1
|
Tu L, Xing B, Ma S, Zou Z, Wang S, Feng J, Cheng M, Jin Y. A review on polysaccharide-based tumor targeted drug nanodelivery systems. Int J Biol Macromol 2025; 304:140820. [PMID: 39933669 DOI: 10.1016/j.ijbiomac.2025.140820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 02/13/2025]
Abstract
The tumor-targeted drug delivery system (TTDNS) uses nanocarriers to transport chemotherapeutic agents to target tumor cells or tissues precisely. This innovative approach considerably increases the effective concentration of these drugs at the tumor site, thereby enhancing their therapeutic efficacy. Many chemotherapeutic agents face challenges, such as low bioavailability, high cytotoxicity, and inadequate drug resistance. To address these obstacles, TTDNS comprising natural polysaccharides have gained increasing popularity in the field of nanotechnology owing to their ability to improve safety, bioavailability, and biocompatibility while reducing toxicity. In addition, it enhances permeability and allows for controlled drug delivery and release. This review focuses on the sources of natural polysaccharides and their direct and indirect mechanisms of anti-tumor activity. We also explored the preparation of various polysaccharide-based nanocarriers, including nanoparticles, nanoemulsions, nanohydrogels, nanoliposomes, nanocapsules, nanomicelles, nanocrystals, and nanofibers. Furthermore, this review delves into the versatile applications of polysaccharide-based nanocarriers, elucidating their capabilities for in vivo targeting, controlled release, and responsiveness to endogenous and exogenous stimuli, such as pH, reactive oxygen species, glutathione, light, ultrasound, and magnetic fields. This sophisticated design substantially enhances the chemotherapeutic efficacy of the encapsulated drugs at tumor sites and provides a basis for preclinical and clinical research. However, the in vivo stability, drug loading, and permeability of these preparations into tumor tissues still need to be improved. Most of the currently developed biomarker-sensitive polysaccharide nanocarriers are still in the laboratory stage, more innovative delivery mechanisms and clinical studies are needed to develop commercial nanocarriers for medical use.
Collapse
Affiliation(s)
- Liangxing Tu
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Banghuai Xing
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Shufei Ma
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Zijian Zou
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Siying Wang
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Jianfang Feng
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China; Guangxi University of Chinese Medicine, Nanning 530200, PR China.
| | - Meng Cheng
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China.
| | - Yi Jin
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China.
| |
Collapse
|
2
|
Bisinotto MS, Castro I, Maldonado-Valderrama J, Jones NC, Del Castillo-Santaella T, Hoffmann SV, Guadix EM, García-Moreno PJ. Use of emulsifying plant protein hydrolysates from winery, whiskey and brewery by-products for the development of echium oil delivery emulsions. Int J Biol Macromol 2025:142736. [PMID: 40180091 DOI: 10.1016/j.ijbiomac.2025.142736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/14/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
This study investigates the production of plant protein hydrolysates from defatted grape seed flour and barley spent grains, by-products of wine, beer and whiskey industries, using limited hydrolysis with subtilisin or trypsin. The hydrolysates were characterized by protein content, molecular weight, antioxidant capacity, interfacial adsorption, dilatational rheology, and interfacial conformational changes using synchrotron radiation circular dichroism. Physical and oxidative stability of 5 % echium oil-in-water emulsions (pH 7), stabilized by the hydrolysates, were studied during seven days of storage. The trypsin-derived hydrolysate from brewers' spent grains resulted in the most physically stable emulsion due to enhanced interfacial adsorption and higher dilatational modulus. Alternatively, the trypsin-treated grape seed flour hydrolysate provided the emulsion with the highest oxidative stability, aligning with its superior in vitro antioxidant capacity. These results show the potential of wine and brewery industry side streams as a sustainable source of plant-based emulsifiers with application in omega-3 delivery systems.
Collapse
Affiliation(s)
- Mariana Sisconeto Bisinotto
- Department of Chemical Engineering, University of Granada, Granada, Spain; LADAF, Pharmaceutical Science Faculty, University of Sao Paulo, Brazil
| | - Inar Castro
- LADAF, Pharmaceutical Science Faculty, University of Sao Paulo, Brazil
| | | | - Nykola C Jones
- ISA, Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | | | | | - Emilia M Guadix
- Department of Chemical Engineering, University of Granada, Granada, Spain
| | | |
Collapse
|
3
|
Kheynoor N, Golmakani MT, Mortazavian AM, Khanniri E, Hosseini SMH. Fabrication and characterization of antioxidant fish oil Pickering emulsions stabilized by selenium nanoparticles-loaded whey protein concentrate and phloretin complex. Food Chem X 2025; 27:102441. [PMID: 40248322 PMCID: PMC12005850 DOI: 10.1016/j.fochx.2025.102441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/19/2025] Open
Abstract
This study aimed to enhance the nutritional value and oxidative stability of fortified milk by investigating the properties of fish oil Pickering emulsion (FOPE) stabilized by selenium nanoparticles (SeNP) loaded-whey protein concentrate/phloretin (WPC/PHL) complex. Initially, the influence of SeNP concentration on the WPC/PHL complex was evaluated through measurements of particle size, antioxidant activity, and intermolecular interactions. Results demonstrated that increasing SeNP concentration from 0.1 % to 0.3 % significantly enhanced the antioxidant activity, with ABTS assay values rising from 42.87 % to 76.14 % and DPPH assay values increasing from 59.10 % to 86.11 %. FTIR and docking analyses confirmed the formation of bonds (hydrogen and van der Waals) between the WPC/PHL/SeNP nanoparticles. Subsequently, the FOPEs were characterized, revealing that increasing SeNP concentration reduced droplet size, indicating improved emulsion stability. Furthermore, the oxidative stability of the emulsions improved with increasing SeNP concentrations (0.1 % to 0.3 %), as evidenced by a decrease in peroxide value (PV) from 4.27 meq/kgO2 to 2.83 meq/kgO2 and a reduction in malondialdehyde (MDA) content from 86.61 mg/kg oil to 62.78 mg/kg oil after 10 days of storage. Finally, the oxidative stability of fortified milk containing these FOPEs was also significantly enhanced. These findings provide a novel perspective on developing SeNP as an antioxidant particle, potentially suitable for formulating functional emulsified food products susceptible to oxidative deterioration.
