1
|
Ren J, Oh SH, Na D. Untranslated region engineering strategies for gene overexpression, fine-tuning, and dynamic regulation. J Microbiol 2025; 63:e2501033. [PMID: 40195839 DOI: 10.71150/jm.2501033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/10/2025] [Indexed: 04/09/2025]
Abstract
Precise and tunable gene expression is crucial for various biotechnological applications, including protein overexpression, fine-tuned metabolic pathway engineering, and dynamic gene regulation. Untranslated regions (UTRs) of mRNAs have emerged as key regulatory elements that modulate transcription and translation. In this review, we explore recent advances in UTR engineering strategies for bacterial gene expression optimization. We discuss approaches for enhancing protein expression through AU-rich elements, RG4 structures, and synthetic dual UTRs, as well as ProQC systems that improve translation fidelity. Additionally, we examine strategies for fine-tuning gene expression using UTR libraries and synthetic terminators that balance metabolic flux. Finally, we highlight riboswitches and toehold switches, which enable dynamic gene regulation in response to environmental or metabolic cues. The integration of these UTR-based regulatory tools provides a versatile and modular framework for optimizing bacterial gene expression, enhancing metabolic engineering, and advancing synthetic biology applications.
Collapse
Affiliation(s)
- Jun Ren
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - So Hee Oh
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Dokyun Na
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
2
|
Costa CE, Romaní A, Domingues L. Overview of resveratrol properties, applications, and advances in microbial precision fermentation. Crit Rev Biotechnol 2024:1-17. [PMID: 39582165 DOI: 10.1080/07388551.2024.2424362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/03/2024] [Accepted: 07/13/2024] [Indexed: 11/26/2024]
Abstract
Resveratrol is an antioxidant abundant in plants like grapes and peanuts and has garnered significant attention for its potential therapeutic applications. This review explores its chemical attributes, stability, and solubility, influencing its diverse applications and bioavailability. Resveratrol's multifaceted therapeutic roles encompass: antioxidant, cardioprotective, anti-inflammatory, neuroprotective, anti-aging, and anticancer properties. While traditionally studied in preclinical settings, a surge in clinical trials underscores resveratrol's promise for human health. Over 250 recent clinical trials investigate its effects alone and in combination with other compounds. Commercially utilized in food, cosmetics, supplements, and pharmaceuticals, the resveratrol market is expanding, driven by microbial fermentation. Microbes offer advantages over plant extraction and chemical synthesis, providing cost-effective, pure, and sustainable production. Microbial biosynthesis can be attained from carbon sources, such as glucose or xylose, among others, which can be obtained from renewable resources or agro-industrial wastes. While Saccharomyces cerevisiae has been the most used host, non-conventional yeasts like Yarrowia lipolytica and bacteria like Escherichia coli have also demonstrated potential. Genetic modifications such as increasing acetyl-CoA/malonyl-CoA pools, boosting the shikimate pathway, or multi-copy expression of pathway genes, allied to the optimization of fermentation strategies have been promising in increasing titers. Microbial biosynthesis of resveratrol aligns with the shift toward sustainable and renewable bio-based compounds, exemplifying a circular bioeconomy. Concluding, microbial fermentation presents a promising avenue for efficient resveratrol production, driven by genetic engineering, pathway optimization, and fermentation strategies. These advances hold the key to unlocking the potential of resveratrol for diverse therapeutic applications, contributing to a greener and sustainable future.
Collapse
Affiliation(s)
- Carlos E Costa
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Aloia Romaní
- Department of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), Ourense, Spain
| | - Lucília Domingues
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
3
|
Gu X, Shi Y, Luo C, Cheng J. Establishment of Saccharomyces cerevisiae as a cell factory for efficient de novo production of monogalactosyldiacylglycerol. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:111. [PMID: 39129014 PMCID: PMC11318150 DOI: 10.1186/s13068-024-02560-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
Monogalactosyldiacylglycerol (MGDG), a predominant photosynthetic membrane lipid derived from plants and microalgae, has important applications in feed additives, medicine, and other fields. The low content and various structural stereoselectivity differences of MGDG in plants limited the biological extraction or chemical synthesis of MGDG, resulting in a supply shortage of monogalactosyldiacylglycerol with a growing demand. Herein, we established Saccharomyces cerevisiae as a cell factory for efficient de novo production of monogalactosyldiacylglycerol for the first time. Heterologous production of monogalactosyldiacylglycerol was achieved by overexpression of codon-optimized monogalactosyldiacylglycerol synthase gene MGD1, the key Kennedy pathway genes (i.e. GAT1, ICT1, and PAH1), and multi-copy integration of the MGD1 expression cassette. The final engineered strain (MG-8) was capable of producing monogalactosyldiacylglycerol with titers as high as 16.58 nmol/mg DCW in a shake flask and 103.2 nmol/mg DCW in a 5 L fed-batch fermenter, respectively. This is the first report of heterologous biosynthesis of monogalactosyldiacylglycerol in microorganisms, which will provide a favorable reference for study on heterologous production of monogalactosyldiacylglycerol in yeasts.
Collapse
Affiliation(s)
- Xiaosong Gu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Hubei Province Key Lab Yeast Function, Yichang, 443003, China
| | - Yumei Shi
- College of Biological Resource and Food Engineering, Center for Yunnan Plateau Biological Resources Protection and Utilization, Qujing Normal University, Qujing, 655011, China
| | - Changxin Luo
- College of Biological Resource and Food Engineering, Center for Yunnan Plateau Biological Resources Protection and Utilization, Qujing Normal University, Qujing, 655011, China.
| | - Jintao Cheng
- Xianghu Laboratory, Hangzhou, 310027, China.
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
4
|
Wu Y, Feng S, Sun Z, Hu Y, Jia X, Zeng B. An outlook to sophisticated technologies and novel developments for metabolic regulation in the Saccharomyces cerevisiae expression system. Front Bioeng Biotechnol 2023; 11:1249841. [PMID: 37869712 PMCID: PMC10586203 DOI: 10.3389/fbioe.2023.1249841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/04/2023] [Indexed: 10/24/2023] Open
Abstract
Saccharomyces cerevisiae is one of the most extensively used biosynthetic systems for the production of diverse bioproducts, especially biotherapeutics and recombinant proteins. Because the expression and insertion of foreign genes are always impaired by the endogenous factors of Saccharomyces cerevisiae and nonproductive procedures, various technologies have been developed to enhance the strength and efficiency of transcription and facilitate gene editing procedures. Thus, the limitations that block heterologous protein secretion have been overcome. Highly efficient promoters responsible for the initiation of transcription and the accurate regulation of expression have been developed that can be precisely regulated with synthetic promoters and double promoter expression systems. Appropriate codon optimization and harmonization for adaption to the genomic codon abundance of S. cerevisiae are expected to further improve the transcription and translation efficiency. Efficient and accurate translocation can be achieved by fusing a specifically designed signal peptide to an upstream foreign gene to facilitate the secretion of newly synthesized proteins. In addition to the widely applied promoter engineering technology and the clear mechanism of the endoplasmic reticulum secretory pathway, the innovative genome editing technique CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated system) and its derivative tools allow for more precise and efficient gene disruption, site-directed mutation, and foreign gene insertion. This review focuses on sophisticated engineering techniques and emerging genetic technologies developed for the accurate metabolic regulation of the S. cerevisiae expression system.
Collapse
Affiliation(s)
| | | | | | | | | | - Bin Zeng
- College of Pharmacy, Shenzhen Technology University, Shenzhen, Guangdong, China
| |
Collapse
|
5
|
Gan Y, Meng X, Gao C, Song W, Liu L, Chen X. Metabolic engineering strategies for microbial utilization of methanol. ENGINEERING MICROBIOLOGY 2023; 3:100081. [PMID: 39628934 PMCID: PMC11611044 DOI: 10.1016/j.engmic.2023.100081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/19/2023] [Accepted: 02/25/2023] [Indexed: 12/06/2024]
Abstract
The increasing shortage of fossil resources and environmental pollution has renewed interest in the synthesis of value-added biochemicals from methanol. However, most of native or synthetic methylotrophs are unable to assimilate methanol at a sufficient rate to produce biochemicals. Thus, the performance of methylotrophs still needs to be optimized to meet the demands of industrial applications. In this review, we provide an in-depth discussion on the properties of natural and synthetic methylotrophs, and summarize the natural and synthetic methanol assimilation pathways. Further, we discuss metabolic engineering strategies for enabling microbial utilization of methanol for the bioproduction of value-added chemicals. Finally, we highlight the potential of microbial engineering for methanol assimilation and offer guidance for achieving a low-carbon footprint for the biosynthesis of chemicals.
Collapse
Affiliation(s)
- Yamei Gan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Xin Meng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Yang P, Jiang S, Lu S, Jiang S, Jiang S, Deng Y, Lu J, Wang H, Zhou Y. Ethanol yield improvement in Saccharomyces cerevisiae GPD2 Delta FPS1 Delta ADH2 Delta DLD3 Delta mutant and molecular mechanism exploration based on the metabolic flux and transcriptomics approaches. Microb Cell Fact 2022; 21:160. [PMID: 35964044 PMCID: PMC9375381 DOI: 10.1186/s12934-022-01885-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/05/2022] [Indexed: 11/10/2022] Open
Abstract
Background Saccharomyces cerevisiae generally consumes glucose to produce ethanol accompanied by the main by-products of glycerol, acetic acid, and lactic acid. The minimization of the formation of by-products in S. cerevisiae was an effective way to improve the economic viability of the bioethanol industry. In this study, S. cerevisiae GPD2, FPS1, ADH2, and DLD3 genes were knocked out by the Clustered Regularly Interspaced Short Palindromic Repeats Cas9 (CRISPR-Cas9) approach. The mechanism of gene deletion affecting ethanol metabolism was further elucidated based on metabolic flux and transcriptomics approaches. Results The engineered S. cerevisiae with gene deletion of GPD2, FPS1, ADH2, and DLD3 was constructed by the CRISPR-Cas9 approach. The ethanol content of engineered S. cerevisiae GPD2 Delta FPS1 Delta ADH2 Delta DLD3 Delta increased by 18.58% with the decrease of glycerol, acetic acid, and lactic acid contents by 22.32, 8.87, and 16.82%, respectively. The metabolic flux analysis indicated that the carbon flux rethanol in engineered strain increased from 60.969 to 63.379. The sequencing-based RNA-Seq transcriptomics represented 472 differential expression genes (DEGs) were identified in engineered S. cerevisiae, in which 195 and 277 genes were significantly up-regulated and down-regulated, respectively. The enriched pathways of up-regulated genes were mainly involved in the energy metabolism of carbohydrates, while the down-regulated genes were mainly enriched in acid metabolic pathways. Conclusions The yield of ethanol in engineered S. cerevisiae increased with the decrease of the by-products including glycerol, acetic acid, and lactic acid. The deletion of genes GPD2, FPS1, ADH2, and DLD3 resulted in the redirection of carbon flux. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01885-3.
