1
|
González Flores M, Origone AC, Rodríguez ME, Lopes CA. Nonconventional yeasts and hybrids for low temperature handcrafted sparkling ciders elaboration in Patagonia. Int J Food Microbiol 2024; 412:110566. [PMID: 38241754 DOI: 10.1016/j.ijfoodmicro.2024.110566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/21/2024]
Abstract
Yeasts play a crucial role in transforming apple must into cider. While Saccharomyces cerevisiae (Sc) has been traditionally associated to cider fermentations worldwide, cryotolerant species such as Saccharomyces uvarum (Su) as well as natural S. cerevisiae × S. uvarum (Sc×Su) hybrids have also been detected in ciders fermented at low temperatures. This study aimed to evaluate the ability of two Patagonian cryotolerant yeast strains (Su and Se) and their interspecific hybrids with a Sc to conduct handcrafted apple must fermentations and a second fermentation process (champenoise method). The main chemical parameters and sensory quality of the resulting sparkling beverages was also analysed. Firstly, Sc×Se and Sc×Su hybrids were evaluated in their fermentative features at laboratory scale. Hybrids were compared with their respective parental species evidencing significant differences in the physicochemical and aromatic composition of the obtained base ciders. Both Su parental strain and the hybrid Sc×Se were selected for performing pilot scale fermentations (250 L) using natural (non-sterilized) apple juice at two different temperatures: 20 °C and 13 °C. Sc parental strain was also evaluated for comparative purposes. All base ciders obtained were then subjected to a second fermentation. A high implantation capacity of both Su and the hybrid was evidenced at the lowest evaluated temperature, while commercial Sc strain was not detected at the final fermentation stage, independently from the temperature. All sparkling ciders exhibited distinct physicochemical profiles. Ciders inoculated with commercial Sc (but effectively fermented with local Sc strains) allowed the development of malolactic fermentation (MLF) in processes carried out at both temperatures. Contrarily, no MLF was observed in ciders inoculated with either Su or the hybrid. Sparkling ciders fermented with Su displayed the highest concentrations of 2-phenylethanol and 2-phenylethyl acetate, regardless of the fermentation temperature. Conversely, ciders fermented with the hybrid at 20 °C exhibited the highest concentrations of ethyl octanoate and ethyl decanoate, contributing to floral and fruity notes in the beverage. Sensory analysis conducted with untrained individuals revealed a preference for sparkling ciders produced with the hybrid strain at both 20 °C and 13 °C. The cider fermented at 20 °C exhibited floral notes, sweetness, and a full body, while ciders fermented at 13 °C displayed moderate acidity and a well-balanced profile. Conversely, a trained panel described the cider fermented at 20 °C with Su as a fruity and acidic beverage, whereas the ciders fermented at 13 °C exhibited intense bitterness and acidity. This study highlights the potential of cryotolerant Saccharomyces species and hybrids in the development of new starter cultures for producing artisanal sparkling ciders with distinctive properties.
Collapse
Affiliation(s)
- Melisa González Flores
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina-Universidad Nacional del Comahue), Buenos Aires 1400, 8300 Neuquén, Argentina; Facultad de Ciencias Agrarias, Universidad Nacional del Comahue, Argentina
| | - Andrea Cecilia Origone
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina-Universidad Nacional del Comahue), Buenos Aires 1400, 8300 Neuquén, Argentina; Facultad de Ciencias Agrarias, Universidad Nacional del Comahue, Argentina
| | - María Eugenia Rodríguez
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina-Universidad Nacional del Comahue), Buenos Aires 1400, 8300 Neuquén, Argentina; Facultad de Ciencias Médicas, Universidad Nacional del Comahue, Argentina
| | - Christian Ariel Lopes
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina-Universidad Nacional del Comahue), Buenos Aires 1400, 8300 Neuquén, Argentina; Facultad de Ciencias Agrarias, Universidad Nacional del Comahue, Argentina.
| |
Collapse
|
2
|
Congcong W, Vinothkanna A, Yongkun M, Jie H, Rai AK, Jindong X, Dahai L. Production of mulberry wine using selenium-enriched Saccharomyces cerevisiae: implications from sensory analysis, phytochemical and antioxidant activities. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:366-384. [PMID: 38196717 PMCID: PMC10772015 DOI: 10.1007/s13197-023-05847-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/06/2023] [Accepted: 09/11/2023] [Indexed: 01/11/2024]
Abstract
The present study aims to evaluate the quality of chemical, sensory properties and antioxidant potential of mulberry wine using selenium-enriched yeasts employing eight different methods (MW1-MW8). The selenium-enriched yeast significantly (p < 0.05) increased phytochemical profiles, flavor, quality and antioxidant capacity. The most effective method for raising the selenium level of mulberry wine was using L-seMC (MW5). Mulberry wine color was attributed to the anthocyanins and phytochemical composition with selenium content. DPPH and ABTS radical scavenging activity varied with change in treatment methods suggesting their impact on antioxidant activity. Total selenium content on L-SeMC supplementation proved a significant correlation between selenium content with total anthocyanin content, total polyphenol content and flavonoid content. Sensory analysis by electronic nose exhibited MW2 with high response value in the W2S sensor showing high alcohol concentration. GC-MS analysis showed the presence of 57 volatile aromatic compounds comprehended by esters and alcohol (isoamyl alcohol, 2-methylbutanol, 2,3-butanediol, and phenethyl alcohol). Principal component analysis affirms the response values for four categorical score values with reliability and consistency for all the parameters, significantly. Thus, the workflow demonstrates a simpler, cost-effective traditional methodology for rationalized outcomes. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-023-05847-4.
Collapse
Affiliation(s)
- Wang Congcong
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013 People’s Republic of China
| | - Annadurai Vinothkanna
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013 People’s Republic of China
| | - Ma Yongkun
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013 People’s Republic of China
| | - Hu Jie
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013 People’s Republic of China
| | - Amit Kumar Rai
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, 737102 Sikkim India
| | - Xue Jindong
- Danyang Yihe Food Co., Ltd., Zhenjiang, 212000 People’s Republic of China
| | - Li Dahai
- Danyang Yihe Food Co., Ltd., Zhenjiang, 212000 People’s Republic of China
| |
Collapse
|
3
|
Jallet A, Friedrich A, Schacherer J. Impact of the acquired subgenome on the transcriptional landscape in Brettanomyces bruxellensis allopolyploids. G3 (BETHESDA, MD.) 2023; 13:jkad115. [PMID: 37226280 PMCID: PMC10320193 DOI: 10.1093/g3journal/jkad115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/21/2023] [Accepted: 05/18/2023] [Indexed: 05/26/2023]
Abstract
Gene expression variation can provide an overview of the changes in regulatory networks that underlie phenotypic diversity. Certain evolutionary trajectories such as polyploidization events can have an impact on the transcriptional landscape. Interestingly, the evolution of the yeast species Brettanomyces bruxellensis has been punctuated by diverse allopolyploidization events leading to the coexistence of a primary diploid genome associated with various haploid acquired genomes. To assess the impact of these events on gene expression, we generated and compared the transcriptomes of a set of 87 B. bruxellensis isolates, selected as being representative of the genomic diversity of this species. Our analysis revealed that acquired subgenomes strongly impact the transcriptional patterns and allow discrimination of allopolyploid populations. In addition, clear transcriptional signatures related to specific populations have been revealed. The transcriptional variations observed are related to some specific biological processes such as transmembrane transport and amino acids metabolism. Moreover, we also found that the acquired subgenome causes the overexpression of some genes involved in the production of flavor-impacting secondary metabolites, especially in isolates of the beer population.
