1
|
Radhakrishnan N, Kaul SC, Wadhwa R, Yang LW, Sundar D. Establishing a General Atomistic Model for the Stratum Corneum Lipid Matrix Based on Experimental Data for Skin Permeation Studies. Int J Mol Sci 2025; 26:674. [PMID: 39859387 PMCID: PMC11765878 DOI: 10.3390/ijms26020674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/06/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Understanding the permeation of drugs through the intercellular lipid matrix of the stratum corneum layer of skin is crucial for effective transdermal delivery. Molecular dynamics simulations can provide molecular insights into the permeation process. In this study, we developed a new atomistic model representing the multilamellar arrangement of lipids in the stratum corneum intercellular space for permeation studies. The model was built using ceramides in extended conformation as the backbone along with free fatty acids and cholesterol. The properties of the equilibrated model were in agreement with the neutron scattering data and hydration behavior previously reported in the literature. The permeability of molecules, such as water, benzene and estradiol, and the molecular mechanism of action of permeation enhancers, such as eucalyptol and limonene, were evaluated using the model. The new model can be reliably used for studying the permeation of small molecules and for gaining mechanistic insights into the action of permeation enhancers.
Collapse
Affiliation(s)
- Navaneethan Radhakrishnan
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, New Delhi 110016, India;
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300044, Taiwan;
| | - Sunil C. Kaul
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305 8565, Japan; (S.C.K.); (R.W.)
| | - Renu Wadhwa
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305 8565, Japan; (S.C.K.); (R.W.)
| | - Lee-Wei Yang
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300044, Taiwan;
- Bioinformatics Program, Institute of Information Sciences, Academia Sinica, Taipei 115201, Taiwan
- Physics Division, National Center for Theoretical Sciences, Taipei 106319, Taiwan
- Biomedical Artificial Intelligence PhD Program, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Durai Sundar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, New Delhi 110016, India;
- Yardi School of Artificial Intelligence, Indian Institute of Technology (IIT) Delhi, New Delhi 110016, India
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru 560100, India
| |
Collapse
|
2
|
Pierce JS, Cheatham D, Campbell DA, Lazcano RF, Busch CE, Miller EW, Beckett EM. Evaluation of dermal exposure to phthalates and parabens resulting from the use of hair relaxers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-20. [PMID: 39300872 DOI: 10.1080/09603123.2024.2402836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024]
Abstract
Hair relaxers have been suggested as a source of exposure to parabens and phthalates. However, dermally absorbed doses of these chemicals resulting from consumer use of hair relaxers have yet to be quantified, and results from epidemiological studies have consistently demonstrated that there is no increased risk for hormone-sensitive, reproductive cancers associated with use of hair relaxers among Black women. Therefore, dermal absorption of parabens and phthalates associated with hair relaxer use for several commercially available hair relaxer kits was modeled using IH SkinPerm™. The chemicals detected in the hair relaxer kits included methylparaben (MP), ethylparaben (EP), butylparaben (BP), diethyl phthalate (DEP), bis(2-ethylhexyl) phthalate (DEHP), and the phthalate substitute bis(2-ethylhexyl) adipate (DEHA). The daily absorbed dose ranges (mg/kg/day), standardized over a year of product use, were as follows: 8.64 × 10-5-0.00116 MP, 2.30 × 10-8-3.07 × 10-6 EP, 3.24 × 10-8-4.33 × 10-6 BP, 8.65 × 10-9-1.15 × 10-6 DEP, and 8.94 × 10-7-0.000119 DEHP for Kit #1; 8.44 × 10-5-0.00113 MP and 7.91 × 10-5-0.00106 DEP for Kit #2; and 2.49 × 10-6-3.33 × 10-5 MP, 1.52 × 10-8-2.03 × 10-6 EP, 3.29 × 10-9-4.39 × 10-7 DEP, and 3.11 × 10-6-4.14 × 10-5 DEHA for Kit #3. These absorbed doses were well below applicable health-based guidance values, indicating consumer exposure from product use is not expected to pose a health risk. These results provide valuable information for health risk evaluations for hair relaxer use.
Collapse
|
3
|
Galvan A, Pellicciari C, Calderan L. Recreating Human Skin In Vitro: Should the Microbiota Be Taken into Account? Int J Mol Sci 2024; 25:1165. [PMID: 38256238 PMCID: PMC10816982 DOI: 10.3390/ijms25021165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Skin plays crucial roles in the human body: besides protecting the organism from external threats, it acts as a thermal regulator, is responsible for the sense of touch, hosts microbial communities (the skin microbiota) involved in preventing the invasion of foreign pathogens, contains immunocompetent cells that maintain a healthy immunogenic/tolerogenic balance, and is a suitable route for drug administration. In the skin, four defense levels can be identified: besides the physical, chemical, and immune barriers that are inherent to the tissue, the skin microbiota (i.e., the numerous microorganisms living on the skin surface) provides an additional barrier. Studying the skin barrier function or the effects of drugs or cosmetic agents on human skin is a difficult task since snapshot evidence can only be obtained using bioptic samples where dynamic processes cannot properly be followed. To overcome these limitations, many different in vitro models of human skin have been developed that are characterized by diverse levels of complexity in terms of chemical, structural, and cellular composition. The aim of this review is to summarize and discuss the advantages and disadvantages of the different human skin models so far available and to underline how the insertion of a proper microbiota would positively impact an in vitro human skin model in an attempt to better mimic conditions in vivo.
Collapse
Affiliation(s)
- Andrea Galvan
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (A.G.); (L.C.)
| | - Carlo Pellicciari
- Department of Biology and Biotechnology, University of Pavia, Via A. Ferrata 9, 27100 Pavia, Italy
| | - Laura Calderan
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (A.G.); (L.C.)
| |
Collapse
|
4
|
Duangjit S, Takayama K, Bumrungthai S, Mahadlek J, Ngawhirunpat T, Opanasopit P. Development of invaethosomes and invaflexosomes for dermal delivery of clotrimazole: optimization, characterization and antifungal activity. Pharm Dev Technol 2023; 28:611-624. [PMID: 37357890 DOI: 10.1080/10837450.2023.2229104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/08/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
The objective of this study was to develop novel invaethosomes (I-ETS) and invaflexosomes (I-FXS) to enhance the dermal delivery of clotrimazole (CZ). Twenty model CZ-loaded I-ETS and I-FXS formulations were created according to a face-centered central composite experimental design. CZ-loaded vesicle formulations containing a constant concentration of 0.025% w/v CZ and various amounts of ethanol, d-limonene, and polysorbate 20 as penetration enhancers were prepared using the thin film hydration method. The physicochemical characteristics, skin permeability, and antifungal activity were characterized. The skin permeability of the experimental CZ-loaded I-ETS/I-FXS was significantly higher than that of conventional ethosomes, flexosomes, and the commercial product (1% w/w CZ cream). The mechanism of action was confirmed to be skin penetration of low ethanol base vesicles through the disruption of the skin microstructure. The optimal I-ETS in vitro antifungal activity against C. albicans differed significantly from that of ETS and the commercial cream (control). The response surface methodology predicted by Design Expert® was helpful in understanding the complicated relationship between the causal factors and the response variables of the 0.025% w/v CZ-loaded I-ETS/I-FXS formulation. Based on the available information, double vesicles seem to be promising versatile carriers for dermal drug delivery of CZ.
Collapse
Affiliation(s)
- Sureewan Duangjit
- Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| | - Kozo Takayama
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Saitama, Japan
| | - Sureewan Bumrungthai
- Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| | - Jongjan Mahadlek
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
| | | | | |
Collapse
|
5
|
Thomas S, Hammell DC, Hassan HE, Stinchcomb AL. In Vitro-In Vivo Correlation of Buprenorphine Transdermal Systems Under Normal and Elevated Skin Temperature. Pharm Res 2023; 40:1249-1258. [PMID: 37095369 DOI: 10.1007/s11095-023-03487-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 02/19/2023] [Indexed: 04/26/2023]
Abstract
PURPOSE Application of external heat using a heating pad over buprenorphine transdermal system, Butrans® has been shown to increase systemic levels of buprenorphine in human volunteers. The purpose of this study was to perform in vitro permeation studies at normal as well as elevated temperature conditions to evaluate the correlation of in vitro data with the existing in vivo data. METHODS In vitro permeation tests (IVPT) were performed on human skin from four donors. The IVPT study design was harmonized to a previously published clinical study design and skin temperature was maintained at either 32 ± 1 °C or 42 ± 1 °C to mimic normal and elevated skin temperature conditions, respectively. RESULTS IVPT studies on human skin were able to demonstrate heat induced enhancement in flux and cumulative amount of drug permeated from Butrans® which was reasonably consistent with the corresponding enhancement observed in vivo. Level A in vitro-in vivo correlation (IVIVC) was established using unit impulse response (UIR) based deconvolution method for both baseline and heat arms of the study. The percent prediction error (%PE) calculated for AUC and Cmax values was less than 20%. CONCLUSIONS The studies indicated that IVPT studies performed under the same conditions as those of interest in vivo may be useful for comparative evaluation of the effect of external heat on transdermal delivery system (TDS). Further research may be warranted to evaluate factors, beyond cutaneous bioavailability (BA) assessed using an IVPT study, that can influence plasma exposure in vivo for a given drug product.