Collapse
Affiliation(s)
- Peizhou Yang
- College of Food and Biological Engineering, Anhui Key Laboratory of Intensive Processing of Agricultural Products, Hefei University of Technology, 420 Feicui Road, Shushan District, Hefei, 230601, Anhui, China.
| | - Shuying Jiang
- College of Food and Biological Engineering, Anhui Key Laboratory of Intensive Processing of Agricultural Products, Hefei University of Technology, 420 Feicui Road, Shushan District, Hefei, 230601, Anhui, China
| | - Shuhua Lu
- College of Food and Biological Engineering, Anhui Key Laboratory of Intensive Processing of Agricultural Products, Hefei University of Technology, 420 Feicui Road, Shushan District, Hefei, 230601, Anhui, China
| | - Suwei Jiang
- Department of Biological, Food and Environment Engineering, Hefei University, 158 Jinxiu Avenue, Hefei, 230601, China
| | - Shaotong Jiang
- College of Food and Biological Engineering, Anhui Key Laboratory of Intensive Processing of Agricultural Products, Hefei University of Technology, 420 Feicui Road, Shushan District, Hefei, 230601, Anhui, China
| | - Yanhong Deng
- Suzhou Cofco Biochemical Co., Ltd., Suzhou, 234001, China
| | - Jiuling Lu
- Suzhou Cofco Biochemical Co., Ltd., Suzhou, 234001, China
| | - Hu Wang
- Suzhou Cofco Biochemical Co., Ltd., Suzhou, 234001, China
| | - Yong Zhou
- Suzhou Cofco Biochemical Co., Ltd., Suzhou, 234001, China
| |
Collapse
|
7
|
Kelso PA, Chow LKM, Carpenter AC, Paulsen IT, Williams TC. Toward Methanol-Based Biomanufacturing: Emerging Strategies for Engineering Synthetic Methylotrophy in Saccharomyces cerevisiae. ACS Synth Biol 2022; 11:2548-2563. [PMID: 35848307 DOI: 10.1021/acssynbio.2c00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The global expansion of biomanufacturing is currently limited by the availability of sugar-based microbial feedstocks, which require farmland for cultivation and therefore cannot support large increases in production without impacting the human food supply. One-carbon feedstocks, such as methanol, present an enticing alternative to sugar because they can be produced independently of arable farmland from organic waste, atmospheric carbon dioxide, and hydrocarbons such as biomethane, natural gas, and coal. The development of efficient industrial microorganisms that can convert one-carbon feedstocks into valuable products is an ongoing challenge. This review discusses progress in the field of synthetic methylotrophy with a focus on how it pertains to the important industrial yeast, Saccharomyces cerevisiae. Recent insights generated from engineering synthetic methylotrophic xylulose- and ribulose-monophosphate cycles, reductive glycine pathways, and adaptive laboratory evolution studies are critically assessed to generate novel strategies for the future engineering of methylotrophy in S. cerevisiae.
Collapse
Affiliation(s)
- Philip A Kelso
- School of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie University, Macquarie Park, Sydney, NSW 2109, Australia
| | | | - Alex C Carpenter
- School of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie University, Macquarie Park, Sydney, NSW 2109, Australia
| | - Ian T Paulsen
- School of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie University, Macquarie Park, Sydney, NSW 2109, Australia
| | - Thomas C Williams
- School of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie University, Macquarie Park, Sydney, NSW 2109, Australia
| |
Collapse
|
8
|
Domenzain I, Sánchez B, Anton M, Kerkhoven EJ, Millán-Oropeza A, Henry C, Siewers V, Morrissey JP, Sonnenschein N, Nielsen J. Reconstruction of a catalogue of genome-scale metabolic models with enzymatic constraints using GECKO 2.0. Nat Commun 2022; 13:3766. [PMID: 35773252 PMCID: PMC9246944 DOI: 10.1038/s41467-022-31421-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/16/2022] [Indexed: 01/08/2023] Open
Abstract
Genome-scale metabolic models (GEMs) have been widely used for quantitative exploration of the relation between genotype and phenotype. Streamlined integration of enzyme constraints and proteomics data into such models was first enabled by the GECKO toolbox, allowing the study of phenotypes constrained by protein limitations. Here, we upgrade the toolbox in order to enhance models with enzyme and proteomics constraints for any organism with a compatible GEM reconstruction. With this, enzyme-constrained models for the budding yeasts Saccharomyces cerevisiae, Yarrowia lipolytica and Kluyveromyces marxianus are generated to study their long-term adaptation to several stress factors by incorporation of proteomics data. Predictions reveal that upregulation and high saturation of enzymes in amino acid metabolism are common across organisms and conditions, suggesting the relevance of metabolic robustness in contrast to optimal protein utilization as a cellular objective for microbial growth under stress and nutrient-limited conditions. The functionality of GECKO is expanded with an automated framework for continuous and version-controlled update of enzyme-constrained GEMs, also producing such models for Escherichia coli and Homo sapiens. In this work, we facilitate the utilization of enzyme-constrained GEMs in basic science, metabolic engineering and synthetic biology purposes.
Collapse
Affiliation(s)
- Iván Domenzain
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Benjamín Sánchez
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Mihail Anton
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
- Department of Biology and Biological Engineering, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, Kemivägen 10, SE-412 58, Gothenburg, Sweden
| | - Eduard J Kerkhoven
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Aarón Millán-Oropeza
- Plateforme d'analyse protéomique Paris Sud-Ouest (PAPPSO), INRAE, MICALIS Institute, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Céline Henry
- Plateforme d'analyse protéomique Paris Sud-Ouest (PAPPSO), INRAE, MICALIS Institute, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Verena Siewers
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - John P Morrissey
- School of Microbiology, Environmental Research Institute and APC Microbiome Ireland, University College Cork, T12 K8AF, Cork, Ireland
| | - Nikolaus Sonnenschein
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden.
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden.
- BioInnovation Institute, Ole Maaløes Vej 3, 2200, Copenhagen, Denmark.
| |
Collapse
|
9
|
Engineering eukaryote-like regulatory circuits to expand artificial control mechanisms for metabolic engineering in Saccharomyces cerevisiae. Commun Biol 2022; 5:135. [PMID: 35173283 PMCID: PMC8850539 DOI: 10.1038/s42003-022-03070-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/20/2022] [Indexed: 12/22/2022] Open
Abstract
Temporal control of heterologous pathway expression is critical to achieve optimal efficiency in microbial metabolic engineering. The broadly-used GAL promoter system for engineered yeast (Saccharomyces cerevisiae) suffers from several drawbacks; specifically, unintended induction during laboratory development, and unintended repression in industrial production applications, which decreases overall production capacity. Eukaryotic synthetic circuits have not been well examined to address these problems. Here, we explore a modularised engineering method to deploy new genetic circuits applicable for expanding the control of GAL promoter-driven heterologous pathways in S. cerevisiae. Trans- and cis- modules, including eukaryotic trans-activating-and-repressing mechanisms, were characterised to provide new and better tools for circuit design. A eukaryote-like tetracycline-mediated circuit that delivers stringent repression was engineered to minimise metabolic burden during strain development and maintenance. This was combined with a novel 37 °C induction circuit to relief glucose-mediated repression on the GAL promoter during the bioprocess. This delivered a 44% increase in production of the terpenoid nerolidol, to 2.54 g L-1 in flask cultivation. These negative/positive transcriptional regulatory circuits expand global strategies of metabolic control to facilitate laboratory maintenance and for industry applications.
Collapse
|
10
|
Ferraz L, Sauer M, Sousa MJ, Branduardi P. The Plasma Membrane at the Cornerstone Between Flexibility and Adaptability: Implications for Saccharomyces cerevisiae as a Cell Factory. Front Microbiol 2021; 12:715891. [PMID: 34434179 PMCID: PMC8381377 DOI: 10.3389/fmicb.2021.715891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/19/2021] [Indexed: 11/23/2022] Open
Abstract
In the last decade, microbial-based biotechnological processes are paving the way toward sustainability as they implemented the use of renewable feedstocks. Nonetheless, the viability and competitiveness of these processes are often limited due to harsh conditions such as: the presence of feedstock-derived inhibitors including weak acids, non-uniform nature of the substrates, osmotic pressure, high temperature, extreme pH. These factors are detrimental for microbial cell factories as a whole, but more specifically the impact on the cell’s membrane is often overlooked. The plasma membrane is a complex system involved in major biological processes, including establishing and maintaining transmembrane gradients, controlling uptake and secretion, intercellular and intracellular communication, cell to cell recognition and cell’s physical protection. Therefore, when designing strategies for the development of versatile, robust and efficient cell factories ready to tackle the harshness of industrial processes while delivering high values of yield, titer and productivity, the plasma membrane has to be considered. Plasma membrane composition comprises diverse macromolecules and it is not constant, as cells adapt it according to the surrounding environment. Remarkably, membrane-specific traits are emerging properties of the system and therefore it is not trivial to predict which membrane composition is advantageous under certain conditions. This review includes an overview of membrane engineering strategies applied to Saccharomyces cerevisiae to enhance its fitness under industrially relevant conditions as well as strategies to increase microbial production of the metabolites of interest.
Collapse
Affiliation(s)
- Luís Ferraz
- Center of Molecular and Environmental Biology, University of Minho, Braga, Portugal.,Department of Biotechnology and Biosciences, University of Milano Bicocca, Milan, Italy
| | - Michael Sauer
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, BOKU University of Natural Resources and Life Sciences, Vienna, Austria
| | - Maria João Sousa
- Center of Molecular and Environmental Biology, University of Minho, Braga, Portugal
| | - Paola Branduardi
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Milan, Italy
| |
Collapse
|
11
|
Bertacchi S, Pagliari S, Cantù C, Bruni I, Labra M, Branduardi P. Enzymatic Hydrolysate of Cinnamon Waste Material as Feedstock for the Microbial Production of Carotenoids. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18031146. [PMID: 33525450 PMCID: PMC7908450 DOI: 10.3390/ijerph18031146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 11/16/2022]
Abstract
In the context of the global need to move towards circular economies, microbial cell factories can be employed thanks to their ability to use side-stream biomasses from the agro-industrial sector to obtain additional products. The valorization of residues allows for better and complete use of natural resources and, at the same time, for the avoidance of waste management to address our needs. In this work, we focused our attention on the microbial valorization of cinnamon waste material after polyphenol extraction (C-PEW) (Cinnamomum verum J.Presl), generally discarded without any additional processing. The sugars embedded in C-PEW were released by enzymatic hydrolysis, more compatible than acid hydrolysis with the subsequent microbial cultivation. We demonstrated that the yeast Rhodosporidium toruloides was able to grow and produce up to 2.00 (±0.23) mg/L of carotenoids in the resulting hydrolysate as a sole carbon and nitrogen source despite the presence of antimicrobial compounds typical of cinnamon. To further extend the potential of our finding, we tested other fungal cell factories for growth on the same media. Overall, these results are opening the possibility to develop separate hydrolysis and fermentation (SHF) bioprocesses based on C-PEW and microbial biotransformation to obtain high-value molecules.