Collapse
Affiliation(s)
- Arthur Jallet
- CNRS, GMGM UMR 7156, Université de Strasbourg, 67000 Strasbourg, France
| | - Anne Friedrich
- CNRS, GMGM UMR 7156, Université de Strasbourg, 67000 Strasbourg, France
| | - Joseph Schacherer
- CNRS, GMGM UMR 7156, Université de Strasbourg, 67000 Strasbourg, France
- Institut Universitaire de France (IUF), 75005 Paris, France
| |
Collapse
|
4
|
Bennis NX, Kostanjšek M, van den Broek M, Daran JMG. Improving CRISPR-Cas9 mediated genome integration in interspecific hybrid yeasts. N Biotechnol 2023; 76:49-62. [PMID: 37028644 DOI: 10.1016/j.nbt.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/03/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023]
Abstract
Saccharomyces pastorianus is not a classical taxon, it is an interspecific hybrid resulting from the cross of Saccharomyces cerevisiae and Saccharomyces eubayanus. Exhibiting heterosis for phenotypic traits such as wort α-oligosaccharide consumption and fermentation at low temperature, it has been domesticated to become the main workhorse of the brewing industry. Although CRISPR-Cas9 has been shown to be functional in S. pastorianus, repair of CRISPR- induced double strand break is unpredictable and preferentially uses the homoeologous chromosome as template, preventing targeted introduction of the desired repair construct. Here, we demonstrate that lager hybrids can be edited with near 100% efficiency at carefully selected landing sites on the chimeric SeScCHRIII. The landing sites were systematically selected and evaluated for (i) absence of loss of heterozygosity upon CRISPR-editing, (ii) efficiency of the gRNA, and (iii) absence of effect on strain physiology. Successful examples of highly efficient single and double gene integration illustrated that genome editing can be applied in interspecies hybrids, paving the way to a new impulse to lager yeast strain development. DATA AVAILABILITY: Data underlying graphs and figures found in this manuscript are deposited at the 4TU research dat center (https://data.4tu.nl/info/en/) and available through the doi: 10.4121/21648329.
Collapse
|
5
|
Lin CL, Petersen MA, Mauch A, Gottlieb A. Towards lager beer aroma improvement via selective amino acid release by proteases during mashing. JOURNAL OF THE INSTITUTE OF BREWING 2022. [DOI: 10.1002/jib.682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Claire L. Lin
- Brewing AR 345 Novozymes A/S Biologiens Vej 2 Kongens Lyngby 2800 Denmark
- Department of Food Science University of Copenhagen Rolighedsvej 26 Frederiksberg 1958 Denmark
| | - Mikael A. Petersen
- Department of Food Science University of Copenhagen Rolighedsvej 26 Frederiksberg 1958 Denmark
| | - Alexander Mauch
- Brewing AR 345 Novozymes A/S Biologiens Vej 2 Kongens Lyngby 2800 Denmark
| | - Andrea Gottlieb
- Brewing AR 345 Novozymes A/S Biologiens Vej 2 Kongens Lyngby 2800 Denmark
| |
Collapse
|
6
|
Interspecific hybridization as a driver of fungal evolution and adaptation. Nat Rev Microbiol 2021; 19:485-500. [PMID: 33767366 DOI: 10.1038/s41579-021-00537-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2021] [Indexed: 02/01/2023]
Abstract
Cross-species gene transfer is often associated with bacteria, which have evolved several mechanisms that facilitate horizontal DNA exchange. However, the increased availability of whole-genome sequences has revealed that fungal species also exchange DNA, leading to intertwined lineages, blurred species boundaries or even novel species. In contrast to prokaryotes, fungal DNA exchange originates from interspecific hybridization, where two genomes are merged into a single, often highly unstable, polyploid genome that evolves rapidly into stabler derivatives. The resulting hybrids can display novel combinations of genetic and phenotypic variation that enhance fitness and allow colonization of new niches. Interspecific hybridization led to the emergence of important pathogens of humans and plants (for example, various Candida and 'powdery mildew' species, respectively) and industrially important yeasts, such as Saccharomyces hybrids that are important in the production of cold-fermented lagers or cold-cellared Belgian ales. In this Review, we discuss the genetic processes and evolutionary implications of fungal interspecific hybridization and highlight some of the best-studied examples. In addition, we explain how hybrids can be used to study molecular mechanisms underlying evolution, adaptation and speciation, and serve as a route towards development of new variants for industrial applications.
Collapse
|
7
|
Lin CL, García-Caro RDLC, Zhang P, Carlin S, Gottlieb A, Petersen MA, Vrhovsek U, Bond U. Packing a punch: understanding how flavours are produced in lager fermentations. FEMS Yeast Res 2021; 21:6316108. [PMID: 34227660 PMCID: PMC8310685 DOI: 10.1093/femsyr/foab040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/02/2021] [Indexed: 11/14/2022] Open
Abstract
Beer is one of the most popular beverages in the world and it has an irreplaceable place in culture. Although invented later than ale, lager beers dominate the current market. Many factors relating to the appearance (colour, clarity and foam stability) and sensory characters (flavour, taste and aroma) of beer, and other psychological determinants affect consumers' perception of the product and defines its drinkability. This review takes a wholistic approach to scrutinise flavour generation in the brewing process, focusing particularly on the contribution of the raw ingredients and the yeasts to the final flavour profiles of lager beers. In addition, we examine current developments to improve lager beer flavour profiles for the modern consumers.
Collapse
Affiliation(s)
- Claire Lin Lin
- Brewing 345, Novozymes A/S, Biologiensvej 2, 2800 Kongens, Lyngby, Denmark.,Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark
| | | | - Penghan Zhang
- Metabolomic Unit, Food Quality and Nutrition Department, Research and Innovation Centre, Edmund Mach Foundation, Via E.Mach 1, 38010 S.Michele all'Adige, Italy
| | - Silvia Carlin
- Metabolomic Unit, Food Quality and Nutrition Department, Research and Innovation Centre, Edmund Mach Foundation, Via E.Mach 1, 38010 S.Michele all'Adige, Italy
| | - Andrea Gottlieb
- Brewing 345, Novozymes A/S, Biologiensvej 2, 2800 Kongens, Lyngby, Denmark
| | - Mikael Agerlin Petersen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark
| | - Urska Vrhovsek
- Metabolomic Unit, Food Quality and Nutrition Department, Research and Innovation Centre, Edmund Mach Foundation, Via E.Mach 1, 38010 S.Michele all'Adige, Italy
| | - Ursula Bond
- School of Genetics and Microbiology, The Moyne Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
8
|
Liu S, Ma D, Li Z, Sun H, Mao J, Shi Y, Han X, Zhou Z, Mao J. Assimilable nitrogen reduces the higher alcohols content of huangjiu. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107660] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Liu S, Ma D, Li Z, Sun H, Mao J, Shi Y, Han X, Zhou Z, Mao J. Assimilable nitrogen reduces the higher alcohols content of huangjiu. Food Control 2021. [DOI: 10.766010.1016/j.foodcont.2020.107660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Gorter de Vries AR, Pronk JT, Daran JMG. Lager-brewing yeasts in the era of modern genetics. FEMS Yeast Res 2020; 19:5573808. [PMID: 31553794 PMCID: PMC6790113 DOI: 10.1093/femsyr/foz063] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022] Open
Abstract
The yeast Saccharomyces pastorianus is responsible for the annual worldwide production of almost 200 billion liters of lager-type beer. S. pastorianus is a hybrid of Saccharomyces cerevisiae and Saccharomyces eubayanus that has been studied for well over a century. Scientific interest in S. pastorianus intensified upon the discovery, in 2011, of its S. eubayanus ancestor. Moreover, advances in whole-genome sequencing and genome editing now enable deeper exploration of the complex hybrid and aneuploid genome architectures of S. pastorianus strains. These developments not only provide novel insights into the emergence and domestication of S. pastorianus but also generate new opportunities for its industrial application. This review paper combines historical, technical and socioeconomic perspectives to analyze the evolutionary origin and genetics of S. pastorianus. In addition, it provides an overview of available methods for industrial strain improvement and an outlook on future industrial application of lager-brewing yeasts. Particular attention is given to the ongoing debate on whether current S. pastorianus originates from a single or multiple hybridization events and to the potential role of genome editing in developing industrial brewing yeast strains.