Collapse
Affiliation(s)
- Najme Kheynoor
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Mohammad-Taghi Golmakani
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Amir Mohammad Mortazavian
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Khanniri
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
4
|
da Ferreira GS, da Silva DJ, de Oliveira ÉR, Rosa DS. Oil-in-water Pickering emulsions with Buriti vegetable oil stabilized with cellulose nanofibrils: Preparation, stability and antimicrobial properties. Int J Biol Macromol 2025; 304:140233. [PMID: 39922341 DOI: 10.1016/j.ijbiomac.2025.140233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 01/11/2025] [Accepted: 01/21/2025] [Indexed: 02/10/2025]
Abstract
Mauritia flexuosa (Buriti) vegetable oil (OV) has attracted technological interest in various sectors, including pharmaceuticals, food, and beverages, because of its excellent antioxidant activity. The active OV components are fatty compounds, and stability is required for proper application. In this work, we investigated OV-in-water Pickering emulsions stabilized by cellulose nanofibrils (CNF). CNF is sustainable, economically viable, and environmentally friendly, and it is suitable for developing products in an eco-friendly way. The factorial design of experiments (DoE) indicates that the amount of CNF and the homogenization time significantly affect the emulsion, preventing coalescence over 30 days. Fourier-transform Raman spectroscopy (FT-Raman) and Fourier-transform infrared spectroscopy (FTIR) show that CNF stabilizes the OV droplets through induced dipole-dipole interactions and hydrogen bonds. Rheological analysis was relevant to the relationship between internal microstructure strength and viscous flow behavior of the emulsions. A novel approach enabled the identification of the CNF stabilization mechanism in the emulsion system via fluorescence microscopy. Diameter distribution measurements and steady-state rheological tests indicate that the emulsions have good stability at room temperature and suitable steady-state viscosity for food applications and beverage products as they show pronounced shear thinning behavior for cream and lotion skin care products.
Collapse
Affiliation(s)
- Greiciele S da Ferreira
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Av. dos Estados, 5001, CEP, 09210-210 Santo André, SP, Brazil
| | - Daniel J da Silva
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Av. dos Estados, 5001, CEP, 09210-210 Santo André, SP, Brazil
| | - Éder R de Oliveira
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Av. dos Estados, 5001, CEP, 09210-210 Santo André, SP, Brazil
| | - Derval S Rosa
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Av. dos Estados, 5001, CEP, 09210-210 Santo André, SP, Brazil.
| |
Collapse
|
5
|
Zhang D, Zhong R, Liao Z, Wang X, Xiang P, Zhang A, Su N, Cao Y, Lan Y. Fabrication of interfacial crystallized oleogel emulsion for quercetin delivery with enhanced environmental stability and bioaccessibility. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:2226-2235. [PMID: 39497576 DOI: 10.1002/jsfa.13992] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/04/2024] [Accepted: 09/30/2024] [Indexed: 02/14/2025]
Abstract
BACKGROUND Quercetin is a flavonoid compound with numerous bioactivities. However, the low solubility, easy degradation and low bioaccessibility limit its application. In this study, a novel interfacial crystallized oleogel emulsion was fabricated, where beeswax was used as the oleogelator, for quercetin encapsulation with enhanced stability and bioaccessibility. RESULTS The process of interfacial crystallization was investigated using interfacial rheology and polarized microscopy, with a positive correlation between crystal density and beeswax content in the oil phase. Emulsion stability was directly linked to beeswax concentration in the oil phase, with 100 mg g-1 showing enhanced stability under storage, UVB light exposure and ionic conditions. Beeswax addition significantly increased the quercetin loading capacity of the emulsion; particularly, at a 200 mg g-1 beeswax concentration, the loading capacity was improved by 285.55%, and the environmental stability was enhanced against UV light and Ca2+. Ultimately, in vitro simulated digestion experiment indicated improved bioaccessibility of quercetin. CONCLUSIONS This strategy significantly enriched the formulation of oleogel emulsion and its potential applications in delivering bioactive ingredients with high environmental vulnerability. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dian Zhang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, People's Republic of China
| | - Ruimin Zhong
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan, People's Republic of China
| | - Ziying Liao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, People's Republic of China
- Guangdong Marubi Biotechnology Co. Ltd, Guangzhou, People's Republic of China
| | - Xin Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, People's Republic of China
| | - Pengcheng Xiang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, People's Republic of China
| | - Ao Zhang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, People's Republic of China
| | - Nan Su
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, People's Republic of China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, People's Republic of China
| | - Yaqi Lan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, People's Republic of China
| |
Collapse
|
6
|
Luo X, Chen Y, Jiang Z, Wu H, McClements DJ, Zhang C, Zhou Y, Fu H, Yin X, Huang W, Wang Z, Yu L, Tang X, Li K, Zhu K. Maltodextrin vitamin E succinate: A novel antioxidant emulsifier for formulating functional nanoemulsions. Food Chem 2025; 465:141991. [PMID: 39566310 DOI: 10.1016/j.foodchem.2024.141991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/13/2024] [Accepted: 11/08/2024] [Indexed: 11/22/2024]
Abstract
A new multifunctional emulsifier was synthesized by coupling maltodextrin with a dextrose equivalent of 19 to vitamin E succinate. Two emulsifiers with varying degrees of vitamin E succinate substitution were prepared based on different mass ratios of vitamin E succinate to maltodextrin. The molecular structure and purity of these emulsifiers were analyzed. Nanoemulsions were prepared using octenyl succinic anhydride modified starch as a control to investigate the physical stability, antioxidant capacity, oxidative stability, and in vitro simulated digestive properties of the nanoemulsions. The emulsifying and antioxidant activity of the maltodextrin-vitamin E succinate conjugate was significantly superior to that of octenyl succinic anhydride modified starch, demonstrating good physical and oxidative stability. Additionally, they were rapidly digested under simulated small intestinal conditions. This new emulsifier shows broad application potential for the encapsulation, protection, and delivery of hydrophobic bioactive substances in the fields of medicine, food, and healthcare products.
Collapse
Affiliation(s)
- Xiang Luo
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, PR China; Zhejiang Engineering Research Center of Fat-soluble Vitamin, College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, PR China.
| | - Yuanyuan Chen
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, PR China; School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang 312000, PR China
| | - Zhe Jiang
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, PR China
| | - Hongze Wu
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, PR China; Zhejiang Engineering Research Center of Fat-soluble Vitamin, College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, PR China
| | - David Julian McClements
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| | - Chang Zhang
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, PR China
| | - Yanyan Zhou
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, PR China
| | - Hongliang Fu
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, PR China.
| | - Xuguang Yin
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, PR China
| | - Wenna Huang
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, PR China.
| | - Zhixin Wang
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, PR China.
| | - Lemao Yu
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, PR China.
| | - Xin Tang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Kangli Li
- Zhejiang Institute of Tianjin University, Shaoxing, Zhejiang 312000, PR China
| | - Kewu Zhu
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, PR China.
| |
Collapse
|
7
|
Tang Z, Fang P, Tao Y, Huang Q, Xu X, Cheng X, Hussain F, Li X, Liang J, Ye S, Sun Y. Enhancing walnut butter with a pea protein isolate-pectin-pterostilbene complex: Physicochemical properties and stability analysis. Food Res Int 2025; 201:115541. [PMID: 39849688 DOI: 10.1016/j.foodres.2024.115541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/21/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
To explore the potential applications of pea protein isolate-pectin-pterostilbene complex (PPI-PEC-PT) in the sauce industry, its solubility, antioxidant capacity and oxidative stability were measured. The results indicated that PPI-PEC-PT exhibited a solubility of 77.67 %, more than double that of PPI-PT (31.93 %). The DPPH radical scavenging capacity of PPI-PEC-PT reached up to 78.52 % at a concentration of 50 μg/mL. After accelerated oxidation (60 °C, 7 days), the peroxide value (8.15 mmol/L) and malondialdehyde content (11.50 mmol/L) of PPI-PEC-PT emulsion were significantly lower than those of PPI. Additionally, when applied to walnut butter, PPI-PEC-PT significantly enhanced its gel properties. In conclusion, PPI-PEC-PT could not only serve as a natural antioxidant but also be utilized as a food additive to enhance the gelling properties of products in the food industry.
