1
|
Pandey S, Roberts P, Bag S, Jacobson AL, Srinivasan R. A phloem-limited RNA phytovirus infection does not positively modulate vector preference and fitness in primary and alternate hosts. ENVIRONMENTAL ENTOMOLOGY 2025; 54:341-351. [PMID: 39903452 PMCID: PMC12005951 DOI: 10.1093/ee/nvaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/28/2024] [Accepted: 01/28/2025] [Indexed: 02/06/2025]
Abstract
Colonizing aphids play an important role in the transmission of RNA phytoviruses in the family Solemoviridae. According to "host manipulation hypothesis," phloem limited and persistently transmitted Solemoviridae viruses modulate host physiology that positively affects vector behavior and fitness and facilitates virus spread. However, it is unclear if virus-modulated host effects on vectors across pathosystems involving Solemoviridae members are always positive. Cotton leafroll dwarf virus (CLRDV) is a recently introduced Solemoviridae member in the United States, and it is transmitted by the cotton aphid (Aphis gossypii). Effects of CLRDV infection on vector behavior and fitness were evaluated on its primary host plant, cotton (Gossypium hirsutum), and an alternate host plant, hibiscus (Hibiscus acetosella). In this study, changes to viruliferous and non-viruliferous aphid preference and aphid fitness on virus-infected and non-infected hosts were examined. In contrast to the hypothesized preference of non-viruliferous aphids for infected plants and vice-versa, both viruliferous and non-viruliferous A. gossypii preferred non-infected cotton and hibiscus plants over CLRDV-infected plants. This suggested that the preference of non-viruliferous vectors to non-infected plants might negatively impact virus acquisition, whereas the preference of viruliferous vectors toward non-infected plants could positively facilitate virus inoculation. The total fecundity and intrinsic rate of increase of aphids were higher on non-infected plants compared with CLRDV-infected plants. The lack of enhanced fitness benefits on CLRDV-infected hosts also could negatively impact virus spread. Overall, this study suggested that "host manipulation hypothesis" favoring vector attraction and enhanced fitness on infected plants does not apply to all pathosystems involving Solemoviridae members.
Collapse
Affiliation(s)
- Sudeep Pandey
- Department of Entomology, University of Georgia, Griffin, GA, USA
| | - Phillip Roberts
- Department of Entomology, University of Georgia, Tifton, GA, USA
| | - Sudeep Bag
- Department of Plant Pathology, University of Georgia, Tifton, GA, USA
| | - Alana L Jacobson
- Department of Entomology & Plant Pathology, Auburn University, Auburn, AL, USA
| | | |
Collapse
|
2
|
He WZ, Liu SS, Pan LL. Enhanced association of whitefly-begomovirus competence with plant-mediated mutualism. PEST MANAGEMENT SCIENCE 2025; 81:2126-2132. [PMID: 39691989 DOI: 10.1002/ps.8613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND Vector-borne viruses often manipulate plant defenses against insect vectors, thereby impacting vector population dynamics and in turn virus spread. However, the factors regulating the outcome of insect vector-virus-plant tripartite interactions, such as the feature of virus-vector combinations, are understudied. RESULTS Using eight whitefly (Bemisia tabaci)-begomovirus combinations exhibiting different degrees of competence, namely virus transmission efficiency, we examined the association between whitefly-begomovirus competence and plant-mediated mutualism. We found that three begomoviruses, tomato yellow leaf curl virus (TYLCV), cotton leaf curl Multan virus (CLCuMuV) and Sri Lankan cassava mosaic virus (SLCMV), can effectively infect but cause distinct symptoms in tobacco (Nicotiana tabacum) plants. Although the efficient vectors Middle East-Asia Minor 1 (MEAM1) and Mediterranean (MED) whiteflies performed significantly better on TYLCV-infected plants than on control plants, the less-efficient vector Asia II 1 performed similarly on TYLCV-infected and uninfected plants. CLCuMuV infection of plants significantly enhanced the performance of the efficient vector Asia II 1, whereas the performance of the inefficient vector MEAM1 was unaffected by the virus infection status of the plants. SLCMV infection of plants significantly increased the survival and fecundity of the efficient vector Asia II 1, but did not affect the performance of the poorer vectors MEAM1 and MED. CONCLUSION Combined analysis of our data and case studies from the literature indicates that plant-mediated mutualism between whiteflies and the begomoviruses they transmit is more likely to occur in competent combinations. Our findings shed novel light on the ecological principles governing the variations in insect vector-virus-plant tripartite interactions. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wen-Ze He
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Li-Long Pan
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- The Rural Development Academy, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Verdier M, Boissinot S, Baltenweck R, Negrel L, Brault V, Ziegler‐Graff V, Hugueney P, Scheidecker D, Krieger C, Chesnais Q, Drucker M. The Turnip Yellows Virus Capsid Protein Promotes Access of Its Main Aphid Vector Myzus persicae to Phloem Tissues. PLANT, CELL & ENVIRONMENT 2025; 48:2434-2444. [PMID: 39623721 PMCID: PMC11788975 DOI: 10.1111/pce.15303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/24/2024] [Accepted: 11/12/2024] [Indexed: 02/04/2025]
Abstract
Many plant viruses modify the phenotype of their hosts, which may influence the behaviour of their vectors and facilitate transmission. Among them is the turnip yellows virus (TuYV), which can modify the orientation, feeding, and performance of its main aphid vector, Myzus persicae. However, the virus factors driving these mechanisms have not been elucidated. In this study, we compared the feeding behaviour and fecundity of aphids on TuYV-infected and transgenic Arabidopsis thaliana expressing individual TuYV proteins (CP, RT and P0) to define the role of these proteins in aphid-plant interactions. Aphids on TuYV-infected plants had shorter pathway phases and ingested phloem sap for longer times, which is expected to promote the acquisition of the phloem-limited TuYV. No change in aphid fecundity was observed on TuYV-infected plants. The transmission-conducive feeding behaviour changes could be fully reproduced by phloem-specific expression of the capsid protein (CP) in transgenic plants, whereas expression of P0 had minor and RT had no effects on aphid feeding behaviour. We then carried out a metabolomic analysis to determine plant compounds that could be involved in the modification of the aphid behaviour. A few metabolites were specific for TuYV-infected or CP-transgenic A. thaliana, and are good candidates for inducing behavioural changes.