Collapse
Affiliation(s)
- Stefano Bertacchi
- BioIndTechLab, Department of Biotechnology and Biosciences, University of Milano—Bicocca, 20126 Milan, Italy; (S.B.); (C.C.)
| | - Stefania Pagliari
- ZooPlantLab, Department of Biotechnology and Biosciences, University of Milano—Bicocca, 20126 Milan, Italy; (S.P.); (I.B.); (M.L.)
| | - Chiara Cantù
- BioIndTechLab, Department of Biotechnology and Biosciences, University of Milano—Bicocca, 20126 Milan, Italy; (S.B.); (C.C.)
| | - Ilaria Bruni
- ZooPlantLab, Department of Biotechnology and Biosciences, University of Milano—Bicocca, 20126 Milan, Italy; (S.P.); (I.B.); (M.L.)
| | - Massimo Labra
- ZooPlantLab, Department of Biotechnology and Biosciences, University of Milano—Bicocca, 20126 Milan, Italy; (S.P.); (I.B.); (M.L.)
| | - Paola Branduardi
- BioIndTechLab, Department of Biotechnology and Biosciences, University of Milano—Bicocca, 20126 Milan, Italy; (S.B.); (C.C.)
- Correspondence: ; Tel.: +39-02-64483418
| |
Collapse
|
12
|
Fathi Z, Tramontin LRR, Ebrahimipour G, Borodina I, Darvishi F. Metabolic engineering of Saccharomyces cerevisiae for production of β-carotene from hydrophobic substrates. FEMS Yeast Res 2020; 21:6041025. [PMID: 33332529 PMCID: PMC7811509 DOI: 10.1093/femsyr/foaa068] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
β-Carotene is a yellow–orange–red pigment used in food, cosmetics and pharmacy. There is no commercial yeast-based process for β-carotene manufacturing. In this work, we engineered the baker's yeast Saccharomyces cerevisiae by expression of lipases and carotenogenic genes to enable the production of β-carotene on hydrophobic substrates. First, the extracellular lipase (LIP2) and two cell-bound lipases (LIP7 and LIP8) from oleaginous yeast Yarrowia lipolytica were expressed either individually or in combination in S. cerevisiae. The engineered strains could grow on olive oil and triolein as the sole carbon source. The strain expressing all three lipases had ∼40% lipid content per dry weight. Next, we integrated the genes encoding β-carotene biosynthetic pathway, crtI, crtYB and crtE from Xanthophyllomyces dendrorhous. The resulting engineered strain bearing the lipases and carotenogenic genes reached a titer of 477.9 mg/L β-carotene in yeast peptone dextrose (YPD) medium supplemented with 1% (v/v) olive oil, which was 12-fold higher than an analogous strain without lipases. The highest β-carotene content of 46.5 mg/g DCW was obtained in yeast nitrogen base (YNB) medium supplemented with 1% (v/v) olive oil. The study demonstrates the potential of applying lipases and hydrophobic substrate supplementation for the production of carotenoids in S. cerevisiae.
Collapse
Affiliation(s)
- Zahra Fathi
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | | | - Gholamhossein Ebrahimipour
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark
| | - Farshad Darvishi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.,Microbial Biotechnology and Bioprocess Engineering (MBBE) Group, Department of Microbiology, Faculty of Science, University of Maragheh, Maragheh, Iran
| |
Collapse
|
13
|
Malcı K, Walls LE, Rios-Solis L. Multiplex Genome Engineering Methods for Yeast Cell Factory Development. Front Bioeng Biotechnol 2020; 8:589468. [PMID: 33195154 PMCID: PMC7658401 DOI: 10.3389/fbioe.2020.589468] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
As biotechnological applications of synthetic biology tools including multiplex genome engineering are expanding rapidly, the construction of strategically designed yeast cell factories becomes increasingly possible. This is largely due to recent advancements in genome editing methods like CRISPR/Cas tech and high-throughput omics tools. The model organism, baker's yeast (Saccharomyces cerevisiae) is an important synthetic biology chassis for high-value metabolite production. Multiplex genome engineering approaches can expedite the construction and fine tuning of effective heterologous pathways in yeast cell factories. Numerous multiplex genome editing techniques have emerged to capitalize on this recently. This review focuses on recent advancements in such tools, such as delta integration and rDNA cluster integration coupled with CRISPR-Cas tools to greatly enhance multi-integration efficiency. Examples of pre-placed gate systems which are an innovative alternative approach for multi-copy gene integration were also reviewed. In addition to multiple integration studies, multiplexing of alternative genome editing methods are also discussed. Finally, multiplex genome editing studies involving non-conventional yeasts and the importance of automation for efficient cell factory design and construction are considered. Coupling the CRISPR/Cas system with traditional yeast multiplex genome integration or donor DNA delivery methods expedites strain development through increased efficiency and accuracy. Novel approaches such as pre-placing synthetic sequences in the genome along with improved bioinformatics tools and automation technologies have the potential to further streamline the strain development process. In addition, the techniques discussed to engineer S. cerevisiae, can be adapted for use in other industrially important yeast species for cell factory development.
Collapse
Affiliation(s)
- Koray Malcı
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, United Kingdom.,Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, United Kingdom
| | - Laura E Walls
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, United Kingdom.,Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, United Kingdom
| | - Leonardo Rios-Solis
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, United Kingdom.,Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
14
|
Garabedian BM, Meadows CW, Mingardon F, Guenther JM, de Rond T, Abourjeily R, Lee TS. An automated workflow to screen alkene reductases using high-throughput thin layer chromatography. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:184. [PMID: 33292503 PMCID: PMC7653764 DOI: 10.1186/s13068-020-01821-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/21/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Synthetic biology efforts often require high-throughput screening tools for enzyme engineering campaigns. While innovations in chromatographic and mass spectrometry-based techniques provide relevant structural information associated with enzyme activity, these approaches can require cost-intensive instrumentation and technical expertise not broadly available. Moreover, complex workflows and analysis time can significantly impact throughput. To this end, we develop an automated, 96-well screening platform based on thin layer chromatography (TLC) and use it to monitor in vitro activity of a geranylgeranyl reductase isolated from Sulfolobus acidocaldarius (SaGGR). RESULTS Unreduced SaGGR products are oxidized to their corresponding epoxide and applied to thin layer silica plates by acoustic printing. These derivatives are chromatographically separated based on the extent of epoxidation and are covalently ligated to a chromophore, allowing detection of enzyme variants with unique product distributions or enhanced reductase activity. Herein, we employ this workflow to examine farnesol reduction using a codon-saturation mutagenesis library at the Leu377 site of SaGGR. We show this TLC-based screen can distinguish between fourfold differences in enzyme activity for select mutants and validated those results by GC-MS. CONCLUSIONS With appropriate quantitation methods, this workflow can be used to screen polyprenyl reductase activity and can be readily adapted to analyze broader catalyst libraries whose products are amenable to TLC analysis.
Collapse
Affiliation(s)
- Brett M Garabedian
- Joint BioEnergy Institute, 5885 Hollis Street, 4th floor, Emeryville, CA, 94608, USA
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Corey W Meadows
- Joint BioEnergy Institute, 5885 Hollis Street, 4th floor, Emeryville, CA, 94608, USA
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | | | - Joel M Guenther
- Joint BioEnergy Institute, 5885 Hollis Street, 4th floor, Emeryville, CA, 94608, USA
- Sandia National Laboratories, Livermore, CA, USA
| | - Tristan de Rond
- Joint BioEnergy Institute, 5885 Hollis Street, 4th floor, Emeryville, CA, 94608, USA
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Raya Abourjeily
- Total Raffinage Chimie, 2 Pl. Jean Millier, 92400, Courbevoie, France
| | - Taek Soon Lee
- Joint BioEnergy Institute, 5885 Hollis Street, 4th floor, Emeryville, CA, 94608, USA.
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
15
|
Wang F, Gao Y, Yang G. Recent advances in synthetic biology of cyanobacteria for improved chemicals production. Bioengineered 2020; 11:1208-1220. [PMID: 33124500 PMCID: PMC8291842 DOI: 10.1080/21655979.2020.1837458] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Cyanobacteria are Gram-negative photoautotrophic prokaryotes and have shown great importance to the Earth’s ecology. Based on their capability in oxygenic photosynthesis and genetic merits, they can be engineered as microbial chassis for direct conversion of carbon dioxide to value-added biofuels and chemicals. In the last decades, attempts have given to the application of synthetic biology tools and approaches in the development of cyanobacterial cell factories. Despite the successful proof-of-principle studies, large-scale application is still a technical challenge due to low yields of bioproducts. Therefore, recent efforts are underway to characterize and develop genetic regulatory parts and strategies for the synthetic biology applications in cyanobacteria. In this review, we present the recent advancements and application in cyanobacterial synthetic biology toolboxes. We also discuss the limitations and future perspectives for using such novel tools in cyanobacterial biotechnology.
Collapse
Affiliation(s)
- Fen Wang
- Department of Surgery, College of Medicine, University of Florida , Gainesville, FL, USA
| | - Yuanyuan Gao
- Jining Academy of Agricultural Science , Jining, Shandong, China
| | - Guang Yang
- Department of Aging and Geriatric Research, Institute on Aging, University of Florida , Gainesville, FL, USA
| |
Collapse
|
16
|
Yoo JI, Seppälä S, OʼMalley MA. Engineered fluoride sensitivity enables biocontainment and selection of genetically-modified yeasts. Nat Commun 2020; 11:5459. [PMID: 33122649 PMCID: PMC7596524 DOI: 10.1038/s41467-020-19271-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/02/2020] [Indexed: 12/24/2022] Open
Abstract
Biocontainment systems are needed to neutralize genetically modified organisms (GMOs) that pose ecological threats outside of controlled environments. In contrast, benign selection markers complement GMOs with reduced fitness. Benign selection agents serve as alternatives to antibiotics, which are costly and risk spread of antibiotic resistance. Here, we present a yeast biocontainment strategy leveraging engineered fluoride sensitivity and DNA vectors enabling use of fluoride as a selection agent. The biocontainment system addresses the scarcity of platforms available for yeast despite their prevalent use in industry and academia. In the absence of fluoride, the biocontainment strain exhibits phenotypes nearly identical to those of the wildtype strain. Low fluoride concentrations severely inhibit biocontainment strain growth, which is restored upon introduction of fluoride-based vectors. The biocontainment strategy is stringent, easily implemented, and applicable to several eukaryotes. Further, the DNA vectors enable genetic engineering at reduced costs and eliminate risks of propagating antibiotic resistance. Non-antibiotic selection systems could also serve as biocontainment strategies. Here the authors present a fluoride sensitivity selection system for use in yeast.
