1
|
Qiao Y, Kong L, Shen M, Sun Y, Wang S, Gao Y, Xue J, Jiang Q, Cheng D, Liu Y. A baroduric immobilized composite material promoting remediation of oil-polluted sediment at typical deep-sea condition: The performances and potential mechanisms. ENVIRONMENTAL RESEARCH 2025; 264:120299. [PMID: 39510235 DOI: 10.1016/j.envres.2024.120299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Contriving immobilized bioreagent is of great significance to enhance bioremediation of marine oil pollution. However, there remains a notable scarcity of correlational study conducted at deep sea condition. Herein, we first developed a baroduric microsphere encasing biotic and chemical materials to remediate oil-contaminated sediments at deep-sea microcosm. Total oil degradation efficiency of microsphere-treated group reached 71% within a month, representing an approximate 35% increase compared to natural remediation. Absorption and biodegradation by microsphere provided a comparable contribution to oil elimination. Together with scanning electron microscope observation, the physical mechanism was that the reticulate structure of microsphere surface facilitating oil adsorption and bacteria attachment. Via metabarcoding analysis for meta and metabolically-active microbes, we demonstrated the primary working center was located at the microsphere. Proteobacteria, Firmicutes, Bacteroidota and Desulfobacterota were the key activated bacteria. More importantly, we revealed the ecological mechanisms were associated with the following aspects: 1) the addition of microsphere significantly improved the metabolic activity of bacteria (particularly including several oil-degrading taxa); 2) the microspheres enhanced ecological stability and microbial functional diversification during bioremediation; 3) expressing activity of pathways involving oil component degradation, biosurfactant production, biofilm architecture, biogeochemical and energy cycling all were observed to be up-regulated in microsphere-treated samples. Altogether, our results provide important theoretical guidance and data support on application of immobilization technology in removing in-situ oil pollution of deep-sea sediment.
Collapse
Affiliation(s)
- Yanlu Qiao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Lingbing Kong
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Mingan Shen
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Yudi Sun
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Shuo Wang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Yu Gao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Jianliang Xue
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Qing Jiang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Dongle Cheng
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Yuyang Liu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, Shandong 266590, China.
| |
Collapse
|
2
|
Behrendt L, Alcolombri U, Hunter JE, Smriga S, Mincer T, Lowenstein DP, Yawata Y, Peaudecerf FJ, Fernandez VI, Fredricks HF, Almblad H, Harrison JJ, Stocker R, Van Mooy BAS. Microbial dietary preference and interactions affect the export of lipids to the deep ocean. Science 2024; 385:eaab2661. [PMID: 39265021 DOI: 10.1126/science.aab2661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 07/09/2024] [Indexed: 09/14/2024]
Abstract
Lipids comprise a significant fraction of sinking organic matter in the ocean and play a crucial role in the carbon cycle. Despite this, our understanding of the processes that control lipid degradation is limited. We combined nanolipidomics and imaging to study the bacterial degradation of diverse algal lipid droplets and found that bacteria isolated from marine particles exhibited distinct dietary preferences, ranging from selective to promiscuous degraders. Dietary preference was associated with a distinct set of lipid degradation genes rather than with taxonomic origin. Using synthetic communities composed of isolates with distinct dietary preferences, we showed that lipid degradation is modulated by microbial interactions. A particle export model incorporating these dynamics indicates that metabolic specialization and community dynamics may influence lipid transport efficiency in the ocean's mesopelagic zone.
Collapse
Affiliation(s)
- Lars Behrendt
- Department of Organismal Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Uria Alcolombri
- Department of Plant and Environmental Sciences, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jonathan E Hunter
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Steven Smriga
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, Eidgenössische Technische Hochschule Zürich (ETHZ), Zürich, Switzerland
| | - Tracy Mincer
- Florida Atlantic University, Wilkes Honors College, Jupiter, FL, USA
| | - Daniel P Lowenstein
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Yutaka Yawata
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - François J Peaudecerf
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, Eidgenössische Technische Hochschule Zürich (ETHZ), Zürich, Switzerland
- University of Rennes, CNRS, Institut de Physique de Rennes, Rennes, France
| | - Vicente I Fernandez
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, Eidgenössische Technische Hochschule Zürich (ETHZ), Zürich, Switzerland
| | - Helen F Fredricks
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Henrik Almblad
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada
| | - Joe J Harrison
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada
| | - Roman Stocker
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, Eidgenössische Technische Hochschule Zürich (ETHZ), Zürich, Switzerland
| | - Benjamin A S Van Mooy
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| |
Collapse
|
3
|
An J, Mao RY, Wang SX, Zhang J, Du ZJ, Mu DS. Marinobacter sediminicola sp. nov. and Marinobacter xiaoshiensis sp. nov., Isolated from Coastal Sediment. Curr Microbiol 2024; 81:253. [PMID: 38954028 DOI: 10.1007/s00284-024-03782-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
Two Gram-stain-negative, facultative anaerobic, rod-shaped, motile bacterial strains, designated F26243T and F60267T were isolated from coastal sediment in Weihai, China. Strains F26243T and F60267T were grown at 4-40 °C (optimum 33 °C), pH 7.0-9.5 and pH 6.5-9.5 (optimum at pH 7.0), in the presence of 1.0-7.0% (w/v) NaCl (optimum 2.5%) and 1.0-12.0% (w/v) NaCl (optimum 2.0%), respectively. The 16S rRNA gene sequences phylogenetic analysis showed that strains F26243T and F60267T are closely related to the genus Marinobacter and exhibited the highest sequence similarities to Marinobacter salexigens HJR7T (97.7% and 98.0%, respectively), the similarity between two isolates was 96.7%. Strains F26243T and F60267T displayed genomic DNA G + C content of 53.6% and 53.8%, respectively. When compared to the M. salexigens HJR7T, the average nucleotide identity (ANI) values were 83.7% and 84.1%, and the percentage of conserved proteins (POCP) values were 79.9% and 84.6%, respectively. Ubiquinone 9 (Q-9) was the only respiratory quinone detected in both isolates. The major cellular fatty acids (> 10.0%) were summed feature 3 (comprising C16:1ω7c and/or C16:1ω6c), C16:0 and C18:1ω9c. The polar lipid profiles of strains F26243T and F60267T contained diphosphatidylglycerol, phosphatidylethanolamine, phosphatidyldimethylethanolamine, phosphatidylglycerol, aminophospholipid and one unidentified phospholipid. Based on genomic characteristics, phenotypic and chemotaxonomic, strains F26243T and F60267T represent two novel species of the genus Marinobacter, for which the names Marinobacter sediminicola sp. nov. and Marinobacter xiaoshiensis sp. nov. are proposed, the type strains are F26243T (= KCTC 92640T = MCCC 1H01345T) and F60267T (= KCTC 92638T = MCCC 1H01346T).
Collapse
Affiliation(s)
- Jing An
- Marine College, Shandong University, Weihai, 264209, Shandong, China
| | - Run-Yuan Mao
- Marine College, Shandong University, Weihai, 264209, Shandong, China
| | - Shu-Xin Wang
- Marine College, Shandong University, Weihai, 264209, Shandong, China
| | - Jing Zhang
- Marine College, Shandong University, Weihai, 264209, Shandong, China
| | - Zong-Jun Du
- Marine College, Shandong University, Weihai, 264209, Shandong, China.
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, China.
- Weihai Research Institute of Industrial Technology of Shandong University, Weihai, China.
| | - Da-Shuai Mu
- Marine College, Shandong University, Weihai, 264209, Shandong, China.
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, China.
- Weihai Research Institute of Industrial Technology of Shandong University, Weihai, China.
| |
Collapse
|
4
|
Tedesco P, Balzano S, Coppola D, Esposito FP, de Pascale D, Denaro R. Bioremediation for the recovery of oil polluted marine environment, opportunities and challenges approaching the Blue Growth. MARINE POLLUTION BULLETIN 2024; 200:116157. [PMID: 38364643 DOI: 10.1016/j.marpolbul.2024.116157] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2024]
Abstract
The Blue Growth strategy promises a sustainable use of marine resources for the benefit of the society. However, oil pollution in the marine environment is still a serious issue for human, animal, and environmental health; in addition, it deprives citizens of the potential economic and recreational advantages in the affected areas. Bioremediation, that is the use of bio-resources for the degradation of pollutants, is one of the focal themes on which the Blue Growth aims to. A repertoire of marine-derived bio-products, biomaterials, processes, and services useful for efficient, economic, low impact, treatments for the recovery of oil-polluted areas has been demonstrated in many years of research around the world. Nonetheless, although bioremediation technology is routinely applied in soil, this is not still standardized in the marine environment and the potential market is almost underexploited. This review provides a summary of opportunities for the exploiting and addition of value to research products already validated. Moreover, the review discusses challenges that limit bioremediation in marine environment and actions that can facilitate the conveying of valuable products/processes towards the market.