Collapse
Affiliation(s)
| | | | | | - Lise Negrel
- INRAE, Université de Strasbourg, SVQVColmarFrance
| | | | - Véronique Ziegler‐Graff
- CNRS, Université de Strasbourg, Institut de Biologie Moléculaire des PlantesStrasbourgFrance
| | | | - Daniele Scheidecker
- CNRS, Université de Strasbourg, Institut de Biologie Moléculaire des PlantesStrasbourgFrance
| | - Célia Krieger
- CNRS, Université de Strasbourg, Institut de Biologie Moléculaire des PlantesStrasbourgFrance
| | | | | |
Collapse
|
4
|
Safari Murhububa I, Tougeron K, Bragard C, Fauconnier ML, Mugisho Bugeme D, Bisimwa Basengere E, Walangululu Masamba J, Hance T. The aphid Pentalonia nigronervosa (Hemiptera: Aphididae) takes advantage from the quality change in banana plant associated with Banana bunchy top virus infection. JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:1481-1489. [PMID: 37467484 DOI: 10.1093/jee/toad130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/01/2023] [Accepted: 06/23/2023] [Indexed: 07/21/2023]
Abstract
Viral diseases can change plant metabolism, with potential impacts on the quality of the plant's food supply for insect pests, including virus vectors. The banana aphid, Pentalonia nigronervosa Coquerel, is the vector of the Banana bunchy top virus (BBTV), the causal agent of Banana bunchy top disease (BBTD), the most devastating viral disease of bananas in the world. The effect of BBTV on the life-history traits and population dynamics of P. nigronervosa remains poorly understood. We therefore studied the survival rate, longevity, daily fecundity per aphid, tibia length, population growth, and winged morph production of a P. nigronervosa clone grown on healthy or infected, dessert, or plantain banana plants. We found that daily fecundity was higher on infected banana than on healthy banana plants (plantain and dessert), and on plantain than on dessert banana plants (healthy and infected). Survival and longevity were lower on infected dessert bananas than on other types of bananas. In addition, virus infection resulted in a decrease in aphid hind tibia length on both plant genotypes. The survival and fecundity table revealed that the aphid net reproduction rate (Ro) was highest on plantains (especially infected plantain), and the intrinsic growth rate (r) was highest on infected plants. Finally, the increase of aphids and alate production was faster first on infected plantain, then on healthy plantain, and lower on dessert banana (infected and uninfected). Our results reinforce the idea of indirect and plant genotype-dependent manipulation of P. nigronervosa by the BBTV.
Collapse
Affiliation(s)
- Ignace Safari Murhububa
- Earth and Life Institute, Ecology and Biodiversity, UCLouvain, Louvain-la-Neuve, Belgium
- Faculté des Sciences Agronomiques, Université Catholique de Bukavu, Bukavu, Democratic Republic of the Congo
- Institut Supérieur d'Etudes Agronomiques et Vétérinaires (ISEAV/Walungu), Walungu, Democratic Republic of the Congo
| | - Kévin Tougeron
- Earth and Life Institute, Ecology and Biodiversity, UCLouvain, Louvain-la-Neuve, Belgium
- UMR CNRS 7058 EDYSAN (Écologie et Dynamique des Systèmes Anthropisés), Université de Picardie Jules Verne, Amiens, France
- EIGC laboratory, Research Institute for Biosciences, Université de Mons, Mons, Belgium
| | - Claude Bragard
- Earth and Life Institute, Applied Microbiology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Marie-Laure Fauconnier
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
| | - David Mugisho Bugeme
- Faculté des Sciences Agronomiques, Université Catholique de Bukavu, Bukavu, Democratic Republic of the Congo
| | - Espoir Bisimwa Basengere
- Faculté des Sciences Agronomiques, Université Catholique de Bukavu, Bukavu, Democratic Republic of the Congo
| | - Jean Walangululu Masamba
- Institut Supérieur d'Etudes Agronomiques et Vétérinaires (ISEAV/Walungu), Walungu, Democratic Republic of the Congo
| | - Thierry Hance
- Earth and Life Institute, Ecology and Biodiversity, UCLouvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
5
|
Lu C, Shen N, Jiang W, Xie B, Zhao R, Zhou G, Zhao D, He Y, Chen W. Different Tea Germplasms Distinctly Influence the Adaptability of Toxoptera aurantii (Hemiptera: Aphididae). INSECTS 2023; 14:695. [PMID: 37623405 PMCID: PMC10456110 DOI: 10.3390/insects14080695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023]
Abstract
Aphids are typical phloem-sucking insect pests. A good understanding regarding their feeding behavior and population dynamics are critical for evaluating host adaptation and screening of aphid-resistant resources. Herein, the adaptability of Toxoptera aurantii (Boyer) (Hemiptera: Aphididae) to different hosts was evaluated via electropenetrography and an age-stage, two-sex life table on six tea germplasms: Zikui (ZK), Zhongcha108 (ZC108), Zhongcha111 (ZC111), Qianmei419 (QM419), Meitan5 (MT5), and Fudingdabaicha (FD). Our findings revealed that the feeding activities of T. aurantii differed considerably among the host plants. T. aurantii exhibited significantly more pathway activities on ZK and FD than on the other hosts. However, the duration of feeding of T. aurantii on ZK phloem considerably decreased compared with those of the other germplasms. Life parameters indicated that T. aurantii exhibited the highest intrinsic rate of increase (r), net reproductive rate (R0), and finite rate of increase (λ) on MT5, and the maximum values of total longevity and oviposition period were recorded on FD; these variables were reduced significantly on ZK. The results of our study demonstrate that T. aurantii can successfully survive on the six tea germplasms; however, ZK was less suitable for T. aurantii and should be considered as a potential source of resistance in breeding and Integrated Pest Management.
Collapse
Affiliation(s)
- Changhao Lu
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture, Guizhou University, Guiyang 550025, China; (C.L.); (R.Z.)
- College of Tea Science, Guizhou University, Guiyang 550025, China; (W.J.); (B.X.)
| | - Ni Shen
- Guizhou Plant Conservation Center, Guizhou Academy of Agriculture Science, Guiyang 550006, China; (N.S.); (G.Z.); (D.Z.)
| | - Wenbin Jiang
- College of Tea Science, Guizhou University, Guiyang 550025, China; (W.J.); (B.X.)
| | - Bi Xie
- College of Tea Science, Guizhou University, Guiyang 550025, China; (W.J.); (B.X.)
| | - Runa Zhao
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture, Guizhou University, Guiyang 550025, China; (C.L.); (R.Z.)
| | - Guolan Zhou
- Guizhou Plant Conservation Center, Guizhou Academy of Agriculture Science, Guiyang 550006, China; (N.S.); (G.Z.); (D.Z.)
| | - Degang Zhao
- Guizhou Plant Conservation Center, Guizhou Academy of Agriculture Science, Guiyang 550006, China; (N.S.); (G.Z.); (D.Z.)
| | - Yingqin He
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture, Guizhou University, Guiyang 550025, China; (C.L.); (R.Z.)