Collapse
Affiliation(s)
- Justin I Yoo
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Susanna Seppälä
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Michelle A OʼMalley
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
17
|
Babaei M, Borja Zamfir GM, Chen X, Christensen HB, Kristensen M, Nielsen J, Borodina I. Metabolic Engineering of Saccharomyces cerevisiae for Rosmarinic Acid Production. ACS Synth Biol 2020; 9:1978-1988. [PMID: 32589831 PMCID: PMC8961883 DOI: 10.1021/acssynbio.0c00048] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Indexed: 02/08/2023]
Abstract
Rosmarinic acid is a hydroxycinnamic acid ester commonly found in the Boraginaceae and Lamiaceae plant families. It exhibits various biological activities, including antioxidant, anti-inflammatory, antibacterial, antiallergic, and antiviral properties. Rosmarinic acid is used as a food and cosmetic ingredient, and several pharmaceutical applications have been suggested as well. Rosmarinic acid is currently produced by extraction from plants or chemical synthesis; however, due to limited availability of the plant sources and the complexity of the chemical synthesis method, there is an increasing interest in producing this compound by microbial fermentation. In this study, we aimed to produce rosmarinic acid by engineered baker's yeast Saccharomyces cerevisiae. Multiple biosynthetic pathway variants, carrying only plant genes or a combination of plant and Escherichia coli genes, were implemented using a full factorial design of experiment. Through analysis of variances, the effect of each enzyme variant (factors), together with possible interactions between these factors, was assessed. The best pathway variant produced 2.95 ± 0.08 mg/L rosmarinic acid in mineral medium with glucose as the sole carbon source. Increasing the copy number of rosmarinic acid biosynthetic genes increased the titer to 5.93 ± 0.06 mg/L. The study shows the feasibility of producing rosmarinic acid by yeast fermentation.
Collapse
Affiliation(s)
- Mahsa Babaei
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, DK-2800 Kgs. Lyngby, Denmark
| | - Gheorghe M. Borja Zamfir
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, DK-2800 Kgs. Lyngby, Denmark
| | - Xiao Chen
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, DK-2800 Kgs. Lyngby, Denmark
| | - Hanne Bjerre Christensen
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, DK-2800 Kgs. Lyngby, Denmark
| | - Mette Kristensen
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, DK-2800 Kgs. Lyngby, Denmark
| | - Jens Nielsen
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, DK-2800 Kgs. Lyngby, Denmark
- Department
of Biology and Biological Engineering, Chalmers
University of Technology, 412 96, Gothenburg, Sweden
- BioInnovation
Institute, Ole Måløes
Vej 3, 2200, Copenhagen
N, Denmark
| | - Irina Borodina
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
18
|
Aguilar CN, Ruiz HA, Rubio Rios A, Chávez-González M, Sepúlveda L, Rodríguez-Jasso RM, Loredo-Treviño A, Flores-Gallegos AC, Govea-Salas M, Ascacio-Valdes JA. Emerging strategies for the development of food industries. Bioengineered 2020; 10:522-537. [PMID: 31633446 PMCID: PMC6844418 DOI: 10.1080/21655979.2019.1682109] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Undoubtedly, the food industry is undergoing a dynamic process of transformation in its continual development in order to meet the requirements and solve the great problems represented by a constantly growing global population and food claimant in both quantity and quality. In this sense, it is necessary to evaluate the technological trends and advances that will change the landscape of the food processing industry, highlighting the latest requirements for equipment functionality. In particular, it is crucial to evaluate the influence of sustainable green biotechnology-based technologies to consolidate the food industry of the future, today, and it must be done by analyzing the mega-consumption trends that shape the future of industry, which range from local sourcing to on-the-go food, to an increase in organic foods and clean labels (understanding ingredients on food labels). While these things may seem alien to food manufacturing, they have a considerable influence on the way products are manufactured. This paper reviews in detail the conditions of the food industry, and particularly analyzes the application of emerging technologies in food preservation, extraction of bioactive compounds, bioengineering tools and other bio-based strategies for the development of the food industry.
Collapse
Affiliation(s)
- Cristóbal N Aguilar
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Mexico
| | - Hector A Ruiz
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Mexico
| | - Anilú Rubio Rios
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Mexico
| | - Mónica Chávez-González
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Mexico
| | - Leonardo Sepúlveda
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Mexico
| | - Rosa M Rodríguez-Jasso
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Mexico
| | - Araceli Loredo-Treviño
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Mexico
| | - Adriana C Flores-Gallegos
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Mexico
| | - Mayela Govea-Salas
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Mexico
| | - Juan A Ascacio-Valdes
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Mexico
| |
Collapse
|
19
|
van der Hoek SA, Darbani B, Zugaj KE, Prabhala BK, Biron MB, Randelovic M, Medina JB, Kell DB, Borodina I. Engineering the Yeast Saccharomyces cerevisiae for the Production of L-(+)-Ergothioneine. Front Bioeng Biotechnol 2019; 7:262. [PMID: 31681742 PMCID: PMC6797849 DOI: 10.3389/fbioe.2019.00262] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/26/2019] [Indexed: 01/08/2023] Open
Abstract
L-(+)-Ergothioneine (ERG) is an unusual, naturally occurring antioxidant nutraceutical that has been shown to help reduce cellular oxidative damage. Humans do not biosynthesise ERG, but acquire it from their diet; it exploits a specific transporter (SLC22A4) for its uptake. ERG is considered to be a nutraceutical and possible vitamin that is involved in the maintenance of health, and seems to be at too low a concentration in several diseases in vivo. Ergothioneine is thus a potentially useful dietary supplement. Present methods of commercial production rely on extraction from natural sources or on chemical synthesis. Here we describe the engineering of the baker's yeast Saccharomyces cerevisiae to produce ergothioneine by fermentation in defined media. After integrating combinations of ERG biosynthetic pathways from different organisms, we screened yeast strains for their production of ERG. The highest-producing strain was also engineered with known ergothioneine transporters. The effect of amino acid supplementation of the medium was investigated and the nitrogen metabolism of S. cerevisiae was altered by knock-out of TOR1 or YIH1. We also optimized the media composition using fractional factorial methods. Our optimal strategy led to a titer of 598 ± 18 mg/L ergothioneine in fed-batch culture in 1 L bioreactors. Because S. cerevisiae is a GRAS ("generally recognized as safe") organism that is widely used for nutraceutical production, this work provides a promising process for the biosynthetic production of ERG.
Collapse
Affiliation(s)
- Steven A. van der Hoek
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Behrooz Darbani
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Karolina E. Zugaj
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Bala Krishna Prabhala
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Mathias Bernfried Biron
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Milica Randelovic
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jacqueline B. Medina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Douglas B. Kell
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
20
|
Auxillos JY, Garcia-Ruiz E, Jones S, Li T, Jiang S, Dai J, Cai Y. Multiplex Genome Engineering for Optimizing Bioproduction in Saccharomyces cerevisiae. Biochemistry 2019; 58:1492-1500. [DOI: 10.1021/acs.biochem.8b01086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jamie Y. Auxillos
- Manchester Institute of Biotechnology (MIB), School of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- School of Biological Sciences, University of Edinburgh, King’s Buildings, Edinburgh EH9 3JY, United Kingdom
| | - Eva Garcia-Ruiz
- Manchester Institute of Biotechnology (MIB), School of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Sally Jones
- Manchester Institute of Biotechnology (MIB), School of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Tianyi Li
- Center for Synthetic Genomics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shuangying Jiang
- Center for Synthetic Genomics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Junbiao Dai
- Center for Synthetic Genomics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yizhi Cai
- Manchester Institute of Biotechnology (MIB), School of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
21
|
Vrancheva R, Ivanov I, Aneva I, Stoyanova M, Pavlov A. Food additives and bioactive substances from in vitro systems of edible plants from the Balkan peninsula. Eng Life Sci 2018; 18:799-806. [PMID: 32624873 DOI: 10.1002/elsc.201800063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/01/2018] [Accepted: 08/14/2018] [Indexed: 11/07/2022] Open
Abstract
During the last few years there is an increasing demand to the natural biologically active compounds. According to the World Health Organization (WHO) about 11% of the conventional medicines are of plant origin. Nowadays, plant biotechnologies are modern and reliable tool for producing valuable bioactive compounds. Recently, the potential of plant cells as foods also was confirmed. The advantages of plant in vitro systems over the intact plants are well known: growing under controlled and optimized laboratory conditions; independence of climatic and soil differences; preservation of rare and endangered plant species; cultivation in diverse bioreactor systems for increasing production yields of target metabolites. There have been developed many in vitro systems for production of various plant bioactive compounds with potential application in food industries. But potential for industrial implementation of this technology depends on solving problems with the scale-up of bioreactor cultivation, development of additional approaches for improving/modification of bioactivities of the target plant secondary metabolites, and to find way to exclude or replace in the culture media the carcinogenic plant growth regulator 2,4-dichlorophenoxyacetic acid (2,4-D) with its safety analogs, such as α-naphtaleneacetic acid (NAA) and/or indole-3-butyric acid (IBA). The aim of the current mini review is to summarize information about different in vitro systems of edible plants from the Balkan Peninsula with potential for producing food additives and biologically active substances and to describe prospects for successful industrial implementation of this technology.