Collapse
Affiliation(s)
- Sherin Thomas
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA
| | - Dana C Hammell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA
| | - Hazem E Hassan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA
- Department of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Audra L Stinchcomb
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA.
| |
Collapse
|
6
|
Radbruch M, Pischon H, Du F, Haag R, Schumacher F, Kleuser B, Mundhenk L, Gruber AD. Biodegradable core-multishell nanocarrier: Topical tacrolimus delivery for treatment of dermatitis. J Control Release 2022; 349:917-928. [PMID: 35905785 DOI: 10.1016/j.jconrel.2022.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 06/22/2022] [Accepted: 07/20/2022] [Indexed: 10/15/2022]
Abstract
Two challenges in topical drug delivery to the skin include solubilizing hydrophobic drugs in water-based formulations and increasing drug penetration into the skin. Polymeric core-multishell nanocarrier (CMS), particularly the novel biodegradable CMS (bCMS = hPG-PCL1.1K-mPEG2k-CMS) have shown both advantages on excised skin ex vivo. Here, we investigated topical delivery of tacrolimus (TAC; > 500 g/mol) by bCMS in a hydrogel on an oxazolone-induced model of dermatitis in vivo. As expected, bCMS successfully delivered TAC into the skin. However, in vivo they did not increase, but decrease TAC penetration through the stratum corneum compared to ointment. Differences in the resulting mean concentrations were mostly non-significant in the skin (epidermis: 35.7 ± 20.9 ng/cm2 for bCMS vs. 92.6 ± 62.7 ng/cm2 for ointment; dermis: 76.8 ± 26.8 ng/cm2vs 118.2 ± 50.4 ng/cm2), but highly significant in blood (plasma: 1.1 ± 0.4 ng/ml vs 11.3 ± 9.3 ng/ml; erythrocytes: 0.5 ± 0.2 ng/ml vs 3.4 ± 2.4 ng/ml) and liver (0.01 ± 0.01 ng/mg vs 0.03 ± 0.01 ng/mg). bCMS were detected in the stratum corneum but not in viable skin or beyond. The therapeutic efficacy of TAC delivered by bCMS was equivalent to that of standard TAC ointment. Our results suggest that bCMS may be a promising carrier for the topical delivery of TAC. The quantitative difference to previous results should be interpreted in light of structural differences between murine and human skin, but highlights the need as well as potential methods to develop more a complex ex vivo analysis on human skin to ensure quantitative predictive value.
Collapse
Affiliation(s)
- Moritz Radbruch
- Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag Str. 15, 14163 Berlin, Germany
| | - Hannah Pischon
- Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag Str. 15, 14163 Berlin, Germany
| | - Fang Du
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Fabian Schumacher
- Department for Nutritional Toxicology, Universität Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Burkhard Kleuser
- Department for Nutritional Toxicology, Universität Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Lars Mundhenk
- Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag Str. 15, 14163 Berlin, Germany
| | - Achim D Gruber
- Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag Str. 15, 14163 Berlin, Germany.
| |
Collapse
|
7
|
Cristofoli M, Kung CP, Hadgraft J, Lane ME, Sil BC. Ion Pairs for Transdermal and Dermal Drug Delivery: A Review. Pharmaceutics 2021; 13:909. [PMID: 34202939 PMCID: PMC8234378 DOI: 10.3390/pharmaceutics13060909] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 11/21/2022] Open
Abstract
Ion pairing is a strategy used to increase the permeation of topically applied ionised drugs. Formation occurs when the electrostatic energy of attraction between oppositely charged ions exceeds their mean thermal energy, making it possible for them to draw together and attain a critical distance. These ions then behave as a neutral species, allowing them to partition more readily into a lipid environment. Partition coefficient studies may be used to determine the potential of ions to pair and partition into an organic phase but cannot be relied upon to predict flux. Early researchers indicated that temperature, size of ions and dielectric constant of the solvent system all contributed to the formation of ion pairs. While size is important, this may be outweighed by improved lipophilicity of the counter ion due to increased length of the carbon chain. Organic counter ions are more effective than inorganic moieties in forming ion pairs. In addition to being used to increase permeation, ion pairs have been used to control and even prevent permeation of the active ingredient. They have also been used to stabilise solid lipid nanoparticle formulations. Ion pairs have been used in conjunction with permeation enhancers, and permeation enhancers have been used as counter ions in ion pairing. This review attempts to show the various ways in which ion pairs have been used in drug delivery via the skin. It also endeavours to extract and consolidate common approaches in order to inform future formulations for topical and transdermal delivery.
Collapse
Affiliation(s)
- Mignon Cristofoli
- School of Human Sciences, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, UK;
| | - Chin-Ping Kung
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (C.-P.K.); (J.H.); (M.E.L.)
| | - Jonathan Hadgraft
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (C.-P.K.); (J.H.); (M.E.L.)
| | - Majella E. Lane
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (C.-P.K.); (J.H.); (M.E.L.)
| | - Bruno C. Sil
- School of Human Sciences, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, UK;
| |
Collapse
|
8
|
Characteristics of Skin Deposition of Itraconazole Solubilized in Cream Formulation. Pharmaceutics 2019; 11:pharmaceutics11040195. [PMID: 31013633 PMCID: PMC6523664 DOI: 10.3390/pharmaceutics11040195] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 01/26/2023] Open
Abstract
Itraconazole (ITZ) is an anti-fungal agent generally used to treat cutaneous mycoses. For efficient delivery of ITZ to the skin tissues, an oil-in-water (O/W) cream formulation was developed. The O/W cream base was designed based on the solubility measurement of ITZ in various excipients. A physical mixture of the O/W cream base and ITZ was also prepared as a control formulation to evaluate the effects of the solubilized state of ITZ in cream base on the in vitro skin deposition behavior of ITZ. Polarized light microscopy and differential scanning calorimetry demonstrated that ITZ was fully solubilized in the O/W cream formulation. The O/W cream formulation exhibited considerably enhanced deposition of ITZ in the stratum corneum, epidermis, and dermis compared with that of the physical mixture, largely owing to its high solubilization capacity for ITZ. Therefore, the O/W cream formulation of ITZ developed in this study is promising for the treatment of cutaneous mycoses caused by fungi such as dermatophytes and yeasts.
Collapse
|
9
|
Foerster AC, Neubert RHH. Dermal Peptide Delivery Using Enhancer Molecules and Colloidal Carrier Systems - Part IV: Search for an Alternative Model Membrane for Future ATR Permeation Studies Using PKEK as the Model Substance. Skin Pharmacol Physiol 2019; 32:151-161. [PMID: 30943494 DOI: 10.1159/000495991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 11/27/2018] [Indexed: 11/19/2022]
Abstract
The main barrier of the human skin is the stratum corneum (SC). Its properties (also depending on the health and age of the individual) and its influence on improved penetration of active ingredients into the skin are the subject of many research projects. Since the availability of human skin, as the ideal model membrane, is limited, the aim of this study was to find a suitable alternative model membrane from the animal kingdom. The alternative model membrane should be used in subsequent permeation experiments with the Teflon diffusion cell instead of human SC. Previous studies have already investigated the permeation properties of pig, snake, and human skin, but not in a Teflon diffusion cell using ATR. Therefore, it first had to be proven that comparable results can be achieved with animal membranes even under these measurement conditions. This is the precondition for meaningful future permeation experiments with potential enhancers. For this purpose, permeation experiments on various model membranes (human isolated SC, sunburned SC, pig isolated SC, and shed snake skin) by means of FTIR-ATR in a Teflon diffusion cell containing the acceptor and the donor compartment as well as the model membrane were conducted and concentration-time courses of the model peptide PKEK determined. These concentration-time courses were used to calculate and compare the pharmacokinetic parameters (permeation coefficients, lag time, and flux). The starting point was a 10% PKEK solution in D2O. It turned out that snake skin is the appropriate alternative model membrane for this type of permeation test.
Collapse
Affiliation(s)
- Ann-Christin Foerster
- Hospital Pharmacy, Carl-von-Basedow-Klinikum Saalekreis gGmbH, Merseburg, Germany.,Institute of Pharmacy, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Reinhard H H Neubert
- Institute of Pharmacy, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany, .,Institute of Applied Dermatopharmacy, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany,
| |
Collapse
|
10
|
Biomedical applications of microemulsion through dermal and transdermal route. Biomed Pharmacother 2018; 108:1477-1494. [PMID: 30372850 DOI: 10.1016/j.biopha.2018.10.021] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/25/2018] [Accepted: 10/03/2018] [Indexed: 11/22/2022] Open
Abstract
Microemulsions are thermodynamically stable, transparent, colloidal drug carrier system extensively used by the scientists for effective drug delivery across the skin. It is a spontaneous isotropic mixture of lipophilic and hydrophilic substances stabilized by suitable surfactant and co-surfactant. The easy fabrication, long-term stability, enhanced solubilization, biocompatibility, skin-friendly appearance and affinity for both the hydrophilic and lipophilic drug substances make it superior for skin drug delivery over the other carrier systems. The topical administration of most of the active compounds is impaired by limited skin permeability due to the presence of skin barriers. In this sequence, the microemulsion represents a cost-effective and convenient drug carrier system which successfully delivers the drug to and across the skin. In the present review work, we compiled various attempts made in last 20 years, utilizing the microemulsion for dermal and transdermal delivery of various drugs. The review emphasizes the potency of microemulsion for topical and transdermal drug delivery and its effect on drug permeability.