- College of Tea Science, Guizhou University, Guiyang 550025, China; (W.J.); (B.X.)
| | - Wenlong Chen
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture, Guizhou University, Guiyang 550025, China; (C.L.); (R.Z.)
| |
Collapse
|
6
|
He Y, Jiang W, Ding W, Chen W, Zhao D. Effects of PVY-Infected Tobacco Plants on the Adaptation of Myzus persicae (Hemiptera: Aphididae). INSECTS 2022; 13:1120. [PMID: 36555030 PMCID: PMC9785737 DOI: 10.3390/insects13121120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
The indirect interaction between viruses and their insect vectors via the host plants can mediate viral transmission. Thus, elucidating these tripartite interactions is crucial for controlling the occurrence of viral diseases. This study examined the feeding behavior and life table parameters of the green peach aphid, Myzus persicae, using electropenetrography and an age-stage, two-sex life table on PVY-infected and uninfected tobacco plants. Furthermore, the amino acid and soluble sugar contents in tobacco tissue at different stages of PVY infection were determined. The results showed that PVY-infected plants exerted remarkable effects on the feeding activities of M. persicae. Aphids exhibited a reduced non-probing duration and increased phloem sap ingestion on infected plants. Although the nymph development time on the PVY-infected plants was significantly shorter than that of uninfected plants, M. persicae reared on infected plants had reduced fecundity and significantly shortened adult longevity. On day 12, the sugar: amino acid ratio of the PVY-infected plants was significantly higher than that of uninfected plants, whereas the opposite was observed on day 24. Our results demonstrated that PVY could alter the adaptability of M. persicae by modifying the nutritional quality of tobacco plants. In addition, divergent effects on aphids were observed at different infection stages, which are crucial to consider while exploring the interactions between viruses, insect vectors, and host plants. These results provided significant information for comprehending PVY spread and outbreaks.
Collapse
Affiliation(s)
- Yingqin He
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Wenbin Jiang
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Wei Ding
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Wenlong Chen
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture, Guizhou University, Guiyang 550025, China
| | - Degang Zhao
- Guizhou Plant Conservation Center, Guizhou Academy of Agriculture Science, Guiyang 550006, China
| |
Collapse
|
7
|
Chesnais Q, Golyaev V, Velt A, Rustenholz C, Brault V, Pooggin MM, Drucker M. Comparative Plant Transcriptome Profiling of Arabidopsis thaliana Col-0 and Camelina sativa var. Celine Infested with Myzus persicae Aphids Acquiring Circulative and Noncirculative Viruses Reveals Virus- and Plant-Specific Alterations Relevant to Aphid Feeding Behavior and Transmission. Microbiol Spectr 2022; 10:e0013622. [PMID: 35856906 PMCID: PMC9430646 DOI: 10.1128/spectrum.00136-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/19/2022] [Indexed: 11/20/2022] Open
Abstract
Evidence is accumulating that plant viruses alter host plant traits in ways that modify their insect vectors' behavior. These alterations often enhance virus transmission, which has led to the hypothesis that these effects are manipulations caused by viral adaptation. However, we lack a mechanistic understanding of the genetic basis of these indirect, plant-mediated effects on vectors, their dependence on the plant host, and their relation to the mode of virus transmission. Transcriptome profiling of Arabidopsis thaliana and Camelina sativa plants infected with turnip yellows virus (TuYV) or cauliflower mosaic virus (CaMV) and infested with the common aphid vector Myzus persicae revealed strong virus- and host-specific differences in gene expression patterns. CaMV infection caused more severe effects on the phenotype of both plant hosts than did TuYV infection, and the severity of symptoms correlated strongly with the proportion of differentially expressed genes, especially photosynthesis genes. Accordingly, CaMV infection modified aphid behavior and fecundity more strongly than did infection with TuYV. Overall, infection with CaMV, relying on the noncirculative transmission mode, tends to have effects on metabolic pathways, with strong potential implications for insect vector-plant host interactions (e.g., photosynthesis, jasmonic acid, ethylene, and glucosinolate biosynthetic processes), while TuYV, using the circulative transmission mode, alters these pathways only weakly. These virus-induced deregulations of genes that are related to plant physiology and defense responses might impact both aphid probing and feeding behavior on infected host plants, with potentially distinct effects on virus transmission. IMPORTANCE Plant viruses change the phenotype of their plant hosts. Some of the changes impact interactions of the plant with insects that feed on the plants and transmit these viruses. These modifications may result in better virus transmission. We examine here the transcriptomes of two plant species infected with two viruses with different transmission modes to work out whether there are plant species-specific and transmission mode-specific transcriptome changes. Our results show that both are the case.
Collapse
Affiliation(s)
- Quentin Chesnais
- SVQV, UMR1131, INRAE Centre Grand Est–Colmar, Université Strasbourg, Strasbourg, France
| | - Victor Golyaev
- PHIM Plant Health Institute, Université Montpellier, INRAE, CIRAD, IRD, Institut Agro, Montpellier, France
| | - Amandine Velt
- SVQV, UMR1131, INRAE Centre Grand Est–Colmar, Université Strasbourg, Strasbourg, France
| | - Camille Rustenholz
- SVQV, UMR1131, INRAE Centre Grand Est–Colmar, Université Strasbourg, Strasbourg, France
| | - Véronique Brault
- SVQV, UMR1131, INRAE Centre Grand Est–Colmar, Université Strasbourg, Strasbourg, France
| | - Mikhail M. Pooggin
- PHIM Plant Health Institute, Université Montpellier, INRAE, CIRAD, IRD, Institut Agro, Montpellier, France
| | - Martin Drucker
- SVQV, UMR1131, INRAE Centre Grand Est–Colmar, Université Strasbourg, Strasbourg, France
| |
Collapse
|
8
|
Manipulation of Insect Vectors’ Host Selection Behavior by Barley Yellow Dwarf Virus Is Dependent on the Host Plant Species and Viral Co-Infection. Life (Basel) 2022; 12:life12050644. [PMID: 35629312 PMCID: PMC9142937 DOI: 10.3390/life12050644] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 11/24/2022] Open
Abstract
Previous studies have shown that vector-borne viruses can manipulate the host selection behavior of insect vectors, yet the tripartite interactions of pathogens, host plants and insect vectors have been documented only in a limited number of pathosystems. Here, we report that the host selection behavior of the insect vector of barley yellow dwarf virus-PAV (BYDV-PAV) and cereal yellow dwarf virus-RPS (CYDV-RPS) is dependent on the host plant species and viral co-infection. This study shows that a model cereal plant, Brachypodium distachyon, is a suitable host plant for examining tripartite interactions with BYDV-PAV and CYDV-RPS. We reveal that BYDV-PAV has a different effect on the host selection behavior of its insect vector depending on the host plant species. Viruliferous aphids significantly prefer non-infected plants to virus-infected wheat plants, whereas viral infection on a novel host plant, B. distachyon, is not implicated in the attraction of either viruliferous or nonviruliferous aphids. Furthermore, our findings show that multiple virus infections of wheat with BYDV-PAV and CYDV-RPS alter the preference of their vector aphid. This result indicates that BYDV-PAV acquisition alters the insect vector’s host selection, thereby varying the spread of multiple viruses.