Collapse
Affiliation(s)
- Arthur R Gorter de Vries
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jean-Marc G Daran
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
11
|
Gorter de Vries AR, Knibbe E, van Roosmalen R, van den Broek M, de la Torre Cortés P, O'Herne SF, Vijverberg PA, El Masoudi A, Brouwers N, Pronk JT, Daran JMG. Improving Industrially Relevant Phenotypic Traits by Engineering Chromosome Copy Number in Saccharomyces pastorianus. Front Genet 2020; 11:518. [PMID: 32582279 PMCID: PMC7283523 DOI: 10.3389/fgene.2020.00518] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/28/2020] [Indexed: 11/13/2022] Open
Abstract
The lager-brewing yeast Saccharomyces pastorianus is a hybrid between S. cerevisiae and S. eubayanus with an exceptional degree of aneuploidy. While chromosome copy number variation (CCNV) is present in many industrial Saccharomyces strains and has been linked to various industrially-relevant traits, its impact on the brewing performance of S. pastorianus remains elusive. Here we attempt to delete single copies of chromosomes which are relevant for the production of off-flavor compound diacetyl by centromere silencing. However, the engineered strains display CNV of multiple non-targeted chromosomes. We attribute this unintended CCNV to inherent instability and to a mutagenic effect of electroporation and of centromere-silencing. Regardless, the resulting strains displayed large phenotypic diversity. By growing centromere-silenced cells in repeated sequential batches in medium containing 10% ethanol, mutants with increased ethanol tolerance were obtained. By using CCNV mutagenesis by exposure to the mitotic inhibitor MBC, selection in the same set-up yielded even more tolerant mutants that would not classify as genetically modified organisms. These results show that CCNV of alloaneuploid S. pastorianus genomes is highly unstable, and that CCNV mutagenesis can generate broad diversity. Coupled to effective selection or screening, CCNV mutagenesis presents a potent tool for strain improvement.
Collapse
Affiliation(s)
| | - Ewout Knibbe
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | | | | | | | - Stephanie F O'Herne
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Pascal A Vijverberg
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Anissa El Masoudi
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Nick Brouwers
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Jean-Marc G Daran
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
12
|
Brouwers N, Brickwedde A, Gorter de Vries AR, van den Broek M, Weening SM, van den Eijnden L, Diderich JA, Bai FY, Pronk JT, Daran JMG. Himalayan Saccharomyces eubayanus Genome Sequences Reveal Genetic Markers Explaining Heterotic Maltotriose Consumption by Saccharomyces pastorianus Hybrids. Appl Environ Microbiol 2019; 85:e01516-19. [PMID: 31519660 PMCID: PMC6821976 DOI: 10.1128/aem.01516-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/04/2019] [Indexed: 12/27/2022] Open
Abstract
Saccharomyces pastorianus strains are hybrids of Saccharomyces cerevisiae and Saccharomyces eubayanus that have been domesticated for centuries in lager beer brewing environments. As sequences and structures of S. pastorianus genomes are being resolved, molecular mechanisms and evolutionary origins of several industrially relevant phenotypes remain unknown. This study investigates how maltotriose metabolism, a key feature in brewing, may have arisen in early S. eubayanus × S. cerevisiae hybrids. To address this question, we generated a nearly complete genome assembly of Himalayan S. eubayanus strains of the Holarctic subclade. This group of strains has been proposed to be the S. eubayanus subgenome origin of current S. pastorianus strains. The Himalayan S. eubayanus genomes harbored several copies of an S. eubayanusAGT1 (SeAGT1) α-oligoglucoside transporter gene with high sequence identity to genes encountered in S. pastorianus Although Himalayan S. eubayanus strains cannot grow on maltose and maltotriose, their maltose-hydrolase and SeMALT1 and SeAGT1 maltose transporter genes complemented the corresponding null mutants of S. cerevisiae Expression, in Himalayan S. eubayanus of a functional S. cerevisiae maltose metabolism regulator gene (MALx3) enabled growth on oligoglucosides. The hypothesis that the maltotriose-positive phenotype in S. pastorianus is a result of heterosis was experimentally tested by constructing an S. cerevisiae × S. eubayanus laboratory hybrid with a complement of maltose metabolism genes that resembles that of current S. pastorianus strains. The ability of this hybrid to consume maltotriose in brewer's wort demonstrated regulatory cross talk between subgenomes and thereby validated this hypothesis. These results support experimentally the new postulated hypothesis on the evolutionary origin of an essential phenotype of lager brewing strains and valuable knowledge for industrial exploitation of laboratory-made S. pastorianus-like hybrids.IMPORTANCES. pastorianus, an S. cerevisiae × S. eubayanus hybrid, is used for production of lager beer, the most produced alcoholic beverage worldwide. It emerged by spontaneous hybridization and colonized early lager brewing processes. Despite accumulation and analysis of genome sequencing data of S. pastorianus parental genomes, the genetic blueprint of industrially relevant phenotypes remains unresolved. Assimilation of maltotriose, an abundant sugar in wort, has been postulated to be inherited from the S. cerevisiae parent. Here, we demonstrate that although Asian S. eubayanus isolates harbor a functional maltotriose transporter SeAGT1 gene, they are unable to grow on α-oligoglucosides, but expression of S. cerevisiae regulator MAL13 (ScMAL13) was sufficient to restore growth on trisaccharides. We hypothesized that the S. pastorianus maltotriose phenotype results from regulatory interaction between S. cerevisiae maltose transcription activator and the promoter of SeAGT1 We experimentally confirmed the heterotic nature of the phenotype, and thus these results provide experimental evidence of the evolutionary origin of an essential phenotype of lager brewing strains.