Collapse
|
11
|
Hua T, Zhang X, Tang B, Chang C, Liu G, Feng L, Yu Y, Zhang D, Hou J. Tween-20 transiently changes the surface morphology of PK-15 cells and improves PCV2 infection. BMC Vet Res 2018; 14:138. [PMID: 29699558 PMCID: PMC5921416 DOI: 10.1186/s12917-018-1457-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 04/16/2018] [Indexed: 01/09/2023] Open
Abstract
Background Low concentrations of nonionic surfactants can change the physical properties of cell membranes, and thus and in turn increase drug permeability. Porcine circovirus 2 (PCV2) is an extremely slow-growing virus, and PCV2 infection of PK-15 cells yields very low viral titers. The present study investigates the effect of various nonionic surfactants, namely, Tween-20, Tween-28, Tween-40, Tween-80, Brij-30, Brij-35, NP-40, and Triton X-100 on PCV2 infection and yield in PK-15 cells. Result Significantly increased PCV2 infection was observed in cells treated with Tween-20 compared to those treated with Tween-28, Tween-40, Brij-30, Brij-35, NP-40, and Triton X-100 (p < 0.01). Furthermore, 24 h incubation with 0.03% Tween-20 has shown to induce significant cellular morphologic changes (cell membrane underwent slight intumescence and bulged into a balloon, and the number of microvilli decreased), as well as to increase caspase-3 activity and to decrease cell viability in PCV2-infected PK-15 cells cmpared to control group; all these changes were restored to normal after Tween-20 has been washed out from the plate. Conclusion Our data demonstrate that Tween-20 transiently changes the surface morphology of PK-15 cells and improves PCV2 infection. The findings of the present study may be utilized in the development of a PCV2 vaccine.
Collapse
Affiliation(s)
- Tao Hua
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.,National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China.,Key lab of Food Quality and Safety of Jiangsu Province-State Key laboratory Breeding Base, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Xuehua Zhang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.,National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China.,Key lab of Food Quality and Safety of Jiangsu Province-State Key laboratory Breeding Base, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Bo Tang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.,National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China.,Key lab of Food Quality and Safety of Jiangsu Province-State Key laboratory Breeding Base, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Chen Chang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.,National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China.,Key lab of Food Quality and Safety of Jiangsu Province-State Key laboratory Breeding Base, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Guoyang Liu
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.,National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China.,Key lab of Food Quality and Safety of Jiangsu Province-State Key laboratory Breeding Base, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Lei Feng
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.,National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China.,Key lab of Food Quality and Safety of Jiangsu Province-State Key laboratory Breeding Base, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Yang Yu
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.,National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China.,Key lab of Food Quality and Safety of Jiangsu Province-State Key laboratory Breeding Base, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Daohua Zhang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China. .,National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China. .,Key lab of Food Quality and Safety of Jiangsu Province-State Key laboratory Breeding Base, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Jibo Hou
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China. .,National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China. .,Key lab of Food Quality and Safety of Jiangsu Province-State Key laboratory Breeding Base, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
12
|
Praça FSG, Medina WSG, Eloy JO, Petrilli R, Campos PM, Ascenso A, Bentley MVLB. Evaluation of critical parameters for in vitro skin permeation and penetration studies using animal skin models. Eur J Pharm Sci 2017; 111:121-132. [PMID: 28951120 DOI: 10.1016/j.ejps.2017.09.034] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 08/30/2017] [Accepted: 09/22/2017] [Indexed: 12/19/2022]
Abstract
In vitro skin permeation/penetration studies may be affected by many sources of variation. Herein, we aimed to investigate the major critical procedures of in vitro skin delivery studies. These experiments were performed with model drugs according to official guidelines. The influence of skin source on penetration studies was studied as well as the use of a cryopreservation agent on skin freezing evaluated by transepidermal water loss, electrical resistance, permeation/penetration profiles and histological changes of the skin. The best condition for tape stripping procedure was validated through the evaluation of the distribution of corneocytes, mass of stratum corneum (SC) removed and amount of protein removed using finger pressure, a 2kg weight and a roller. The interchangeability of the tape stripping procedures followed by the epidermis and dermis homogenate and the micrometric horizontal cryostat skin sectioning methods were also investigated, besides the effect of different formulations. Noteworthy, different skin sources were able to ensure reliable interchangeability for in vitro permeation studies. Furthermore, an increased penetration was obtained for stored frozen skin compared to fresh skin, even with the addition of a cryoprotectant agent. The best method for tape stripping was the finger pressure followed by the addition of a propylene glycol solvent leading to better SC removal. Finally, no significant difference was found in skin penetration studies performed by different methods suggesting their possible interchangeability.
Collapse
Affiliation(s)
- Fabíola Silva Garcia Praça
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/n, 14040903 Ribeirão Preto, SP, Brazil.
| | | | - Josimar O Eloy
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/n, 14040903 Ribeirão Preto, SP, Brazil.
| | - Raquel Petrilli
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/n, 14040903 Ribeirão Preto, SP, Brazil.
| | - Patrícia Mazureki Campos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/n, 14040903 Ribeirão Preto, SP, Brazil.
| | - Andreia Ascenso
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, University of Lisbon, Portugal.
| | - Maria Vitória L B Bentley
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/n, 14040903 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
13
|
Abd E, Yousef SA, Pastore MN, Telaprolu K, Mohammed YH, Namjoshi S, Grice JE, Roberts MS. Skin models for the testing of transdermal drugs. Clin Pharmacol 2016; 8:163-176. [PMID: 27799831 PMCID: PMC5076797 DOI: 10.2147/cpaa.s64788] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The assessment of percutaneous permeation of molecules is a key step in the evaluation of dermal or transdermal delivery systems. If the drugs are intended for delivery to humans, the most appropriate setting in which to do the assessment is the in vivo human. However, this may not be possible for ethical, practical, or economic reasons, particularly in the early phases of development. It is thus necessary to find alternative methods using accessible and reproducible surrogates for in vivo human skin. A range of models has been developed, including ex vivo human skin, usually obtained from cadavers or plastic surgery patients, ex vivo animal skin, and artificial or reconstructed skin models. Increasingly, largely driven by regulatory authorities and industry, there is a focus on developing standardized techniques and protocols. With this comes the need to demonstrate that the surrogate models produce results that correlate with those from in vivo human studies and that they can be used to show bioequivalence of different topical products. This review discusses the alternative skin models that have been developed as surrogates for normal and diseased skin and examines the concepts of using model systems for in vitro–in vivo correlation and the demonstration of bioequivalence.
Collapse
Affiliation(s)
- Eman Abd
- Translational Research Institute, School of Medicine, University of Queensland, Brisbane
| | - Shereen A Yousef
- Translational Research Institute, School of Medicine, University of Queensland, Brisbane
| | - Michael N Pastore
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Krishna Telaprolu
- Translational Research Institute, School of Medicine, University of Queensland, Brisbane
| | - Yousuf H Mohammed
- Translational Research Institute, School of Medicine, University of Queensland, Brisbane
| | - Sarika Namjoshi
- Translational Research Institute, School of Medicine, University of Queensland, Brisbane
| | - Jeffrey E Grice
- Translational Research Institute, School of Medicine, University of Queensland, Brisbane
| | - Michael S Roberts
- Translational Research Institute, School of Medicine, University of Queensland, Brisbane; School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| |
Collapse
|
14
|
Sharma G, Dhankar G, Thakur K, Raza K, Katare OP. Benzyl Benzoate-Loaded Microemulsion for Topical Applications: Enhanced Dermatokinetic Profile and Better Delivery Promises. AAPS PharmSciTech 2016; 17:1221-31. [PMID: 26669889 DOI: 10.1208/s12249-015-0464-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/01/2015] [Indexed: 12/20/2022] Open
Abstract
Benzyl benzoate (BB) is one of the oldest drugs used for the treatment of scabies and is recommended as the "first-line intervention" for the cost-effective treatment of the disease. Though a promising candidate, its application is reported to be associated with irritation of the skin and eye, resulting in poor patient compliance. Hence, the present study aims to develop BB-loaded topical microemulsion for the safer and effective delivery of BB. Pseudo-ternary phase diagrams with BB as the oily phase itself, along with Tween 80 as surfactant, and mixture of phospholipid and ethanol as the co-surfactant along with aqueous solution as the external phase were constructed and various compositions were formulated. The optimized formulation was characterized for particle-size, zeta-potential, drug-content, globule-morphology pH, and refractive-index, whereas evaluated for skin permeation, retention, compliance, and dermatokinetics. The nanosized formulation offered threefold higher drug permeation vis-a-vis plain drug solution across LACA mice abdominal skin. The drug retention of the selected formulation was nearly twice of that from the marketed product, assuring depot formulation and sustained release. The skin histopathology revealed the non-irritant nature of the formulation, as no changes in the normal skin histology were observed. The dermatokinetic studies confirmed better permeation and enhanced skin bioavailability of BB to epidermis as well as dermis vis-à-vis the conventional product. The results indicate that the developed lipid-based microemulsion hydrogel can alleviate the concerns associated with BB and can provide a better and safer delivery option in substantial amounts to various skin layers.
Collapse
|
15
|
Arezki NR, Williams AC, Cobb AJA, Brown MB. Design, synthesis and characterization of linear unnatural amino acids for skin moisturization. Int J Cosmet Sci 2016; 39:72-82. [PMID: 27380298 PMCID: PMC5244679 DOI: 10.1111/ics.12351] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 06/29/2016] [Indexed: 12/16/2022]
Abstract
OBJECTIVES This work aimed to design, synthesize and characterize replacement natural moisturizing factor (NMF) composed of modified hygroscopic linear amino acids to pre-empt or repair skin barrier dysfunction. METHODS Following synthesis and characterization, thermo-gravimetric analysis and quantum mechanics molecular modelling quantified and depicted water binding to the new compounds. Deliquescence relative humidity demonstrated the water-scavenging ability of the compounds, whereas snake skin moisturizing studies showed they increased water uptake into snake skin. RESULTS From thermal analysis, N-hydroxyglycine showed greatest water-holding capacity followed by N-hydroxyserine, l-homoserine and α-hydroxyglycine; coupled with quantum mechanics molecular modelling, between 8 and 12 molecules of water could associate with each molecule of either N-hydroxyglycine, N-hydroxyserine or l-homoserine. All of our modified amino acids were efficacious and induced similar or greater water uptake compared with the established moisturizing compounds hyaluronic acid, glycerine and urea in snake skin. Incorporated at 10% in Oilatum, N-hydroxyserine induced >200% greater moisture uptake into dry snake skin compared to treatment with water alone, with efficacy related to the molecule structure and ability to bind to 12 water molecules. Oilatum cream spiked with all our unnatural amino acid hydrotropes increased water uptake into snake skin compared with Oilatum alone. The compound series was designed to elucidate some structure - efficacy relationships. Amino acid chirality did not affect the water-holding capacity but did affect uptake into skin. Compounds with high melting points and bond energies tended to decrease water-holding capacity. With isosteric replacement, the more electronegative atoms gave greater water-holding capacities. CONCLUSIONS This work demonstrates the potential of unnatural amino acid hydrotropes as skin moisturizers and has developed some predictive 'rules' for further design and refinement of chemical structures.