Collapse
|
9
|
Pitt WJ, Kairy L, Villa E, Nalam VJ, Nachappa P. Virus Infection and Host Plant Suitability Affect Feeding Behaviors of Cannabis Aphid (Hemiptera: Aphididae), a Newly Described Vector of Potato Virus Y. ENVIRONMENTAL ENTOMOLOGY 2022; 51:322-331. [PMID: 35243512 DOI: 10.1093/ee/nvac001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Indexed: 06/14/2023]
Abstract
Aphids are the most prolific vectors of plant viruses resulting in significant yield losses to crops worldwide. Potato virus Y (PVY) is transmitted in a non-persistent manner by 65 species of aphids. With the increasing acreage of hemp (Cannabis sativa L.) (Rosales: Cannabaceae) in the United States, we were interested to know if the cannabis aphid (Phorodon cannabis Passerini) (Hemiptera: Aphididae) is a potential vector of PVY. Here, we conduct transmission assays and utilize the electrical penetration graph (EPG) technique to determine whether cannabis aphids can transmit PVY to hemp (host) and potato (non-host) (Solanum tuberosum L.) (Solanales: Solanaceace). We show for the first time that the cannabis aphid is an efficient vector of PVY to both hemp (96% transmission rate) and potato (91%) using cohorts of aphids. In contrast, individual aphids transmitted the virus more efficiently to hemp (63%) compared to potato (19%). During the initial 15 min of EPG recordings, aphids demonstrated lower number and time spent performing intracellular punctures on potato compared to hemp, which may in part explain low virus transmission to potato using individual aphids. During the entire 8-hour recording, viruliferous aphids spent less time ingesting phloem compared to non-viruliferous aphids on hemp. This reduced host acceptance could potentially cause viruliferous aphids to disperse thereby increasing virus transmission. Overall, our study shows that cannabis aphid is an efficient vector of PVY, and that virus infection and host plant suitability affect feeding behaviors of the cannabis aphid in ways which may increase virus transmission.
Collapse
Affiliation(s)
- William Jacob Pitt
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
| | - Lisa Kairy
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Emily Villa
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
- United States Forest Service, Wallowa Mountains Office, Joseph, OR, USA
| | - Vamsi J Nalam
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Punya Nachappa
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
10
|
Jayasinghe WH, Akhter MS, Nakahara K, Maruthi MN. Effect of aphid biology and morphology on plant virus transmission. PEST MANAGEMENT SCIENCE 2022; 78:416-427. [PMID: 34478603 DOI: 10.1002/ps.6629] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Aphids severely affect crop production by transmitting many plant viruses. Viruses are obligate intracellular pathogens that mostly depend on vectors for their transmission and survival. A majority of economically important plant viruses are transmitted by aphids. They transmit viruses either persistently (circulative or non-circulative) or non-persistently. Plant virus transmission by insects is a process that has evolved over time and is strongly influenced by insect morphological features and biology. Over the past century, a large body of research has provided detailed knowledge of the molecular processes underlying virus-vector interactions. In this review, we discuss how aphid biology and morphology can affect plant virus transmission. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wikum H Jayasinghe
- Department of Agricultural Biology, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| | - Md Shamim Akhter
- Laboratory of Pathogen-Plant Interactions, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
- Plant Pathology Division, Bangladesh Agricultural Research Institute (BARI), Joydebpur, Bangladesh
| | - Kenji Nakahara
- Laboratory of Pathogen-Plant Interactions, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
11
|
Cunniffe NJ, Taylor NP, Hamelin FM, Jeger MJ. Epidemiological and ecological consequences of virus manipulation of host and vector in plant virus transmission. PLoS Comput Biol 2021; 17:e1009759. [PMID: 34968387 PMCID: PMC8754348 DOI: 10.1371/journal.pcbi.1009759] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/12/2022] [Accepted: 12/15/2021] [Indexed: 12/25/2022] Open
Abstract
Many plant viruses are transmitted by insect vectors. Transmission can be described as persistent or non-persistent depending on rates of acquisition, retention, and inoculation of virus. Much experimental evidence has accumulated indicating vectors can prefer to settle and/or feed on infected versus noninfected host plants. For persistent transmission, vector preference can also be conditional, depending on the vector’s own infection status. Since viruses can alter host plant quality as a resource for feeding, infection potentially also affects vector population dynamics. Here we use mathematical modelling to develop a theoretical framework addressing the effects of vector preferences for landing, settling and feeding–as well as potential effects of infection on vector population density–on plant virus epidemics. We explore the consequences of preferences that depend on the host (infected or healthy) and vector (viruliferous or nonviruliferous) phenotypes, and how this is affected by the form of transmission, persistent or non-persistent. We show how different components of vector preference have characteristic effects on both the basic reproduction number and the final incidence of disease. We also show how vector preference can induce bistability, in which the virus is able to persist even when it cannot invade from very low densities. Feedbacks between plant infection status, vector population dynamics and virus transmission potentially lead to very complex dynamics, including sustained oscillations. Our work is supported by an interactive interface https://plantdiseasevectorpreference.herokuapp.com/. Our model reiterates the importance of coupling virus infection to vector behaviour, life history and population dynamics to fully understand plant virus epidemics. Plant virus diseases–which cause devastating epidemics in plant populations worldwide–are most often transmitted by insect vectors. Recent experimental evidence indicates how vectors do not choose between plants at random, but instead can be affected by whether plants are infected (or not). Virus infection can cause plants to “smell” different, because they produce different combinations of volatile chemicals, or “taste” different, due to chemical changes in infected tissues. Vector reproduction rates can also be affected when colonising infected versus uninfected plants. Potential effects on epidemic spread through a population of plants are not yet entirely understood. There are also interactions with the mode of virus transmission. Some viruses can be transmitted after only a brief probe by a vector, whereas others are only picked up after an extended feed on an infected plant. Furthermore there are differences in how long vectors remain able to transmit the virus. This ranges from a matter of minutes, right up to the entire lifetime of the insect, depending on the plant-virus-vector combination under consideration. Here we use mathematical modelling to synthesise all this complexity into a coherent theoretical framework. We illustrate our model via an online interface https://plantdiseasevectorpreference.herokuapp.com/.