Collapse
Affiliation(s)
- Pietro Tedesco
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Acton, 55, 80133 Naples, Italy
| | - Sergio Balzano
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Acton, 55, 80133 Naples, Italy
| | - Daniela Coppola
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Acton, 55, 80133 Naples, Italy
| | - Fortunato Palma Esposito
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Acton, 55, 80133 Naples, Italy
| | - Donatella de Pascale
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Acton, 55, 80133 Naples, Italy; Institute of Biochemistry and Cellular Biology, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy.
| | - Renata Denaro
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti Rome, Italy.
| |
Collapse
|
5
|
Pugazhendi A, Jamal MT. Application of halophiles in UMFC (upflow microbial fuel cell) for the treatment of saline olive oil industrial wastewater coupled with eco-energy yield. 3 Biotech 2023; 13:351. [PMID: 37810189 PMCID: PMC10550894 DOI: 10.1007/s13205-023-03772-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 09/10/2023] [Indexed: 10/10/2023] Open
Abstract
The olive oil industry faces a major problem of treating the wastewater with high organic content and safe disposal. Olive oil industrial wastewater (OOIWW) consists of highly toxic environmental pollutants with high salinity. Saline olive oil industrial wastewater was treated using halophilic consortium in UMFC (upflow microbial fuel cell) mobilized with carbon felt as electrode. Total and soluble COD (chemical oxygen demand), total suspended solids and phenol content removal were studied at different organic loads (0.56, 0.77, 1.05, 1.26, 1.52 and 1.8 gCOD/L). UMFC with OOIWW was optimized at 1.52 gCOD/L for high organic removal and corresponding electricity production. Total COD, soluble COD, TSS and phenol removal were 91%, 89%, 78%, and complete removal of phenol was accomplished at the optimized organic load (1.52 gCOD/L). Correspondingly, the maximum bioenergy yield was 784 mV with 439 mW/m2 (power density) and 560 mA/m2 (current density), respectively. The presence of prominent halophilic exo-electrogens such as Ochrobactrum, Marinobacter, Rhodococcus and Bacillus potently treated the OOIWW and exhibited high energy yield.
Collapse
Affiliation(s)
- Arulazhagan Pugazhendi
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Mamdoh T. Jamal
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| |
Collapse
|
6
|
Peña-Montenegro TD, Kleindienst S, Allen AE, Eren AM, McCrow JP, Sánchez-Calderón JD, Arnold J, Joye SB. Species-specific responses of marine bacteria to environmental perturbation. ISME COMMUNICATIONS 2023; 3:99. [PMID: 37736763 PMCID: PMC10516948 DOI: 10.1038/s43705-023-00310-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023]
Abstract
Environmental perturbations shape the structure and function of microbial communities. Oil spills are a major perturbation and resolving spills often requires active measures like dispersant application that can exacerbate the initial disturbance. Species-specific responses of microorganisms to oil and dispersant exposure during such perturbations remain largely unknown. We merged metatranscriptomic libraries with pangenomes to generate Core-Accessory Metatranscriptomes (CA-Metatranscriptomes) for two microbial hydrocarbon degraders that played important roles in the aftermath of the Deepwater Horizon oil spill. The Colwellia CA-Metatranscriptome illustrated pronounced dispersant-driven acceleration of core (~41%) and accessory gene (~59%) transcription, suggesting an opportunistic strategy. Marinobacter responded to oil exposure by expressing mainly accessory genes (~93%), suggesting an effective hydrocarbon-degrading lifestyle. The CA-Metatranscriptome approach offers a robust way to identify the underlying mechanisms of key microbial functions and highlights differences of specialist-vs-opportunistic responses to environmental disturbance.
Collapse
Affiliation(s)
- Tito D Peña-Montenegro
- Department of Marine Sciences, University of Georgia, 325 Sanford Dr., Athens, GA, 30602-3636, USA
- Institute of Bioinformatics, University of Georgia, 120 Green St., Athens, GA, 30602-7229, USA
- Grupo de Investigación y Desarrollo en Ciencias, Tecnología e Innovación (BioGRID), Sociedad de Doctores e Investigadores de Colombia (SoPhIC), Bogotá, Colombia
| | - Sara Kleindienst
- Department of Marine Sciences, University of Georgia, 325 Sanford Dr., Athens, GA, 30602-3636, USA
- Department of Environmental Microbiology, Institute for Sanitary Engineering, Water Quality and Solid Waste Management (ISWA), University of Stuttgart, Bandtäle 2, 70569, Stuttgart, Germany
| | - Andrew E Allen
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA, 92037, USA
- Integrative Oceanography Division, Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, 92037, USA
| | - A Murat Eren
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg, University of Oldenburg, Oldenburg, 26129, Germany
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, USA
| | - John P McCrow
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA, 92037, USA
| | - Juan D Sánchez-Calderón
- Grupo de Investigación en Gestión Ecológica y Agroindustrial (GEA), Programa de Microbiología, Facultad de Ciencias Exactas y Naturales, Universidad Libre, Seccional Barranquilla, Barranquilla, Colombia
| | - Jonathan Arnold
- Institute of Bioinformatics, University of Georgia, 120 Green St., Athens, GA, 30602-7229, USA
- Department of Genetics, University of Georgia, 120 Green St., Athens, GA, 30602-7223, USA
| | - Samantha B Joye
- Department of Marine Sciences, University of Georgia, 325 Sanford Dr., Athens, GA, 30602-3636, USA.
| |
Collapse
|
7
|
Noell SE, Hellweger FL, Temperton B, Giovannoni SJ. A Reduction of Transcriptional Regulation in Aquatic Oligotrophic Microorganisms Enhances Fitness in Nutrient-Poor Environments. Microbiol Mol Biol Rev 2023; 87:e0012422. [PMID: 36995249 PMCID: PMC10304753 DOI: 10.1128/mmbr.00124-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
In this review, we consider the regulatory strategies of aquatic oligotrophs, microbial cells that are adapted to thrive under low-nutrient concentrations in oceans, lakes, and other aquatic ecosystems. Many reports have concluded that oligotrophs use less transcriptional regulation than copiotrophic cells, which are adapted to high nutrient concentrations and are far more common subjects for laboratory investigations of regulation. It is theorized that oligotrophs have retained alternate mechanisms of regulation, such as riboswitches, that provide shorter response times and smaller amplitude responses and require fewer cellular resources. We examine the accumulated evidence for distinctive regulatory strategies in oligotrophs. We explore differences in the selective pressures copiotrophs and oligotrophs encounter and ask why, although evolutionary history gives copiotrophs and oligotrophs access to the same regulatory mechanisms, they might exhibit distinctly different patterns in how these mechanisms are used. We discuss the implications of these findings for understanding broad patterns in the evolution of microbial regulatory networks and their relationships to environmental niche and life history strategy. We ask whether these observations, which have emerged from a decade of increased investigation of the cell biology of oligotrophs, might be relevant to recent discoveries of many microbial cell lineages in nature that share with oligotrophs the property of reduced genome size.
Collapse
Affiliation(s)
- Stephen E. Noell
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | | | - Ben Temperton
- School of Biosciences, University of Exeter, Exeter, United Kingdom
| | | |
Collapse
|
8
|
Belahmadi MSO, Charchar N, Abdessemed A, Gherib A. Impact of petroleum refinery on aquatic ecosystem of Skikda Bay (Algeria): Diversity and abundance of viable bacterial strains. MARINE POLLUTION BULLETIN 2023; 188:114704. [PMID: 36860027 DOI: 10.1016/j.marpolbul.2023.114704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
This paper reports a study on the impact of petroleum refinery effluents on the bacterial load and diversity of the aquatic ecosystem in Skikda Bay (Algeria). The results showed a large spatiotemporal variation in the isolated bacterial species. This difference between stations and seasons could be attributed to environmental factors and to the pollution rate at the different sampling sites. Statistical analysis results showed that physicochemical parameters such as pH, electrical conductivity and salinity have a very significant effect on the microbial load (p < 0.001), while hydrocarbon pollution has a significant effect on the diversity of bacterial species (p < 0.05). In total 75 bacteria were isolated from six sampling sites during the four seasons. A significant spatiotemporal richness and diversity was observed in water samples. A total of 42 strains belonging to 18 bacterial genera were identified. Most of these genera belong to the class of Proteobacteria.