Collapse
Affiliation(s)
- N R Arezki
- Department of Pharmacy, University of Reading, PO Box 226, Whiteknights, Reading, RG6 6AP.,MedPharm Ltd., 50 Occam Road, Surrey Buisness Park, Guildford, GU2 7AB, UK
| | - A C Williams
- Department of Pharmacy, University of Reading, PO Box 226, Whiteknights, Reading, RG6 6AP
| | - A J A Cobb
- Department of Pharmacy, University of Reading, PO Box 226, Whiteknights, Reading, RG6 6AP
| | - M B Brown
- MedPharm Ltd., 50 Occam Road, Surrey Buisness Park, Guildford, GU2 7AB, UK
| |
Collapse
|
16
|
In vitro skin models as a tool in optimization of drug formulation. Eur J Pharm Sci 2015; 75:10-24. [PMID: 25746955 DOI: 10.1016/j.ejps.2015.02.018] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/22/2015] [Accepted: 02/23/2015] [Indexed: 11/21/2022]
Abstract
(Trans)dermal drug therapy is gaining increasing importance in the modern drug development. To fully utilize the potential of this route, it is important to optimize the delivery of active ingredient/drug into/through the skin. The optimal carrier/vehicle can enhance the desired outcome of the therapy therefore the optimization of skin formulations is often included in the early stages of the product development. A rational approach in designing and optimizing skin formulations requires well-defined skin models, able to identify and evaluate the intrinsic properties of the formulation. Most of the current optimization relies on the use of suitable ex vivo animal/human models. However, increasing restrictions in use and handling of animals and human skin stimulated the search for suitable artificial skin models. This review attempts to provide an unbiased overview of the most commonly used models, with emphasis on their limitations and advantages. The choice of the most applicable in vitro model for the particular purpose should be based on the interplay between the availability, easiness of the use, cost and the respective limitations.
Collapse
|
17
|
A Microfluidic Diffusion Cell for Fast and Easy Percutaneous Absorption Assays. Pharm Res 2015; 32:2704-12. [PMID: 25724160 DOI: 10.1007/s11095-015-1654-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/10/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE Percutaneous absorption assays of molecules for pharmaceutical and cosmetology purposes are important to determine the bioavailability of new compounds, once topically applied. The current method of choice is to measure the rate of diffusion through excised human skin using a diffusion cell. This method however entails significant drawbacks such as scarce availability and poor reproducibility of the sample, low sampling rate, and tedious assay setup. METHODS The objective of the present work is to propose an alternative method that overcomes these issues by integrating an experimental model of the skin (artificial stratum corneum) and online optical sensors into a microfluidic device. RESULTS The measurement of the diffusion profile followed by the calculation of the permeability coefficients and time lag were performed on seven different molecules and obtained data positively fit with those available from literature on human skin penetration. The coating of the lipid mixture to generate the artificial stratum corneum also proved robust and reproducible. The results show that the proposed device is able to give fast, real-time, accurate, and reproducible data in a user-friendly manner, and can be produced at a large scale. CONCLUSION These assets should help both the cosmetics and pharmaceutics fields where the skin is the target or a pathway of a formulated compound, by allowing more candidate molecules or formulations to be assessed during the various stages of their development.
Collapse
|
18
|
Amphotericin B topical microemulsion: formulation, characterization and evaluation. Colloids Surf B Biointerfaces 2014; 116:351-8. [PMID: 24521698 DOI: 10.1016/j.colsurfb.2014.01.014] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 01/06/2014] [Accepted: 01/09/2014] [Indexed: 11/22/2022]
Abstract
The present studies were designed to develop a microemulsion (ME) formulation of Amphotericin B (Amp B) for the treatment of invasive fungal infections. The oil phase was selected on the basis of drug solubility whereas the surfactant and co-surfactant were screened and selected on the basis of their oil solubilizing capacity as well as their efficiency to form ME. Pseudo-ternary phase diagrams were constructed and on the basis of ME existence ranges various formulations of Amp B were developed. The influence of surfactant and co-surfactant mass ratio (Smix) on the ME formation and permeation of ME through excised rat skin was studied. The optimized formulation (ME 7) consisting of 0.1% (w/w) Amp B, 5% (w/w) Isopropyl Myristate and 35% (w/w) Smix (3:1, Tween 80 and Propylene glycol), has shown a globule size of 84.20 ± 2.13 nm, a polydispersity index of 0.164 ± 0.031, pH 7.36 ± 0.02 and conductance of 229.3 ± 1.95 μS. ME 7 exhibited 2-fold higher drug permeation as compared to plain drug solution. Besides this, the formulation was also evaluated for drug content, stability, skin retention, skin sensitivity and anti-fungal activity. In vitro anti-fungal activity in Trichophyton rubrum fungal species have shown that ME7 has higher zone of inhibition and the formulation was found stable at 2-8°C and at room temperature (25 ± 2°C) for the period of three months. The results indicate that, the investigated ME may be used as a promising alternative for Amp B therapy.
Collapse
|
19
|
Torri C, Mangoni A, Teta R, Fattorusso E, Alibardi L, Fermani S, Bonacini I, Gazzano M, Burghammer M, Fabbri D, Falini G. Skin lipid structure controls water permeability in snake molts. J Struct Biol 2014; 185:99-106. [DOI: 10.1016/j.jsb.2013.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 10/01/2013] [Accepted: 10/07/2013] [Indexed: 11/27/2022]
|
20
|
Küchler S, Strüver K, Friess W. Reconstructed skin models as emerging tools for drug absorption studies. Expert Opin Drug Metab Toxicol 2013; 9:1255-63. [PMID: 23829446 DOI: 10.1517/17425255.2013.816284] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION As humans can come into contact with xenobiotics intentionally or accidentally, knowledge about the skin absorption of these substances is crucial and requires reliable models and test procedures. Animal experiments should be avoided whenever possible, instead of making the use of in vitro systems. Furthermore, due to limited availability of normal and especially diseased human skin, alternative test systems such as reconstructed skin models are urgently required. AREAS COVERED This article discusses the advantages and limitations of excised human skin, animal skin and reconstructed skin models for absorption testing in vitro. Furthermore, the authors also describe the standard procedure for skin absorption testing and give an excursion to the applicability of artificial membranes. Finally, the article highlights the progress in the development of reconstructed disease models and provides an extensive overview about past and ongoing research in this field. EXPERT OPINION The development and validation of in vitro systems for skin absorption testing is inevitable. More research efforts are required for the development of reconstructed disease models. Reconstructed skin models need to be improved, especially in terms of complexity to mimic the in vivo situation better. It should not, however, be the main goal to imitate the in vivo situation exactly, but to establish reliable systems that ensure predictive and reliable data.
Collapse
Affiliation(s)
- Sarah Küchler
- Institute for Pharmacy, Pharmacology and Toxicology, Freie Universität , Königin-Luise-Str. 2-4, 14195, Berlin , Germany +49 30 838 55065 ; +49 30 838 53944 ;
| | | | | |
Collapse
|
21
|
Wang Z, Pal R. Enlargement of Nanoemulsion Region in Pseudo-ternary Mixing Diagrams for a Drug Delivery System. J SURFACTANTS DETERG 2013. [DOI: 10.1007/s11743-013-1497-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Prasanthi D, Lakshmi PK. Synergistic effect of iontophoresis and chemical enhancers on transdermal permeation of tolterodine tartrate for the treatment of overactive bladder. Int Braz J Urol 2013; 39:63-75; discussion 76. [PMID: 23489517 DOI: 10.1590/s1677-5538.ibju.2013.01.09] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 09/24/2012] [Indexed: 11/21/2022] Open
Abstract
PURPOSE The objective of the study was to evaluate the synergistic transdermal permeation effect of chemical enhancers and iontophoresis technique on tolterodine tartrate (TT) transdermal gel and to evaluate its pharmacokinetic properties. MATERIALS AND METHODS Taguchi robust design was used for optimization of formulations. Skin permeation rates were evaluated using the Keshary-chein type diffusion cells in order to optimize the gel formulation. In-vivo studies of the optimized formulation were performed in a rabbit model and histopathology studies of optimized formulation were performed on rats. RESULTS Transdermal gels were formulated successfully using Taguchi robust design method. The type of penetration enhancer, concentration of penetration enhancer, current density and pulse on/off ratio were chosen as independent variables. Type of penetration enhancer was found to be the significant factor for all the responses. Permeation parameters were evaluated when maximum cumulative amount permeated in 24 hours (Q24) was 145.71 ± 2.00µg/cm² by CIT4 formulation over control (91.89 ± 2.30µg/cm²). Permeation was enhanced by 1.75 fold by CIT4 formulation. Formulation CIT4 containing nerolidol (5%) and iontophoretic variables applied (0.5mA/cm² and pulse on/off ratio 3:1) was optimized. In vivo studies with optimized formulation CIT4 showed increase in AUC and T1/2 when compared to oral suspension in rabbits. The histological studies showed changes in dermis indicating the effect of penetration enhancers and as iontophoresis was continued only for two cycles in periodic fashion so it did not cause any skin damage observed in the slides. CONCLUSION Results indicated that iontophoresis in combination with chemical enhancers is an effective method for transdermal administration of TT in the treatment of overactive bladder.