Collapse
Affiliation(s)
- Nik J. Cunniffe
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| | - Nick P. Taylor
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | | | - Michael J. Jeger
- Department of Life Sciences, Imperial College London, Ascot, United Kingdom
| |
Collapse
|
12
|
Efficiency and Persistence of Movento® Treatment against Myzus persicae and the Transmission of Aphid-Borne Viruses. PLANTS 2021; 10:plants10122747. [PMID: 34961217 PMCID: PMC8708080 DOI: 10.3390/plants10122747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 11/17/2022]
Abstract
Neonicotinoids are widely used to protect fields against aphid-borne viral diseases. The recent ban of these chemical compounds in the European Union has strongly impacted rapeseed and sugar beet growing practices. The poor sustainability of other insecticide families and the low efficiency of prophylactic methods to control aphid populations and pathogen introduction strengthen the need to characterize the efficiency of new plant protection products targeting aphids. In this study, the impact of Movento® (Bayer S.A.S., Leverkusen, Germany), a tetrameric acid derivative of spirotetramat, on Myzus persicae and on viral transmission was analyzed under different growing temperatures. The results show (i) the high efficiency of Movento® to protect rapeseed and sugar beet plants against the establishment of aphid colonies, (ii) the impact of temperature on the persistence of the Movento® aphicid properties and (iii) a decrease of approximately 10% of the viral transmission on treated plants. These observations suggest a beneficial effect of Movento® on the sanitary quality of treated crops by directly reducing primary infections and indirectly altering, through aphid mortality, secondary infections on which the spread of disease within field depends. These data constitute important elements for the future development of management strategies to protect crops against aphid-transmitted viruses.
Collapse
|
13
|
Effect of Sugarcane Cultivars Infected with Sugarcane Yellow Leaf Virus (ScYLV) on Feeding Behavior and Biological Performance of Melanaphis sacchari (Hemiptera: Aphididae). PLANTS 2021; 10:plants10102122. [PMID: 34685930 PMCID: PMC8537889 DOI: 10.3390/plants10102122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 11/26/2022]
Abstract
Sugarcane yellow leaf virus (ScYLV), Polerovirus, Luteoviridae, is one of the main viruses that infect sugarcane worldwide. The virus is transmitted by the aphid Melanaphis sacchari in a persistent, circulative manner. To better understand the interactions between ScYLV, sugarcane genotypes and M. sacchari, we explored the effect of sugarcane cultivars on the feeding behavior and biological performance of the vector. The number of nymphs, adults, winged, total number of aphids and dead aphids was assayed, and an electrical penetration graph (EPG) was used to monitor the stylet activities. Multivariate analysis showed changes in the vector’s behavior and biology on cultivars, identifying specific groups of resistance. In the cultivar 7569, only 5.5% of the insects were able to stay longer on sustained phloem ingestion, while in the other seven cultivars these values varied from 20% to 60%. M. sacchari showed low phloem activities in cultivars 7569 and Bio266. Overall, cultivar 7569 showed the worst biological performance of aphids, with the insects presenting mechanical difficulties for feeding and a shorter duration of the phloem period, and thus being considered the most resistant. We conclude that ScYLV virus infection in different sugarcane cultivars induced specific changes in the host plant, modifying the behavior of its main vector, which may favor or impair virus transmission.
Collapse
|
14
|
Safari Murhububa I, Tougeron K, Bragard C, Fauconnier ML, Bisimwa Basengere E, Walangululu Masamba J, Hance T. Banana Tree Infected with Banana Bunchy Top Virus Attracts Pentalonia nigronervosa Aphids Through Increased Volatile Organic Compounds Emission. J Chem Ecol 2021; 47:755-767. [PMID: 34463893 DOI: 10.1007/s10886-021-01298-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/28/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
Banana plants are affected by various viral diseases, among which the most devastating is the "bunchy top", caused by the Banana bunchy top virus (BBTV) and transmitted by the aphid Pentalonia nigronervosa Coquerel. The effect of BBTV on attraction mechanisms of dessert and plantain banana plants on the vector remains far from elucidated. For that, attractiveness tests were carried out using a two columns olfactometer for apterous aphids, and a flight cage experiment for alate aphids. Volatile Organic Compounds (VOCs) emitted by either healthy or BBTV-infected banana plants were identified using a dynamic extraction system and gas-chromatography mass-spectrometry (GC-MS) analysis. Behavioral results revealed a stronger attraction of aphids towards infected banana plants (independently from the variety), and towards the plantain variety (independently from the infection status). GC-MS results revealed that infected banana plants produced VOCs of the same mixture as healthy banana plants but in much higher quantities. In addition, VOCs produced by dessert and plantain banana plants were different in nature, and plantains produced higher quantities than dessert banana trees. This work opens interesting opportunities for biological control of P. nigronervosa, for example by luring away the aphid from banana plants through manipulation of olfactory cues.
Collapse
Affiliation(s)
- Ignace Safari Murhububa
- Earth and Life Institute, Ecology and Biodiversity, UCLouvain, Croix du sud 4-5/L7.07.04, 1348, Louvain-la-Neuve, Belgium. .,Faculté Des Sciences Agronomiques, Université Catholique de Bukavu, Bukavu, Democratic Republic of the Congo.