Collapse
Affiliation(s)
| | - Nabil Charchar
- Biotechnology Research Centre, BPE 73, Ali Mendjeli, Nouvelle Ville, 25000 Constantine, Algeria
| | - Ala Abdessemed
- Biotechnology Research Centre, BPE 73, Ali Mendjeli, Nouvelle Ville, 25000 Constantine, Algeria
| | - Abdelfettah Gherib
- Biotechnology Research Centre, BPE 73, Ali Mendjeli, Nouvelle Ville, 25000 Constantine, Algeria
| |
Collapse
|
9
|
Zhou W, Zeng S, Yu J, Xiang J, Zhang F, Takriff MS, Ding G, Ma Z, Zhou X. Complete genome sequence of Bacillus Licheniformis NWMCC0046, a candidate for the laundry industry. J Basic Microbiol 2023; 63:223-234. [PMID: 36538731 DOI: 10.1002/jobm.202200528] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/14/2022] [Accepted: 10/29/2022] [Indexed: 12/24/2022]
Abstract
In this study, selected properties of protease and the complete genome sequence of Bacillus licheniformis NWMCC0046 were investigated, to discover laundry applications and other potential probiotic properties of this strain. Partial characterization of B. licheniformis NWMCC0046 showed that its protease has good activity both in alkaline environments and at low temperatures. Also, the protease is compatible with commercial detergents and can be used as a detergent additive for effective stain removal at low temperatures. The complete genome sequence of B. licheniformis NWMCC0046 is comprised of a 4,321,565 bp linear chromosome with a G + C content of 46.78% and no plasmids. It had 4504 protein-encoding genes, 81 transfer RNA (tRNA) genes, and 24 ribosomal RNA (rRNA) genes. Genomic analysis revealed genes involved in exocellular enzyme production and probiotic properties. In addition, genomic sequence analysis revealed specific genes encoding carbohydrate metabolism pathways, resistance, and cold adaptation capacity. Overall, protease properties show its potential as a detergent additive enzyme. The complete genome sequence information of B. licheniformis NWMCC0046 was obtained, and functional prediction revealed its numerous probiotic properties.
Collapse
Affiliation(s)
- Wei Zhou
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Songyu Zeng
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Jinfeng Yu
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Jun Xiang
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Fumei Zhang
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Mohd S Takriff
- Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Gongtao Ding
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Zhongren Ma
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Xueyan Zhou
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China.,Life Science and Engineering College, Northwest Minzu University, Lanzhou, China
| |
Collapse
|
10
|
Balmuri SR, Phandanouvong-Lozano V, House SD, Yang JC, Niepa TH. Mucoid Coating Provides a Growth Advantage to Pseudomonas aeruginosa at Oil–Water Interfaces. ACS APPLIED BIO MATERIALS 2022; 5:1868-1878. [DOI: 10.1021/acsabm.1c01198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Pinto J, Lami R, Krasovec M, Grimaud R, Urios L, Lupette J, Escande ML, Sanchez F, Intertaglia L, Grimsley N, Piganeau G, Sanchez-Brosseau S. Features of the Opportunistic Behaviour of the Marine Bacterium Marinobacter algicola in the Microalga Ostreococcus tauri Phycosphere. Microorganisms 2021; 9:microorganisms9081777. [PMID: 34442856 PMCID: PMC8399681 DOI: 10.3390/microorganisms9081777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 11/16/2022] Open
Abstract
Although interactions between microalgae and bacteria are observed in both natural environment and the laboratory, the modalities of coexistence of bacteria inside microalgae phycospheres in laboratory cultures are mostly unknown. Here, we focused on well-controlled cultures of the model green picoalga Ostreococcus tauri and the most abundant member of its phycosphere, Marinobacter algicola. The prevalence of M. algicola in O. tauri cultures raises questions about how this bacterium maintains itself under laboratory conditions in the microalga culture. The results showed that M. algicola did not promote O. tauri growth in the absence of vitamin B12 while M. algicola depended on O. tauri to grow in synthetic medium, most likely to obtain organic carbon sources provided by the microalgae. M. algicola grew on a range of lipids, including triacylglycerols that are known to be produced by O. tauri in culture during abiotic stress. Genomic screening revealed the absence of genes of two particular modes of quorum-sensing in Marinobacter genomes which refutes the idea that these bacterial communication systems operate in this genus. To date, the ‘opportunistic’ behaviour of M. algicola in the laboratory is limited to several phytoplanktonic species including Chlorophyta such as O. tauri. This would indicate a preferential occurrence of M. algicola in association with these specific microalgae under optimum laboratory conditions.
Collapse
Affiliation(s)
- Jordan Pinto
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, 66650 Banyuls-sur-Mer, France; (J.P.); (M.K.); (J.L.); (F.S.); (N.G.); (G.P.)
| | - Raphaël Lami
- Sorbonne Université, CNRS, USR 3579 Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique, 66650 Banyuls-sur-Mer, France;
| | - Marc Krasovec
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, 66650 Banyuls-sur-Mer, France; (J.P.); (M.K.); (J.L.); (F.S.); (N.G.); (G.P.)
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | - Régis Grimaud
- Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IPREM, 64000 Pau, France; (R.G.); (L.U.)
| | - Laurent Urios
- Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IPREM, 64000 Pau, France; (R.G.); (L.U.)
| | - Josselin Lupette
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, 66650 Banyuls-sur-Mer, France; (J.P.); (M.K.); (J.L.); (F.S.); (N.G.); (G.P.)
- Université de Bordeaux, CNRS, UMR 5200 Laboratoire de Biogenèse Membranaire, 33140 Villenave d’Ornon, France
| | - Marie-Line Escande
- Sorbonne Université, CNRS, FR 3724, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France; (M.-L.E.); (L.I.)
| | - Frédéric Sanchez
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, 66650 Banyuls-sur-Mer, France; (J.P.); (M.K.); (J.L.); (F.S.); (N.G.); (G.P.)
| | - Laurent Intertaglia
- Sorbonne Université, CNRS, FR 3724, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France; (M.-L.E.); (L.I.)
| | - Nigel Grimsley
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, 66650 Banyuls-sur-Mer, France; (J.P.); (M.K.); (J.L.); (F.S.); (N.G.); (G.P.)
| | - Gwenaël Piganeau
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, 66650 Banyuls-sur-Mer, France; (J.P.); (M.K.); (J.L.); (F.S.); (N.G.); (G.P.)
| | - Sophie Sanchez-Brosseau
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, 66650 Banyuls-sur-Mer, France; (J.P.); (M.K.); (J.L.); (F.S.); (N.G.); (G.P.)
- Correspondence:
| |
Collapse
|
12
|
Thompson HF, Gutierrez T. Detection of hydrocarbon-degrading bacteria on deepwater corals of the northeast Atlantic using CARD-FISH. J Microbiol Methods 2021; 187:106277. [PMID: 34237402 DOI: 10.1016/j.mimet.2021.106277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 11/28/2022]
Abstract
Recently, studies have begun to identify oil-degrading bacteria and host-taxon specific bacterial assemblages associated with the coral holobiont, including deep-sea cold-water corals, which are thought to provide metabolic functions and additional carbon sources to their coral hosts. Here, we describe the identification of Marinobacter on the soft tissue of Lophelia pertusa coral polyps by Catalyzed Reporter Deposition Fluorescence in situ Hybridization (CARD-FISH). L. pertusa samples from three reef sites in the northeast Atlantic (Logachev, Mingulay and Pisces) were collected at depth by vacuum seal to eliminate contamination issues. After decalcification, histological processing and sagittal sectioning of the soft coral polyp tissues, the 16S rRNA-targeted oligonucleotide HRP-labelled probe Mrb-0625-a, and Cyanine 3 (Cy3)-labelled tyramides, were used to identify members of the hydrocarbon-degrading genus Marinobacter. Mrb-0625-a-hybridized bacterial cell signals were detected in different anatomical sites of all polyps collected from each of the three reef sites, suggesting a close, possibly intimate, association between them, but the purpose of which remains unknown. We posit that Marinobacter, and possibly other hydrocarbon-degrading bacteria associated with Lophelia, may confer the coral with the ability to cope with toxic levels of hydrocarbons in regions of natural oil seepage and where there is an active oil and gas industry presence.