Collapse
Affiliation(s)
- Radka Vrancheva
- Department of Analytical Chemistry and Physical chemistry University of Food Technologies-Plovdiv Plovdiv Bulgaria
| | - Ivan Ivanov
- Department of Organic Chemistry and Inorganic Chemistry University of Food Technologies-Plovdiv Plovdiv Bulgaria
| | - Ina Aneva
- Institute of Biodiversity and Ecosystem Research Bulgarian Academy of Sciences Sofia Bulgaria
| | - Magdalena Stoyanova
- Department of Analytical Chemistry and Physical chemistry University of Food Technologies-Plovdiv Plovdiv Bulgaria
| | - Atanas Pavlov
- Department of Analytical Chemistry and Physical chemistry University of Food Technologies-Plovdiv Plovdiv Bulgaria.,Laboratory of Applied Biotechnologies, The Stephan Angeloff Institute of Microbiology Bulgarian Academy of Sciences Plovdiv Bulgaria
| |
Collapse
|
22
|
Henritzi S, Fischer M, Grininger M, Oreb M, Boles E. An engineered fatty acid synthase combined with a carboxylic acid reductase enables de novo production of 1-octanol in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:150. [PMID: 29881455 PMCID: PMC5984327 DOI: 10.1186/s13068-018-1149-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 05/23/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND The ideal biofuel should not only be a regenerative fuel from renewable feedstocks, but should also be compatible with the existing fuel distribution infrastructure and with normal car engines. As the so-called drop-in biofuel, the fatty alcohol 1-octanol has been described as a valuable substitute for diesel and jet fuels and has already been produced fermentatively from sugars in small amounts with engineered bacteria via reduction of thioesterase-mediated premature release of octanoic acid from fatty acid synthase or via a reversal of the β-oxidation pathway. RESULTS The previously engineered short-chain acyl-CoA producing yeast Fas1R1834K/Fas2 fatty acid synthase variant was expressed together with carboxylic acid reductase from Mycobacterium marinum and phosphopantetheinyl transferase Sfp from Bacillus subtilis in a Saccharomyces cerevisiae Δfas1 Δfas2 Δfaa2 mutant strain. With the involvement of endogenous thioesterases, alcohol dehydrogenases, and aldehyde reductases, the synthesized octanoyl-CoA was converted to 1-octanol up to a titer of 26.0 mg L-1 in a 72-h fermentation. The additional accumulation of 90 mg L-1 octanoic acid in the medium indicated a bottleneck in 1-octanol production. When octanoic acid was supplied externally to the yeast cells, it could be efficiently converted to 1-octanol indicating that re-uptake of octanoic acid across the plasma membrane is not limiting. Additional overexpression of aldehyde reductase Ahr from Escherichia coli nearly completely prevented accumulation of octanoic acid and increased 1-octanol titers up to 49.5 mg L-1. However, in growth tests concentrations even lower than 50.0 mg L-1 turned out to be inhibitory to yeast growth. In situ extraction in a two-phase fermentation with dodecane as second phase did not improve growth, indicating that 1-octanol acts inhibitive before secretion. Furthermore, 1-octanol production was even reduced, which results from extraction of the intermediate octanoic acid to the organic phase, preventing its re-uptake. CONCLUSIONS By providing chain length control via an engineered octanoyl-CoA producing fatty acid synthase, we were able to specifically produce 1-octanol with S. cerevisiae. Before metabolic engineering can be used to further increase product titers and yields, strategies must be developed that cope with the toxic effects of 1-octanol on the yeast cells.
Collapse
Affiliation(s)
- Sandra Henritzi
- Faculty of Biological Sciences, Institute of Molecular Bioscience, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Manuel Fischer
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Cluster of Excellence “Macromolecular Complexes”, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt, Germany
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Cluster of Excellence “Macromolecular Complexes”, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt, Germany
| | - Mislav Oreb
- Faculty of Biological Sciences, Institute of Molecular Bioscience, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Eckhard Boles
- Faculty of Biological Sciences, Institute of Molecular Bioscience, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| |
Collapse
|
23
|
Juergens H, Varela JA, Gorter de Vries AR, Perli T, Gast VJM, Gyurchev NY, Rajkumar AS, Mans R, Pronk JT, Morrissey JP, Daran JMG. Genome editing in Kluyveromyces and Ogataea yeasts using a broad-host-range Cas9/gRNA co-expression plasmid. FEMS Yeast Res 2018; 18:4847887. [PMID: 29438517 PMCID: PMC6018904 DOI: 10.1093/femsyr/foy012] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/08/2018] [Indexed: 12/17/2022] Open
Abstract
While CRISPR-Cas9-mediated genome editing has transformed yeast research, current plasmids and cassettes for Cas9 and guide-RNA expression are species specific. CRISPR tools that function in multiple yeast species could contribute to the intensifying research on non-conventional yeasts. A plasmid carrying a pangenomic origin of replication and two constitutive expression cassettes for Cas9 and ribozyme-flanked gRNAs was constructed. Its functionality was tested by analyzing inactivation of the ADE2 gene in four yeast species. In two Kluyveromyces species, near-perfect targeting (≥96%) and homologous repair (HR) were observed in at least 24% of transformants. In two Ogataea species, Ade- mutants were not observed directly after transformation, but prolonged incubation of transformed cells resulted in targeting efficiencies of 9% to 63% mediated by non-homologous end joining (NHEJ). In an Ogataea parapolymorpha ku80 mutant, deletion of OpADE2 mediated by HR was achieved, albeit at low efficiencies (<1%). Furthermore the expression of a dual polycistronic gRNA array enabled simultaneous interruption of OpADE2 and OpYNR1 demonstrating flexibility of ribozyme-flanked gRNA design for multiplexing. While prevalence of NHEJ prevented HR-mediated editing in Ogataea, such targeted editing was possible in Kluyveromyces. This broad-host-range CRISPR/gRNA system may contribute to exploration of Cas9-mediated genome editing in other Saccharomycotina yeasts.
Collapse
Affiliation(s)
- Hannes Juergens
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Javier A Varela
- School of Microbiology/Centre for Synthetic Biology and Biotechnology/Environmental Research Institute/APC Microbiome Institute, University College Cork, Cork T12 YN60, Ireland
| | - Arthur R Gorter de Vries
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Thomas Perli
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Veronica J M Gast
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Nikola Y Gyurchev
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Arun S Rajkumar
- School of Microbiology/Centre for Synthetic Biology and Biotechnology/Environmental Research Institute/APC Microbiome Institute, University College Cork, Cork T12 YN60, Ireland
| | - Robert Mans
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - John P Morrissey
- School of Microbiology/Centre for Synthetic Biology and Biotechnology/Environmental Research Institute/APC Microbiome Institute, University College Cork, Cork T12 YN60, Ireland
| | - Jean-Marc G Daran
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| |
Collapse
|
24
|
Jakočiūnas T, Jensen ED, Jensen MK, Keasling JD. Assembly and Multiplex Genome Integration of Metabolic Pathways in Yeast Using CasEMBLR. Methods Mol Biol 2018; 1671:185-201. [PMID: 29170960 DOI: 10.1007/978-1-4939-7295-1_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Genome integration is a vital step for implementing large biochemical pathways to build a stable microbial cell factory. Although traditional strain construction strategies are well established for the model organism Saccharomyces cerevisiae, recent advances in CRISPR/Cas9-mediated genome engineering allow much higher throughput and robustness in terms of strain construction. In this chapter, we describe CasEMBLR, a highly efficient and marker-free genome engineering method for one-step integration of in vivo assembled expression cassettes in multiple genomic sites simultaneously. CasEMBLR capitalizes on the CRISPR/Cas9 technology to generate double-strand breaks in genomic loci, thus prompting native homologous recombination (HR) machinery to integrate exogenously derived homology templates. As proof-of-principle for microbial cell factory development, CasEMBLR was used for one-step assembly and marker-free integration of the carotenoid pathway from 15 exogenously supplied DNA parts into three targeted genomic loci. As a second proof-of-principle, a total of ten DNA parts were assembled and integrated in two genomic loci to construct a tyrosine production strain, and at the same time knocking out two genes. This new method complements and improves the field of genome engineering in S. cerevisiae by providing a more flexible platform for rapid and precise strain building.
Collapse
Affiliation(s)
- Tadas Jakočiūnas
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Emil D Jensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Michael K Jensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark.
| | - Jay D Keasling
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
- Joint BioEnergy Institute, Emeryville, CA, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
25
|
Adnan M, Zheng W, Islam W, Arif M, Abubakar YS, Wang Z, Lu G. Carbon Catabolite Repression in Filamentous Fungi. Int J Mol Sci 2017; 19:ijms19010048. [PMID: 29295552 PMCID: PMC5795998 DOI: 10.3390/ijms19010048] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 12/13/2017] [Accepted: 12/20/2017] [Indexed: 12/18/2022] Open
Abstract
Carbon Catabolite Repression (CCR) has fascinated scientists and researchers around the globe for the past few decades. This important mechanism allows preferential utilization of an energy-efficient and readily available carbon source over relatively less easily accessible carbon sources. This mechanism helps microorganisms to obtain maximum amount of glucose in order to keep pace with their metabolism. Microorganisms assimilate glucose and highly favorable sugars before switching to less-favored sources of carbon such as organic acids and alcohols. In CCR of filamentous fungi, CreA acts as a transcription factor, which is regulated to some extent by ubiquitination. CreD-HulA ubiquitination ligase complex helps in CreA ubiquitination, while CreB-CreC deubiquitination (DUB) complex removes ubiquitin from CreA, which causes its activation. CCR of fungi also involves some very crucial elements such as Hexokinases, cAMP, Protein Kinase (PKA), Ras proteins, G protein-coupled receptor (GPCR), Adenylate cyclase, RcoA and SnfA. Thorough study of molecular mechanism of CCR is important for understanding growth, conidiation, virulence and survival of filamentous fungi. This review is a comprehensive revision of the regulation of CCR in filamentous fungi as well as an updated summary of key regulators, regulation of different CCR-dependent mechanisms and its impact on various physical characteristics of filamentous fungi.
Collapse
Affiliation(s)
- Muhammad Adnan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Bio-Pesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Wenhui Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Bio-Pesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Waqar Islam
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Muhammad Arif
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yakubu Saddeeq Abubakar
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Bio-Pesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Bio-Pesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Guodong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Bio-Pesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
26
|
Stovicek V, Holkenbrink C, Borodina I. CRISPR/Cas system for yeast genome engineering: advances and applications. FEMS Yeast Res 2017; 17:3828107. [PMID: 28505256 PMCID: PMC5812514 DOI: 10.1093/femsyr/fox030] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/13/2017] [Indexed: 12/20/2022] Open
Abstract
The methods based on the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) system have quickly gained popularity for genome editing and transcriptional regulation in many organisms, including yeast. This review aims to provide a comprehensive overview of CRISPR application for different yeast species: from basic principles and genetic design to applications.
Collapse
Affiliation(s)
- Vratislav Stovicek
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Carina Holkenbrink
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
27
|
Chen X, Gao C, Guo L, Hu G, Luo Q, Liu J, Nielsen J, Chen J, Liu L. DCEO Biotechnology: Tools To Design, Construct, Evaluate, and Optimize the Metabolic Pathway for Biosynthesis of Chemicals. Chem Rev 2017; 118:4-72. [DOI: 10.1021/acs.chemrev.6b00804] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xiulai Chen
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Cong Gao
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Liang Guo
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guipeng Hu
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Qiuling Luo
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jia Liu
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jens Nielsen
- Department
of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2800 Lyngby, Denmark
| | - Jian Chen
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Liming Liu
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Department
of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
28
|
Lee SQE, Tan TS, Kawamukai M, Chen ES. Cellular factories for coenzyme Q 10 production. Microb Cell Fact 2017; 16:39. [PMID: 28253886 PMCID: PMC5335738 DOI: 10.1186/s12934-017-0646-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/10/2017] [Indexed: 04/20/2023] Open
Abstract
Coenzyme Q10 (CoQ10), a benzoquinone present in most organisms, plays an important role in the electron-transport chain, and its deficiency is associated with various neuropathies and muscular disorders. CoQ10 is the only lipid-soluble antioxidant found in humans, and for this, it is gaining popularity in the cosmetic and healthcare industries. To meet the growing demand for CoQ10, there has been considerable interest in ways to enhance its production, the most effective of which remains microbial fermentation. Previous attempts to increase CoQ10 production to an industrial scale have thus far conformed to the strategies used in typical metabolic engineering endeavors. However, the emergence of new tools in the expanding field of synthetic biology has provided a suite of possibilities that extend beyond the traditional modes of metabolic engineering. In this review, we cover the various strategies currently undertaken to upscale CoQ10 production, and discuss some of the potential novel areas for future research.