| | - Kévin Tougeron
- Earth and Life Institute, Ecology and Biodiversity, UCLouvain, Croix du sud 4-5/L7.07.04, 1348, Louvain-la-Neuve, Belgium.,UMR CNRS 7058 EDYSAN (Écologie et Dynamique des Systèmes Anthropisés), Université de Picardie Jules Verne, 33 rue St Leu, 80039, Amiens Cedex,, France
| | - Claude Bragard
- Earth and Life Institute, Applied Microbiology, UCLouvain, Croix du sud 2/L7.05.03, 1348, Louvain-la-Neuve, Belgium
| | - Marie-Laure Fauconnier
- General and Organic Chemistry Laboratory, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
| | - Espoir Bisimwa Basengere
- Faculté Des Sciences Agronomiques, Université Catholique de Bukavu, Bukavu, Democratic Republic of the Congo
| | - Jean Walangululu Masamba
- Faculté Des Sciences Agronomiques, Université Catholique de Bukavu, Bukavu, Democratic Republic of the Congo
| | - Thierry Hance
- Earth and Life Institute, Ecology and Biodiversity, UCLouvain, Croix du sud 4-5/L7.07.04, 1348, Louvain-la-Neuve, Belgium
| |
Collapse
|
15
|
He H, Li J, Zhang Z, Tang X, Song D, Yan F. Impacts of Cucurbit Chlorotic Yellows Virus (CCYV) on Biological Characteristics of Its Vector Bemisia tabaci (Hemiptera: Aleyrodidae) MED Species. JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:18. [PMID: 34718644 PMCID: PMC8557850 DOI: 10.1093/jisesa/ieab084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Indexed: 06/13/2023]
Abstract
Plant viruses can change the phenotypes and defense pathways of the host plants and the performance of their vectors to facilitate their transmission. Cucurbit chlorotic yellows virus (CCYV) (Crinivirus), a newly reported virus occurring on cucurbit plants and many other plant species, is transmitted specifically by Bemisia tabaci MEAM1 (B biotype) and MED (Q biotype) cryptic species in a semipersistent manner. This study evaluated the impacts of CCYV on B. tabaci to better understand the plant-virus-vector interactions. By using CCYV-B. tabaci MED-cucumber as the model, we investigated whether or how a semipersistent plant virus impacts the biology of its whitefly vector. CCYV mRNAs were detectable in nymphs from first to fourth instars and adults of B. tabaci with different titers. Nymph instar durations and adult longevity of female whiteflies greatly extended on CCYV-infected plants, but nymph instar durations and adult longevity of male whiteflies were not significantly influenced. In addition, the body length and oviposition increased in adults feeding on CCYV-infected plants, but the hatching rates of eggs and survival rates of different stages were not affected. Most interestingly, the sex ratio (male:female) significantly reduced to 0.5:1 in whitefly populations on CCYV-infected plants, while the ratio remained about 1:1 on healthy plants. These results indicated that CCYV can significantly impact the biological characteristics of its vector B. tabaci. It is speculated that CCYV and B. tabaci have established a typical mutualist relationship mediated by host plants.
Collapse
Affiliation(s)
- Haifang He
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Jingjing Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Zelong Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Xuefei Tang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Danyang Song
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Fengming Yan
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450002, China
| |
Collapse
|
16
|
Tungadi T, Watt LG, Groen SC, Murphy AM, Du Z, Pate AE, Westwood JH, Fennell TG, Powell G, Carr JP. Infection of Arabidopsis by cucumber mosaic virus triggers jasmonate-dependent resistance to aphids that relies partly on the pattern-triggered immunity factor BAK1. MOLECULAR PLANT PATHOLOGY 2021; 22:1082-1091. [PMID: 34156752 PMCID: PMC8358999 DOI: 10.1111/mpp.13098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 05/06/2023]
Abstract
Many aphid-vectored viruses are transmitted nonpersistently via transient attachment of virus particles to aphid mouthparts and are most effectively acquired or transmitted during brief stylet punctures of epidermal cells. In Arabidopsis thaliana, the aphid-transmitted virus cucumber mosaic virus (CMV) induces feeding deterrence against the polyphagous aphid Myzus persicae. This form of resistance inhibits prolonged phloem feeding but promotes virus acquisition by aphids because it encourages probing of plant epidermal cells. When aphids are confined on CMV-infected plants, feeding deterrence reduces their growth and reproduction. We found that CMV-induced inhibition of growth as well as CMV-induced inhibition of reproduction of M. persicae are dependent upon jasmonate-mediated signalling. BRASSINOSTEROID INSENSITIVE1-ASSOCIATED KINASE1 (BAK1) is a co-receptor enabling detection of microbe-associated molecular patterns and induction of pattern-triggered immunity (PTI). In plants carrying the mutant bak1-5 allele, CMV induced inhibition of M. persicae reproduction but not inhibition of aphid growth. We conclude that in wildtype plants CMV induces two mechanisms that diminish performance of M. persicae: a jasmonate-dependent and PTI-dependent mechanism that inhibits aphid growth, and a jasmonate-dependent, PTI-independent mechanism that inhibits reproduction. The growth of two crucifer specialist aphids, Lipaphis erysimi and Brevicoryne brassicae, was not affected when confined on CMV-infected A. thaliana. However, B. brassicae reproduction was inhibited on CMV-infected plants. This suggests that in A. thaliana CMV-induced resistance to aphids, which is thought to incentivize virus vectoring, has greater effects on polyphagous than on crucifer specialist aphids.
Collapse
Affiliation(s)
- Trisna Tungadi
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
- NIAB EMREast MallingUK
| | - Lewis G. Watt
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | - Simon C. Groen
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
- Present address:
Department of BiologyNew York UniversityNew YorkNew YorkUSA
| | - Alex M. Murphy
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | - Zhiyou Du
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
- Institute of BioengineeringZhejiang Sci‐Tech UniversityHangzhouChina
| | | | - Jack H. Westwood
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
- Present address:
Walder FoundationSkokieIllinoisUSA
| | - Thea G. Fennell
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | | | - John P. Carr
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| |
Collapse
|
17
|
Chesnais Q, Verdier M, Burckbuchler M, Brault V, Pooggin M, Drucker M. Cauliflower mosaic virus protein P6-TAV plays a major role in alteration of aphid vector feeding behaviour but not performance on infected Arabidopsis. MOLECULAR PLANT PATHOLOGY 2021; 22:911-920. [PMID: 33993609 PMCID: PMC8295513 DOI: 10.1111/mpp.13069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 06/12/2023]
Abstract
Emerging evidence suggests that viral infection modifies host plant traits that in turn alter behaviour and performance of vectors colonizing the plants in a way conducive for transmission of both nonpersistent and persistent viruses. Similar evidence for semipersistent viruses like cauliflower mosaic virus (CaMV) is scarce. Here we compared the effects of Arabidopsis infection with mild (CM) and severe (JI) CaMV isolates on the feeding behaviour (recorded by the electrical penetration graph technique) and fecundity of the aphid vector Myzus persicae. Compared to mock-inoculated plants, feeding behaviour was altered similarly on CM- and JI-infected plants, but only aphids on JI-infected plants had reduced fecundity. To evaluate the role of the multifunctional CaMV protein P6-TAV, aphid feeding behaviour and fecundity were tested on transgenic Arabidopsis plants expressing wild-type (wt) and mutant versions of P6-TAV. In contrast to viral infection, aphid fecundity was unchanged on all transgenic lines, suggesting that other viral factors compromise fecundity. Aphid feeding behaviour was modified on wt P6-CM-, but not on wt P6-JI-expressing plants. Analysis of plants expressing P6 mutants identified N-terminal P6 domains contributing to modification of feeding behaviour. Taken together, we show that CaMV infection can modify both aphid fecundity and feeding behaviour and that P6 is only involved in the latter.