Collapse
Affiliation(s)
- Haydn Frank Thompson
- Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Tony Gutierrez
- Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom.
| |
Collapse
|
13
|
Mugge RL, Salerno JL, Hamdan LJ. Microbial Functional Responses in Marine Biofilms Exposed to Deepwater Horizon Spill Contaminants. Front Microbiol 2021; 12:636054. [PMID: 33717029 PMCID: PMC7947620 DOI: 10.3389/fmicb.2021.636054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/28/2021] [Indexed: 11/13/2022] Open
Abstract
Marine biofilms are essential biological components that transform built structures into artificial reefs. Anthropogenic contaminants released into the marine environment, such as crude oil and chemical dispersant from an oil spill, may disrupt the diversity and function of these foundational biofilms. To investigate the response of marine biofilm microbiomes from distinct environments to contaminants and to address microbial functional response, biofilm metagenomes were analyzed from two short-term microcosms, one using surface seawater (SSW) and the other using deep seawater (DSW). Following exposure to crude oil, chemical dispersant, and dispersed oil, taxonomically distinct communities were observed between microcosms from different source water challenged with the same contaminants and higher Shannon diversity was observed in SSW metagenomes. Marinobacter, Colwellia, Marinomonas, and Pseudoalteromonas phylotypes contributed to driving community differences between SSW and DSW. SSW metagenomes were dominated by Rhodobacteraceae, known biofilm-formers, and DSW metagenomes had the highest abundance of Marinobacter, associated with hydrocarbon degradation and biofilm formation. Association of source water metadata with treatment groups revealed that control biofilms (no contaminant) harbor the highest percentage of significant KEGG orthologs (KOs). While 70% functional similarity was observed among all metagenomes from both experiments, functional differences between SSW and DSW metagenomes were driven primarily by membrane transport KOs, while functional similarities were attributed to translation and signaling and cellular process KOs. Oil and dispersant metagenomes were 90% similar to each other in their respective experiments, which provides evidence of functional redundancy in these microbiomes. When interrogating microbial functional redundancy, it is crucial to consider how composition and function evolve in tandem when assessing functional responses to changing environmental conditions within marine biofilms. This study may have implications for future oil spill mitigation strategies at the surface and at depth and also provides information about the microbiome functional responses of biofilms on steel structures in the marine built environment.
Collapse
Affiliation(s)
- Rachel L Mugge
- Division of Coastal Sciences, School of Ocean Science and Engineering, University of Southern Mississippi, Ocean Springs, MS, United States
| | - Jennifer L Salerno
- Department of Environmental Science and Policy, George Mason University, Fairfax, VA, United States
| | - Leila J Hamdan
- Division of Coastal Sciences, School of Ocean Science and Engineering, University of Southern Mississippi, Ocean Springs, MS, United States
| |
Collapse
|
14
|
Comparative Proteomics of Marinobacter sp. TT1 Reveals Corexit Impacts on Hydrocarbon Metabolism, Chemotactic Motility, and Biofilm Formation. Microorganisms 2020; 9:microorganisms9010003. [PMID: 33374976 PMCID: PMC7822026 DOI: 10.3390/microorganisms9010003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/19/2020] [Accepted: 12/19/2020] [Indexed: 12/12/2022] Open
Abstract
The application of chemical dispersants during marine oil spills can affect the community composition and activity of marine microorganisms. Several studies have indicated that certain marine hydrocarbon-degrading bacteria, such as Marinobacter spp., can be inhibited by chemical dispersants, resulting in lower abundances and/or reduced biodegradation rates. However, a major knowledge gap exists regarding the mechanisms underlying these physiological effects. Here, we performed comparative proteomics of the Deepwater Horizon isolate Marinobacter sp. TT1 grown under different conditions. Strain TT1 received different carbon sources (pyruvate vs. n-hexadecane) with and without added dispersant (Corexit EC9500A). Additional treatments contained crude oil in the form of a water-accommodated fraction (WAF) or chemically-enhanced WAF (CEWAF; with Corexit). For the first time, we identified the proteins associated with alkane metabolism and alginate biosynthesis in strain TT1, report on its potential for aromatic hydrocarbon biodegradation and present a protein-based proposed metabolism of Corexit components as carbon substrates. Our findings revealed that Corexit exposure affects hydrocarbon metabolism, chemotactic motility, biofilm formation, and induces solvent tolerance mechanisms, like efflux pumps, in strain TT1. This study provides novel insights into dispersant impacts on microbial hydrocarbon degraders that should be taken into consideration for future oil spill response actions.
Collapse
|
15
|
Thompson HF, Summers S, Yuecel R, Gutierrez T. Hydrocarbon-Degrading Bacteria Found Tightly Associated with the 50-70 μm Cell-Size Population of Eukaryotic Phytoplankton in Surface Waters of a Northeast Atlantic Region. Microorganisms 2020; 8:microorganisms8121955. [PMID: 33317100 PMCID: PMC7763645 DOI: 10.3390/microorganisms8121955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 11/17/2022] Open
Abstract
The surface of marine eukaryotic phytoplankton can harbour communities of hydrocarbon-degrading bacteria; however, this algal–bacterial association has, hitherto, been only examined with non-axenic laboratory cultures of micro-algae. In this study, we isolated an operationally-defined community of phytoplankton, of cell size 50–70 μm, from a natural community in sea surface waters of a subarctic region in the northeast Atlantic. Using MiSeq 16S rRNA sequencing, we identified several recognized (Alcanivorax, Marinobacter, Oleispira, Porticoccus, Thalassospira) and putative hydrocarbon degraders (Colwelliaceae, Vibrionaceae) tightly associated with the phytoplankton population. We combined fluorescence in situ hybridisation with flow-cytometry (FISH-Flow) to examine the association of Marinobacter with this natural eukaryotic phytoplankton population. About 1.5% of the phytoplankton population contained tightly associated Marinobacter. The remaining Marinobacter population were loosely associated with either eukaryotic phytoplankton cells or non-chlorophyll particulate material. This work is the first to show the presence of obligate, generalist and putative hydrocarbonoclastic bacteria associated with natural populations of eukaryotic phytoplankton directly from sea surface water samples. It also highlights the suitability of FISH-Flow for future studies to examine the spatial and temporal structure and dynamics of these and other algal–bacterial associations in natural seawater samples.
Collapse
Affiliation(s)
- Haydn Frank Thompson
- Institute of Mechanical, Process and Energy Engineering (IMPEE), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (H.F.T.); (S.S.)
| | - Stephen Summers
- Institute of Mechanical, Process and Energy Engineering (IMPEE), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (H.F.T.); (S.S.)
- The Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| | - Raif Yuecel
- Iain Fraser Cytometry Centre, Institute of Medical Sciences IMS, University of Aberdeen, Aberdeen AB25 2ZD, UK;
- Exeter Centre for Cytomics (EXCC), College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Tony Gutierrez
- Institute of Mechanical, Process and Energy Engineering (IMPEE), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (H.F.T.); (S.S.)
- Correspondence:
| |
Collapse
|
16
|
Starvation-Dependent Inhibition of the Hydrocarbon Degrader Marinobacter sp. TT1 by a Chemical Dispersant. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8110925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
During marine oil spills, chemical dispersants are used routinely to disperse surface slicks, transferring the hydrocarbon constituents of oil into the aqueous phase. Nonetheless, a comprehensive understanding of how dispersants affect natural populations of hydrocarbon-degrading bacteria, particularly under environmentally relevant conditions, is lacking. We investigated the impacts of the dispersant Corexit EC9500A on the marine hydrocarbon degrader Marinobacter sp. TT1 when pre-adapted to either low n-hexadecane concentrations (starved culture) or high n-hexadecane concentrations (well-fed culture). The growth of previously starved cells was inhibited when exposed to the dispersant, as evidenced by 55% lower cell numbers and 30% lower n-hexadecane biodegradation efficiency compared to cells grown on n-hexadecane alone. Cultures that were well-fed did not exhibit dispersant-induced inhibition of growth or n-hexadecane degradation. In addition, fluorescence microscopy revealed amorphous cell aggregate structures when the starved culture was exposed to dispersants, suggesting that Corexit affected the biofilm formation behavior of starved cells. Our findings indicate that (previous) substrate limitation, resembling oligotrophic open ocean conditions, can impact the response and hydrocarbon-degrading activities of oil-degrading organisms when exposed to Corexit, and highlight the need for further work to better understand the implications of environmental stressors on oil biodegradation and microbial community dynamics.