Collapse
Affiliation(s)
- Zonghui Tang
- School of Food and Nutrition, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, China; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Anhui Agricultural University, Hefei, China
| | - Panchen Fang
- School of Food and Nutrition, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, China; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Anhui Agricultural University, Hefei, China
| | - Yuting Tao
- School of Food and Nutrition, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, China; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Anhui Agricultural University, Hefei, China
| | - Qiuye Huang
- School of Food and Nutrition, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, China; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Anhui Agricultural University, Hefei, China
| | - Xuefei Xu
- School of Food and Nutrition, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, China; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Anhui Agricultural University, Hefei, China
| | - Xiaoyan Cheng
- School of Food and Nutrition, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, China; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Anhui Agricultural University, Hefei, China
| | - Faraz Hussain
- School of Food and Nutrition, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, China; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Anhui Agricultural University, Hefei, China
| | - Xueling Li
- School of Food and Nutrition, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, China; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Anhui Agricultural University, Hefei, China
| | - Jin Liang
- School of Food and Nutrition, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, China; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Anhui Agricultural University, Hefei, China
| | - Shuming Ye
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Yue Sun
- School of Food and Nutrition, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, China; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
8
|
Chen M, Jiang Q, Li J, Weng J, Yan T, Hu Y, Wang X, Zhang H. Fabrication and characterization of oleic acid/sesame protein isolate/ poly (vinyl) alcohol core-shell nanofibers: Mitigating lipid oxidation by emulsion electrospinning. Food Chem 2025; 463:141349. [PMID: 39305672 DOI: 10.1016/j.foodchem.2024.141349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 11/06/2024]
Abstract
Formulated oil-in-water (O/W) emulsions of oleic acid (OA) using sesame protein isolate (SPI) were processed via emulsion electrospinning with poly (vinyl) alcohol (PVA) to fabricate core-shell nanofibers for lipid oxidation prevention. The emulsion droplet size and viscosity increased as the oil volume fraction rose from 5 % to 30 %. The morphology tests and Fourier transform infrared spectroscopy (FTIR) confirmed the uniformity of nanofibers and OA encapsulation with hydrogen bonding. The thermal stability, mechanical properties, and water contact angle (WCA) of the nanofiber films improved with increased OA content. Encapsulation efficiency was 94.76 % and storage stability was maintained for 7 days in 5 % oil fraction nanofibers. The nanofibers showed lower oxidation and superior oxidative resistance to free OA, with the lowest peroxide value (POV, 2.14 mmol/L) and thiobarbituric acid-reactive substances (TBARS, 36.75 μmol/L). In conclusion, the OA/SPI/PVA (PE) core-shell nanofibers via emulsion electrospinning are efficient for fatty acid encapsulation in functional foods.
Collapse
Affiliation(s)
- Meiyu Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Hainan Key Laboratory of Herpetological Research, Sanya 572022, China
| | - Qinbo Jiang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jiawen Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Junjie Weng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Tianyi Yan
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Laboratory of Organic Chemistry, Wageningen University and Research, Stippeneng 4, Wageningen, 6703 WE, The Netherlands; Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, Wageningen, 6703, WE, the Netherlands
| | - Yaqin Hu
- College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Hainan Key Laboratory of Herpetological Research, Sanya 572022, China
| | - Xiangyu Wang
- Oil & Fat Research Centre, COFCO Nutrition and Health Research Institute, Beijing 102209, China
| | - Hui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Oil & Fat Research Centre, COFCO Nutrition and Health Research Institute, Beijing 102209, China.
| |
Collapse
|
9
|
Osaili TM, Al-Nabulsi AA, Taybeh AO, Olaimat AN, Taha S, Karam L, Ayyash M, Hasan F, Al Dabbas MM, Bamigbade GB, Al-Holy M, Savvaidis IN, Obaid RS, Holley R. Garlic and Chitosan Improve the Microbial Quality of Hummus and Reduce Lipid Oxidation. Foods 2024; 13:4074. [PMID: 39767015 PMCID: PMC11675487 DOI: 10.3390/foods13244074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
This study investigated the antimicrobial and antioxidant effects of garlic and chitosan on hummus. Hummus was prepared by using 0.5% or 1% (w/w) chitosan, with or without 1% (w/w) garlic, and samples were stored at 4, 10, or 25 °C for 28, 21, or 7 d, respectively. The behavior of lactic acid bacteria (LAB), Pseudomonas spp., aerobic bacteria, and yeasts and molds was then investigated. Color, pH, TBARS, and rheological properties were also measured. In hummus, both with and without garlic, chitosan added at 0.5% and 1% w/w significantly (p < 0.05) decreased LAB, aerobic bacteria, yeasts, and molds, and Pseudomonas spp., at 4 °C. However, at 10 °C, adding chitosan at 1% w/w significantly reduced only aerobic bacteria (2.2 log cfu/g) and Pseudomonas spp. (1.0 log cfu/g). The pH values (regardless of treatment) decreased upon storage. The addition of garlic or chitosan did not significantly affect the lightness (L*) or yellowness (b*). However, garlic, regardless of chitosan concentration, notably reduced lipid oxidation (0.8-1.4 MDA Eq/kg of sample) and had a greater impact on the sensory properties compared to chitosan. The results of this study will encourage producers to produce hummus that has a better flavor due to garlic with enhanced microbial quality.