Collapse
Affiliation(s)
- D Prasanthi
- G. Pulla Reddy College of Pharmacy, Osmania University, Hyderabad 500-028, India.
| | | |
Collapse
|
23
|
Chen L, Han L, Lian G. Recent advances in predicting skin permeability of hydrophilic solutes. Adv Drug Deliv Rev 2013; 65:295-305. [PMID: 22580335 DOI: 10.1016/j.addr.2012.05.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 05/02/2012] [Accepted: 05/02/2012] [Indexed: 11/24/2022]
Abstract
Understanding the permeation of hydrophilic molecules is of relevance to many applications including transdermal drug delivery, skin care as well as risk assessment of occupational, environmental, or consumer exposure. This paper reviews recent advances in modeling skin permeability of hydrophilic solutes, including quantitative structure-permeability relationships (QSPR) and mechanistic models. A dataset of measured human skin permeability of hydrophilic and low hydrophobic solutes has been compiled. Generally statistically derived QSPR models under-estimate skin permeability of hydrophilic solutes. On the other hand, including additional aqueous pathway is necessary for mechanistic models to improve the prediction of skin permeability of hydrophilic solutes, especially for highly hydrophilic solutes. A consensus yet has to be reached as to how the aqueous pathway should be modeled. Nevertheless it is shown that the contribution of aqueous pathway can constitute to more than 95% of the overall skin permeability. Finally, future prospects and needs in improving the prediction of skin permeability of hydrophilic solutes are discussed.
Collapse
|
24
|
Williams A. Brian Barry: Innovative Contributions to Transdermal and Topical Drug Delivery. Skin Pharmacol Physiol 2013; 26:234-42. [DOI: 10.1159/000351946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 04/05/2013] [Indexed: 11/19/2022]
Abstract
Brian Barry published over 300 research articles across topics ranging from colloid science, vasoconstriction and the importance of thermodynamics in dermal drug delivery to exploring the structure and organisation of the stratum corneum barrier lipids and numerous strategies for improving topical and transdermal drug delivery, including penetration enhancers, supersaturation, coacervation, eutectic formation and the use of varied liposomes. As research in the area blossomed in the early 1980s, Brian wrote <i>the</i> book that became essential reading for both new and established dermal delivery scientists, explaining the background mathematics and principles through to formulation design. Brian also worked with numerous scientists, as collaborators and students, who have themselves taken his rigorous approach to scientific investigation into their own research groups. This paper can only describe a small fraction of the many significant contributions that Brian made to the field during his 40-year academic career.
Collapse
|
25
|
|
26
|
Sasivimolphan P, Lipipun V, Ritthidej G, Chitphet K, Yoshida Y, Daikoku T, Sritularak B, Likhitwitayawuid K, Pramyothin P, Hattori M, Shiraki K. Microemulsion-based oxyresveratrol for topical treatment of herpes simplex virus (HSV) infection: physicochemical properties and efficacy in cutaneous HSV-1 infection in mice. AAPS PharmSciTech 2012; 13:1266-75. [PMID: 22996670 DOI: 10.1208/s12249-012-9828-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 07/16/2012] [Indexed: 11/30/2022] Open
Abstract
The physicochemical properties of the optimized microemulsion and the permeating ability of oxyresveratrol in microemulsion were evaluated, and the efficacy of oxyresveratrol microemulsion in cutaneous herpes simplex virus type 1 (HSV-1) infection in mice was examined. The optimized microemulsion was composed of 10% w/w of isopropyl myristate, 35% w/w of Tween 80, 35% w/w of isopropyl alcohol, and 20% w/w of water. The mean particle diameter was 9.67 ± 0.58 nm, and the solubility of oxyresveratrol in the microemulsion was 196.34 ± 0.80 mg/ml. After accelerated and long-term stability testing, the microemulsion base and oxyresveratrol-loaded microemulsion were stable. The cumulative amount of oxyresveratrol permeating through shed snake skin from microemulsion at 6 h was 93.04 times compared to that of oxyresveratrol from Vaseline, determined at 20% w/w concentration. In cutaneous HSV-1 infection in mice, oxyresveratrol microemulsion at 20%, 25%, and 30% w/w, topically applied five times daily for 7 days after infection, was significantly effective in delaying the development of skin lesions and protecting from death (p < 0.05) compared with the untreated control. Oxyresveratrol microemulsion at 25% and 30% w/w was significantly more effective than that of 30% w/w of oxyresveratrol in Vaseline (p < 0.05) and was as effective as 5% w/w of acyclovir cream, topically applied five times daily (p > 0.05). These results demonstrated that topical oxyresveratrol microemulsion at 20-30% w/w was suitable for cutaneous HSV-1 mouse infection.
Collapse
|
27
|
Tichý E, Žabka M, Broska K, Potúčková M, Šimunková V, Halenárová A. Permeation of indomethacin from semisolid preparations through various semipermeable membranes. Drug Dev Ind Pharm 2012; 39:1273-6. [PMID: 22934687 DOI: 10.3109/03639045.2012.716444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate and compare the permeation of model drug indomethacin (IND) from various types of gels through several semipermeable membranes. METHODS Permeation of IND from gels based on carbomer (CA), hydroxyethylcellulose (HEC), and polyacrylamid/laureth-7/isoparaffin was performed via diffusion cell method through membranes: shed snake skin, full thickness chicken skin, mucosa of pork small intestine, and cellophane. RESULTS The least permeation of IND was observed in the case of shed snake skin and full thickness chicken skin. It did not exceed 5.4% of original amount in the preparation after 3 h of measurement regardless the type of gel. In the case of mucosa of pork small intestine and cellophane the permeated amount of IND ranged from 9.4 to 55.4% depending on the type of gelling agent used. There was also quite a significant influence of a gelling agent on the permeation of IND observed. The permeation of IND was highest from CA gel, where it ranged from 0.6 to 52.2% of original amount in the preparation depending on the type of membrane used. Gelling agent inhibiting the permeation the most was HEC, where the permeated amount of IND did not exceed 12.3% regardless the type of membrane used. CONCLUSIONS In general the permeated amount of IND through biological membranes containing stratum corneum represented just a small part of the amount in original preparation. Gelling agent has significant effect on the extent and rate of permeation.
Collapse
Affiliation(s)
- Eduard Tichý
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University, Odbojarov 10, SK-83232 Bratislava, Slovakia.
| | | | | | | | | | | |
Collapse
|
28
|
Wonglertnirant N, Ngawhirunpat T, Kumpugdee-Vollrath M. Evaluation of the Mechanism of Skin Enhancing Surfactants on the Biomembrane of Shed Snake Skin. Biol Pharm Bull 2012; 35:523-31. [DOI: 10.1248/bpb.35.523] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | - Mont Kumpugdee-Vollrath
- Department of Pharmaceutical Engineering, Faculty of Mathematics-Physics-Chemistry, Beuth Hochschule für Technik Berlin-University of Applied Sciences
| |
Collapse
|
29
|
Moss GP, Sun Y, Wilkinson SC, Davey N, Adams R, Martin GP, Prapopopolou M, Brown MB. The application and limitations of mathematical modelling in the prediction of permeability across mammalian skin and polydimethylsiloxane membranes. J Pharm Pharmacol 2011; 63:1411-27. [PMID: 21988422 DOI: 10.1111/j.2042-7158.2011.01345.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Predicting the rate of percutaneous absorption of a drug is an important issue with the increasing use of the skin as a means of moderating and controlling drug delivery. One key feature of this problem domain is that human skin permeability (as K(p)) has been shown to be inherently non-linear when mathematically related to the physicochemical parameters of penetrants. As such, the aims of this study were to apply and evaluate Gaussian process (GP) regression methods to datasets for membranes other than human skin, and to explore how the nature of the dataset may influence its analysis. METHODS Permeability data for absorption across rodent and pig skin, and artificial membranes (polydimethylsiloxane, PDMS, i.e. Silastic) membranes was collected from the literature. Two quantitative structure-permeability relationship (QSPR) models were used to compare with the GP models. Further performance metrics were computed in terms of all predictions, and a range of covariance functions were examined: the squared exponential (SE), neural network (NNone) and rational quadratic (QR) covariance functions, along with two simple cases of Matern covariance function (Matern3 and Matern5) where the polynomial order is set to 1 and 2, respectively. As measures of performance, the correlation coefficient (CORR), negative log estimated predictive density (NLL, or negative log loss) and mean squared error (MSE) were employed. KEY FINDINGS The results demonstrated that GP models with different covariance functions outperform QSPR models for human, pig and rodent datasets. For the artificial membranes, GPs perform better in one instance, and give similar results in other experiments (where different covariance parameters produce similar results). In some cases, the GP predictions for some of the artificial membrane dataset are poorly correlated, suggesting that the physicochemical parameters employed in this study might not be appropriate for developing models that represent this membrane. CONCLUSIONS While the results of this study indicate that permeation across rodent (mouse and rat) and pig skin is, in a statistical sense, similar, and that the artificial membranes are poor replacements of human or animal skin, the overriding issue raised in this study is the nature of the dataset and how it can influence the results, and subsequent interpretation, of any model produced for particular membranes. The size of the datasets, in both absolute and comparative senses, appears to influence model quality. Ideally, to generate viable cross-comparisons the datasets for different mammalian membranes should, wherever possible, exhibit as much commonality as possible.