Collapse
Affiliation(s)
- Sean Qiu En Lee
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Tsu Soo Tan
- School of Chemical & Life Sciences, Nanyang Polytechnic, Singapore, Singapore
| | - Makoto Kawamukai
- Faculty of Life and Environmental Science, Shimane University, Matsue, 690-8504, Japan
| | - Ee Sin Chen
- Department of Biochemistry, National University of Singapore, Singapore, Singapore. .,National University Health System (NUHS), Singapore, Singapore. .,NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, Singapore, Singapore. .,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
29
|
Salinas F, Rojas V, Delgado V, Agosin E, Larrondo LF. Optogenetic switches for light-controlled gene expression in yeast. Appl Microbiol Biotechnol 2017; 101:2629-2640. [DOI: 10.1007/s00253-017-8178-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 02/01/2017] [Accepted: 02/03/2017] [Indexed: 02/06/2023]
|
30
|
MacPherson M, Saka Y. Short Synthetic Terminators for Assembly of Transcription Units in Vitro and Stable Chromosomal Integration in Yeast S. cerevisiae. ACS Synth Biol 2017; 6:130-138. [PMID: 27529501 DOI: 10.1021/acssynbio.6b00165] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Assembly of synthetic genetic circuits is central to synthetic biology. Yeast S. cerevisiae, in particular, has proven to be an ideal chassis for synthetic genome assemblies by exploiting its efficient homologous recombination. However, this property of efficient homologous recombination poses a problem for multigene assemblies in yeast, since repeated usage of standard parts, such as transcriptional terminators, can lead to rearrangements of the repeats in assembled DNA constructs in vivo. To address this issue in developing a library of orthogonal genetic components for yeast, we designed a set of short synthetic terminators based on a consensus sequence with random linkers to avoid repetitive sequences. We constructed a series of expression vectors with these synthetic terminators for efficient assembly of synthetic genes using Gateway recombination reactions. We also constructed two BAC (bacterial artificial chromosome) vectors for assembling multiple transcription units with the synthetic terminators in vitro and their integration in the yeast genome. The tandem array of synthetic genes integrated in the genome by this method is highly stable because there are few homologous segments in the synthetic constructs. Using this system of assembly and genomic integration of transcription units, we tested the synthetic terminators and their influence on the proximal transcription units. Although all the synthetic terminators have the common consensus with the identical length, they showed different activities and impacts on the neighboring transcription units.
Collapse
Affiliation(s)
- Murray MacPherson
- Institute of Medical Sciences,
School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, U.K
| | - Yasushi Saka
- Institute of Medical Sciences,
School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, U.K
| |
Collapse
|
31
|
Abbas CA. Synthetic Yeast as the New Frontier in Evolutionary Developments in Biology. FEMS Yeast Res 2016; 16:fow093. [PMID: 27756814 DOI: 10.1093/femsyr/fow093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Charles A Abbas
- Department of Research, ADM, JRRRC, Decatur, Illinois, 62521, USA
| |
Collapse
|
32
|
Jessop-Fabre MM, Jakočiūnas T, Stovicek V, Dai Z, Jensen MK, Keasling JD, Borodina I. EasyClone-MarkerFree: A vector toolkit for marker-less integration of genes into Saccharomyces cerevisiae via CRISPR-Cas9. Biotechnol J 2016; 11:1110-7. [PMID: 27166612 PMCID: PMC5094547 DOI: 10.1002/biot.201600147] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 03/14/2016] [Accepted: 05/03/2016] [Indexed: 11/08/2022]
Abstract
Saccharomyces cerevisiae is an established industrial host for production of recombinant proteins, fuels and chemicals. To enable stable integration of multiple marker-free overexpression cassettes in the genome of S. cerevisiae, we have developed a vector toolkit EasyClone-MarkerFree. The integration of linearized expression cassettes into defined genomic loci is facilitated by CRISPR/Cas9. Cas9 is recruited to the chromosomal location by specific guide RNAs (gRNAs) expressed from a set of gRNA helper vectors. Using our genome engineering vector suite, single and triple insertions are obtained with 90-100% and 60-70% targeting efficiency, respectively. We demonstrate application of the vector toolkit by constructing a haploid laboratory strain (CEN.PK113-7D) and a diploid industrial strain (Ethanol Red) for production of 3-hydroxypropionic acid, where we tested three different acetyl-CoA supply strategies, requiring overexpression of three to six genes each. Among the tested strategies was a bacterial cytosolic pyruvate dehydrogenase complex, which was integrated into the genome in a single transformation. The publicly available EasyClone-MarkerFree vector suite allows for facile and highly standardized genome engineering, and should be of particular interest to researchers working on yeast chassis with limited markers available.
Collapse
Affiliation(s)
- Mathew M Jessop-Fabre
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Tadas Jakočiūnas
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Vratislav Stovicek
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Zongjie Dai
- The Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Michael K Jensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Jay D Keasling
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
- Joint BioEnergy Institute, Emeryville, CA, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Chemical and Biomolecular Engineering & Department of Bioengineering University of California, Berkeley, CA, USA
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark.
| |
Collapse
|
33
|
Averesch NJH, Winter G, Krömer JO. Production of para-aminobenzoic acid from different carbon-sources in engineered Saccharomyces cerevisiae. Microb Cell Fact 2016; 15:89. [PMID: 27230236 PMCID: PMC4882779 DOI: 10.1186/s12934-016-0485-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/11/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Biological production of the aromatic compound para-aminobenzoic acid (pABA) is of great interest to the chemical industry. Besides its application in pharmacy and as crosslinking agent for resins and dyes pABA is a potential precursor for the high-volume aromatic feedstocks terephthalic acid and para-phenylenediamine. The yeast Saccharomyces cerevisiae synthesises pABA in the shikimate pathway: Outgoing from the central shikimate pathway intermediate chorismate, pABA is formed in two enzyme-catalysed steps, encoded by the genes ABZ1 and ABZ2. In this study S. cerevisiae metabolism was genetically engineered for the overproduction of pABA. Using in silico metabolic modelling an observed impact of carbon-source on product yield was investigated and exploited to optimize production. RESULTS A strain that incorporated the feedback resistant ARO4 (K229L) and deletions in the ARO7 and TRP3 genes, in order to channel flux to chorismate, was used to screen different ABZ1 and ABZ2 genes for pABA production. In glucose based shake-flaks fermentations the highest titer (600 µM) was reached when over-expressing the ABZ1 and ABZ2 genes from the wine yeast strains AWRI1631 and QA23, respectively. In silico metabolic modelling indicated a metabolic advantage for pABA production on glycerol and combined glycerol-ethanol carbon-sources. This was confirmed experimentally, the empirical ideal glycerol to ethanol uptake ratios of 1:2-2:1 correlated with the model. A (13)C tracer experiment determined that up to 32% of the produced pABA originated from glycerol. Finally, in fed-batch bioreactor experiments pABA titers of 1.57 mM (215 mg/L) and carbon yields of 2.64% could be achieved. CONCLUSION In this study a combination of genetic engineering and in silico modelling has proven to be a complete and advantageous approach to increase pABA production. Especially the enzymes that catalyse the last two steps towards product formation appeared to be crucial to direct flux to pABA. A stoichiometric model for carbon-utilization proved useful to design carbon-source composition, leading to increased pABA production. The reported pABA concentrations and yields are, to date, the highest in S. cerevisiae and the second highest in a microbial production system, underlining the great potential of yeast as a cell factory for renewable aromatic feedstocks.
Collapse
Affiliation(s)
- Nils J. H. Averesch
- />Centre for Microbial Electrochemical Systems (CEMES), The University of Queensland, Office 618, Level 6 Gehrmann Building (60), St. Lucia, Brisbane, QLD 4072 Australia
- />Advanced Water Management Centre (AWMC), The University of Queensland, Brisbane, Australia
| | - Gal Winter
- />Centre for Microbial Electrochemical Systems (CEMES), The University of Queensland, Office 618, Level 6 Gehrmann Building (60), St. Lucia, Brisbane, QLD 4072 Australia
- />Advanced Water Management Centre (AWMC), The University of Queensland, Brisbane, Australia
- />School of Science and Technology, University of New England, Armidale, Australia
| | - Jens O. Krömer
- />Centre for Microbial Electrochemical Systems (CEMES), The University of Queensland, Office 618, Level 6 Gehrmann Building (60), St. Lucia, Brisbane, QLD 4072 Australia
- />Advanced Water Management Centre (AWMC), The University of Queensland, Brisbane, Australia
| |
Collapse
|
34
|
Liu X, Lin J, Hu H, Zhou B, Zhu B. De novobiosynthesis of resveratrol by site-specific integration of heterologous genes inEscherichia coli. FEMS Microbiol Lett 2016; 363:fnw061. [DOI: 10.1093/femsle/fnw061] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2016] [Indexed: 12/19/2022] Open
|
35
|
Maury J, Germann SM, Baallal Jacobsen SA, Jensen NB, Kildegaard KR, Herrgård MJ, Schneider K, Koza A, Forster J, Nielsen J, Borodina I. EasyCloneMulti: A Set of Vectors for Simultaneous and Multiple Genomic Integrations in Saccharomyces cerevisiae. PLoS One 2016; 11:e0150394. [PMID: 26934490 PMCID: PMC4775045 DOI: 10.1371/journal.pone.0150394] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/13/2016] [Indexed: 01/08/2023] Open
Abstract
Saccharomyces cerevisiae is widely used in the biotechnology industry for production of ethanol, recombinant proteins, food ingredients and other chemicals. In order to generate highly producing and stable strains, genome integration of genes encoding metabolic pathway enzymes is the preferred option. However, integration of pathway genes in single or few copies, especially those encoding rate-controlling steps, is often not sufficient to sustain high metabolic fluxes. By exploiting the sequence diversity in the long terminal repeats (LTR) of Ty retrotransposons, we developed a new set of integrative vectors, EasyCloneMulti, that enables multiple and simultaneous integration of genes in S. cerevisiae. By creating vector backbones that combine consensus sequences that aim at targeting subsets of Ty sequences and a quickly degrading selective marker, integrations at multiple genomic loci and a range of expression levels were obtained, as assessed with the green fluorescent protein (GFP) reporter system. The EasyCloneMulti vector set was applied to balance the expression of the rate-controlling step in the β-alanine pathway for biosynthesis of 3-hydroxypropionic acid (3HP). The best 3HP producing clone, with 5.45 g.L-1 of 3HP, produced 11 times more 3HP than the lowest producing clone, which demonstrates the capability of EasyCloneMulti vectors to impact metabolic pathway enzyme activity.