Collapse
Affiliation(s)
- Tareq M. Osaili
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, The University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan; (A.A.A.-N.); (A.O.T.)
| | - Anas A. Al-Nabulsi
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan; (A.A.A.-N.); (A.O.T.)
| | - Asma’ O. Taybeh
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan; (A.A.A.-N.); (A.O.T.)
| | - Amin N. Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 150459, Zarqa 13115, Jordan; (A.N.O.); (M.A.-H.)
| | - Sadi Taha
- Nutrition and Food Processing Department, Al-Huson University College, Al-Balqa Applied University, Irbid 21510, Jordan;
| | - Layal Karam
- Department of Nutrition Sciences, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Mutamed Ayyash
- Department of Food Science, College of Agriculture & Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain P.O. Box 15551, United Arab Emirates; (M.A.); (G.B.B.)
| | - Fayeza Hasan
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
| | - Maher M. Al Dabbas
- Department of Nutrition and Dietetics, College of Pharmacy, Alain University, Abu Dhabi P.O. Box 6414, United Arab Emirates;
- Department of Nutrition and Food Technology, Faculty of Agriculture, The University of Jordan, Amman 11942, Jordan
| | - Gafar Babatunde Bamigbade
- Department of Food Science, College of Agriculture & Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain P.O. Box 15551, United Arab Emirates; (M.A.); (G.B.B.)
| | - Murad Al-Holy
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 150459, Zarqa 13115, Jordan; (A.N.O.); (M.A.-H.)
| | - Ioannis N. Savvaidis
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Reyad S. Obaid
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, The University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
| | - Richard Holley
- Department of Food Science and Human Nutrition, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| |
Collapse
|
10
|
Daci M, Berisha L, Mercatante D, Rodriguez-Estrada MT, Jin Z, Huang Y, Amorati R. Advancements in Biosensors for Lipid Peroxidation and Antioxidant Protection in Food: A Critical Review. Antioxidants (Basel) 2024; 13:1484. [PMID: 39765813 PMCID: PMC11672933 DOI: 10.3390/antiox13121484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025] Open
Abstract
This review highlights the progress made in recent years on biosensors aimed at detecting relevant analytes/markers of food peroxidation. Starting from the basic definition of biosensors and the chemical features of peroxidation, here we describe the different approaches that can be used to obtain information about the progress of peroxidation and the efficacy of antioxidants. Aptamers, metal-organic frameworks, nanomaterials, and supported enzymes, in conjunction with electrochemical methods, can provide fast and cost-effective detection of analytes related to peroxidation, like peroxides, aldehydes, and metals. The determination of (poly)phenols concentrations by biosensors, which can be easily obtained by using immobilized enzymes (like laccase), provides an indirect measure of peroxidation. The rationale for developing new biosensors, with a special focus on food applications, is also discussed.
Collapse
Affiliation(s)
- Majlinda Daci
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Pristina, Str. Mother Teresa, 10000 Prishtina, Kosovo;
| | - Liridon Berisha
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Pristina, Str. Mother Teresa, 10000 Prishtina, Kosovo;
- NanoAlb, Albanian NanoScience and Nanotechnology Unit, Academy of Sciences of Albania, Shëtitorja Murat Toptani, 1000 Tiranë, Albania
| | - Dario Mercatante
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum-Università di Bologna, Viale G. Fanin 40, 40127 Bologna, Italy; (D.M.); (M.T.R.-E.)
| | - Maria Teresa Rodriguez-Estrada
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum-Università di Bologna, Viale G. Fanin 40, 40127 Bologna, Italy; (D.M.); (M.T.R.-E.)
| | - Zongxin Jin
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum-Università di Bologna, Via Gobetti 83, 40129 Bologna, Italy; (Z.J.); (Y.H.)
| | - Yeqin Huang
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum-Università di Bologna, Via Gobetti 83, 40129 Bologna, Italy; (Z.J.); (Y.H.)
| | - Riccardo Amorati
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum-Università di Bologna, Via Gobetti 83, 40129 Bologna, Italy; (Z.J.); (Y.H.)
| |
Collapse
|
11
|
Xiao Y, Sun L, Ding Q, Li M, Zhu Y, Lee JH, Li S, Zhao G, Wang Y, Wang Y, Zhao L. Dynamic analysis of bovine bone high-temperature hydrolysate emulsion formation based on microstructure and physicochemical interactions. Int J Biol Macromol 2024; 283:137667. [PMID: 39561825 DOI: 10.1016/j.ijbiomac.2024.137667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Abstract
In the food industry, the emulsifying process alters both the stability and quality of the emulsified products prepared by bovine bone high-temperature hydrolysate (BBHH). The microstructure and interactions of BBHH emulsion were characterized by cryo-scanning electron microscopy (Cryo-SEM) and Raman spectroscopy during emulsification. Notably, BBHH emulsion exhibited the best properties under emulsifying for 120 s, attributed to its interfacial adsorption characteristics. In terms of microstructure, the droplets were small and uniform, and the cross-linking and network structure between the droplet surfaces were obvious at 120 s. Raman spectroscopy indicated that the adsorption of BBHH at the oil-water interface mainly involved an increase of the β-sheet at the expense of the α-helix region. In addition, protein adsorption and structural development at the interface were driven by hydrophobic interactions, while further rearrangement and polymerization were mediated by disulfide bonds. Furthermore, the stability and particle size distribution of the emulsion also supported the results. This study provided a theoretical basis for the behavior of BBHH emulsion formation, which expanded valuable insights into the mechanisms by which liquid food emulsification systems mediated by animal-derived proteins and how they behave under a variety of external conditions.
Collapse
Affiliation(s)
- Yan Xiao
- College of Food Science and Technology, International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Lingxia Sun
- College of Food Science and Technology, International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Qian Ding
- College of Food Science and Technology, International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Miaoyun Li
- College of Food Science and Technology, International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Yaodi Zhu
- College of Food Science and Technology, International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Jong-Hoon Lee
- Department of Food Science and Biotechnology, Kyonggi University, Suwon 16227, Republic of Korea
| | - Shengzhao Li
- Henan Yujiang Food Co., LTD, Henan Province, Luohe 462600, PR China
| | - Gaiming Zhao
- College of Food Science and Technology, International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Yican Wang
- College of Food Science and Technology, International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Yuying Wang
- College of Food Science and Technology, International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Lijun Zhao
- College of Food Science and Technology, International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou 450002, PR China.
| |
Collapse
|
12
|
Guo C, Wu Y, Wang Q, Li X, Deng T, Xia X, Li L, Li H, Lin C, Zhu C, Liu F. Super-resolution imaging lysosome vesicles and establishing a gallbladder-visualizable zebrafish model via a fluorescence probe. Talanta 2024; 279:126656. [PMID: 39098243 DOI: 10.1016/j.talanta.2024.126656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
Advanced probes for imaging viscous lipids microenvironment in vitro and in vivo are desirable for the study of membranous organelles and lipids traffic. Herein, a reaction-based dihydroquinoline probe (DCQ) was prepared via linking a diethylamino coumarin fluorophore with a N-methylquinoline moiety. DCQ is stable in low viscous aqueous mediums and exhibits green fluorescence, which undergoes fast autoxidation in high viscous mediums to form a fluorescent product with deep-red to near-infrared (NIR) emission, rendering the ability for dual-color imaging. Living cell imaging indicated that DCQ can effectively stain lysosomal membranes with deep-red fluorescence. Super-resolution imaging of lysosome vesicles has been achieved by DCQ and stimulated emission depletion (STED) microscopy. In addition, DCQ realizes multiple organs imaging in zebrafish, whose dual-color emission can perfectly discriminate zebrafish's yolk sac, digestive tract and gallbladder. Most importantly, DCQ has been successfully used to establish a gallbladder-visualizable zebrafish model for the evaluation of drug stress.