Collapse
Affiliation(s)
- Quentin Chesnais
- Virus Vection, SVQV, UMR 1131 INRAEUniversité de StrasbourgINRAE Centre Grand Est‐ColmarColmarFrance
| | - Maxime Verdier
- Virus Vection, SVQV, UMR 1131 INRAEUniversité de StrasbourgINRAE Centre Grand Est‐ColmarColmarFrance
| | - Myriam Burckbuchler
- Virus Vection, SVQV, UMR 1131 INRAEUniversité de StrasbourgINRAE Centre Grand Est‐ColmarColmarFrance
| | - Véronique Brault
- Virus Vection, SVQV, UMR 1131 INRAEUniversité de StrasbourgINRAE Centre Grand Est‐ColmarColmarFrance
| | - Mikhail Pooggin
- DEFENSIRNA, PHIM, INRAECIRADSupAgroIRDMUSEINRAE Centre Occitanie‐MontpellierMontferrier‐sur‐LezFrance
| | - Martin Drucker
- Virus Vection, SVQV, UMR 1131 INRAEUniversité de StrasbourgINRAE Centre Grand Est‐ColmarColmarFrance
- Present address:
Insect Models of Innate Immunity, IBMCUniversité de StrasbourgInstitut de Biologie Moléculaire et Cellulaire2 allée Konrad Roentgen67084 Strasbourg cedexFrance
| |
Collapse
|
18
|
Rajarapu SP, Ullman DE, Uzest M, Rotenberg D, Ordaz NA, Whitfield AE. Plant–Virus–Vector Interactions. Virology 2021. [DOI: 10.1002/9781119818526.ch7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Jeger MJ. The Epidemiology of Plant Virus Disease: Towards a New Synthesis. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1768. [PMID: 33327457 PMCID: PMC7764944 DOI: 10.3390/plants9121768] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
Epidemiology is the science of how disease develops in populations, with applications in human, animal and plant diseases. For plant diseases, epidemiology has developed as a quantitative science with the aims of describing, understanding and predicting epidemics, and intervening to mitigate their consequences in plant populations. Although the central focus of epidemiology is at the population level, it is often necessary to recognise the system hierarchies present by scaling down to the individual plant/cellular level and scaling up to the community/landscape level. This is particularly important for diseases caused by plant viruses, which in most cases are transmitted by arthropod vectors. This leads to range of virus-plant, virus-vector and vector-plant interactions giving a distinctive character to plant virus epidemiology (whilst recognising that some fungal, oomycete and bacterial pathogens are also vector-borne). These interactions have epidemiological, ecological and evolutionary consequences with implications for agronomic practices, pest and disease management, host resistance deployment, and the health of wild plant communities. Over the last two decades, there have been attempts to bring together these differing standpoints into a new synthesis, although this is more apparent for evolutionary and ecological approaches, perhaps reflecting the greater emphasis on shorter often annual time scales in epidemiological studies. It is argued here that incorporating an epidemiological perspective, specifically quantitative, into this developing synthesis will lead to new directions in plant virus research and disease management. This synthesis can serve to further consolidate and transform epidemiology as a key element in plant virus research.
Collapse
Affiliation(s)
- Michael J Jeger
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot SL5 7PY, UK
| |
Collapse
|
20
|
Post-acquisition effects of viruses on vector behavior are important components of manipulation strategies. Oecologia 2020; 194:429-440. [PMID: 32996004 DOI: 10.1007/s00442-020-04763-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/19/2020] [Indexed: 10/23/2022]
Abstract
A growing number of studies suggest that plant viruses manipulate host plant phenotypes to increase transmission-conducive behaviors by vectors. Studies on this phenomenon frequently omit examination of interactions that occur after vectors acquire virions, which provides an incomplete understanding of the ecology of plant virus manipulation. Here, by taking a full factorial approach that considered both the infection status of the host (Montia perfoliata) and viruliferous status of the aphid (Myzus persicae), we explored the effects of a circulative, non-propagative virus (Turnip yellows virus [TuYV]) on a suite of behavior and performance metrics that are relevant for virus transmission. Our results demonstrate that viruliferous aphids exhibited an increased velocity of movement and increased activity levels in locomotor and dispersal-retention assays. They also had increased fecundity and showed a capacity to more efficiently exploit resources by taking less time to reach the phloem and ingesting more sap, regardless of plant infection status. In contrast, non-viruliferous aphids only exhibited enhanced fecundity and biomass on TuYV-infected hosts, and had overall reduced dispersal and locomotor activity relative to viruliferous aphids. In this pathosystem, post-acquisition effects were stronger and more conducive to virus transmission than the purely pre-acquisition effects mediated by virus effects on the host plant. Our study provides additional support for the hypothesis that virus manipulation of vector behavior includes both pre- and post-acquisition effects and demonstrates the importance of considering both components when studying putative virus manipulation strategies.
Collapse
|
21
|
Babalola OO, Fadiji AE, Enagbonma BJ, Alori ET, Ayilara MS, Ayangbenro AS. The Nexus Between Plant and Plant Microbiome: Revelation of the Networking Strategies. Front Microbiol 2020; 11:548037. [PMID: 33013781 PMCID: PMC7499240 DOI: 10.3389/fmicb.2020.548037] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/12/2020] [Indexed: 12/16/2022] Open
Abstract
The diversity of plant-associated microbes is enormous and complex. These microbiomes are structured and form complex interconnected microbial networks that are important in plant health and ecosystem functioning. Understanding the composition of the microbiome and their core function is important in unraveling their networking strategies and their potential influence on plant performance. The network is altered by the host plant species, which in turn influence the microbial interaction dynamics and co-evolution. We discuss the plant microbiome and the complex interplay among microbes and between their host plants. We provide an overview of how plant performance is influenced by the microbiome diversity and function.
