159:68-76. [DOI: 10.1111/j.1365-2133.2008.08582.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
43
|
Abstract
Desmosomes are patch-like intercellular adhering junctions ("maculae adherentes"), which, in concert with the related adherens junctions, provide the mechanical strength to intercellular adhesion. Therefore, it is not surprising that desmosomes are abundant in tissues subjected to significant mechanical stress such as stratified epithelia and myocardium. Desmosomal adhesion is based on the Ca(2+)-dependent, homo- and heterophilic transinteraction of cadherin-type adhesion molecules. Desmosomal cadherins are anchored to the intermediate filament cytoskeleton by adaptor proteins of the armadillo and plakin families. Desmosomes are dynamic structures subjected to regulation and are therefore targets of signalling pathways, which control their molecular composition and adhesive properties. Moreover, evidence is emerging that desmosomal components themselves take part in outside-in signalling under physiologic and pathologic conditions. Disturbed desmosomal adhesion contributes to the pathogenesis of a number of diseases such as pemphigus, which is caused by autoantibodies against desmosomal cadherins. Beside pemphigus, desmosome-associated diseases are caused by other mechanisms such as genetic defects or bacterial toxins. Because most of these diseases affect the skin, desmosomes are interesting not only for cell biologists who are inspired by their complex structure and molecular composition, but also for clinical physicians who are confronted with patients suffering from severe blistering skin diseases such as pemphigus. To develop disease-specific therapeutic approaches, more insights into the molecular composition and regulation of desmosomes are required.
Collapse
Affiliation(s)
- Jens Waschke
- Institute of Anatomy and Cell Biology, University of Würzburg, Koellikerstr. 6, 97070, Würzburg, Germany.
| |
Collapse
|
44
|
Tong JC, Sinha AA. Immunological hotspots analyzed by docking simulations: evidence for a general mechanism in pemphigus vulgaris pathology and transformation. BMC Immunol 2008; 9:30. [PMID: 18564435 PMCID: PMC2440363 DOI: 10.1186/1471-2172-9-30] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Accepted: 06/19/2008] [Indexed: 01/23/2023] Open
Abstract
Background Pemphigus vulgaris (PV) is an acquired autoimmune blistering disorder in which greater than 80% of active patients produce autoantibodies to the desmosomal protein desmogelin 3 (Dsg3). As the disease progresses, 40–50% of patients may also develop reactivity to a second component of the desmosomal complex, desmogelin 1 (Dsg1). T cells are clearly required for the production of autoantibodies in PV. However, few T-cell specificities within Dsg3 or Dsg1 have been reported to date, and the precise role of T-cells in disease pathogenesis and evolution remains poorly understood. In particular, no studies have addressed the immunological mechanisms that underlie the observed clinical heterogeneity in pemphigus. We report here a structure-based technique for the screening of DRB1*0402-specific immunological (T-cell epitope) hotspots in both Dsg3 and Dsg1 glycoproteins. Results High predictivity was obtained for DRB1*0402 (r2 = 0.90, s = 1.20 kJ/mol, q2 = 0.82, spress = 1.61 kJ/mol) predictive model, compared to experimental data. In silico mapping of the T-cell epitope repertoires in Dsg3 and Dsg1 glycoproteins revealed that the potential immunological hotspots of both target autoantigens are highly conserved, despite limited sequence identity (54% identical, 72% similar). A similar number of well-conserved (18%) high-affinity binders were predicted to exist within both Dsg3 and Dsg1, with analogous distribution of binding registers. Conclusion This study provides interesting new insights into the possible mechanism for PV disease progression. Our data suggests that the potential T-cell epitope repertoires encoded in Dsg1 and Dsg3 is substantially overlapping, and it may be possible to apply a common, antigen-specific therapeutic strategy with efficacy across distinct clinical phases of disease.