Collapse
Affiliation(s)
- Chengxi Guo
- School of Pharmaceutical Sciences, Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yufang Wu
- School of Pharmaceutical Sciences, Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Qiling Wang
- School of Pharmaceutical Sciences, Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xiaoqi Li
- School of Pharmaceutical Sciences, Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Tao Deng
- School of Medicine, Foshan University, Foshan, 528000, China
| | - Xiaotong Xia
- School of Pharmaceutical Sciences, Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Lei Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China.
| | - Huan Li
- Lingnan Medical Research Center, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China
| | - Chaozhan Lin
- School of Pharmaceutical Sciences, Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Chenchen Zhu
- School of Pharmaceutical Sciences, Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Fang Liu
- School of Pharmaceutical Sciences, Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
13
|
Li M, Li X, Ren H, Shao W, Wang C, Huang Y, Zhang S, Han Y, Zhang Y, Yin M, Zhang F, Cheng Y, Yang Y. Preparation and characterization of agarose-sodium alginate hydrogel beads for the co-encapsulation of lycopene and resveratrol nanoemulsion. Int J Biol Macromol 2024; 277:133753. [PMID: 39084974 DOI: 10.1016/j.ijbiomac.2024.133753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/18/2024] [Accepted: 07/07/2024] [Indexed: 08/02/2024]
Abstract
In the study, lycopene and resveratrol nanoemulsion hydrogel beads were prepared by using agarose‑sodium alginate as a carrier and the semi-interpenetrating polymer network technique, characteristics and morphologies were evaluated by scanning electron microscopy, fluorescence microscopy, rheological measurement. The synergistic antioxidant effect of lycopene and resveratrol was confirmed, the best synergistic antioxidant performance is achieved when the ratio of 1:1. To increase the solubility and improve the stability, the lycopene was prepared as solid dispersion added to the nanoemulsion. The encapsulation rate of lycopene and resveratrol reached 93.60 ± 2.94 % and 89.30 ± 1.75 %, respectively, and the cumulative release showed that the addition of agarose slowed down the release rate of the compound, which improves the applicability of lycopene and resveratrol and development of carriers for the delivery of different bioactive ingredients.
Collapse
Affiliation(s)
- Mingyuan Li
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xinyi Li
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Hongmeng Ren
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wanhui Shao
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Chaojie Wang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yu Huang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Siqi Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yanqi Han
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yi Zhang
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Mengsi Yin
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Faxin Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yan Cheng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yanfang Yang
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
14
|
Rahmani-Manglano NE, Fallahasghari EZ, Mendes AC, Andersen ML, Guadix EM, Chronakis IS, García-Moreno PJ. Oxidative Stability of Fish Oil-Loaded Nanocapsules Produced by Electrospraying Using Kafirin or Zein Proteins as Wall Materials. Antioxidants (Basel) 2024; 13:1145. [PMID: 39334804 PMCID: PMC11428463 DOI: 10.3390/antiox13091145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/04/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
The encapsulation of fish oil by monoaxial electrospraying using kafirin or zein proteins as hydrophobic wall materials was investigated. Kafirin resulted in spherical fish oil-loaded nanocapsules (>50% of capsules below 1 µm), whereas zein led to fish oil-loaded nanocapsules with non-spherical morphology (>80% of capsules below 1 µm). Both hydrophobic encapsulating materials interacted with fish oil, successfully entrapping the oil within the protein matrix as indicated by Fourier-transform infrared spectroscopy (FTIR) and Raman spectroscopy results. FTIR also suggested hydrogen bonding between fish oil and the proteins. Trapped radicals in the encapsulation matrix that were detected by electron paramagnetic resonance (EPR), indicated oxidation during electrospraying and storage. Results from isothermal (140 °C) differential scanning calorimetry (DSC) denoted that the encapsulation of fish oil by electrospraying using both kafirin or zein as wall materials protected fish oil from oxidation. In particular, the zein-based nanocapsules were 3.3 times more oxidatively stable than the kafirin-based nanocapsules, which correlates with the higher oil encapsulation efficiency found for zein-based capsules. Thus, this study shows that kafirin might be considered a hydrophobic wall material for the encapsulation of fish oil by electrospraying, although it prevented lipid oxidation to a lower extent when compared to zein.
Collapse
Affiliation(s)
- Nor E. Rahmani-Manglano
- Department of Chemical Engineering, University of Granada, 18071 Granada, Spain; (N.E.R.-M.); (E.M.G.)
| | - Elnaz Z. Fallahasghari
- DTU-Food, Research Group for Food Production Engineering, Laboratory of Nano-BioScience, Technical University of Denmark, Henrik Dams Allé, B202, 2800 Kongens Lyngby, Denmark;
| | - Ana C. Mendes
- DTU-Food, Research Group for Food Production Engineering, Laboratory of Nano-BioScience, Technical University of Denmark, Henrik Dams Allé, B202, 2800 Kongens Lyngby, Denmark;
| | - Mogens L. Andersen
- Department of Food Science, University of Copenhagen, 1958 Copenhagen, Denmark;
| | - Emilia M. Guadix
- Department of Chemical Engineering, University of Granada, 18071 Granada, Spain; (N.E.R.-M.); (E.M.G.)
| | - Ioannis S. Chronakis
- DTU-Food, Research Group for Food Production Engineering, Laboratory of Nano-BioScience, Technical University of Denmark, Henrik Dams Allé, B202, 2800 Kongens Lyngby, Denmark;
| | - Pedro J. García-Moreno
- Department of Chemical Engineering, University of Granada, 18071 Granada, Spain; (N.E.R.-M.); (E.M.G.)
| |
Collapse
|
15
|
Mardani M, Badakné K, Szedljak I, Sörös C, Farmani J. Lipophilized rosmarinic acid: Impact of alkyl type and food matrix on antioxidant activity, and optimized enzymatic production. Food Chem 2024; 452:139518. [PMID: 38713983 DOI: 10.1016/j.foodchem.2024.139518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/10/2024] [Accepted: 04/28/2024] [Indexed: 05/09/2024]
Abstract
In this study, the initial focus was on exploring the simultaneous impact of the oil-based food matrix and the polarity of rosmarinic acid derivatives on the antioxidant properties. Rosmarinic acid (RA) showed remarkable DPPH, FRAP, and ABTS radical scavenging activities, followed by methyl rosmarinate (MR) and ethyl rosmarinate (ER). In bulk oil, both conjugated dienes and p-AnV values reached a peak in the following order after 30 days: ER > MR > RA = BHT > control (no antioxidant). In the oil structured using monoacylglycerol, MR was more effective than ER and RA. For ethyl cellulose oleogel, emulsion, and gelled emulsion systems, RA was more effective. Additionally, after confirming the importance of the food matrix on the antioxidant activity of RA derivatives, the lipophilization of RA with ethanol was optimized as a model with Lipozyme 435 in hexane. A conversion yield of as high as 85.59% for ER was achieved, as quantified by HPLC-UV and confirmed by HPLC-DAD-ESI-qTOFMS.