Collapse
Affiliation(s)
- Nick Brouwers
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Anja Brickwedde
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | | | - Marcel van den Broek
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Susan M Weening
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | | | - Jasper A Diderich
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Feng-Yan Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Jean-Marc G Daran
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
13
|
Tokpohozin SE, Fischer S, Becker T. Selection of a new Saccharomyces yeast to enhance relevant sorghum beer aroma components, higher alcohols and esters. Food Microbiol 2019; 83:181-186. [DOI: 10.1016/j.fm.2019.05.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 05/24/2019] [Accepted: 05/25/2019] [Indexed: 12/14/2022]
|
14
|
Overexpression of RAD51 Enables PCR-Based Gene Targeting in Lager Yeast. Microorganisms 2019; 7:microorganisms7070192. [PMID: 31284488 PMCID: PMC6680445 DOI: 10.3390/microorganisms7070192] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 11/17/2022] Open
Abstract
Lager beer fermentations rely on specific polyploid hybrids between Saccharomyces cerevisiae and Saccharomyces eubayanus falling into the two groups of S. carlsbergensis/Saaz-type and S. pastorianus/Frohberg-type. These strains provide a terroir to lager beer as they have long traditional associations and local selection histories with specific breweries. Lager yeasts share, based on their common origin, several phenotypes. One of them is low transformability, hampering the gene function analyses required for proof-of-concept strain improvements. PCR-based gene targeting is a standard tool for manipulating S. cerevisiae and other ascomycetes. However, low transformability paired with the low efficiency of homologous recombination practically disable targeted gene function analyses in lager yeast strains. For genetic manipulations in lager yeasts, we employed a yeast transformation protocol based on lithium-acetate/PEG incubation combined with electroporation. We first introduced freely replicating CEN/ARS plasmids carrying ScRAD51 driven by a strong heterologous promoter into lager yeast. RAD51 overexpression in the Weihenstephan 34/70 lager yeast was necessary and sufficient in our hands for gene targeting using short-flanking homology regions of 50 bp added to a selection marker by PCR. We successfully targeted two independent loci, ScADE2/YOR128C and ScHSP104/YLL026W, and confirmed correct integration by diagnostic PCR. With these modifications, genetic alterations of lager yeasts can be achieved efficiently and the RAD51-containing episomal plasmid can be removed after successful strain construction.
Collapse
|
15
|
Brickwedde A, Brouwers N, van den Broek M, Gallego Murillo JS, Fraiture JL, Pronk JT, Daran JMG. Structural, Physiological and Regulatory Analysis of Maltose Transporter Genes in Saccharomyces eubayanus CBS 12357 T. Front Microbiol 2018; 9:1786. [PMID: 30147677 PMCID: PMC6097016 DOI: 10.3389/fmicb.2018.01786] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 07/17/2018] [Indexed: 11/13/2022] Open
Abstract
Saccharomyces pastorianus lager brewing yeasts are domesticated hybrids of Saccharomyces cerevisiae and cold-tolerant Saccharomyces eubayanus. To understand the contribution of both parental genomes to maltose metabolism in brewing wort, this study focuses on maltose transport in the S. eubayanus type strain CBS 12357T/FM1318. To obtain complete sequences of the MAL loci of this strain, a near-complete genome assembly was generated using the Oxford Nanopore Technology MinION sequencing platform. Except for CHRXII, all sixteen chromosomes were assembled as single contigs. Four loci harboring putative maltose transporter genes (SeMALT1-4), located in subtelomeric regions of CHRII, CHRV, CHRXIII, and CHRXVI, were completely resolved. The near-identical loci on CHRV and CHRXVI strongly resembled canonical S. cerevisiae MAL loci, while those on CHRII and CHRXIII showed different structures suggestive of gene loss. Overexpression of SeMALT1-4 in a maltose-transport-deficient S. cerevisiae strain restored growth on maltose, but not on maltotriose, indicating maltose-specific transport functionality of all four transporters. Simultaneous CRISPR-Cas9-assisted deletion of only SeMALT2 and SeMALT4, which shared 99.7% sequence identity, eliminated growth of S. eubayanus CBS 12357T on maltose. Transcriptome analysis of S. eubayanus CBS 12357T established that SeMALT1 and SeMALT3, are poorly expressed in maltose-grown cultures, while SeMALT2 and SeMALT4 were expressed at much higher levels than SeMALT1 and SeMALT3, indicating that only SeMALT2/4 are responsible for maltose consumption in CBS 12357T. These results represent a first genomic and physiological characterization of maltose transport in S. eubayanus CBS 12357T and provides a valuable resource for further industrial exploitation of this yeast.
Collapse
Affiliation(s)
- Anja Brickwedde
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Nick Brouwers
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | | | | | - Julie L Fraiture
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Jean-Marc G Daran
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
16
|
Vidgren V, Gibson B. Trans-regulation and localization of orthologous maltose transporters in the interspecies lager yeast hybrid. FEMS Yeast Res 2018; 18:5040228. [PMID: 29931058 PMCID: PMC6142294 DOI: 10.1093/femsyr/foy065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/15/2018] [Indexed: 11/12/2022] Open
Abstract
In the interspecies lager yeast hybrid there are MAL loci involved in maltose and maltotriose utilization derived from each parent (Saccharomyces cerevisiae and Saccharomyces eubayanus). We show that trans-regulation across hybrid subgenomes occurs for MAL genes. However, gene expression is less efficient with non-native activators (trans-activation) compared to native activators (cis-activation). MAL genes were induced by maltose and repressed by glucose irrespective of host. Despite the strong expression of S. cerevisiae-type genes in the S. eubayanus host, a very low amount of transporter protein was actually observed in cells. This suggests that proper formation and configuration of the S. cerevisiae transporters is not efficient in S. eubayanus. The S. eubayanus-type Malx1 transporter was present in the plasma membrane in high amounts in all hosts (S. cerevisiae, S. eubayanus and Saccharomyces pastorianus) at all times. However, the S. cerevisiae-type transporters appeared sequentially in the plasma membrane; scMalx1 was localized in the plasma membrane during early to late linear growth and subsequently withdrawn to intracellular compartments. In contrast, the scAgt1 transporter was found in the plasma membrane mainly in the stationary phase of growth. Different localization patterns may explain why certain transporter orthologues in natural S. pastorianus strains were lost to mutation.
Collapse
Affiliation(s)
- Virve Vidgren
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Finland
| | - Brian Gibson
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Finland
| |
Collapse
|
17
|
de Vries ARG, de Groot PA, van den Broek M, Daran JMG. CRISPR-Cas9 mediated gene deletions in lager yeast Saccharomyces pastorianus. Microb Cell Fact 2017; 16:222. [PMID: 29207996 PMCID: PMC5718131 DOI: 10.1186/s12934-017-0835-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/23/2017] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The ease of use of CRISPR-Cas9 reprogramming, its high efficacy, and its multiplexing capabilities have brought this technology at the forefront of genome editing techniques. Saccharomyces pastorianus is an aneuploid interspecific hybrid of Saccharomyces cerevisiae and Saccharomyces eubayanus that has been domesticated for centuries and is used for the industrial fermentation of lager beer. For yet uncharacterised reasons, this hybrid yeast is far more resilient to genetic alteration than its ancestor S. cerevisiae. RESULTS This study reports a new CRISPR-Cas9 method for accurate gene deletion in S. pastorianus. This method combined the Streptococcus pyogenes cas9 gene expressed from either a chromosomal locus or from a mobile genetic element in combination with a plasmid-borne gRNA expression cassette. While the well-established gRNA expression system using the RNA polymerase III dependent SNR52 promoter failed, expression of a gRNA flanked with Hammerhead and Hepatitis Delta Virus ribozymes using the RNA polymerase II dependent TDH3 promoter successfully led to accurate deletion of all four alleles of the SeILV6 gene in strain CBS1483. Furthermore the expression of two ribozyme-flanked gRNAs separated by a 10-bp linker in a polycistronic array successfully led to the simultaneous deletion of SeATF1 and SeATF2, genes located on two separate chromosomes. The expression of this array resulted in the precise deletion of all five and four alleles mediated by homologous recombination in the strains CBS1483 and Weihenstephan 34/70 respectively, demonstrating the multiplexing abilities of this gRNA expression design. CONCLUSIONS These results firmly established that CRISPR-Cas9 significantly facilitates and accelerates genome editing in S. pastorianus.