Collapse
Affiliation(s)
- Jérôme Maury
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
- * E-mail:
| | - Susanne M. Germann
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | | | - Niels B. Jensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Kanchana R. Kildegaard
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Markus J. Herrgård
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Konstantin Schneider
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Anna Koza
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Jochen Forster
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Jens Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
- Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| |
Collapse
|
36
|
Juhas M, Ajioka JW. High molecular weight DNA assembly in vivo for synthetic biology applications. Crit Rev Biotechnol 2016; 37:277-286. [PMID: 26863154 DOI: 10.3109/07388551.2016.1141394] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
DNA assembly is the key technology of the emerging interdisciplinary field of synthetic biology. While the assembly of smaller DNA fragments is usually performed in vitro, high molecular weight DNA molecules are assembled in vivo via homologous recombination in the host cell. Escherichia coli, Bacillus subtilis and Saccharomyces cerevisiae are the main hosts used for DNA assembly in vivo. Progress in DNA assembly over the last few years has paved the way for the construction of whole genomes. This review provides an update on recent synthetic biology advances with particular emphasis on high molecular weight DNA assembly in vivo in E. coli, B. subtilis and S. cerevisiae. Special attention is paid to the assembly of whole genomes, such as those of the first synthetic cell, synthetic yeast and minimal genomes.
Collapse
Affiliation(s)
- Mario Juhas
- a Department of Pathology , University of Cambridge , Tennis Court Road , Cambridge , UK
| | - James W Ajioka
- a Department of Pathology , University of Cambridge , Tennis Court Road , Cambridge , UK
| |
Collapse
|
37
|
Chen Y, Nielsen J. Biobased organic acids production by metabolically engineered microorganisms. Curr Opin Biotechnol 2015; 37:165-172. [PMID: 26748037 DOI: 10.1016/j.copbio.2015.11.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 10/26/2015] [Accepted: 11/03/2015] [Indexed: 12/30/2022]
Abstract
Bio-based production of organic acids via microbial fermentation has been traditionally used in food industry. With the recent desire to develop more sustainable bioprocesses for production of fuels, chemicals and materials, the market for microbial production of organic acids has been further expanded as organic acids constitute a key group among top building block chemicals that can be produced from renewable resources. Here we review the current status for production of citric acid and lactic acid, and we highlight the use of modern metabolic engineering technologies to develop high performance microbes for production of succinic acid and 3-hydroxypropionic acid. Also, the key limitations and challenges in microbial organic acids production are discussed.
Collapse
Affiliation(s)
- Yun Chen
- Department of Biology & Biological Engineering, Chalmers University of Technology, SE412 96 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology & Biological Engineering, Chalmers University of Technology, SE412 96 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE412 96 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2970 Hørsholm, Denmark.
| |
Collapse
|
38
|
Jakočiu̅nas T, Rajkumar AS, Zhang J, Arsovska D, Rodriguez A, Jendresen CB, Skjødt ML, Nielsen AT, Borodina I, Jensen MK, Keasling JD. CasEMBLR: Cas9-Facilitated Multiloci Genomic Integration of in Vivo Assembled DNA Parts in Saccharomyces cerevisiae. ACS Synth Biol 2015; 4:1226-34. [PMID: 25781611 DOI: 10.1021/acssynbio.5b00007] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Homologous recombination (HR) in Saccharomyces cerevisiae has been harnessed for both plasmid construction and chromosomal integration of foreign DNA. Still, native HR machinery is not efficient enough for complex and marker-free genome engineering required for modern metabolic engineering. Here, we present a method for marker-free multiloci integration of in vivo assembled DNA parts. By the use of CRISPR/Cas9-mediated one-step double-strand breaks at single, double and triple integration sites we report the successful in vivo assembly and chromosomal integration of DNA parts. We call our method CasEMBLR and validate its applicability for genome engineering and cell factory development in two ways: (i) introduction of the carotenoid pathway from 15 DNA parts into three targeted loci, and (ii) creation of a tyrosine production strain using ten parts into two loci, simultaneously knocking out two genes. This method complements and improves the current set of tools available for genome engineering in S. cerevisiae.
Collapse
Affiliation(s)
- Tadas Jakočiu̅nas
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Arun S. Rajkumar
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Jie Zhang
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Dushica Arsovska
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Angelica Rodriguez
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Christian Bille Jendresen
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Mette L. Skjødt
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Alex T. Nielsen
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Irina Borodina
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Michael K. Jensen
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Jay D. Keasling
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- Joint BioEnergy Institute, Emeryville, California 94608, United States
- Physical
Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering & Department of Bioengineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
39
|
Stovicek V, Borja GM, Forster J, Borodina I. EasyClone 2.0: expanded toolkit of integrative vectors for stable gene expression in industrial Saccharomyces cerevisiae strains. J Ind Microbiol Biotechnol 2015; 42:1519-31. [PMID: 26376869 PMCID: PMC4607720 DOI: 10.1007/s10295-015-1684-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 09/02/2015] [Indexed: 12/29/2022]
Abstract
Saccharomyces cerevisiae is one of the key cell factories for production of chemicals and active pharmaceuticals. For large-scale fermentations, particularly in biorefinery applications, it is desirable to use stress-tolerant industrial strains. However, such strains are less amenable for metabolic engineering than the standard laboratory strains. To enable easy delivery and overexpression of genes in a wide range of industrial S. cerevisiae strains, we constructed a set of integrative vectors with long homology arms and dominant selection markers. The vectors integrate into previously validated chromosomal locations via double cross-over and result in homogenous stable expression of the integrated genes, as shown for several unrelated industrial strains. Cre-mediated marker rescue is possible for removing markers positioned on different chromosomes. To demonstrate the applicability of the presented vector set for metabolic engineering of industrial yeast, we constructed xylose-utilizing strains overexpressing xylose isomerase, xylose transporter and five genes of the pentose phosphate pathway.
Collapse
Affiliation(s)
- Vratislav Stovicek
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, 2970, Hørsholm, Denmark
| | - Gheorghe M Borja
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, 2970, Hørsholm, Denmark
| | - Jochen Forster
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, 2970, Hørsholm, Denmark
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, 2970, Hørsholm, Denmark.
| |
Collapse
|
40
|
Kildegaard KR, Wang Z, Chen Y, Nielsen J, Borodina I. Production of 3-hydroxypropionic acid from glucose and xylose by metabolically engineered Saccharomyces cerevisiae. Metab Eng Commun 2015; 2:132-136. [PMID: 34150516 PMCID: PMC8193239 DOI: 10.1016/j.meteno.2015.10.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 10/28/2015] [Indexed: 12/05/2022] Open
Abstract
Biomass, the most abundant carbon source on the planet, may in the future become the primary feedstock for production of fuels and chemicals, replacing fossil feedstocks. This will, however, require development of cell factories that can convert both C6 and C5 sugars present in lignocellulosic biomass into the products of interest. We engineered Saccharomyces cerevisiae for production of 3-hydroxypropionic acid (3HP), a potential building block for acrylates, from glucose and xylose. We introduced the 3HP biosynthetic pathways via malonyl-CoA or β-alanine intermediates into a xylose-consuming yeast. Using controlled fed-batch cultivation, we obtained 7.37±0.17 g 3HP L−1 in 120 hours with an overall yield of 29±1% Cmol 3HP Cmol−1 xylose. This study is the first demonstration of the potential of using S. cerevisiae for production of 3HP from the biomass sugar xylose. 3HP is a potential building block for acrylic plastics and biodegradable polyesters. We developed S. cerevisiae strains for production of 3HP from glucose and xylose. 3HP pathway via β-alanine resulted in the highest 3HP titers on xylose. 7.4±0.2 g 3HP L−1 was obtained with a yield of 29±1% Cmol 3HP Cmol−1 xylose. Demonstration of the potential of using the biomass sugar xylose to produce 3HP.
Collapse
Key Words
- 3-hydroxypropionic acid
- 3HP, 3-hydroxypropionic acid
- ACC, acetyl-CoA reductase
- ACS, acetyl-CoA synthase
- ALD, aldehyde dehydrogenase
- BAPAT, β-alanine-pyruvate aminotransferase
- Biorefineries
- HIBADH, 3-hydroxyisobutyrate dehydrogenase
- HPDH, 3-hydroxypropionate dehydrogenase
- MCR, malonyl-CoA reductase
- Metabolic engineering
- PAND, aspartate 1-decarboxylase
- PDC, pyruvate decarboxylase
- PYC, pyruvate carboxylase
- Saccharomyces cerevisiae
- XDH, xylitol dehydrogenase
- XK, xylulokinase
- XR, xylose reductase
- Xylose utilization
Collapse
Affiliation(s)
- Kanchana R Kildegaard
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, 2970 Hørsholm, Denmark
| | - Zheng Wang
- Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden.,The Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Göteborg, Sweden
| | - Yun Chen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden.,The Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Göteborg, Sweden
| | - Jens Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, 2970 Hørsholm, Denmark.,Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden.,The Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Göteborg, Sweden
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, 2970 Hørsholm, Denmark
| |
Collapse
|
41
|
Pinto F, Pacheco CC, Oliveira P, Montagud A, Landels A, Couto N, Wright PC, Urchueguía JF, Tamagnini P. Improving a Synechocystis-based photoautotrophic chassis through systematic genome mapping and validation of neutral sites. DNA Res 2015; 22:425-37. [PMID: 26490728 PMCID: PMC4675711 DOI: 10.1093/dnares/dsv024] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 09/15/2015] [Indexed: 01/04/2023] Open
Abstract
The use of microorganisms as cell factories frequently requires extensive molecular manipulation. Therefore, the identification of genomic neutral sites for the stable integration of ectopic DNA is required to ensure a successful outcome. Here we describe the genome mapping and validation of five neutral sites in the chromosome of Synechocystis sp. PCC 6803, foreseeing the use of this cyanobacterium as a photoautotrophic chassis. To evaluate the neutrality of these loci, insertion/deletion mutants were produced, and to assess their functionality, a synthetic green fluorescent reporter module was introduced. The constructed integrative vectors include a BioBrick-compatible multiple cloning site insulated by transcription terminators, constituting robust cloning interfaces for synthetic biology approaches. Moreover, Synechocystis mutants (chassis) ready to receive purpose-built synthetic modules/circuits are also available. This work presents a systematic approach to map and validate chromosomal neutral sites in cyanobacteria, and that can be extended to other organisms.