Collapse
Affiliation(s)
- Mohsen Mardani
- Department of Cereal and Industrial Plant Processing, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Villányi út 23, H-1118, Budapest, Hungary
| | - Katalin Badakné
- Department of Cereal and Industrial Plant Processing, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Villányi út 23, H-1118, Budapest, Hungary
| | - Ildikó Szedljak
- Department of Cereal and Industrial Plant Processing, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Villányi út 23, H-1118, Budapest, Hungary
| | - Csilla Sörös
- Department of Applied Chemistry, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Villányi út 23, H-1118, Budapest, Hungary
| | - Jamshid Farmani
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, PO Box: 578, Sari, Iran.
| |
Collapse
|
16
|
Wang X, Fan C, Wang X, Feng T, Xia S, Yu J. Formation mechanism of off-flavor and the inhibition regulatory strategies in the algal oil-loaded emulsions-a review. Crit Rev Food Sci Nutr 2024:1-18. [PMID: 39216015 DOI: 10.1080/10408398.2024.2397451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Algal oil rich in docosahexaenoic acid is easily oxidized and degraded to produce volatile short-chain compounds, leading to the deterioration of product flavor. Currently, the emulsion delivery of algal oil provides a promising approach to minimize oxidative deterioration and conceal its off-flavor. However, algal oil emulsions would also experience unanticipated oxidation as a result of the large specific surface area between the aqueous phase and the oil phase. The current paper offers a mechanism overview behind off-flavor formation in algal oil emulsions and explores corresponding strategies for the inhibition regulation. Additionally, the paper delves into the factors influencing lipid oxidation and the perception of off-flavors in such emulsions. To mitigate the development of off-flavors in algal oil emulsions resulting from oxidation, it is crucial to decline the likelihood of lipid oxidation and proactively prevent the creation of off-flavors whenever possible. Minimizing the release of volatile off-flavor compounds that are inevitably generated is also considered effective for weakening off-flavor. Moreover, co-encapsulation with particular desirable aroma substances could improve the overall flavor characteristics of emulsions.
Collapse
Affiliation(s)
- Xinshuo Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| | - Chunli Fan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| | - Xingwei Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| | - Tingting Feng
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Shuqin Xia
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| | - Jingyang Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
17
|
Chen Y, Zhang Z, Chen Y, Li T, Zhang W. The role of fat content in coconut milk: Stability and digestive properties. Food Chem 2024; 446:138900. [PMID: 38428074 DOI: 10.1016/j.foodchem.2024.138900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
The fat in coconut milk contributes to unique flavour, while increasing fat content affects stability of the coconut milk. In this study, coconut water and fat were separated, recombined, and homogenized to obtain coconut milk with different fat contents (0-20 %). Emulsifying properties, stability, and digestibility of coconut milk with different fat contents were comprehensively evaluated. The results showed that as the fat content increased from 0 to 20 %, the droplet size increased from 2.18 to 4.70 μm and the viscosity showed an increasing trend. During storage and freeze-thaw, coconut milk with 5 % and 10 % fat content showed excellent stability. In addition, coconut milk with 10 % fat content had superior fat digestibility, which was related to high affinity of pancrelipase. In short, this study revealed that fat content below 10 % can withstand environmental factors such as storage, lipid oxidation, and freeze-thaw, which can be accurately developed as coconut milk products.
Collapse
Affiliation(s)
- Yang Chen
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Zihan Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Yile Chen
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Tian Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Weimin Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan Institute for Food Control, Haikou, Hainan 570228, China.
| |
Collapse
|
18
|
da Silva ARA, Santelli RE, Braz BF, Silva MMN, Melo L, Lemes AC, Ribeiro BD. A Comparative Study of Dairy and Non-Dairy Milk Types: Development and Characterization of Customized Plant-Based Milk Options. Foods 2024; 13:2169. [PMID: 39063253 PMCID: PMC11276104 DOI: 10.3390/foods13142169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Plant-based milk has gained considerable attention; however, its high nutritional variation highlights the need for improved formulation designs to enhance its quality. This study aimed to nutritionally compare cow milk with plant-based milk produced from hazelnuts (H), Brazil nuts (BN), cashew nuts (CN), soybeans (S), and sunflower seeds (SS), and to perform physicochemical and technological characterization. The plant-based milk produced with isolated grains showed a nutritional composition inferior to that of cow milk in almost all evaluated parameters, protein content (up to 1.1 g 100 g-1), lipids (up to 2.7 g 100 g-1), color parameters, minerals, and especially calcium (up to 62.4 mg L-1), which were originally high in cow milk (up to 1030 mg L-1). However, the plant-based milk designed using a blend composition was able to promote nutritional enhancement in terms of minerals, especially iron (Fe) and magnesium (Mg), high-quality lipids (up to 3.6 g 100 g-1), and carbohydrates (3.4 g 100 g-1 using CN, BN, and S). The protein content was 1.3% compared to 5.7 in cow milk, and the caloric value of plant-based milk remained 32.8 at 52.1 kcal, similar to cow milk. Satisfactory aspects were observed regarding the shelf life, especially related to microbiological stability during the 11 d of storage at 4 °C. For the designed plant-based milk to be equivalent to cow milk, further exploration for optimizing the blends used to achieve better combinations is required. Furthermore, analyzing possible fortification and preservation methods to increase shelf life and meet the nutritional and sensory needs of the public would be interesting.
Collapse
Affiliation(s)
- Aline Rolim Alves da Silva
- Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Bloco A—Cidade Universitária, Rio de Janeiro 21044-020, RJ, Brazil; (A.R.A.d.S.); (R.E.S.); (B.F.B.); (M.M.N.S.)
| | - Ricardo Erthal Santelli
- Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Bloco A—Cidade Universitária, Rio de Janeiro 21044-020, RJ, Brazil; (A.R.A.d.S.); (R.E.S.); (B.F.B.); (M.M.N.S.)
| | - Bernardo Ferreira Braz
- Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Bloco A—Cidade Universitária, Rio de Janeiro 21044-020, RJ, Brazil; (A.R.A.d.S.); (R.E.S.); (B.F.B.); (M.M.N.S.)
| | - Marselle Marmo Nascimento Silva
- Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Bloco A—Cidade Universitária, Rio de Janeiro 21044-020, RJ, Brazil; (A.R.A.d.S.); (R.E.S.); (B.F.B.); (M.M.N.S.)
| | - Lauro Melo
- Escola de Química, Universidade Federal do Rio de Janeiro. Av. Athos da Silveira Ramos, 149, Bloco E—Cidade Universitária, Rio de Janeiro 21044-020, RJ, Brazil; (L.M.); (A.C.L.)
| | - Ailton Cesar Lemes
- Escola de Química, Universidade Federal do Rio de Janeiro. Av. Athos da Silveira Ramos, 149, Bloco E—Cidade Universitária, Rio de Janeiro 21044-020, RJ, Brazil; (L.M.); (A.C.L.)
| | - Bernardo Dias Ribeiro
- Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Bloco A—Cidade Universitária, Rio de Janeiro 21044-020, RJ, Brazil; (A.R.A.d.S.); (R.E.S.); (B.F.B.); (M.M.N.S.)