Collapse
Affiliation(s)
- Arthur R. Gorter de Vries
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Philip A. de Groot
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Marcel van den Broek
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jean-Marc G. Daran
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
18
|
Dzialo MC, Park R, Steensels J, Lievens B, Verstrepen KJ. Physiology, ecology and industrial applications of aroma formation in yeast. FEMS Microbiol Rev 2017; 41:S95-S128. [PMID: 28830094 PMCID: PMC5916228 DOI: 10.1093/femsre/fux031] [Citation(s) in RCA: 239] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/06/2017] [Indexed: 01/05/2023] Open
Abstract
Yeast cells are often employed in industrial fermentation processes for their ability to efficiently convert relatively high concentrations of sugars into ethanol and carbon dioxide. Additionally, fermenting yeast cells produce a wide range of other compounds, including various higher alcohols, carbonyl compounds, phenolic compounds, fatty acid derivatives and sulfur compounds. Interestingly, many of these secondary metabolites are volatile and have pungent aromas that are often vital for product quality. In this review, we summarize the different biochemical pathways underlying aroma production in yeast as well as the relevance of these compounds for industrial applications and the factors that influence their production during fermentation. Additionally, we discuss the different physiological and ecological roles of aroma-active metabolites, including recent findings that point at their role as signaling molecules and attractants for insect vectors.
Collapse
Affiliation(s)
- Maria C Dzialo
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Gaston Geenslaan 1, B-3001 Leuven, Belgium
- Laboratory for Systems Biology, VIB Center for Microbiology, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Rahel Park
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Gaston Geenslaan 1, B-3001 Leuven, Belgium
- Laboratory for Systems Biology, VIB Center for Microbiology, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Jan Steensels
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Gaston Geenslaan 1, B-3001 Leuven, Belgium
- Laboratory for Systems Biology, VIB Center for Microbiology, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Bart Lievens
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems, KU Leuven, Campus De Nayer, Fortsesteenweg 30A B-2860 Sint-Katelijne Waver, Belgium
| | - Kevin J Verstrepen
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Gaston Geenslaan 1, B-3001 Leuven, Belgium
- Laboratory for Systems Biology, VIB Center for Microbiology, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| |
Collapse
|
19
|
Krogerus K, Magalhães F, Vidgren V, Gibson B. Novel brewing yeast hybrids: creation and application. Appl Microbiol Biotechnol 2016; 101:65-78. [PMID: 27885413 PMCID: PMC5203825 DOI: 10.1007/s00253-016-8007-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/09/2016] [Accepted: 11/11/2016] [Indexed: 11/29/2022]
Abstract
The natural interspecies Saccharomyces cerevisiae × Saccharomyces eubayanus hybrid yeast is responsible for global lager beer production and is one of the most important industrial microorganisms. Its success in the lager brewing environment is due to a combination of traits not commonly found in pure yeast species, principally low-temperature tolerance, and maltotriose utilization. Parental transgression is typical of hybrid organisms and has been exploited previously for, e.g., the production of wine yeast with beneficial properties. The parental strain S. eubayanus has only been discovered recently and newly created lager yeast strains have not yet been applied industrially. A number of reports attest to the feasibility of this approach and artificially created hybrids are likely to have a significant impact on the future of lager brewing. De novo S. cerevisiae × S. eubayanus hybrids outperform their parent strains in a number of respects, including, but not restricted to, fermentation rate, sugar utilization, stress tolerance, and aroma formation. Hybrid genome function and stability, as well as different techniques for generating hybrids and their relative merits are discussed. Hybridization not only offers the possibility of generating novel non-GM brewing yeast strains with unique properties, but is expected to aid in unraveling the complex evolutionary history of industrial lager yeast.
Collapse
Affiliation(s)
- Kristoffer Krogerus
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, 02044, Espoo, Finland. .,Department of Biotechnology and Chemical Technology, Aalto University, School of Chemical Technology, Kemistintie 1, Aalto, P.O. Box 16100, Espoo, 00076, Finland.
| | - Frederico Magalhães
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, 02044, Espoo, Finland.,Department of Biotechnology and Chemical Technology, Aalto University, School of Chemical Technology, Kemistintie 1, Aalto, P.O. Box 16100, Espoo, 00076, Finland
| | - Virve Vidgren
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, 02044, Espoo, Finland
| | - Brian Gibson
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, 02044, Espoo, Finland
| |
Collapse
|
20
|
Krogerus K, Arvas M, De Chiara M, Magalhães F, Mattinen L, Oja M, Vidgren V, Yue JX, Liti G, Gibson B. Ploidy influences the functional attributes of de novo lager yeast hybrids. Appl Microbiol Biotechnol 2016; 100:7203-22. [PMID: 27183995 PMCID: PMC4947488 DOI: 10.1007/s00253-016-7588-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/03/2016] [Accepted: 04/24/2016] [Indexed: 12/25/2022]
Abstract
The genomes of hybrid organisms, such as lager yeast (Saccharomyces cerevisiae × Saccharomyces eubayanus), contain orthologous genes, the functionality and effect of which may differ depending on their origin and copy number. How the parental subgenomes in lager yeast contribute to important phenotypic traits such as fermentation performance, aroma production, and stress tolerance remains poorly understood. Here, three de novo lager yeast hybrids with different ploidy levels (allodiploid, allotriploid, and allotetraploid) were generated through hybridization techniques without genetic modification. The hybrids were characterized in fermentations of both high gravity wort (15 °P) and very high gravity wort (25 °P), which were monitored for aroma compound and sugar concentrations. The hybrid strains with higher DNA content performed better during fermentation and produced higher concentrations of flavor-active esters in both worts. The hybrid strains also outperformed both the parent strains. Genome sequencing revealed that several genes related to the formation of flavor-active esters (ATF1, ATF2¸ EHT1, EEB1, and BAT1) were present in higher copy numbers in the higher ploidy hybrid strains. A direct relationship between gene copy number and transcript level was also observed. The measured ester concentrations and transcript levels also suggest that the functionality of the S. cerevisiae- and S. eubayanus-derived gene products differs. The results contribute to our understanding of the complex molecular mechanisms that determine phenotypes in lager yeast hybrids and are expected to facilitate targeted strain development through interspecific hybridization.
Collapse
Affiliation(s)
- Kristoffer Krogerus
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, FI-02044, Espoo, Finland.
- Department of Biotechnology and Chemical Technology, Aalto University, School of Chemical Technology, Kemistintie 1, Aalto, P.O. Box 16100, FI-00076, Espoo, Finland.