Collapse
|
17
|
Chernikova TN, Bargiela R, Toshchakov SV, Shivaraman V, Lunev EA, Yakimov MM, Thomas DN, Golyshin PN. Hydrocarbon-Degrading Bacteria Alcanivorax and Marinobacter Associated With Microalgae Pavlova lutheri and Nannochloropsis oculata. Front Microbiol 2020; 11:572931. [PMID: 33193176 PMCID: PMC7655873 DOI: 10.3389/fmicb.2020.572931] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/01/2020] [Indexed: 12/26/2022] Open
Abstract
Marine hydrocarbon-degrading bacteria play an important role in natural petroleum biodegradation processes and were initially associated with man-made oil spills or natural seeps. There is no full clarity though on what, in the absence of petroleum, their natural niches are. Few studies pointed at some marine microalgae that produce oleophilic compounds (alkanes, long-chain fatty acids, and alcohols) as potential natural hosts of these bacteria. We established Dansk crude oil-based enrichment cultures with photobioreactor-grown marine microalgae cultures Pavlova lutheri and Nannochloropsis oculata and analyzed the microbial succession using cultivation and SSU (16S) rRNA amplicon sequencing. We found that petroleum enforced a strong selection for members of Alpha- and Gamma-proteobacteria in both enrichment cultures with the prevalence of Alcanivorax and Marinobacter spp., well-known hydrocarbonoclastic bacteria. In total, 48 non-redundant bacterial strains were isolated and identified to represent genera Alcanivorax, Marinobacter, Thalassospira, Hyphomonas, Halomonas, Marinovum, Roseovarius, and Oleibacter, which were abundant in sequencing reads in both crude oil enrichments. Our assessment of public databases demonstrated some overlaps of geographical sites of isolation of Nannochloropsis and Pavlova with places of molecular detection and isolation of Alcanivorax and Marinobacter spp. Our study suggests that these globally important hydrocarbon-degrading bacteria are associated with P. lutheri and N. oculata.
Collapse
Affiliation(s)
- Tatyana N Chernikova
- School of Natural Sciences, Bangor University, Bangor, United Kingdom.,CEB-Centre for Environmental Biotechnology, Bangor University, Bangor, United Kingdom
| | - Rafael Bargiela
- School of Natural Sciences, Bangor University, Bangor, United Kingdom
| | | | | | - Evgenii A Lunev
- Institute of Living Systems, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Michail M Yakimov
- Institute for Marine Biological Resources and Biotechnology of the National Research Council, IRBIM-CNR, Messina, Italy
| | - David N Thomas
- School of Ocean Sciences, Bangor University, Menai Bridge, United Kingdom
| | - Peter N Golyshin
- School of Natural Sciences, Bangor University, Bangor, United Kingdom.,CEB-Centre for Environmental Biotechnology, Bangor University, Bangor, United Kingdom
| |
Collapse
|
18
|
Barnier C, Clerissi C, Lami R, Intertaglia L, Lebaron P, Grimaud R, Urios L. Description of Palleronia rufa sp. nov., a biofilm-forming and AHL-producing Rhodobacteraceae, reclassification of Hwanghaeicola aestuarii as Palleronia aestuarii comb. nov., Maribius pontilimi as Palleronia pontilimi comb. nov., Maribius salinus as Palleronia salina comb. nov., Maribius pelagius as Palleronia pelagia comb. nov. and emended description of the genus Palleronia. Syst Appl Microbiol 2020; 43:126018. [DOI: 10.1016/j.syapm.2019.126018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 12/15/2022]
|
19
|
Sivadon P, Barnier C, Urios L, Grimaud R. Biofilm formation as a microbial strategy to assimilate particulate substrates. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:749-764. [PMID: 31342619 DOI: 10.1111/1758-2229.12785] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 07/15/2019] [Accepted: 07/21/2019] [Indexed: 06/10/2023]
Abstract
In most ecosystems, a large part of the organic carbon is not solubilized in the water phase. Rather, it occurs as particles made of aggregated hydrophobic and/or polymeric natural or man-made organic compounds. These particulate substrates are degraded by extracellular digestion/solubilization implemented by heterotrophic bacteria that form biofilms on them. Organic particle-degrading biofilms are widespread and have been observed in aquatic and terrestrial natural ecosystems, in polluted and man-driven environments and in the digestive tracts of animals. They have central ecological functions as they are major players in carbon recycling and pollution removal. The aim of this review is to highlight bacterial adhesion and biofilm formation as central mechanisms to exploit the nutritive potential of organic particles. It focuses on the mechanisms that allow access and assimilation of non-dissolved organic carbon, and considers the advantage provided by biofilms for gaining a net benefit from feeding on particulate substrates. Cooperative and competitive interactions taking place in biofilms feeding on particulate substrates are also discussed.
Collapse
Affiliation(s)
- Pierre Sivadon
- CNRS/Université de Pau et des Pays de l'Adour/E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux UMR5254, Pau, 64000, France
| | - Claudie Barnier
- CNRS/Université de Pau et des Pays de l'Adour/E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux UMR5254, Pau, 64000, France
| | - Laurent Urios
- CNRS/Université de Pau et des Pays de l'Adour/E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux UMR5254, Pau, 64000, France
| | - Régis Grimaud
- CNRS/Université de Pau et des Pays de l'Adour/E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux UMR5254, Pau, 64000, France
| |
Collapse
|
20
|
Vance TDR, Guo S, Assaie-Ardakany S, Conroy B, Davies PL. Structure and functional analysis of a bacterial adhesin sugar-binding domain. PLoS One 2019; 14:e0220045. [PMID: 31335890 PMCID: PMC6650083 DOI: 10.1371/journal.pone.0220045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 07/08/2019] [Indexed: 01/17/2023] Open
Abstract
Bacterial adhesins attach their hosts to surfaces through one or more ligand-binding domains. In RTX adhesins, which are localized to the outer membrane of many Gram-negative bacteria via the type I secretion system, we see several examples of a putative sugar-binding domain. Here we have recombinantly expressed one such ~20-kDa domain from the ~340-kDa adhesin found in Marinobacter hydrocarbonoclasticus, an oil-degrading bacterium. The sugar-binding domain was purified from E. coli with a yield of 100 mg/L of culture. Circular dichroism analysis showed that the protein was rich in beta-structure, was moderately heat resistant, and required Ca2+ for proper folding. A crystal structure was obtained in Ca2+ at 1.2-Å resolution, which showed the presence of three Ca2+ ions, two of which were needed for structural integrity and one for binding sugars. Glucose was soaked into the crystal, where it bound to the sugar's two vicinal hydroxyl groups attached to the first and second (C1 and C2) carbons in the pyranose ring. This attraction to glucose caused the protein to bind certain polysaccharide-based column matrices and was used in a simple competitive binding assay to assess the relative affinity of sugars for the protein's ligand-binding site. Fucose, glucose and N-acetylglucosamine bound most tightly, and N-acetylgalactosamine hardly bound at all. Isothermal titration calorimetry was used to determine specific binding affinities, which lie in the 100-μM range. Glycan arrays were tested to expand the range of ligand sugars assayed, and showed that MhPA14 bound preferentially to branched polymers containing terminal sugars highlighted as strong binders in the competitive binding assay. Some of these binders have vicinal hydroxyl groups attached to the C3 and C4 carbons that are sterically equivalent to those presented by the C1 and C2 carbons of glucose.