Collapse
Affiliation(s)
- Joo Chuan Tong
- Data Mining Department, Institute for Infocomm Research, 21 Heng Mui Keng Terrace, 119613, Singapore.
| | | |
Collapse
|
45
|
Holthöfer B, Windoffer R, Troyanovsky S, Leube RE. Structure and function of desmosomes. ACTA ACUST UNITED AC 2007; 264:65-163. [PMID: 17964922 DOI: 10.1016/s0074-7696(07)64003-0] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Desmosomes are prominent adhesion sites that are tightly associated with the cytoplasmic intermediate filament cytoskeleton providing mechanical stability in epithelia and also in several nonepithelial tissues such as cardiac muscle and meninges. They are unique in terms of ultrastructural appearance and molecular composition with cell type-specific variations. The dynamic assembly properties of desmosomes are important prerequisites for the acquisition and maintenance of tissue homeostasis. Disturbance of this equilibrium therefore not only compromises mechanical resilience but also affects many other tissue functions as becomes evident in various experimental scenarios and multiple diseases.
Collapse
Affiliation(s)
- Bastian Holthöfer
- Department of Anatomy and Cell Biology, Johannes Gutenberg University, 55128 Mainz, Germany
| | | | | | | |
Collapse
|
46
|
Abstract
Desmosomes are highly specialized anchoring junctions that link intermediate filaments to sites of intercellular adhesion, thus facilitating the formation of a supracellular scaffolding that distributes mechanical forces throughout a tissue. These junctions are thus particularly important for maintaining the integrity of tissues that endure physical stress, such as the epidermis and myocardium. The importance of the classic mechanical functions of desmosomal constituents is underscored by pathologies reported in animal models and an ever-expanding list of human mutations that target both desmosomal cadherins and their associated cytoskeletal anchoring proteins. However, the notion that desmosomes are static structures that exist simply to glue cells together belies their susceptibility to remodeling in response to environmental cues and their important tissue-specific roles in cell behavior and signaling. Here, we review the molecular blueprint of the desmosome and models for assembling its protein components to form an adhesive interface and the desmosomal plaque. We also discuss emerging evidence of supra-adhesive roles for desmosomal proteins in regulating tissue morphogenesis and homeostasis. Finally, we highlight the dynamic nature of these adhesive organelles, examining mechanisms in health and disease for modulating adhesive strength and stability of desmosomes.
Collapse
Affiliation(s)
- Kathleen J Green
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.
| | | |
Collapse
|
47
|
Baroni A, Lanza A, Cirillo N, Brunetti G, Ruocco E, Ruocco V. Vesicular and Bullous Disorders: Pemphigus. Dermatol Clin 2007; 25:597-603, ix. [PMID: 17903618 DOI: 10.1016/j.det.2007.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Pemphigus is a chronic, autoimmune disease involving the skin and Malpighian mucous membranes. Pemphigus leads to progressive blistering and subsequent erosions. This article describes the etiology and treatment of pemphigus.
Collapse
Affiliation(s)
- Adone Baroni
- Department of Dermatology, Second University of Naples, Via Sergio Pansini 5, 80131-Naples, Italy
| | | | | | | | | | | |
Collapse
|
48
|
Garrod D, Chidgey M. Desmosome structure, composition and function. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1778:572-87. [PMID: 17854763 DOI: 10.1016/j.bbamem.2007.07.014] [Citation(s) in RCA: 398] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 07/19/2007] [Accepted: 07/20/2007] [Indexed: 12/23/2022]
Abstract
Desmosomes are intercellular junctions of epithelia and cardiac muscle. They resist mechanical stress because they adopt a strongly adhesive state in which they are said to be hyper-adhesive and which distinguishes them from other intercellular junctions; desmosomes are specialised for strong adhesion and their failure can result in diseases of the skin and heart. They are also dynamic structures whose adhesiveness can switch between high and low affinity adhesive states during processes such as embryonic development and wound healing, the switching being signalled by protein kinase C. Desmosomes may also act as signalling centres, regulating the availability of signalling molecules and thereby participating in fundamental processes such as cell proliferation, differentiation and morphogenesis. Here we consider the structure, composition and function of desmosomes, and their role in embryonic development and disease.