| | - Mikko Arvas
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, FI-02044, Espoo, Finland
| | - Matteo De Chiara
- Institute for Research on Cancer and Ageing of Nice (IRCAN), CNRS UMR 7284, INSERM U1081, University of Nice Sophia Antipolis, 06107, Nice, France
| | - Frederico Magalhães
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, FI-02044, Espoo, Finland
- Department of Biotechnology and Chemical Technology, Aalto University, School of Chemical Technology, Kemistintie 1, Aalto, P.O. Box 16100, FI-00076, Espoo, Finland
| | - Laura Mattinen
- ValiRx Finland Oy, Kiviharjuntie 8, FI-90220, Oulu, Finland
| | - Merja Oja
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, FI-02044, Espoo, Finland
| | - Virve Vidgren
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, FI-02044, Espoo, Finland
| | - Jia-Xing Yue
- Institute for Research on Cancer and Ageing of Nice (IRCAN), CNRS UMR 7284, INSERM U1081, University of Nice Sophia Antipolis, 06107, Nice, France
| | - Gianni Liti
- Institute for Research on Cancer and Ageing of Nice (IRCAN), CNRS UMR 7284, INSERM U1081, University of Nice Sophia Antipolis, 06107, Nice, France
| | - Brian Gibson
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, FI-02044, Espoo, Finland
| |
Collapse
|
21
|
Stribny J, Querol A, Pérez-Torrado R. Differences in Enzymatic Properties of the Saccharomyces kudriavzevii and Saccharomyces uvarum Alcohol Acetyltransferases and Their Impact on Aroma-Active Compounds Production. Front Microbiol 2016; 7:897. [PMID: 27375606 PMCID: PMC4894917 DOI: 10.3389/fmicb.2016.00897] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 05/26/2016] [Indexed: 12/03/2022] Open
Abstract
Higher alcohols and acetate esters belong to the most important yeast secondary metabolites that significantly contribute to the overall flavor and aroma profile of fermented products. In Saccharomyces cerevisiae, esterification of higher alcohols is catalyzed mainly by the alcohol acetyltransferases encoded by genes ATF1 and ATF2. Previous investigation has shown other Saccharomyces species, e.g., S. kudriavzevii and S. uvarum, to vary in aroma-active higher alcohols and acetate esters formation when compared to S. cerevisiae. Here, we aimed to analyze the enzymes encoded by the ATF1 and ATF2 genes from S. kudriavzevii (SkATF1, SkATF2) and S. uvarum (SuATF1, SuATF2). The heterologous expression of the individual ATF1 and ATF2 genes in a host S. cerevisiae resulted in the enhanced production of several higher alcohols and acetate esters. Particularly, an increase of 2-phenylethyl acetate production by the strains that harbored ATF1 and ATF2 genes from S. kudriavzevii and S. uvarum was observed. When grown with individual amino acids as the nitrogen source, the strain that harbored SkATF1 showed particularly high 2-phenylethyl acetate production and the strains with introduced SkATF2 or SuATF2 revealed increased production of isobutyl acetate, isoamyl acetate, and 2-phenylethyl acetate compared to the reference strains with endogenous ATF genes. The alcohol acetyltransferase activities of the individual Atf1 and Atf2 enzymes measured in the cell extracts of the S. cerevisiae atf1 atf2 iah1 triple-null strain were detected for all the measured substrates. This indicated that S. kudriavzevii and S. uvarum Atf enzymes had broad range substrate specificity as S. cerevisiae Atf enzymes. Individual Atf1 enzymes exhibited markedly different kinetic properties since SkAtf1p showed c. twofold higher and SuAtf1p c. threefold higher Km for isoamyl alcohol than ScAtf1p. Together these results indicated that the differences found among the three Saccharomyces species during the aroma-active acetate ester formation may be due, to some extent, to the distinct properties of Atf enzymes.
Collapse
Affiliation(s)
- Jiri Stribny
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos - Consejo Superior de Investigaciones Científicas, Valencia Spain
| | - Amparo Querol
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos - Consejo Superior de Investigaciones Científicas, Valencia Spain
| | - Roberto Pérez-Torrado
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos - Consejo Superior de Investigaciones Científicas, Valencia Spain
| |
Collapse
|
22
|
Stribny J, Romagnoli G, Pérez-Torrado R, Daran JM, Querol A. Characterisation of the broad substrate specificity 2-keto acid decarboxylase Aro10p of Saccharomyces kudriavzevii and its implication in aroma development. Microb Cell Fact 2016; 15:51. [PMID: 26971319 PMCID: PMC4789280 DOI: 10.1186/s12934-016-0449-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/01/2016] [Indexed: 12/02/2022] Open
Abstract
Background The yeast amino acid catabolism plays an important role in flavour generation since higher alcohols and acetate esters, amino acid catabolism end products, are key components of overall flavour and aroma in fermented products. Comparative studies have shown that other Saccharomyces species, such as S. kudriavzevii, differ during the production of aroma-active higher alcohols and their esters compared to S. cerevisiae. Results In this study, we performed a comparative analysis of the enzymes involved in the amino acid catabolism of S. kudriavzevii with their potential to improve the flavour production capacity of S. cerevisiae. In silico screening, based on the severity of amino acid substitutions evaluated by Grantham matrix, revealed four candidates, of which S. kudriavzevii Aro10p (SkAro10p) had the highest score. The analysis of higher alcohols and esters produced by S. cerevisiae then revealed enhanced formation of isobutanol, isoamyl alcohol and their esters when endogenous ARO10 was replaced with ARO10 from S. kudriavzevii. Also, significant differences in the aroma profile were found in fermentations of synthetic wine must. Substrate specificities of SkAro10p were compared with those of S. cerevisiae Aro10p (ScAro10p) by their expression in a 2-keto acid decarboxylase-null S. cerevisiae strain. Unlike the cell extracts with expressed ScAro10p which showed greater activity for phenylpyruvate, which suggests this phenylalanine-derivative to be the preferred substrate, the decarboxylation activities measured in the cell extracts with SkAro10p ranged with all the tested substrates at the same level. The activities of SkAro10p towards substrates (except phenylpyruvate) were higher than of those for ScAro10p. Conclusions The results indicate that the amino acid variations observed between the orthologues decarboxylases encoded by SkARO10 and ScARO10 could be the reason for the distinct enzyme properties, which possibly lead to the enhanced production of several flavour compounds. The knowledge on the important enzyme involved in higher alcohols biosynthesis by S. kudriavzevii could be of scientific as well as of applied interest. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0449-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiri Stribny
- Food Biotechnology Department, Institute of Agrochemistry and Food Technology, (IATA-CSIC) Avda, Agustín Escardino, 7, Paterna, 46980, Valencia, Spain
| | - Gabriele Romagnoli
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands.,Kluyver Centre for Genomics of Industrial Fermentation, Delft, The Netherlands
| | - Roberto Pérez-Torrado
- Food Biotechnology Department, Institute of Agrochemistry and Food Technology, (IATA-CSIC) Avda, Agustín Escardino, 7, Paterna, 46980, Valencia, Spain
| | - Jean-Marc Daran
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands.,Kluyver Centre for Genomics of Industrial Fermentation, Delft, The Netherlands.,Platform Green Synthetic Biology, Delft, The Netherlands
| | - Amparo Querol
- Food Biotechnology Department, Institute of Agrochemistry and Food Technology, (IATA-CSIC) Avda, Agustín Escardino, 7, Paterna, 46980, Valencia, Spain.
| |
Collapse
|
23
|
Chromosomal Copy Number Variation in Saccharomyces pastorianus Is Evidence for Extensive Genome Dynamics in Industrial Lager Brewing Strains. Appl Environ Microbiol 2015; 81:6253-67. [PMID: 26150454 PMCID: PMC4542246 DOI: 10.1128/aem.01263-15] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/27/2015] [Indexed: 11/20/2022] Open
Abstract
Lager brewing strains of Saccharomyces pastorianus are natural interspecific hybrids originating from the spontaneous hybridization of Saccharomyces cerevisiae and Saccharomyces eubayanus. Over the past 500 years, S. pastorianus has been domesticated to become one of the most important industrial microorganisms. Production of lager-type beers requires a set of essential phenotypes, including the ability to ferment maltose and maltotriose at low temperature, the production of flavors and aromas, and the ability to flocculate. Understanding of the molecular basis of complex brewing-related phenotypic traits is a prerequisite for rational strain improvement. While genome sequences have been reported, the variability and dynamics of S. pastorianus genomes have not been investigated in detail. Here, using deep sequencing and chromosome copy number analysis, we showed that S. pastorianus strain CBS1483 exhibited extensive aneuploidy. This was confirmed by quantitative PCR and by flow cytometry. As a direct consequence of this aneuploidy, a massive number of sequence variants was identified, leading to at least 1,800 additional protein variants in S. pastorianus CBS1483. Analysis of eight additional S. pastorianus strains revealed that the previously defined group I strains showed comparable karyotypes, while group II strains showed large interstrain karyotypic variability. Comparison of three strains with nearly identical genome sequences revealed substantial chromosome copy number variation, which may contribute to strain-specific phenotypic traits. The observed variability of lager yeast genomes demonstrates that systematic linking of genotype to phenotype requires a three-dimensional genome analysis encompassing physical chromosomal structures, the copy number of individual chromosomes or chromosomal regions, and the allelic variation of copies of individual genes.