Collapse
Affiliation(s)
- Gary P Moss
- School of Pharmacy, Keele University, Keele, UK.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Jung E, Choi SH, Lee NK, Kang SK, Choi YJ, Shin JM, Choi K, Jung DH. Machine learning study for the prediction of transdermal peptide. J Comput Aided Mol Des 2011; 25:339-47. [PMID: 21448715 DOI: 10.1007/s10822-011-9424-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 03/21/2011] [Indexed: 11/26/2022]
Abstract
In order to develop a computational method to rapidly evaluate transdermal peptides, we report approaches for predicting the transdermal activity of peptides on the basis of peptide sequence information using Artificial Neural Network (ANN), Partial Least Squares (PLS) and Support Vector Machine (SVM). We identified 269 transdermal peptides by the phage display technique and use them as the positive controls to develop and test machine learning models. Combinations of three descriptors with neural network architectures, the number of latent variables and the kernel functions are tried in training to make appropriate predictions. The capacity of models is evaluated by means of statistical indicators including sensitivity, specificity, and the area under the receiver operating characteristic curve (ROC score). In the ROC score-based comparison, three methods proved capable of providing a reasonable prediction of transdermal peptide. The best result is obtained by SVM model with a radial basis function and VHSE descriptors. The results indicate that it is possible to discriminate between transdermal peptides and random sequences using our models. We anticipate that our models will be applicable to prediction of transdermal peptide for large peptide database for facilitating efficient transdermal drug delivery through intact skin.
Collapse
Affiliation(s)
- Eunkyoung Jung
- Insilicotech Co. Ltd., A-1101 Kolontripolis, 210 Geumgok-Dong, Bundang-Gu, Seongnam-Shi, Korea.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Araújo LMPDC, Thomazine JA, Lopez RFV. Development of microemulsions to topically deliver 5-aminolevulinic acid in photodynamic therapy. Eur J Pharm Biopharm 2010; 75:48-55. [PMID: 20083197 DOI: 10.1016/j.ejpb.2010.01.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 01/06/2010] [Accepted: 01/13/2010] [Indexed: 10/20/2022]
Abstract
The aim of this study was to obtain and to characterize microemulsions containing 5-aminolevulinic acid (5-ALA) and to investigate the influence of these systems in drug skin permeation for further topical photodynamic therapy (PDT). 5-ALA was incorporated in water-in-oil (W/O), bicontinuous (Bc), and oil-in-water (O/W) microemulsions obtained by the titration of ethyl oleate and PEG-8 caprylic/capric glycerides:polyglyceryl-6 dioleate (3:1) mixtures with water. Selected systems were characterized by conductivity, viscosity, size of the droplets, and drug release. The stability of the drug in the microemulsions was also assessed. Moreover, the in vitro and in vivo skin permeation of 5-ALA was investigated using diffusion cells and confocal scanning laser microscopy (CSLM), respectively. Despite the fact that the O/W microemulsion decreased the 5-ALA diffusion coefficient and retarded the drug release, it also significantly increased the in vitro drug skin permeation when compared to other 5-ALA carriers. It was observed by CSLM that the red fluorescence of the skin increased homogeneously in the deeper skin layers when the 5-ALA microemulsion was applied in vivo, probably due to the formation of the photoactive protoporphyrin IX. The microemulsion developed carried 5-ALA to the deeper skin layers, increasing the red fluorescence of the skin and indicating the potentiality of the system for topical 5-ALA-PDT.
Collapse
|
32
|
Baby AR, Lacerda ÁCL, Sarruf FD, Pinto CASDO, Consiglieri VO, Serra CHDR, Velasco MVR, Kawano Y, Kaneko TM. Spectroscopic and thermal characterization of alternative model biomembranes from shed skins of Bothrops jararaca and Spilotis pullatus. BRAZ J PHARM SCI 2009. [DOI: 10.1590/s1984-82502009000300006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recently, there has been an interest in the use of shed snake skin as alternative model biomembrane for human stratum corneum. This research work presented as objective the qualitative characterization of alternative model biomembranes from Bothrops jararaca and Spilotis pullatus by FT-Raman, PAS-FTIR and DSC. The employed biophysical techniques permitted the characterization of the biomembranes from shed snake skin of B. jararaca and S. pullatus by the identification of vibrational frequencies and endothermic transitions that are similar to those of the human stratum corneum.
Collapse
|
33
|
Abstract
Microemulsions are clear, stable, isotropic mixtures of oil, water, and surfactant, frequently in combination with a cosurfactant. Microemulsions have been intensively studied during the last decades by many scientists and technologists because of their great potential in many food and pharmaceutical applications. The use of microemulsions is advantageous not only due to the facile and low cost preparation, but also because of the improved bioavailability. The increased absorption of drugs in topical applications is attributed to enhancement of penetration through the skin by the carrier. Saturated and unsaturated fatty acids serving as an oil phase are frequently used as penetration enhancers. The most popular enhancer is oleic acid. Other permeation enhancers commonly used in transdermal formulations are isopropyl myristate, isopropyl palmitate, triacetin, isostearylic isostearate, R(+)-limonene and medium chain triglycerides. The most popular among the enhancing permeability surfactants are phospholipids that have been shown to enhance drug permeation in a different mode. l-alpha-phosphatidylcholine from egg yolk, l-alpha-phosphatidylcholine 60%, from soybean and dioleylphosphatidyl ethanolamine which are in a fluid state may diffuse into the stratum corneum and enhance dermal and transdermal drug penetration, while distearoylphosphatidyl choline which is in a gel-state has no such capability. Other very commonly used surfactants are Tween 20, Tween 80, Span 20, Azone, Plurol Isostearique and Plurol Oleique. As cosurfactants commonly serve short-chain alkanols such as ethanol and propylene glycol. Long-chain alcohols, especially 1-butanol, are known for their enhancing activity as well. Decanol was found to be an optimum enhancer among other saturated fatty alcohols that were examined (from octanol to myristyl alcohol). Many enhancers are concentration-dependent; therefore, optimal concentration for effective promotion should be determined. The delivery rate is dependent on the type of the drug, the structure and ingredients of the carrier, and on the character of the membrane in use. Each formulation should be examined very carefully, because every membrane alters the mechanism of penetration and can turn an enhancer to a retarder. Various potential mechanisms to enhance drug penetration through the skin include directly affecting the skin and modifying the formulation so the partition, diffusion, or solubility is altered. The combination of several enhancement techniques such as the use of iontophoresis with fatty acids leads to synergetic drug penetration and to decrease in skin toxicity. Selected studies of various microemulsions containing certain drugs including retinoic acid, 5-fluorouracil, triptolide, ascorbic acid, diclofenac, lidocaine, and prilocaine hydrochloride in transdermal formulations are presented in this review. In conclusion, microemulsions were found as an effective vehicle of the solubilization of certain drugs and as protecting medium for the entrapped of drugs from degradation, hydrolysis, and oxidation. It can also provide prolonged release of the drug and prevent irritation despite the toxicity of the drug. Yet, in spite of all the advantages the present formulations lack several key important characteristics such as cosmetic-permitted surfactants, free dilution in water capabilities, stability in the digestive tracts and sufficient solubilization capacity.
Collapse
Affiliation(s)
- Anna Kogan
- Casali Institute of Applied Chemistry, The Institute of Chemistry, Givat Ram Campus, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | |
Collapse
|
34
|
Baby AR, Lacerda ACL, Velasco MVR, Lopes PS, Kawano Y, Kaneko TM. Spectroscopic studies of stratum corneum model membrane from Bothrops jararaca treated with cationic surfactant. Colloids Surf B Biointerfaces 2006; 50:61-5. [PMID: 16725316 DOI: 10.1016/j.colsurfb.2006.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Revised: 03/28/2006] [Accepted: 04/10/2006] [Indexed: 10/24/2022]
Abstract
This research employed FT-Raman and PAS-FTIR spectroscopic techniques to evaluate the interaction of cetyl trimethyl ammonium chloride (CTAC), a cationic surfactant, on the stratum corneum (SC) of shed snake skins from Bothrops jararaca, used as model membranes. Surfactant aqueous solutions (50.0 and 0.78 gl(-1)) with neutral pH were applied on the samples with intervals of 4, 8 (whole SC) and 12h (SC tape-stripped). Samples presented modifications of the topography for all conditions of the assays and the monomers of the surfactant, instead of the micelles, seemed to interact with the keratin. The SC model membranes treated with CTAC have had an augment of water content (except for whole SC treated for 8h) indicated by the expansion of the band 3600-3300 cm(-1), mainly for the tape-stripped samples after 12h treatment. Concentration appeared to be an important factor related to an increase of the tissue hydration.
Collapse
Affiliation(s)
- André Rolim Baby
- Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo, 580 Prof. Lineu Prestes Av., bloco 13, Conjunto das Químicas, Cidade Universitária, 05508-900 São Paulo, SP, Brazil.
| | | | | | | | | | | |
Collapse
|
35
|
Baby AR, Lacerda ACL, Velasco MVR, Lopes PS, Kawano Y, Kaneko TM. Evaluation of the interaction of surfactants with stratum corneum model membrane from Bothrops jararaca by DSC. Int J Pharm 2006; 317:7-9. [PMID: 16713151 DOI: 10.1016/j.ijpharm.2006.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Revised: 04/12/2006] [Accepted: 04/12/2006] [Indexed: 11/18/2022]
Abstract
The interaction of surfactants sodium dodecyl sulfate (SDS), cetyl trimethyl ammonium chloride (CTAC) and lauryl alcohol ethoxylated (12 mol ethylene oxide) (LAE-12OE) was evaluated on the stratum corneum (SC) of shed snake skins from Bothrops jararaca, used as model membrane, and thermal characterized by differential scanning calorimetry (DSC). Surfactant solutions were employed above of the critical micellar concentration (CMC) with treatment time of 8h. The SDS interaction with the SC model membrane has increased the characteristic transition temperature of 130 degrees C in approximately 10 degrees C for the water loss and keratin denaturation, indicating an augmentation of the water content. Samples treated with CTAC have a decrease of the water loss temperature, while, for the LAE-12OE treated samples, changes on the transition temperature have not been observed.