- Escola de Química, Universidade Federal do Rio de Janeiro. Av. Athos da Silveira Ramos, 149, Bloco E—Cidade Universitária, Rio de Janeiro 21044-020, RJ, Brazil; (L.M.); (A.C.L.)
| |
Collapse
|
19
|
Zhang Y, Lyu H, Cao J, Wang J, Teng W, Wang Y. Constructing myosin/high-density lipoprotein composite emulsions: Roles of pH on emulsification stability, rheological and structural properties. Food Res Int 2024; 188:114440. [PMID: 38823857 DOI: 10.1016/j.foodres.2024.114440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/23/2024] [Accepted: 04/27/2024] [Indexed: 06/03/2024]
Abstract
The emulsification activity of myosin plays a significant role in affecting quality of emulsified meat products. High-density lipoprotein (HDL) possesses strong emulsification activity and stability due to its structural characteristics, suggesting potential for its utilization in developing functional emulsified meat products. In order to explore the effect of HDL addition on emulsification stability, rheological properties and structural features of myosin (MS) emulsions, HDL-MS emulsion was prepared by mixing soybean oil with isolated HDL and MS, with pH adjustments ranging from 3.0 to 11.0. The results found that emulsification activity and stability in two emulsion groups consistently improved as pH increased. Under identical pH, HDL-MS emulsion exhibited superior emulsification behavior as compared to MS emulsion. The HDL-MS emulsion under pH of 7.0-11.0 formed a viscoelastic protein layer at the interface, adsorbing more proteins and retarding oil droplet diffusion, leading to enhanced oxidative stability, compared to the MS emulsion. Raman spectroscopy analysis showed more flexible conformational changes in the HDL-MS emulsion. Microstructural observations corroborated these findings, showing a more uniform distribution of droplet sizes in the HDL-MS emulsion with smaller particle sizes. Overall, these determinations suggested that the addition of HDL enhanced the emulsification behavior of MS emulsions, and the composite emulsions demonstrated heightened responsiveness under alkaline conditions. This establishes a theoretical basis for the practical utilization of HDL in emulsified meat products.
Collapse
Affiliation(s)
- Yuemei Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China
| | - Hangbin Lyu
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Pharmaceutical Sciences, Ningbo University, 315211 Ningbo, China
| | - Jinxuan Cao
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China
| | - Jinpeng Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China
| | - Wendi Teng
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China
| | - Ying Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China.
| |
Collapse
|
20
|
Hajfathalian M, Mossburg KJ, Radaic A, Woo KE, Jonnalagadda P, Kapila Y, Bollyky PL, Cormode DP. A review of recent advances in the use of complex metal nanostructures for biomedical applications from diagnosis to treatment. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1959. [PMID: 38711134 PMCID: PMC11114100 DOI: 10.1002/wnan.1959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 05/08/2024]
Abstract
Complex metal nanostructures represent an exceptional category of materials characterized by distinct morphologies and physicochemical properties. Nanostructures with shape anisotropies, such as nanorods, nanostars, nanocages, and nanoprisms, are particularly appealing due to their tunable surface plasmon resonances, controllable surface chemistries, and effective targeting capabilities. These complex nanostructures can absorb light in the near-infrared, enabling noteworthy applications in nanomedicine, molecular imaging, and biology. The engineering of targeting abilities through surface modifications involving ligands, antibodies, peptides, and other agents potentiates their effects. Recent years have witnessed the development of innovative structures with diverse compositions, expanding their applications in biomedicine. These applications encompass targeted imaging, surface-enhanced Raman spectroscopy, near-infrared II imaging, catalytic therapy, photothermal therapy, and cancer treatment. This review seeks to provide the nanomedicine community with a thorough and informative overview of the evolving landscape of complex metal nanoparticle research, with a specific emphasis on their roles in imaging, cancer therapy, infectious diseases, and biofilm treatment. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Diagnostic Tools > Diagnostic Nanodevices.
Collapse
Affiliation(s)
- Maryam Hajfathalian
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA 94305
| | - Katherine J. Mossburg
- Department of Radiology, University of Pennsylvania, 3400 Spruce Street, 1 Silverstein, Philadelphia, Pennsylvania 19104, United States
| | - Allan Radaic
- School of Dentistry, University of California Los Angeles
| | - Katherine E. Woo
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA 94305
| | - Pallavi Jonnalagadda
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yvonne Kapila
- School of Dentistry, University of California Los Angeles
| | - Paul L. Bollyky
- Division of Infectious Diseases, Department of Medicine, Stanford University
| | - David P. Cormode
- Department of Radiology, Department of Bioengineering, University of Pennsylvania
| |
Collapse
|
21
|
Münch K, Stoyanov S, Schroën K, Berton-Carabin C. Effect of Nonprotein Components for Lipid Oxidation in Emulsions Stabilized by Plant Protein Extracts. ACS FOOD SCIENCE & TECHNOLOGY 2024; 4:926-934. [PMID: 38660053 PMCID: PMC11036399 DOI: 10.1021/acsfoodscitech.3c00691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 04/26/2024]
Abstract
Plant protein ingredients are rich in non-protein components of which the antioxidant and pro-oxidant effects are expected to be considerable. In this paper, commercial soy and pea protein isolates and concentrates were selected by using their soluble fractions to prepare oil-in-water (O/W) emulsions. Emulsions stabilized with soy protein isolates were more prone to lipid oxidation than those with soy protein concentrate or pea protein isolate. Compositional analysis revealed that the soluble fraction of soy protein isolates contained higher concentrations of phenolic compounds and metals (iron and copper) but lower mineral and ash contents than those of soy protein concentrate and pea protein isolate. Correlating the composition to oxidation in emulsions highlighted the significant role of non-protein components, alongside the protein's oxidative state. These findings are relevant for the use of alternative proteins in food formulation, a practice often promoted as sustainable yet that may come with repercussions for oxidative stability.