Collapse
Affiliation(s)
- Tyler D. R. Vance
- Department of Biomedical and Molecular Science, Queen’s University, Kingston, Ontario, Canada
| | - Shuaiqi Guo
- Department of Biomedical and Molecular Science, Queen’s University, Kingston, Ontario, Canada
| | - Shayan Assaie-Ardakany
- Department of Biomedical and Molecular Science, Queen’s University, Kingston, Ontario, Canada
| | - Brigid Conroy
- Department of Biomedical and Molecular Science, Queen’s University, Kingston, Ontario, Canada
| | - Peter L. Davies
- Department of Biomedical and Molecular Science, Queen’s University, Kingston, Ontario, Canada
- * E-mail:
| |
Collapse
|
21
|
Hydrocarbon-Degrading Microbial Communities Are Site Specific, and Their Activity Is Limited by Synergies in Temperature and Nutrient Availability in Surface Ocean Waters. Appl Environ Microbiol 2019; 85:AEM.00443-19. [PMID: 31126938 DOI: 10.1128/aem.00443-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/16/2019] [Indexed: 11/20/2022] Open
Abstract
The objective of this study was to quantify the potential for hydrocarbon biodegradation in surface waters of three sites, representing geographic regions of major oil exploration (Beaufort Sea in the Arctic, northern Gulf of Mexico [GOM], and southern GOM), in a systematic experimental design that incorporated gradients in temperature and the availability of major nutrients. Surface seawater was amended in microcosms with Macondo surrogate oil to simulate an oil slick, and microcosms were incubated, with or without nutrient amendment, at temperatures ranging from 4 to 38ºC. Using respiration rate as a proxy, distinct temperature responses were observed in surface seawater microcosms based on geographic origin; biodegradation was nearly always more rapid in the Arctic site samples than in the GOM samples. Nutrient amendment enhanced respiration rates by a factor of approximately 6, stimulated microbial growth, and generally elevated the taxonomic diversity of microbial communities within the optimal temperature range for activity at each site, while diversity remained the same or was lower at temperatures deviating from optimal conditions. Taken together, our results advance the understanding of how bacterioplankton communities from different geographic regions respond to oil perturbation. A pulsed disturbance of oil is proposed to favor copiotrophic r-strategists that are adapted to pointed seasonal inputs of phytoplankton carbon, displaying carbon and nutrient limitations, rather than oil exposure history. Further understanding of the ecological mechanisms underpinning the complex environmental controls of hydrocarbon degradation is required for improvement of predictive models of the fate and transport of spilled oil in marine environments.IMPORTANCE The risk of an oil spill accident in pristine regions of the world's oceans is increasing due to the development and transport of crude oil resources, especially in the Arctic region, as a result of the opening of ice-free transportation routes, and there is currently no consensus regarding the complex interplay among the environmental controls of petroleum hydrocarbon biodegradation for predictive modeling. We examined the hydrocarbon biodegradation potential of bacterioplankton from three representative geographic regions of oil exploration. Our results showed that rates of aerobic respiration coupled to hydrocarbon degradation in surface ocean waters are controlled to a large extent by effects of temperature and nutrient limitation; hydrocarbon exposure history did not appear to have a major impact. Further, the relationship between temperature and biodegradation rates is linked to microbial community structure, which is specific to the geographic origin.
Collapse
|
22
|
Marín P, Martirani‐Von Abercron SM, Urbina L, Pacheco‐Sánchez D, Castañeda‐Cataña MA, Retegi A, Eceiza A, Marqués S. Bacterial nanocellulose production from naphthalene. Microb Biotechnol 2019; 12:662-676. [PMID: 31087504 PMCID: PMC6559018 DOI: 10.1111/1751-7915.13399] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/18/2019] [Accepted: 02/21/2019] [Indexed: 11/29/2022] Open
Abstract
Polycyclic aromatic compounds (PAHs) are toxic compounds that are released in the environment as a consequence of industrial activities. The restoration of PAH-polluted sites considers the use of bacteria capable of degrading aromatic compounds to carbon dioxide and water. Here we characterize a new Xanthobacteraceae strain, Starkeya sp. strain N1B, previously isolated during enrichment under microaerophilic conditions, which is capable of using naphthalene crystals as the sole carbon source. The strain produced a structured biofilm when grown on naphthalene crystals, which had the shape of a half-sphere organized over the crystal. Scanning electron microscopy (SEM) and GC-MS analysis indicated that the biofilm was essentially made of cellulose, composed of several micron-long nanofibrils of 60 nm diameter. A cellulosic biofilm was also formed when the cells grew with glucose as the carbon source. Fourier transformed infrared spectroscopy (FTIR) confirmed that the polymer was type I cellulose in both cases, although the crystallinity of the material greatly depended on the carbon source used for growth. Using genome mining and mutant analysis, we identified the genetic complements required for the transformation of naphthalene into cellulose, which seemed to have been successively acquired through horizontal gene transfer. The capacity to develop the biofilm around the crystal was found to be dispensable for growth when naphthalene was used as the carbon source, suggesting that the function of this structure is more intricate than initially thought. This is the first example of the use of toxic aromatic hydrocarbons as the carbon source for bacterial cellulose production. Application of this capacity would allow the remediation of a PAH into such a value-added polymer with multiple biotechnological usages.
Collapse
Affiliation(s)
- Patricia Marín
- Estación Experimental del ZaidínDepartment of Environmental ProtectionConsejo Superior de Investigaciones CientíficasCalle Profesor Albareda, 1Granada18008Spain
| | - Sophie Marie Martirani‐Von Abercron
- Estación Experimental del ZaidínDepartment of Environmental ProtectionConsejo Superior de Investigaciones CientíficasCalle Profesor Albareda, 1Granada18008Spain
| | - Leire Urbina
- Materials + Technologies Research Group (GMT)Department of Chemical and Environmental EngineeringFaculty of Engineering of GipuzkoaUniversity of the Basque CountryPza Europa 1Donostia‐San Sebastian20018Spain
| | - Daniel Pacheco‐Sánchez
- Estación Experimental del ZaidínDepartment of Environmental ProtectionConsejo Superior de Investigaciones CientíficasCalle Profesor Albareda, 1Granada18008Spain
| | - Mayra Alejandra Castañeda‐Cataña
- Estación Experimental del ZaidínDepartment of Environmental ProtectionConsejo Superior de Investigaciones CientíficasCalle Profesor Albareda, 1Granada18008Spain
| | - Aloña Retegi
- Materials + Technologies Research Group (GMT)Department of Chemical and Environmental EngineeringFaculty of Engineering of GipuzkoaUniversity of the Basque CountryPza Europa 1Donostia‐San Sebastian20018Spain
| | - Arantxa Eceiza
- Materials + Technologies Research Group (GMT)Department of Chemical and Environmental EngineeringFaculty of Engineering of GipuzkoaUniversity of the Basque CountryPza Europa 1Donostia‐San Sebastian20018Spain
| | - Silvia Marqués
- Estación Experimental del ZaidínDepartment of Environmental ProtectionConsejo Superior de Investigaciones CientíficasCalle Profesor Albareda, 1Granada18008Spain
| |
Collapse
|
23
|
Solyanikova IP, Golovleva LA. Hexadecane and Hexadecane-Degrading Bacteria: Mechanisms of Interaction. Microbiology (Reading) 2019. [DOI: 10.1134/s0026261718060152] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
24
|
Evans MV, Panescu J, Hanson AJ, Welch SA, Sheets JM, Nastasi N, Daly RA, Cole DR, Darrah TH, Wilkins MJ, Wrighton KC, Mouser PJ. Members of Marinobacter and Arcobacter Influence System Biogeochemistry During Early Production of Hydraulically Fractured Natural Gas Wells in the Appalachian Basin. Front Microbiol 2018; 9:2646. [PMID: 30498478 PMCID: PMC6249378 DOI: 10.3389/fmicb.2018.02646] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/17/2018] [Indexed: 11/17/2022] Open
Abstract
Hydraulic fracturing is the prevailing method for enhancing recovery of hydrocarbon resources from unconventional shale formations, yet little is understood regarding the microbial impact on biogeochemical cycling in natural-gas wells. Although the metabolisms of certain fermentative bacteria and methanogenic archaea that dominate in later produced fluids have been well studied, few details have been reported on microorganisms prevelant during the early flowback period, when oxygen and other surface-derived oxyanions and nutrients become depleted. Here, we report the isolation, genomic and phenotypic characterization of Marinobacter and Arcobacter bacterial species from natural-gas wells in the Utica-Point Pleasant and Marcellus Formations coupled to supporting geochemical and metagenomic analyses of produced fluid samples. These unconventional hydrocarbon system-derived Marinobacter sp. are capable of utilizing a diversity of organic carbon sources including aliphatic and aromatic hydrocarbons, amino acids, and carboxylic acids. Marinobacter and Arcobacter can metabolize organic nitrogen sources and have the capacity for denitrification and dissimilatory nitrate reduction to ammonia (DNRA) respectively; with DNRA and ammonification processes partially explaining high concentrations of ammonia measured in produced fluids. Arcobacter is capable of chemosynthetic sulfur oxidation, which could fuel metabolic processes for other heterotrophic, fermentative, or sulfate-reducing community members. Our analysis revealed mechanisms for growth of these taxa across a broad range of salinities (up to 15% salt), which explains their enrichment during early natural-gas production. These results demonstrate the prevalence of Marinobacter and Arcobacter during a key maturation phase of hydraulically fractured natural-gas wells, and highlight the significant role these genera play in biogeochemical cycling for this economically important energy system.