Collapse
Affiliation(s)
- André Rolim Baby
- Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo, 580 Prof. Lineu Prestes Av., bloco 13, Conjunto das Químicas, Cidade Universitária, 05508-900 São Paulo, SP, Brazil.
| | | | | | | | | | | |
Collapse
|
36
|
Babu RJ, Pandit JK. Effect of penetration enhancers on the release and skin permeation of bupranolol from reservoir-type transdermal delivery systems. Int J Pharm 2005; 288:325-34. [PMID: 15620873 DOI: 10.1016/j.ijpharm.2004.10.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Revised: 09/07/2004] [Accepted: 10/18/2004] [Indexed: 11/28/2022]
Abstract
A reservoir-type transdermal delivery system (TDS) of bupranolol (BPL) was designed and evaluated for different formulation variables like gel reservoirs (made with anionic and nonionic polymers), rate controlling membranes and penetration enhancers on the drug release and in vitro skin permeation kinetics of the devices. Keshary-Chien type diffusion cells and pH 7.4 phosphate buffered saline (PBS) were used for drug release studies and excised rat skin was used as a barrier for permeation experiments. The release rate of BPL from nonionic polymer gel reservoirs [hydroxypropyl methyl cellulose (HPMC), hydroxypropyl cellulose (HPC)] was much higher than anionic polymer gel reservoirs [carboxymethyl cellulose (CMC), sodium carboxymethyl cellulose (Na CMC) and sodium alginate)]. Among different rate controlling membranes, Cotran-polyethylene microporous membrane demonstrated highest release rate for BPL than all other membranes. An optimized TDS formulation with HPC gel and Cotran-polyethylene microporous membrane was used to study the effect of penetration enhancers on the release and skin permeation rate of BPL from the TDS. Permeation rates of the devices containing 5% (w/v) pyrrolidone (PY) or 1-methyl-2-pyrrolidone (MPY) were about 3- and 1.5-fold higher than control (no enhancer, P<0.01) indicating PY to be better penetration enhancer for BPL than MPY. The permeation rates of devices containing partially methylated beta-cyclodextrin (PMbetaCD) and PMbetaCD-BPL complex were about 2.5- and 1.4-fold higher than control (P<0.01). Inclusion of 10 and 30% w/v propylene glycol (PG) in the devices increased the permeation rate by 1.4- and 1.8-fold higher than control (P<0.05). In conclusion, reservoir-type TDS of BPL was developed and penetration enhancers increased the skin permeation of BPL at 4-5 times higher levels than the desired target delivery rate.
Collapse
Affiliation(s)
- R J Babu
- College of Pharmacy and Pharmaceutical Sciences, Florida A and M University, Tallahassee, FL 32307, USA.
| | | |
Collapse
|
37
|
Magnusson BM, Anissimov YG, Cross SE, Roberts MS. Molecular size as the main determinant of solute maximum flux across the skin. J Invest Dermatol 2004; 122:993-9. [PMID: 15102090 DOI: 10.1111/j.0022-202x.2004.22413.x] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One of the most important determinants of dermatological and systemic penetration after topical application is the delivery or flux of solutes into or through the skin. The maximum dose of solute able to be delivered over a given period of time and area of application is defined by its maximum flux (J(max), mol per cm(2) per h) from a given vehicle. In this work, J(max) values from aqueous solution across human skin were acquired or estimated from experimental data and correlated with solute physicochemical properties. Whereas epidermal permeability coefficients (k(p)) are optimally correlated to solute octanol-water partition coefficient (K(ow)) and molecular weight (MW) was found to be the dominant determinant of J(max) for this literature data set: log J(max)=-3.90-0.0190MW (n=87, r(2)=0.847, p<0.001). Estimated solubility in octanol (S(oc)) was also a determinant, but improvement in the regression by the addition of log S(oc) was small (r(2) increased to 0.856). Addition of other physicochemical parameters to MW by forward stepwise regression only marginally improved the regression with a melting point (Mpt) term (r(2)=0.879) and then hydrogen bonding acceptor capability (H(a)) (r(2)=0.917) is significant. Validation of the equation above was carried with a number of other data sets: an aqueous vehicle with full- and split-thickness skin (r(2)=0.784, n=56), some pure solutes (r(2)=0.537, n=34), an aqueous vehicle with ionizable solutes (r(2)=0.282, n=54) and solutes from a propylene glycol vehicle (r(2)=0.484, n=36). An analysis of the entire database gave the equation log J(max)=-4.52-0.0141MW (n=278, r(2)=0.688, p<0.001), with inclusion of Mpt and H(a) increasing r(2) to 0.760 (n=269). Separate analysis of full- and split-thickness skin data confirmed that the dermal resistance term had only a marginal effect on overall J(max). Application of the latter model to an in vivo situation where the dermal capillary bed is slightly below the epidermal-dermal junction revealed that the dermal resistance term was unnecessary for in vivo predictions for most solutes.
Collapse
Affiliation(s)
- Beatrice M Magnusson
- Therapeutics Research Unit, Department of Medicine, University of Queensland, Princess Alexandra Hospital, Brisbane, Australia
| | | | | | | |
Collapse
|
38
|
Abstract
One long-standing approach for improving transdermal drug delivery uses penetration enhancers (also called sorption promoters or accelerants) which penetrate into skin to reversibly decrease the barrier resistance. Numerous compounds have been evaluated for penetration enhancing activity, including sulphoxides (such as dimethylsulphoxide, DMSO), Azones (e.g. laurocapram), pyrrolidones (for example 2-pyrrolidone, 2P), alcohols and alkanols (ethanol, or decanol), glycols (for example propylene glycol, PG, a common excipient in topically applied dosage forms), surfactants (also common in dosage forms) and terpenes. Many potential sites and modes of action have been identified for skin penetration enhancers; the intercellular lipid matrix in which the accelerants may disrupt the packing motif, the intracellular keratin domains or through increasing drug partitioning into the tissue by acting as a solvent for the permeant within the membrane. Further potential mechanisms of action, for example with the enhancers acting on desmosomal connections between corneocytes or altering metabolic activity within the skin, or exerting an influence on the thermodynamic activity/solubility of the drug in its vehicle are also feasible, and are also considered in this review.
Collapse
Affiliation(s)
- Adrian C Williams
- Drug Delivery Group, School of Pharmacy, University of Bradford, Richmond Road, Bradford, West Yorkshire, BD7 1DP, UK.
| | | |
Collapse
|
39
|
Abstract
The primary function of the epidermis is to produce the protective, semi-permeable stratum corneum that permits terrestrial life. The barrier function of the stratum corneum is provided by patterned lipid lamellae localized to the extracellular spaces between corneocytes. Anucleate corneocytes contain keratin filaments bound to a peripheral cornified envelope composed of cross-linked proteins. The many layers of these specialized cells in the stratum corneum provide a tough and resilient framework for the intercellular lipid lamellae. The lamellae are derived from disk-like lipid membranes extruded from lamellar granules into the intercellular spaces of the upper granular layer. Lysosomal and other enzymes present in the extracellular compartment are responsible for the lipid remodeling required to generate the barrier lamellae as well as for the reactions that result in desquamation. Lamellar granules likely originate from the Golgi apparatus and are currently thought to be elements of the tubulo-vesicular trans-Golgi network. The regulation of barrier lipid synthesis has been studied in a variety of models, with induction of several enzymes demonstrated during fetal development and keratinocyte differentiation, but an understanding of this process at the molecular genetic level awaits further study. Certain genetic defects in lipid metabolism or in the protein components of the stratum corneum produce scaly or ichthyotic skin with abnormal barrier lipid structure and function. The inflammatory skin diseases psoriasis and atopic dermatitis also show decreased barrier function, but the underlying mechanisms remain under investigation. Topically applied "moisturizers" work by acting as humectants or by providing an artificial barrier to trans-epidermal water loss; current work has focused on developing a more physiologic mix of lipids for topical application to skin. Recent studies in genetically engineered mice have suggested an unexpected role for tight junctions in epidermal barrier function and further developments in this area are expected. Ultimately, more sophisticated understanding of epidermal barrier function will lead to more rational therapy of a host of skin conditions in which the barrier is impaired.