Collapse
Affiliation(s)
- David Garrod
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.
| | | |
Collapse
|
49
|
Cirillo N, Lanza M, Rossiello L, Gombos F, Lanza A. Defining the involvement of proteinases in pemphigus vulgaris: evidence of matrix metalloproteinase-9 overexpression in experimental models of disease. J Cell Physiol 2007; 212:36-41. [PMID: 17311292 DOI: 10.1002/jcp.20997] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pemphigus vulgaris (PV) acantholysis represents a complex phenomenon wherein a number of factors cooperates. PV serum is known to modulate important cellular events, including kinase activity, transcriptional regulation, and proteinase expression. Indeed, transduction of signals to the cell triggered by PV serum may induce proteinase up-regulation potentially responsible for disruption of epidermal adhesion and, ultimately, blister formation. Here, we sought to investigate this hypothesis by using both in vivo and in vitro models of PV. Microarray analysis on mouse skin tissues suggested that the equilibrium between extracellular proteinases and their inhibitors moved towards enhanced proteolytic activity in PV neonatal mouse model, at least on the transcriptional level. Conversely, genes codifying cell adhesion proteins were dramatically down-regulated. The effects of PV serum on the protein level were then studied in vitro both in keratinocyte monolayers and skin organ cultures focusing on matrix metalloproteinase (MMP) 9 expression and activity. By means of Western blotting, zymography, and living cell immunofluorescence studies, we showed that MMP-9 was early overexpressed in keratinocytes exposed to PV serum, and subsequently secreted in the culture medium. However, we failed to demonstrate extracellular activation of MMP-9, since it was found in its 92 kDa inactive form in serum-free culture supernatants. Taken together, our data demonstrated that proteinase expression, particularly of MMP-9, is modulated by PV serum and associated with PV acantholysis.
Collapse
Affiliation(s)
- Nicola Cirillo
- Regional Center on Craniofacial Malformations-MRI, 1st School of Medicine and Surgery, II University of Naples, Naples, Italy.
| | | | | | | | | |
Collapse
|
50
|
Frusić-Zlotkin M, Raichenberg D, Wang X, David M, Michel B, Milner Y. Apoptotic mechanism in pemphigus autoimmunoglobulins-induced acantholysis--possible involvement of the EGF receptor. Autoimmunity 2007; 39:563-75. [PMID: 17101500 DOI: 10.1080/08916930600971836] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pemphigus is an autoimmune cutaneous disease characterized by circulating autoantibodies that cause blistering and erosions on skin and mucous membranes. Circulating autoantibodies bind to epidermal cell membrane and cause cell-cell detachment (acantholysis), leading to epidermal tissue damage and cell death. The principal target of pemphigus vulgaris autoantibodies (PV-IgG) is desmosomal cadherin desmoglein 3 (Dsg3), a constituent of desmosomes, mediating cell-cell adhesion. Several hypotheses for the mechanisms of acantholysis induction by PV-IgG exist, but the actual mechanism is not clear as yet. We have previously reported on apoptosis induction in PV-IgG-mediated epidermal tissue and cell damage as a possible mechanism of acantholysis and cell death (Wang et al. 2004, Apoptosis, 9:131-143). In this study we investigated the involvement of the EGFR and intracellular signal transduction pathways in the PV-IgG-induced apoptosis. We show here that PV-IgG induced activation/autophosphorylation of EGFR in cultured keratinocytes in vitro. The specific tyrosine kinase inhibitor AG1478 abrogated EGFR autophosphorylation, cell death, FasL appearance and acantholysis, all induced by PV-IgG, in parallel, confirming the involvement of EGFR in this Fas apoptotic cascade. Activation of EGFR was followed by phosphorylation of its downstream substrates, MAP kinase ERK and transcription factor c-Jun, and internalization of EGFR. Pharmacological inactivation of the EGFR and ERK kinase activities, by use of specific inhibitors AG1478 and PD98059 respectively, blocked PV-IgG-induced phosphorylation of EGFR, ERK and c-Jun and cellular apoptosis, measured by flow cytometry and caspase 3 activity. Prolonged activation of EGFR by PV-IgG led to dramatic internalization of this receptor, possibly reducing the ability of the cell to perform survival signals. This suggests that activation of EGFR, followed by its internalization, is pivotal for intracellular apoptotic signal transduction via ERK/c-Jun pathways, leading to acantholysis. Our experimental data indicate that the EGFR is instrumental in transducing apoptotic/acantholytic signals in keratinocytes cultures in response to PV-IgG treatment. The acantholytic effect caused by PV-IgG binding to cell surface receptors begins with and depends on cell surface receptor (EGFR) activation of intracellular signaling pathways (ERK pathway) and apoptosis induction (FasR pathway), which later lead to major cell-cell separation (acantholysis) and cell death.
Collapse
Affiliation(s)
- Marina Frusić-Zlotkin
- Myers Skin Biology and Biochemistry Lab, Life Sciences Institute, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|