Collapse
Affiliation(s)
- Morgan V Evans
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, OH, United States
| | - Jenny Panescu
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, OH, United States
| | - Andrea J Hanson
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO, United States
| | - Susan A Welch
- School of Earth Sciences, The Ohio State University, Columbus, OH, United States
| | - Julia M Sheets
- School of Earth Sciences, The Ohio State University, Columbus, OH, United States
| | - Nicholas Nastasi
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, OH, United States
| | - Rebecca A Daly
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
| | - David R Cole
- School of Earth Sciences, The Ohio State University, Columbus, OH, United States
| | - Thomas H Darrah
- School of Earth Sciences, The Ohio State University, Columbus, OH, United States
| | - Michael J Wilkins
- School of Earth Sciences, The Ohio State University, Columbus, OH, United States.,Department of Microbiology, The Ohio State University, Columbus, OH, United States
| | - Kelly C Wrighton
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
| | - Paula J Mouser
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, OH, United States.,Department of Civil and Environmental Engineering, University of New Hampshire, Durham, NH, United States
| |
Collapse
|
25
|
Li G, Gao P, Zhi B, Fu B, Gao G, Chen Z, Gao M, Wu M, Ma T. The relative abundance of alkane-degrading bacteria oscillated similarly to a sinusoidal curve in an artificial ecosystem model from oil-well products. Environ Microbiol 2018; 20:3772-3783. [DOI: 10.1111/1462-2920.14382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/19/2018] [Accepted: 08/10/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Guoqiang Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education; College of Life Sciences, Nankai University; Tianjin People's Republic of China
- Department of Microbiology and Plant Biology; University of Oklahoma; Norman OK USA
| | - Peike Gao
- College of Life Sciences; Qufu Normal University; Qufu People's Repubic of China
| | - Bo Zhi
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education; College of Life Sciences, Nankai University; Tianjin People's Republic of China
| | - Bing Fu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education; College of Life Sciences, Nankai University; Tianjin People's Republic of China
| | - Ge Gao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education; College of Life Sciences, Nankai University; Tianjin People's Republic of China
| | - Zhaohui Chen
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education; College of Life Sciences, Nankai University; Tianjin People's Republic of China
| | - Mengli Gao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education; College of Life Sciences, Nankai University; Tianjin People's Republic of China
| | - Mengmeng Wu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education; College of Life Sciences, Nankai University; Tianjin People's Republic of China
| | - Ting Ma
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education; College of Life Sciences, Nankai University; Tianjin People's Republic of China
| |
Collapse
|
26
|
Alabresm A, Chen YP, Decho AW, Lead J. A novel method for the synergistic remediation of oil-water mixtures using nanoparticles and oil-degrading bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 630:1292-1297. [PMID: 29554750 DOI: 10.1016/j.scitotenv.2018.02.277] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 05/23/2023]
Abstract
Releases of crude oil and other types of oil from numerous sources can impose catastrophic physical, chemical, and biological effects on aquatic ecosystems. While currently-used oil removal techniques possess many advantages, they have inherent limitations, including low removal efficiencies and waste disposal challenges. The present study quantified the synergistic interactions of polyvinylpyrrolidone (PVP) coated magnetite nanoparticles (NP) and oil-degrading bacteria for enhanced oil removal at the laboratory scale. The results showed that at relatively high oil concentrations (375 mg L-1), NP alone could remove approximately 70% of lower-chain alkanes (C9-C22) and 65% of higher-chain (C23-C26), after only 1 h, when magnetic separation of NP was used. Removal efficiency did not increase significantly after that, which was likely due to saturation of the NP with oil. Microbial bioremediation, using strains of oil-degrading bacteria, removed almost zero oil immediately but 80-90% removal after 24-48 h. The combination of NPs and oil-degrading bacterial strains worked effectively to remove essentially 100% of oil within 48 h or less. This was likely due to the sorption of oil components to NPs and their subsequent utilization by bacteria as a joint Fe and C source, although the mechanisms of removal require further testing. Furthermore, results showed that the emission of selected volatile organic compounds (VOCs) and semi volatile organic compounds (SVOCs) were reduced after addition of NPs and bacteria separately. When combined, VOC and SVOC emissions were reduced by up to 80%.
Collapse
Affiliation(s)
- Amjed Alabresm
- Center for Environmental Nanoscience and Risk (CENR), Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 28209, USA; Department of Biological Development of Shatt Al-Arab & N. Arabian Gulf, Marine Science Centre, University of Basrah, Basrah, Iraq
| | - Yung Pin Chen
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Alan W Decho
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Jamie Lead
- Center for Environmental Nanoscience and Risk (CENR), Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 28209, USA.
| |
Collapse
|
27
|
Homologous Recombination in Core Genomes Facilitates Marine Bacterial Adaptation. Appl Environ Microbiol 2018; 84:AEM.02545-17. [PMID: 29572211 DOI: 10.1128/aem.02545-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/20/2018] [Indexed: 01/01/2023] Open
Abstract
Acquisition of ecologically relevant genes is common among ocean bacteria, but whether it has a major impact on genome evolution in marine environments remains unknown. Here, we analyzed the core genomes of 16 phylogenetically diverse and ecologically relevant bacterioplankton lineages, each consisting of up to five genomes varying at the strain level. Statistical approaches identified from each lineage up to ∼50 loci showing anomalously high divergence at synonymous sites, which is best explained by recombination with distantly related organisms. The enriched gene categories in these outlier loci match well with the characteristics previously identified as the key phenotypes of these lineages. Examples are antibiotic synthesis and detoxification in Phaeobacter inhibens, exopolysaccharide production in Alteromonas macleodii, hydrocarbon degradation in Marinobacter hydrocarbonoclasticus, and cold adaptation in Pseudoalteromonas haloplanktis Intriguingly, the outlier loci feature polysaccharide catabolism in Cellulophaga baltica but not in Cellulophaga lytica, consistent with their primary habitat preferences in macroalgae and beach sands, respectively. Likewise, analysis of Prochlorococcus showed that photosynthesis-related genes listed in the outlier loci are found only in the high-light-adapted ecotype and not in the low-light adapted ecotype. These observations strongly suggest that recombination with distant relatives is a key mechanism driving the ecological diversification among marine bacterial lineages.IMPORTANCE Acquisition of new metabolic genes has been known as an important mechanism driving bacterial evolution and adaptation in the ocean, but acquisition of novel alleles of existing genes and its potential ecological role have not been examined. Guided by population genetic theories, our genomic analysis showed that divergent allele acquisition is prevalent in phylogenetically diverse marine bacterial lineages and that the affected loci often encode metabolic functions that underlie the known ecological roles of the lineages under study.
Collapse
|
28
|
Branchu P, Canette A, Medina Fernandez S, Mounier J, Meylheuc T, Briandet R, Grimaud R, Naïtali M. Impact of temperature on Marinobacter hydrocarbonoclasticus SP17 morphology and biofilm structure during growth on alkanes. MICROBIOLOGY-SGM 2017; 163:669-677. [PMID: 28535844 DOI: 10.1099/mic.0.000466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Alkanes are widespread pollutants found in soil, freshwater and marine environments. Marinobacter hydrocarbonoclasticus (Mh) strain SP17 is a marine bacterium able to use many hydrophobic organic compounds, including alkanes, through the production of biofilms that allow their poor solubility to be overcome. This study pointed out that temperature is an environmental factor that strongly affects the biofilm formation and morphology of Mh on the model alkanes, hexadecane and paraffin. We showed that Mh biofilm formation and accumulation of intracytoplasmic inclusions are higher on solid alkanes (hexadecane at 10 °C and paraffin at 10 °C and 30 °C) than on liquid alkane (hexadecane at 30 °C) or soluble substrate (lactate at both temperatures). We also found that Mh produces more extracellular polymeric substances at 30 °C than at 10 °C on alkanes and none on lactate. We observed that bacterial length is significantly higher at 10 °C than at 30 °C on lactate and hexadecane. On paraffin, at 30 °C, the cell morphology is markedly altered by large rounded or irregularly shaped cytoplasmic inclusions. Altogether, the results showed that Mh is able to adapt and use alkanes as a carbon source, even at low temperature.