Collapse
|
24
|
Stribny J, Gamero A, Pérez-Torrado R, Querol A. Saccharomyces kudriavzevii and Saccharomyces uvarum differ from Saccharomyces cerevisiae during the production of aroma-active higher alcohols and acetate esters using their amino acidic precursors. Int J Food Microbiol 2015; 205:41-6. [DOI: 10.1016/j.ijfoodmicro.2015.04.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 03/14/2015] [Accepted: 04/03/2015] [Indexed: 01/23/2023]
|
25
|
Celińska E, Olkowicz M, Grajek W. L-Phenylalanine catabolism and 2-phenylethanol synthesis in Yarrowia lipolytica--mapping molecular identities through whole-proteome quantitative mass spectrometry analysis. FEMS Yeast Res 2015; 15:fov041. [PMID: 26060219 DOI: 10.1093/femsyr/fov041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2015] [Indexed: 11/13/2022] Open
Abstract
A world-wide effort is now being pursued towards the development of flavors and fragrances (F&F) production independently from traditional sources, as well as autonomously from depleting fossil fuel supplies. Biotechnological production of F&F by microbes has emerged as a vivid solution to the current market limitations. Amongst a wide variety of fragrant chemicals, 2-PE is of significant interest to both scientific and industrial community. Although the general overview of the 2-PE synthesis pathway is commonly known, involvement of particular molecular identities in this pathway has not been elucidated in Yarrowia lipolytica to date. The aim of this study was mapping molecular identities involved in 2-PE synthesis in Y. lipolytica. To acquire a comprehensive landscape of the proteins that are directly and indirectly involved in L-Phe degradation and 2-PE synthesis, we took advantage of comprehensibility and sensitivity of high-throughput LC-MS/MS-quantitative analysis. Amongst a number of proteins involved in amino acid turnover and the central carbon metabolism, enzymes involved in L-Phe conversion to 2-PE have been identified. Results on yeast-to-hyphae transition in relation to the character of the provided nitrogen source have been presented.
Collapse
Affiliation(s)
- Ewelina Celińska
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznań, Poland
| | - Mariola Olkowicz
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdańsk, Poland
| | - Włodzimierz Grajek
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznań, Poland
| |
Collapse
|
26
|
Both BAT1 and ARO8 are responsible for unpleasant odor generation in halo-tolerant yeast Zygosaccharomyces rouxii. Appl Microbiol Biotechnol 2015; 99:7685-97. [DOI: 10.1007/s00253-015-6673-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/29/2015] [Accepted: 05/04/2015] [Indexed: 10/23/2022]
|
27
|
Hebly M, Brickwedde A, Bolat I, Driessen MRM, de Hulster EAF, van den Broek M, Pronk JT, Geertman JM, Daran JM, Daran-Lapujade P. S. cerevisiae × S. eubayanus interspecific hybrid, the best of both worlds and beyond. FEMS Yeast Res 2015; 15:fov005. [PMID: 25743788 DOI: 10.1093/femsyr/fov005] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2015] [Indexed: 12/16/2022] Open
Abstract
Saccharomyces pastorianus lager-brewing yeasts have descended from natural hybrids of S. cerevisiae and S. eubayanus. Their alloploidy has undoubtedly contributed to successful domestication and industrial exploitation. To understand the early events that have led to the predominance of S. pastorianus as lager-brewing yeast, an interspecific hybrid between S. cerevisiae and S. eubayanus was experimentally constructed. Alloploidy substantially improved the performance of the S. cerevisiae × S. eubayanus hybrid as compared to either parent regarding two cardinal features of brewing yeasts: tolerance to low temperature and oligosaccharide utilization. The hybrid's S. eubayanus subgenome conferred better growth rates and biomass yields at low temperature, both on glucose and on maltose. Conversely, the ability of the hybrid to consume maltotriose, which was absent in the S. eubayanus CBS12357 type strain, was inherited from its S. cerevisiae parent. The S. cerevisiae × S. eubayanus hybrid even outperformed its parents, a phenomenon known as transgression, suggesting that fast growth at low temperature and oligosaccharide utilization may have been key selective advantages of the natural hybrids in brewing environments. To enable sequence comparisons of the parental and hybrid strains, the genome of S. eubayanus CBS12357 type strain (Patagonian isolate) was resequenced, resulting in an improved publicly available sequence assembly.
Collapse
Affiliation(s)
- Marit Hebly
- Department of Biotechnology, Delft University of Technology, 2628 BC Delft, the Netherlands Netherlands Consortium for Systems Biology, 1098 XH Amsterdam, the Netherlands
| | - Anja Brickwedde
- Department of Biotechnology, Delft University of Technology, 2628 BC Delft, the Netherlands
| | - Irina Bolat
- Department of Biotechnology, Delft University of Technology, 2628 BC Delft, the Netherlands
| | - Maureen R M Driessen
- Department of Biotechnology, Delft University of Technology, 2628 BC Delft, the Netherlands
| | - Erik A F de Hulster
- Department of Biotechnology, Delft University of Technology, 2628 BC Delft, the Netherlands
| | - Marcel van den Broek
- Department of Biotechnology, Delft University of Technology, 2628 BC Delft, the Netherlands
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, 2628 BC Delft, the Netherlands Netherlands Consortium for Systems Biology, 1098 XH Amsterdam, the Netherlands Platform Green Synthetic Biology, 2628 BC Delft, the Netherlands
| | - Jan-Maarten Geertman
- Heineken Global Supply Chain, Technology & Policies, 2382 PH Zoeterwoude, the Netherlands
| | - Jean-Marc Daran
- Department of Biotechnology, Delft University of Technology, 2628 BC Delft, the Netherlands Platform Green Synthetic Biology, 2628 BC Delft, the Netherlands
| | - Pascale Daran-Lapujade
- Department of Biotechnology, Delft University of Technology, 2628 BC Delft, the Netherlands Netherlands Consortium for Systems Biology, 1098 XH Amsterdam, the Netherlands
| |
Collapse
|
28
|
New lager yeast strains generated by interspecific hybridization. J Ind Microbiol Biotechnol 2015; 42:769-78. [PMID: 25682107 PMCID: PMC4412690 DOI: 10.1007/s10295-015-1597-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 01/30/2015] [Indexed: 12/24/2022]
Abstract
The interspecific hybrid Saccharomyces pastorianus is the most commonly used yeast in brewery fermentations worldwide. Here, we generated de novo lager yeast hybrids by mating a domesticated and strongly flocculent Saccharomyces cerevisiae ale strain with the Saccharomyces eubayanus type strain. The hybrids were characterized with respect to the parent strains in a wort fermentation performed at temperatures typical for lager brewing (12 °C). The resulting beers were analysed for sugar and aroma compounds, while the yeasts were tested for their flocculation ability and α-glucoside transport capability. These hybrids inherited beneficial properties from both parent strains (cryotolerance, maltotriose utilization and strong flocculation) and showed apparent hybrid vigour, fermenting faster and producing beer with higher alcohol content (5.6 vs 4.5 % ABV) than the parents. Results suggest that interspecific hybridization is suitable for production of novel non-GM lager yeast strains with unique properties and will help in elucidating the evolutionary history of industrial lager yeast.