Collapse
Affiliation(s)
- Katharina Münch
- Laboratory
of Food Process Engineering, Wageningen
University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Simeon Stoyanov
- Laboratory
of Physical Chemistry and Soft Matter, Wageningen
University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Singapore
Institute of Technology, 10 Dover Drive, 138683 Singapore, Singapore
| | - Karin Schroën
- Laboratory
of Food Process Engineering, Wageningen
University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Claire Berton-Carabin
- Laboratory
of Food Process Engineering, Wageningen
University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
- INRAE,
UR BIA, 44300 Nantes, France
| |
Collapse
|
22
|
Hennebelle M, Villeneuve P, Durand E, Lecomte J, van Duynhoven J, Meynier A, Yesiltas B, Jacobsen C, Berton-Carabin C. Lipid oxidation in emulsions: New insights from the past two decades. Prog Lipid Res 2024; 94:101275. [PMID: 38280491 DOI: 10.1016/j.plipres.2024.101275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
Lipid oxidation constitutes the main source of degradation of lipid-rich foods, including food emulsions. The complexity of the reactions at play combined with the increased demand from consumers for less processed and more natural foods result in additional challenges in controlling this phenomenon. This review provides an overview of the insights acquired over the past two decades on the understanding of lipid oxidation in oil-in-water (O/W) emulsions. After introducing the general structure of O/W emulsions and the classical mechanisms of lipid oxidation, the contribution of less studied oxidation products and the spatiotemporal resolution of these reactions will be discussed. We then highlight the impact of emulsion formulation on the mechanisms, taking into consideration the new trends in terms of emulsifiers as well as their own sensitivity to oxidation. Finally, novel antioxidant strategies that have emerged to meet the recent consumer's demand will be detailed. In an era defined by the pursuit of healthier, more natural, and sustainable food choices, a comprehensive understanding of lipid oxidation in emulsions is not only an academic quest, but also a crucial step towards meeting the evolving expectations of consumers and ensuring the quality and stability of lipid-rich food products.
Collapse
Affiliation(s)
- Marie Hennebelle
- Laboratory of Food Chemistry, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, Netherlands.
| | - Pierre Villeneuve
- CIRAD, UMR Qualisud, Montpellier F34398, France; Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Erwann Durand
- CIRAD, UMR Qualisud, Montpellier F34398, France; Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Jérôme Lecomte
- CIRAD, UMR Qualisud, Montpellier F34398, France; Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - John van Duynhoven
- Laboratory of Biophysics, Wageningen University & Research, Wageningen, the Netherlands; Unilever Food Innovation Centre, Wageningen, the Netherlands
| | | | - Betül Yesiltas
- Research group for Bioactives - Analysis and Application, Technical University of Denmark, National Food Institute, Kgs. Lyngby DK-2800, Denmark
| | - Charlotte Jacobsen
- Research group for Bioactives - Analysis and Application, Technical University of Denmark, National Food Institute, Kgs. Lyngby DK-2800, Denmark
| | - Claire Berton-Carabin
- INRAE, UR BIA, Nantes 44300, France; Laboratory of Food Process Engineering, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
23
|
Nejatian M, Ghandehari Yazdi AP, Fattahi R, Saberian H, Bazsefidpar N, Assadpour E, Jafari SM. Improving the storage and oxidative stability of essential fatty acids by different encapsulation methods; a review. Int J Biol Macromol 2024; 260:129548. [PMID: 38246446 DOI: 10.1016/j.ijbiomac.2024.129548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 01/06/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
Linoleic acid and α-linolenic acid are the only essential fatty acids (EFAs) known to the human body. Other fatty acids (FAs) of the omega-6 and omega-3 families originate from linoleic acid and α-linolenic acid, respectively, by the biological processes of elongation and desaturation. In diets with low fish consumption or vegetarianism, these FAs play an exclusive role in providing two crucial FAs for maintaining our body's vital functions; docosahexaenoic acid and arachidonic acid. However, these polyunsaturated FAs are inherently sensitive to oxidation, thereby adversely affecting the storage stability of oils containing them. In this study, we reviewed encapsulation as one of the promising solutions to increase the stability of EFAs. Accordingly, five main encapsulation techniques could be classified: (i) spray drying, (ii) freeze drying, (iii) emulsification, (iv) liposomal entrapment, and (v) other methods, including electrospinning/spraying, complex coacervation, etc. Among these, spray drying was the frequently applied technique for encapsulation of EFAs, followed by freeze dryers. In addition, maltodextrin and gum Arabic were the main wall materials in carriers. Paying attention to industrial scalability and lower cost of the encapsulation process by the other methods are the important aspects that should be given more attention in the future.
Collapse
Affiliation(s)
- Mohammad Nejatian
- Department of Nutrition Science and Food Hygiene, Faculty of Health, Baqiyatallah University of Medical Sciences, Tehran, Iran; Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amir Pouya Ghandehari Yazdi
- Department of Research and Development, Zarmacaron Company, Zar Industrial and Research Group, Alborz, Iran.
| | - Reza Fattahi
- Department of Research and Development, Zarmacaron Company, Zar Industrial and Research Group, Alborz, Iran
| | - Hamed Saberian
- Technical Centre of Agriculture, Academic Center for Education, Culture and Research (ACECR), Isfahan University of Technology, Isfahan, Iran
| | - Nooshin Bazsefidpar
- Department of Research and Development, Zarmacaron Company, Zar Industrial and Research Group, Alborz, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
24
|
Padial-Domínguez M, García-Moreno PJ, González-Beneded R, Guadix A, Guadix EM. Evaluation of the Physical and Oxidative Stabilities of Fish Oil-in-Water-in-Olive Oil Double Emulsions (O 1/W/O 2) Stabilized with Whey Protein Hydrolysate. Antioxidants (Basel) 2023; 12:antiox12030762. [PMID: 36979010 PMCID: PMC10044726 DOI: 10.3390/antiox12030762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
This work studied the physical and oxidative stabilities of fish oil-in-water-in-olive oil double emulsions (O1/W/O2), where whey protein hydrolysate was used as a hydrophilic emulsifier. A 20 wt.% fish oil-in-water emulsion, stabilized with whey protein hydrolysate (oil: protein ratio of 5:2 w/w) and with a zeta potential of ~-40 mV, only slightly increased its D4,3 value during storage at 8 °C for seven days (from 0.725 to 0.897 µm), although it showed severe physical destabilization when stored at 25 °C for seven days (D4,3 value increased from 0.706 to 9.035 µm). The oxidative stability of the 20 wt.% fish oil-in-water emulsion decreased when the storage temperature increased (25 vs. 8 °C) as indicated by peroxide and p-anisidine values, both in the presence or not of prooxidants (Fe2+). Confocal microscopy images confirmed the formation of 20 wt.% fish oil-in-water-in-olive oil (ratio 25:75 w/w) using Polyglycerol polyricinoleate (PGPR, 4 wt.%). Double emulsions were fairly physically stable for 7 days (both at 25 and 8 °C) (Turbiscan stability index, TSI < 4). Moreover, double emulsions had low peroxide (<7 meq O2/kg oil) and p-anisidine (<7) values that did not increase during storage independently of the storage temperature (8 or 25 °C) and the presence or not of prooxidants (Fe2+), which denotes oxidative stability.
Collapse
Affiliation(s)
| | | | | | - Antonio Guadix
- Department of Chemical Engineering, University of Granada, 18071 Granada, Spain
| | - Emilia M Guadix
- Department of Chemical Engineering, University of Granada, 18071 Granada, Spain
| |
Collapse
|