Collapse
Affiliation(s)
- Kathi C Madison
- Marshall Dermatology Research Laboratories, Department of Dermatology, University of Iowa, Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa, USA.
| |
Collapse
|
40
|
Magnusson BM, Walters KA, Roberts MS. Veterinary drug delivery: potential for skin penetration enhancement. Adv Drug Deliv Rev 2001; 50:205-27. [PMID: 11500228 DOI: 10.1016/s0169-409x(01)00158-2] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A range of topical products are used in veterinary medicine. The efficacy of many of these products has been enhanced by the addition of penetration enhancers. Evolution has led to not only a highly specialized skin in animals and humans, but also one whose anatomical structure and skin permeability differ between the various species. The skin provides an excellent barrier against the ingress of environmental contaminants, toxins, and microorganisms while performing a homeostatic role to permit terrestrial life. Over the past few years, major advances have been made in the field of transdermal drug delivery. An increasing number of drugs are being added to the list of therapeutic agents that can be delivered via the skin to the systemic circulation where clinically effective concentrations are reached. The therapeutic benefits of topically applied veterinary products is achieved in spite of the inherent protective functions of the stratum corneum (SC), one of which is to exclude foreign substances from entering the body. Much of the recent success in this field is attributable to the rapidly expanding knowledge of the SC barrier structure and function. The bilayer domains of the intercellular lipid matrices within the SC form an excellent penetration barrier, which must be breached if poorly penetrating drugs are to be administered at an appropriate rate. One generalized approach to overcoming the barrier properties of the skin for drugs and biomolecules is the incorporation of suitable vehicles or other chemical compounds into a transdermal delivery system. Indeed, the incorporation of such compounds has become more prevalent and is a growing trend in transdermal drug delivery. Substances that help promote drug diffusion through the SC and epidermis are referred to as penetration enhancers, accelerants, adjuvants, or sorption promoters. It is interesting to note that many pour-on and spot-on formulations used in veterinary medicine contain inert ingredients (e.g., alcohols, amides, ethers, glycols, and hydrocarbon oils) that will act as penetration enhancers. These substances have the potential to reduce the capacity for drug binding and interact with some components of the skin, thereby improving drug transport. However, their inclusion in veterinary products with a high-absorbed dose may result in adverse dermatological reactions (e.g., toxicological irritations) and concerns about tissue residues. These are important considerations when formulating a veterinary transdermal product when such compounds are added, either intentionally or otherwise, for their penetration enhancement ability.
Collapse
Affiliation(s)
- B M Magnusson
- Department of Medicine, Princess Alexandra Hospital, University of Queensland, Brisbane, Australia
| | | | | |
Collapse
|
41
|
Takahashi K, Rytting JH. Novel approach to improve permeation of ondansetron across shed snake skin as a model membrane. J Pharm Pharmacol 2001; 53:789-94. [PMID: 11428654 DOI: 10.1211/0022357011776135] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The purpose of this study was to investigate the feasibility of transdermal drug delivery of ondansetron, an antagonist of the 5-HT3 receptor, used for the treatment of chemotherapy-induced emesis. The permeability of ondansetron from an aqueous suspension through shed snake skin as a model membrane was very low and in order to improve it, several enhancers were tested. Ethanol increased the flux at a concentration of 40% or more. The solubility of ondansetron also increased as the ethanol concentration increased. The permeability coefficient increased after pretreatment of the shed snake skin with Azone, oleic acid or lauryl alcohol. Further improvement of the permeability was observed when ethanol was combined with other enhancers and was maximum for the combination of ethanol and oleic acid. Oleic acid dramatically increased the partition of ondansetron to n-hexane and shed snake skin. Oleic acid may enhance the permeation of ondansetron in two ways: by a direct effect on the stratum corneum or via counterion formation of an ion-pair. The maximum flux obtained from the combination of ethanol and other enhancers seems to be high enough to obtain a therapeutic effect.
Collapse
Affiliation(s)
- K Takahashi
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence 66405, USA.
| | | |
Collapse
|
42
|
Takahashi K, Sakano H, Rytting JH, Numata N, Kuroda S, Mizuno N. Influence of pH on the permeability of p-toluidine and aminopyrine through shed snake skin as a model membrane. Drug Dev Ind Pharm 2001; 27:159-64. [PMID: 11266227 DOI: 10.1081/ddc-100000482] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The influence of pH on the permeability of p-toluidine (pKa, 5.3) and aminopyrine (pKa, 5.0) through shed snake skin as a model membrane was studied. The pH was adjusted to several values, and the solubility of the drugs in each donor was measured. Flux rates and permeability coefficients were calculated from the steady-state penetration portions. The flux rates of p-toluidine decreased as the pH value in the donor solution increased. On the other hand, the flux rates of aminopyrine were constant at any pH value. The permeability coefficients of each drug increased as the pH value in the donor solution increased. The partition coefficients (octanol/buffer) of each drug were dependent on the molecular fraction of un-ionized species. From these results, it is suggested that ionized species of p-toluidine transports through shed snake skin, but the ionized species of aminopyrine does not.
Collapse
Affiliation(s)
- K Takahashi
- School of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo, Japan.
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
'It is better to be approximately right rather than precisely wrong.'
Collapse
|
44
|
Abstract
Application of water and glycerin is known to influence skin mechanics. The kinetics of these processes are of great interest. A study was performed to show the immediate changes in skin-mechanics. A Dermaflex machine (R) was used to study 23 healthy volunteers. Water or glycerin was applied to the flexorside of the forearm, and readings were made after 3, 6, 9, 12 and 15 min. Regional untreated skin served as baseline. In agreement with earlier studies both substances influenced hysteresis. Water caused a significant increase in hysteresis after 12 and 15 min of hydration (P<0.01). Glycerin caused significantly increased hysteresis after 3 min (P<0.05) and the effect continued to the end of the observation period. No significant differences were seen in the distensibility. The onset of action is rapid for both substances, and the effects are therefore supposed to take place in the outermost layers of epidermis. The effect of glycerin on the hysteresis is more rapid in onset than that of water. Comparing the permeability coefficients, the effect on the mechanical properties of the skin does not appear to be determined by the permeability coefficients as water has a higher permeability coefficient but induces smaller changes than glycerin. Water alone does not appear to be the optimal plasticiser of human skin and other substances soluble in both water and lipids may have an even greater influence on skin mechanics in vivo.
Collapse
Affiliation(s)
- L K Pedersen
- Dept. of Dermatology D, Bispebjerg Hospital, University of Copenhagen, Denmark
| | | |
Collapse
|
45
|
Morgan TM, Reed BL, Finnin BC. Enhanced skin permeation of sex hormones with novel topical spray vehicles. J Pharm Sci 1998; 87:1213-8. [PMID: 9758679 DOI: 10.1021/js980025k] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The feasibility of using some novel topical spray vehicles for enhanced transdermal delivery of the sex hormones, testosterone (Tes), estradiol (E2), progesterone (Prog), and norethindrone acetate (NA) has been investigated. The new penetration enhancers, padimate O (PadO) and octyl salicylate (OSal) were used and compared with laurocapram (AZ) and oleic acid (OA). A finite dose (5 microL/cm2) of each vehicle was applied to either shed snake skin or swine skin in vitro, and the amount penetrated was measured with flow-through diffusion cells. Partitioning into swine skin was determined after an exposure time of 1 min. Rapid partitioning of Tes and PadO into swine skin occurred after 1 min with 70% and 60% of the applied dose, respectively, remaining in the skin after the unabsorbed dose was removed by rinsing with absolute ethanol. The cumulative amount at 24 h (Q24 h) of Tes penetrating across the snake skin was significantly enhanced (p < 0.05) up to 6-fold for OSal, 3-fold for OA and AZ, and 2-fold for PadO compared to control. Using PadO or AZ, the Q24 h ranged from three- to thirteen-fold over control (p < 0.05) for E2, Prog, and NA. Extrapolation of these data to predict what would happen in humans suggests that it should be possible to deliver clinically relevant amounts of sex hormones in this manner with once daily dosing.
Collapse
Affiliation(s)
- T M Morgan
- Department of Pharmaceutics, Victorian College of Pharmacy, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | | | | |
Collapse
|
46
|
Haigh J, Beyssac E, Chanet L, Aiache JM. In vitro permeation of progesterone from a gel through the shed skin of three different snake species. Int J Pharm 1998. [DOI: 10.1016/s0378-5173(98)00064-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
47
|
Suhonen T, Pirskanen L, Räisänen M, Kosonen K, Rytting J, Paronen P, Urtti A. Transepidermal delivery of β-blocking agents: evaluation of enhancer effects using stratum corneum lipid liposomes1The data were presented in part at the Tenth Annual Meeting and Exposition of the American Association of Pharmaceutical Scientists, Miami Beach, FL, 1995.1. J Control Release 1997. [DOI: 10.1016/s0168-3659(96)01495-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
48
|
Xue G. Fourier transform Raman spectroscopy and its application for the analysis of polymeric materials. Prog Polym Sci 1997. [DOI: 10.1016/s0079-6700(96)00006-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Kuramoto M, Tanaka T, Makita H, Nakamura Y, Yata N. Characteristics of shed snake skin permeability to indomethacin and fatty alcohols. J Pharm Pharmacol 1996; 48:680-4. [PMID: 8866328 DOI: 10.1111/j.2042-7158.1996.tb03950.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
To investigate the utilities of a shed snake skin as a model membrane for preclinical studies of transdermal drug delivery, the flux of indomethacin was determined under various conditions by using a diffusion cell. The flux of fatty alcohols was determined and compared with that in human skin reported in references. The esterase activity of shed snake skin was also determined. It was found that the flux of indomethacin decreased with an increase of pH and the amount of ethanol in a vehicle. The flux of indomethacin increased by the addition of Azone, N-methyl-2-pyrrolidone and N,N-dimethyl-m-toluamide in the cream. The flux of fatty alcohols in shed snake skin was greater than that reported in human skin, and shed snake skin had similar esterase activity to human skin.
Collapse
Affiliation(s)
- M Kuramoto
- Pharmaceutical Research Laboratories, Dainippon Pharmaceutical Co. Ltd, Osaka, Japan
| | | | | | | | | |
Collapse
|
50
|
Megrab NA, Williams AC, Barry BW. Oestradiol permeation across human skin, silastic and snake skin membranes: The effects of ethanol/water co-solvent systems. Int J Pharm 1995. [DOI: 10.1016/0378-5173(94)00321-u] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|