Collapse
|
29
|
Gibson B, Liti G. Saccharomyces pastorianus: genomic insights inspiring innovation for industry. Yeast 2014; 32:17-27. [DOI: 10.1002/yea.3033] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 06/17/2014] [Accepted: 07/18/2014] [Indexed: 12/24/2022] Open
Affiliation(s)
- Brian Gibson
- VTT Technical Research Centre of Finland; Tietotie 2, PO Box 1000 FI-02044 VTT Espoo Finland
| | - Gianni Liti
- Institute for Research on Cancer and Ageing of Nice (IRCAN), CNRS UMR 7284-INSERM U1081; Université de Nice Sophia Antipolis; 06107 Nice Cedex 2 France
| |
Collapse
|
30
|
Gibson B, Krogerus K, Ekberg J, Monroux A, Mattinen L, Rautio J, Vidgren V. Variation in α-acetolactate production within the hybrid lager yeast group Saccharomyces pastorianus and affirmation of the central role of the ILV6 gene. Yeast 2014; 32:301-16. [PMID: 24965182 DOI: 10.1002/yea.3026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/13/2014] [Accepted: 06/16/2014] [Indexed: 12/28/2022] Open
Abstract
A screen of 14 S. pastorianus lager-brewing strains showed as much as a nine-fold difference in wort total diacetyl concentration at equivalent stages of fermentation of 15°Plato brewer's wort. Two strains (A153 and W34), with relatively low and high diacetyl production, respectively, but which did not otherwise differ in fermentation performance, growth or flavour production, were selected for further investigation. Transcriptional analysis of key genes involved in valine biosynthesis showed differences between the two strains that were consistent with the differences in wort diacetyl concentration. In particular, the ILV6 gene, encoding a regulatory subunit of acetohydroxy acid synthase, showed early transcription (only 6 h after inoculation) and up to five-fold greater expression in W34 compared to A153. This earlier transcription was observed for both orthologues of ILV6 in the S. pastorianus hybrid (S. cerevisiae × S. eubayanus), although the S. cerevisiae form of ILV6 in W34 also showed a consistently higher transcript level throughout fermentation relative to the same gene in A153. Overexpression of either form of ILV6 (by placing it under the control of the PGK1 promoter) resulted in an identical two-fold increase in wort total diacetyl concentration relative to a control. The results confirm the role of the Ilv6 subunit in controlling α-acetolactate/diacetyl concentration and indicate no functional divergence between the two forms of Ilv6. The greater contribution of the S. cerevisiae ILV6 to acetolactate production in natural brewing yeast hybrids appears rather to be due to higher levels of transcription relative to the S. eubayanus form.
Collapse
Affiliation(s)
- Brian Gibson
- VTT Technical Research Centre of Finland, Espoo, Finland
| | | | | | | | | | | | | |
Collapse
|
31
|
Romagnoli G, Verhoeven MD, Mans R, Fleury Rey Y, Bel-Rhlid R, van den Broek M, Seifar RM, Ten Pierick A, Thompson M, Müller V, Wahl SA, Pronk JT, Daran JM. An alternative, arginase-independent pathway for arginine metabolism in Kluyveromyces lactis involves guanidinobutyrase as a key enzyme. Mol Microbiol 2014; 93:369-89. [PMID: 24912400 PMCID: PMC4149782 DOI: 10.1111/mmi.12666] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2014] [Indexed: 11/26/2022]
Abstract
Most available knowledge on fungal arginine metabolism is derived from studies on Saccharomyces cerevisiae, in which arginine catabolism is initiated by releasing urea via the arginase reaction. Orthologues of the S. cerevisiae genes encoding the first three enzymes in the arginase pathway were cloned from Kluyveromyces lactis and shown to functionally complement the corresponding deletion in S. cerevisiae. Surprisingly, deletion of the single K. lactis arginase gene KlCAR1 did not completely abolish growth on arginine as nitrogen source. Growth rate of the deletion mutant strongly increased during serial transfer in shake-flask cultures. A combination of RNAseq-based transcriptome analysis and (13)C-(15)N-based flux analysis was used to elucidate the arginase-independent pathway. Isotopic (13)C(15)N-enrichment in γ-aminobutyrate revealed succinate as the entry point in the TCA cycle of the alternative pathway. Transcript analysis combined with enzyme activity measurements indicated increased expression in the Klcar1Δ mutant of a guanidinobutyrase (EC.3.5.3.7), a key enzyme in a new pathway for arginine degradation. Expression of the K. lactis KLLA0F27995g (renamed KlGBU1) encoding guanidinobutyrase enabled S. cerevisiae to use guanidinobutyrate as sole nitrogen source and its deletion in K. lactis almost completely abolish growth on this nitrogen source. Phylogenetic analysis suggests that this enzyme activity is widespread in fungi.
Collapse
Affiliation(s)
- G Romagnoli
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC, Delft, The Netherlands; Kluyver Centre for Genomics of Industrial Fermentation, P.O. Box 4047, 2600 GA, Delft, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Xu W, Wang J, Li Q. Microarray studies on lager brewer's yeasts reveal cell status in the process of autolysis. FEMS Yeast Res 2014; 14:714-28. [DOI: 10.1111/1567-1364.12156] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 03/22/2014] [Accepted: 04/03/2014] [Indexed: 12/01/2022] Open
Affiliation(s)
- Weina Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi Jiangsu China
| | - Jinjing Wang
- Key Laboratory of Industrial Biotechnology of Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi Jiangsu China
| | - Qi Li
- Key Laboratory of Industrial Biotechnology of Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi Jiangsu China
| |
Collapse
|
33
|
Pires EJ, Teixeira JA, Brányik T, Vicente AA. Yeast: the soul of beer's aroma--a review of flavour-active esters and higher alcohols produced by the brewing yeast. Appl Microbiol Biotechnol 2014; 98:1937-49. [PMID: 24384752 DOI: 10.1007/s00253-013-5470-0] [Citation(s) in RCA: 351] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 12/11/2013] [Accepted: 12/11/2013] [Indexed: 11/26/2022]
Abstract
Among the most important factors influencing beer quality is the presence of well-adjusted amounts of higher alcohols and esters. Thus, a heavy body of literature focuses on these substances and on the parameters influencing their production by the brewing yeast. Additionally, the complex metabolic pathways involved in their synthesis require special attention. More than a century of data, mainly in genetic and proteomic fields, has built up enough information to describe in detail each step in the pathway for the synthesis of higher alcohols and their esters, but there is still place for more. Higher alcohols are formed either by anabolism or catabolism (Ehrlich pathway) of amino acids. Esters are formed by enzymatic condensation of organic acids and alcohols. The current paper reviews the up-to-date knowledge in the pathways involving the synthesis of higher alcohols and esters by brewing yeasts. Fermentation parameters affecting yeast response during biosynthesis of these aromatic substances are also fully reviewed.
Collapse
Affiliation(s)
- Eduardo J Pires
- IBB - Institute for Biotechnology and Bioengineering, Centre for Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal,
| | | | | | | |
Collapse
|