Collapse
Affiliation(s)
- Priscilla Branchu
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.,Present address: IRSD, Université de Toulouse, INSERM, INRA, ENVT, Toulouse, France
| | - Alexis Canette
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Sara Medina Fernandez
- CNRS/Univ Pau & Pays Adour, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, UMR5254, 64000, Pau, France
| | - Julie Mounier
- CNRS/Univ Pau & Pays Adour, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, UMR5254, 64000, Pau, France
| | - Thierry Meylheuc
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Romain Briandet
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Régis Grimaud
- CNRS/Univ Pau & Pays Adour, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, UMR5254, 64000, Pau, France
| | - Murielle Naïtali
- Micalis Institute, AgroParisTech, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| |
Collapse
|
29
|
Espinosa-Urgel M, Marqués S. New insights in the early extracellular events in hydrocarbon and lipid biodegradation. Environ Microbiol 2017; 19:15-18. [PMID: 27871137 DOI: 10.1111/1462-2920.13608] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Manuel Espinosa-Urgel
- Estación Experimental del Zaidín, Department of Environmental Protection, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Silvia Marqués
- Estación Experimental del Zaidín, Department of Environmental Protection, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| |
Collapse
|
30
|
Ennouri H, d'Abzac P, Hakil F, Branchu P, Naïtali M, Lomenech AM, Oueslati R, Desbrières J, Sivadon P, Grimaud R. The extracellular matrix of the oleolytic biofilms of Marinobacter hydrocarbonoclasticus comprises cytoplasmic proteins and T2SS effectors that promote growth on hydrocarbons and lipids. Environ Microbiol 2016; 19:159-173. [PMID: 27727521 DOI: 10.1111/1462-2920.13547] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/12/2016] [Accepted: 09/21/2016] [Indexed: 11/28/2022]
Abstract
The assimilation of the nearly water insoluble substrates hydrocarbons and lipids by bacteria entails specific adaptations such as the formation of oleolytic biofilms. The present article reports that the extracellular matrix of an oleolytic biofilm formed by Marinobacter hydrocarbonoclasticus at n-hexadecane-water interfaces is largely composed of proteins typically cytoplasmic such as translation factors and chaperones, and a lesser amount of proteins of unknown function that are predicted extra-cytoplasmic. Matrix proteins appear to form a structured film on hydrophobic interfaces and were found mandatory for the development of biofilms on lipids, alkanes and polystyrene. Exo-proteins secreted through the type-2 secretion system (T2SS) were shown to be essential for the formation of oleolytic biofilms on both alkanes and triglycerides. The T2SS effector involved in biofilm formation on triglycerides was identified as a lipase. In the case of biofilm formation on n-hexadecane, the T2SS effector is likely involved in the mass transfer, capture or transport of alkanes. We propose that M. hydrocarbonoclasticus uses cytoplasmic proteins released by cell lysis to form a proteinaceous matrix and dedicated proteins secreted through the T2SS to act specifically in the assimilation pathways of hydrophobic substrates.
Collapse
Affiliation(s)
- Habiba Ennouri
- IPREM - Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, UMR 5254 CNRS, Université de Pau et des Pays de l'Adour Bâtiment IBEAS - UFR Sciences, avenue de l'Université, BP 1155, PAU Cedex, 64013, France.,Unité d'Immunologie, Microbiologie Environnementale et Cancérogenèse (IMEC), Faculté des sciences de Bizerte, Université de Carthage, 7021 Zarzouna, Bizerte, Tunisie
| | - Paul d'Abzac
- IPREM -Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, UMR 5254 CNRS, Université de Pau et des Pays de l'Adour Technopole Hélioparc, 2 avenue du Président Pierre Angot, Pau Cedex 09, 64053, France
| | - Florence Hakil
- IPREM - Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, UMR 5254 CNRS, Université de Pau et des Pays de l'Adour Bâtiment IBEAS - UFR Sciences, avenue de l'Université, BP 1155, PAU Cedex, 64013, France
| | - Priscilla Branchu
- Equipe Bioadhésion, Biofilm et Hygiène des Matériaux B2HM, UMR 1319 MICALIS, INRA AgroParisTech, Massy, France
| | - Murielle Naïtali
- Equipe Bioadhésion, Biofilm et Hygiène des Matériaux B2HM, UMR 1319 MICALIS, INRA AgroParisTech, Massy, France
| | - Anne-Marie Lomenech
- Plateforme Protéome, Centre Génomique Fonctionnelle Bordeaux, Université Bordeaux Segalen, 146 Rue Léo Saignat, Bordeaux, 33076, France
| | - Ridha Oueslati
- Unité d'Immunologie, Microbiologie Environnementale et Cancérogenèse (IMEC), Faculté des sciences de Bizerte, Université de Carthage, 7021 Zarzouna, Bizerte, Tunisie
| | - Jacques Desbrières
- IPREM -Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, UMR 5254 CNRS, Université de Pau et des Pays de l'Adour Technopole Hélioparc, 2 avenue du Président Pierre Angot, Pau Cedex 09, 64053, France
| | - Pierre Sivadon
- IPREM - Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, UMR 5254 CNRS, Université de Pau et des Pays de l'Adour Bâtiment IBEAS - UFR Sciences, avenue de l'Université, BP 1155, PAU Cedex, 64013, France
| | - Régis Grimaud
- IPREM - Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, UMR 5254 CNRS, Université de Pau et des Pays de l'Adour Bâtiment IBEAS - UFR Sciences, avenue de l'Université, BP 1155, PAU Cedex, 64013, France
| |
Collapse
|
31
|
Zeng Z, Guo XP, Li B, Wang P, Cai X, Tian X, Zhang S, Yang JL, Wang X. Characterization of self-generated variants in Pseudoalteromonas lipolytica biofilm with increased antifouling activities. Appl Microbiol Biotechnol 2015; 99:10127-39. [PMID: 26264135 PMCID: PMC4643108 DOI: 10.1007/s00253-015-6865-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/08/2015] [Accepted: 07/20/2015] [Indexed: 02/04/2023]
Abstract
Pseudoalteromonas is widespread in various marine environments, and most strains can affect invertebrate larval settlement and metamorphosis by forming biofilms. However, the impact and the molecular basis of population diversification occurring in Pseudoalteromonas biofilms are poorly understood. Here, we show that morphological diversification is prevalent in Pseudoalteromonas species during biofilm formation. Two types of genetic variants, wrinkled (frequency of 12 ± 5 %) and translucent (frequency of 5 ± 3 %), were found in Pseudoalteromonas lipolytica biofilms. The inducing activities of biofilms formed by the two variants on larval settlement and metamorphosis of the mussel Mytilus coruscus were significantly decreased, suggesting strong antifouling activities. Using whole-genome re-sequencing combined with genetic manipulation, two genes were identified to be responsible for the morphology alternations. A nonsense mutation in AT00_08765 led to a wrinkled morphology due to the overproduction of cellulose, whereas a point mutation in AT00_17125 led to a translucent morphology via a reduction in capsular polysaccharide production. Taken together, the results suggest that the microbial behavior on larval settlement and metamorphosis in marine environment could be affected by the self-generated variants generated during the formation of marine biofilms, thereby rendering potential application in biocontrol of marine biofouling.
Collapse
Affiliation(s)
- Zhenshun Zeng
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Baiyuan Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pengxia Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China
| | - Xingsheng Cai
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China
| | - Xinpeng Tian
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China
| | - Si Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China
| | | | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China.
| |
Collapse
|
32
|
Imaging Bacterial Cells and Biofilms Adhering to Hydrophobic Organic Compound–Water Interfaces. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/8623_2015_80] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|