Collapse
Affiliation(s)
- Filipe Pinto
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto 4150-180, Portugal Faculdade de Ciências, Departamento de Biologia, Universidade do Porto, Porto 4150-171, Portugal
| | - Catarina C Pacheco
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto 4150-180, Portugal
| | - Paulo Oliveira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto 4150-180, Portugal
| | - Arnau Montagud
- Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Valencia 46022, Spain
| | - Andrew Landels
- ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S10 2TN, UK
| | - Narciso Couto
- ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S10 2TN, UK
| | - Phillip C Wright
- ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S10 2TN, UK
| | - Javier F Urchueguía
- Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Valencia 46022, Spain
| | - Paula Tamagnini
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto 4150-180, Portugal Faculdade de Ciências, Departamento de Biologia, Universidade do Porto, Porto 4150-171, Portugal
| |
Collapse
|
42
|
Kang K, Li J, Lim BL, Panagiotou G. MESSI: metabolic engineering target selection and best strain identification tool. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2015; 2015:bav076. [PMID: 26255308 PMCID: PMC4529744 DOI: 10.1093/database/bav076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 07/14/2015] [Indexed: 12/30/2022]
Abstract
Metabolic engineering and synthetic biology are synergistically related fields for manipulating target pathways and designing microorganisms that can act as chemical factories. Saccharomyces cerevisiae’s ideal bioprocessing traits make yeast a very attractive chemical factory for production of fuels, pharmaceuticals, nutraceuticals as well as a wide range of chemicals. However, future attempts of engineering S. cerevisiae’s metabolism using synthetic biology need to move towards more integrative models that incorporate the high connectivity of metabolic pathways and regulatory processes and the interactions in genetic elements across those pathways and processes. To contribute in this direction, we have developed Metabolic Engineering target Selection and best Strain Identification tool (MESSI), a web server for predicting efficient chassis and regulatory components for yeast bio-based production. The server provides an integrative platform for users to analyse ready-to-use public high-throughput metabolomic data, which are transformed to metabolic pathway activities for identifying the most efficient S. cerevisiae strain for the production of a compound of interest. As input MESSI accepts metabolite KEGG IDs or pathway names. MESSI outputs a ranked list of S. cerevisiae strains based on aggregation algorithms. Furthermore, through a genome-wide association study of the metabolic pathway activities with the strains’ natural variation, MESSI prioritizes genes and small variants as potential regulatory points and promising metabolic engineering targets. Users can choose various parameters in the whole process such as (i) weight and expectation of each metabolic pathway activity in the final ranking of the strains, (ii) Weighted AddScore Fuse or Weighted Borda Fuse aggregation algorithm, (iii) type of variants to be included, (iv) variant sets in different biological levels. Database URL:http://sbb.hku.hk/MESSI/
Collapse
Affiliation(s)
- Kang Kang
- Systems Biology & Bioinformatics Group, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong and
| | - Jun Li
- Systems Biology & Bioinformatics Group, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong and
| | - Boon Leong Lim
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Gianni Panagiotou
- Systems Biology & Bioinformatics Group, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong and
| |
Collapse
|
43
|
Abstract
Glucose is the primary source of energy for the budding yeast Saccharomyces cerevisiae. Although yeast cells can utilize a wide range of carbon sources, presence of glucose suppresses molecular activities involved in the use of alternate carbon sources as well as it represses respiration and gluconeogenesis. This dominant effect of glucose on yeast carbon metabolism is coordinated by several signaling and metabolic interactions that mainly regulate transcriptional activity but are also effective at post-transcriptional and post-translational levels. This review describes effects of glucose repression on yeast carbon metabolism with a focus on roles of the Snf3/Rgt2 glucose-sensing pathway and Snf1 signal transduction in establishment and relief of glucose repression. The role of Snf1 signaling in glucose repression and carbon metabolism in Saccharomyces cerevisae.
Collapse
Affiliation(s)
- Ömur Kayikci
- Department of Biology and Biological Engineering, Kemivägen 10, Chalmers University of Technology, SE41296 Gothenburg, Sweden Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE41296 Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Kemivägen 10, Chalmers University of Technology, SE41296 Gothenburg, Sweden Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE41296 Gothenburg, Sweden Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2970 Hørsholm, Denmark
| |
Collapse
|
44
|
Ronda C, Maury J, Jakočiunas T, Jacobsen SAB, Germann SM, Harrison SJ, Borodina I, Keasling JD, Jensen MK, Nielsen AT. CrEdit: CRISPR mediated multi-loci gene integration in Saccharomyces cerevisiae. Microb Cell Fact 2015; 14:97. [PMID: 26148499 PMCID: PMC4492099 DOI: 10.1186/s12934-015-0288-3] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 06/22/2015] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND One of the bottlenecks in production of biochemicals and pharmaceuticals in Saccharomyces cerevisiae is stable and homogeneous expression of pathway genes. Integration of genes into the genome of the production organism is often a preferred option when compared to expression from episomal vectors. Existing approaches for achieving stable simultaneous genome integrations of multiple DNA fragments often result in relatively low integration efficiencies and furthermore rely on the use of selection markers. RESULTS Here, we have developed a novel method, CrEdit (CRISPR/Cas9 mediated genome Editing), which utilizes targeted double strand breaks caused by CRISPR/Cas9 to significantly increase the efficiency of homologous integration in order to edit and manipulate genomic DNA. Using CrEdit, the efficiency and locus specificity of targeted genome integrations reach close to 100% for single gene integration using short homology arms down to 60 base pairs both with and without selection. This enables direct and cost efficient inclusion of homology arms in PCR primers. As a proof of concept, a non-native β-carotene pathway was reconstructed in S. cerevisiae by simultaneous integration of three pathway genes into individual intergenic genomic sites. Using longer homology arms, we demonstrate highly efficient and locus-specific genome integration even without selection with up to 84% correct clones for simultaneous integration of three gene expression cassettes. CONCLUSIONS The CrEdit approach enables fast and cost effective genome integration for engineering of S. cerevisiae. Since the choice of the targeting sites is flexible, CrEdit is a powerful tool for diverse genome engineering applications.
Collapse
Affiliation(s)
- Carlotta Ronda
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, 2970, Hørsholm, Denmark.
| | - Jérôme Maury
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, 2970, Hørsholm, Denmark.
| | - Tadas Jakočiunas
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, 2970, Hørsholm, Denmark.
| | - Simo Abdessamad Baallal Jacobsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, 2970, Hørsholm, Denmark.
| | - Susanne Manuela Germann
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, 2970, Hørsholm, Denmark.
| | - Scott James Harrison
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, 2970, Hørsholm, Denmark.
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, 2970, Hørsholm, Denmark.
| | - Jay D Keasling
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, 2970, Hørsholm, Denmark.
| | - Michael Krogh Jensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, 2970, Hørsholm, Denmark.
| | - Alex Toftgaard Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, 2970, Hørsholm, Denmark.
| |
Collapse
|
45
|
Österlund T, Bordel S, Nielsen J. Controllability analysis of transcriptional regulatory networks reveals circular control patterns among transcription factors. Integr Biol (Camb) 2015; 7:560-8. [PMID: 25855217 DOI: 10.1039/c4ib00247d] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Transcriptional regulation is the most committed type of regulation in living cells where transcription factors (TFs) control the expression of their target genes and TF expression is controlled by other TFs forming complex transcriptional regulatory networks that can be highly interconnected. Here we analyze the topology and organization of nine transcriptional regulatory networks for E. coli, yeast, mouse and human, and we evaluate how the structure of these networks influences two of their key properties, namely controllability and stability. We calculate the controllability for each network as a measure of the organization and interconnectivity of the network. We find that the number of driver nodes nD needed to control the whole network is 64% of the TFs in the E. coli transcriptional regulatory network in contrast to only 17% for the yeast network, 4% for the mouse network and 8% for the human network. The high controllability (low number of drivers needed to control the system) in yeast, mouse and human is due to the presence of internal loops in their regulatory networks where the TFs regulate each other in a circular fashion. We refer to these internal loops as circular control motifs (CCM). The E. coli transcriptional regulatory network, which does not have any CCMs, shows a hierarchical structure of the transcriptional regulatory network in contrast to the eukaryal networks. The presence of CCMs also has influence on the stability of these networks, as the presence of cycles can be associated with potential unstable steady-states where even small changes in binding affinities can cause dramatic rearrangements of the state of the network.
Collapse
Affiliation(s)
- Tobias Österlund
- Novo Nordisk Foundation Center for Biosustainability, Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-41296 Göteborg, Sweden.
| | | | | |
Collapse
|
46
|
CRISPR-Cas system enables fast and simple genome editing of industrial Saccharomyces cerevisiae strains. Metab Eng Commun 2015; 2:13-22. [PMID: 34150504 PMCID: PMC8193243 DOI: 10.1016/j.meteno.2015.03.001] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 01/21/2015] [Accepted: 03/11/2015] [Indexed: 11/24/2022] Open
Abstract
There is a demand to develop 3rd generation biorefineries that integrate energy production with the production of higher value chemicals from renewable feedstocks. Here, robust and stress-tolerant industrial strains of Saccharomyces cerevisiae will be suitable production organisms. However, their genetic manipulation is challenging, as they are usually diploid or polyploid. Therefore, there is a need to develop more efficient genetic engineering tools. We applied a CRISPR–Cas9 system for genome editing of different industrial strains, and show simultaneous disruption of two alleles of a gene in several unrelated strains with the efficiency ranging between 65% and 78%. We also achieved simultaneous disruption and knock-in of a reporter gene, and demonstrate the applicability of the method by designing lactic acid-producing strains in a single transformation event, where insertion of a heterologous gene and disruption of two endogenous genes occurred simultaneously. Our study provides a foundation for efficient engineering of industrial yeast cell factories. We developed CRISPR–Cas9-based system for gene disruptions in industrial yeast. We showed high rate of disruption efficiency in unrelated industrial strains. Gene knock-in may be performed simultaneously with gene disruption. Use of the described Cas9-based system results in marker-free stable genetic modifications. The method was applied for single-step construction of lactic acid-producing strains.
Collapse
Key Words
- Biorefineries
- CRISPR–Cas9
- CRISPR–Cas9, clustered regularly interspaced short palindromic repeats–CRISPR-associated endonuclease 9
- Chemical production
- DSB, double strand break
- GOI, gene of interest
- Genome editing
- HDR, homology-directed repair
- HR, homologous recombination
- Industrial yeast
- NHEJ, non-homologous end joining
- PAM, protospacer adjacent motif
- PI, propidium iodide
- SNPs, single nucleotide polymorphisms
- TALENs, transcription activator-like effector nucleases
- USER, uracil-specific excision reaction
- ZFNs, zinc finger nucleases
- crRNA, CRISPR RNA
- gRNA, guide RNA
- tracrRNA, trans-activating RNA
Collapse
|