Collapse
Affiliation(s)
- Olubukola Oluranti Babalola
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Ayomide E Fadiji
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Ben J Enagbonma
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Elizabeth T Alori
- Department of Crop and Soil Sciences, Landmark University, Omu-Aran, Nigeria
| | - Modupe S Ayilara
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Ayansina S Ayangbenro
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| |
Collapse
|
22
|
Maluta NKP, Lopes JRS, Fiallo-Olivé E, Navas-Castillo J, Lourenção AL. Foliar Spraying of Tomato Plants with Systemic Insecticides: Effects on Feeding Behavior, Mortality and Oviposition of Bemisia tabaci (Hemiptera: Aleyrodidae) and Inoculation Efficiency of Tomato Chlorosis Virus. INSECTS 2020; 11:insects11090559. [PMID: 32842573 PMCID: PMC7565682 DOI: 10.3390/insects11090559] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 01/22/2023]
Abstract
Simple Summary The whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) causes serious losses to vegetable, ornamental and fiber crops, including tomato plants, mainly as a vector of economically important viruses. Among the most important viruses affecting tomato is the tomato chlorosis virus (ToCV) (Closteroviridae: Crinivirus), which is semi-persistently transmitted by whiteflies. Effective management of this pest is crucial to reduce the spread of vector-borne diseases and to reduce crop damage and losses. In this study we evaluated the effect of systemic insecticides (cyantraniliprole, acetamiprid and flupyradifurone) on the feeding behavior, mortality and oviposition of B. tabaci MEAM1 and their ability to interfere with the inoculation of ToCV in tomato plants. Our findings indicate that systemic insecticides cause high mortality when compared to untreated plants. Also, we found that flupyradifurone affects stylet activities of B. tabaci and significantly reduce phloem ingestion, a behavior that is closely linked to the transmission of ToCV. Overall, our findings indicate that flupyradifurone may contribute to management of this pest and ToCV in tomato crops. Abstract Tomato chlorosis virus (ToCV) is a phloem-limited crinivirus transmitted by whiteflies and seriously affects tomato crops worldwide. As with most vector-borne viral diseases, no cure is available, and the virus is managed primarily by the control of the vector. This study determined the effects of the foliar spraying with the insecticides, acetamiprid, flupyradifurone and cyantraniliprole, on the feeding behavior, mortality, oviposition and transmission efficiency of ToCV by B. tabaci MEAM1 in tomato plants. To evaluate mortality, oviposition and ToCV transmission in greenhouse conditions, viruliferous whiteflies were released on insecticide-treated plants at different time points (3, 24 and 72 h; 7 and 14 days) after spraying. Insect mortality was higher on plants treated with insecticides; however, only cyantraniliprole and flupyradifurone differed from them in all time points. The electrical penetration graph (DC-EPG) technique was used to monitor stylet activities of viruliferous B. tabaci in tomato plants 72 h after insecticide application. Only flupyradifurone affected the stylet activities of B. tabaci, reducing the number and duration of intracellular punctures (pd) and ingestion of phloem sap (E2), a behavior that possibly resulted in the lower percentage of ToCV transmission in this treatment (0–60%) in relation to the control treatment (60–90%) over the periods evaluated. Our results indicate that flupyradifurone may contribute to management of this pest and ToCV in tomato crops.
Collapse
Affiliation(s)
- Nathalie Kristine Prado Maluta
- Agronomic Institute (IAC), Centro de Fitossanidade, 13020-902 Campinas, SP, Brazil;
- Correspondence: ; Tel.: +55-19-3429-4199
| | - João Roberto Spotti Lopes
- Department of Entomology and Acarology, ESALQ, University of São Paulo, 13418-900 Piracicaba, SP, Brazil;
| | - Elvira Fiallo-Olivé
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29750 Algarrobo-Costa, Málaga, Spain; (E.F.-O.); (J.N.-C.)
| | - Jesús Navas-Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29750 Algarrobo-Costa, Málaga, Spain; (E.F.-O.); (J.N.-C.)
| | - André Luiz Lourenção
- Agronomic Institute (IAC), Centro de Fitossanidade, 13020-902 Campinas, SP, Brazil;
| |
Collapse
|
23
|
Sengoda VG, Shi X, Krugner R, Backus EA, Lin H. Targeted Mutations in Xylella fastidiosa Affect Acquisition and Retention by the Glassy-Winged Sharpshooter, Homalodisca vitripennis (Hemiptera: Cicadellidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:612-621. [PMID: 31903491 DOI: 10.1093/jee/toz352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Indexed: 06/10/2023]
Abstract
Xylella fastidiosa (Wells) is a xylem-limited bacterium that causes Pierce's disease of grapevines. The bacterium is transmitted by insect vectors such as the glassy-winged sharpshooter (GWSS), Homalodisca vitripennis (Germar). Experiments were conducted to compare the role of selected X. fastidiosa genes on 1) bacterial acquisition and retention in GWSS foreguts, and 2) transmission to grapevines by GWSS. Bacterial genotypes used were: mutants Xf-ΔpilG, Xf-ΔpilH, Xf-ΔgacA, and Xf-ΔpopP; plus wild type (WT) as control. Results showed that Xf-ΔpilG had enhanced colonization rate and larger numbers in GWSS compared with WT. Yet, Xf-ΔpilG exhibited the same transmission efficiency as WT. The Xf-ΔpilH exhibited poor acquisition and retention. Although initial adhesion, multiplication, and retention of Xf-ΔpilH in GWSS were almost eliminated compared with WT, the mutation did not reduce transmission success in grapevines. Overall, Xf-ΔgacA showed colonization rates and numbers in foreguts similar to WT. The Xf-ΔgacA mutation did not affect initial adhesion, multiplication, and long-term retention compared with WT, and was not significantly diminished in transmission efficiency. In contrast, numbers of Xf-ΔpopP were variable over time, displaying greatest fluctuation from highest to lowest levels. Thus, Xf-ΔpopP had a strong, negative effect on initial adhesion, but adhered and slowly multiplied in the foregut. Again, transmission was not diminished compared to WT. Despite reductions in acquisition and retention by GWSS, transmission efficiency of genotypes to grapevines was not affected. Therefore, in order to stop the spread of X. fastidiosa by GWSS using gene-level targets, complete disruption of bacterial colonization mechanisms is required.
Collapse
Affiliation(s)
- Venkatesan G Sengoda
- United States Department of Agriculture, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, CA
| | - Xiangyang Shi
- United States Department of Agriculture, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, CA
| | - Rodrigo Krugner
- United States Department of Agriculture, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, CA
| | - Elaine A Backus
- United States Department of Agriculture, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, CA
| | - Hong Lin
- United States Department of Agriculture, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, CA
| |
Collapse
|
24
|
Impact of Mutations in Arabidopsis thaliana Metabolic Pathways on Polerovirus Accumulation, Aphid Performance, and Feeding Behavior. Viruses 2020; 12:v12020146. [PMID: 32012755 PMCID: PMC7077285 DOI: 10.3390/v12020146] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/15/2020] [Accepted: 01/23/2020] [Indexed: 01/08/2023] Open
Abstract
During the process of virus acquisition by aphids, plants respond to both the virus and the aphids by mobilizing different metabolic pathways. It is conceivable that the plant metabolic responses to both aggressors may be conducive to virus acquisition. To address this question, we analyze the accumulation of the phloem-limited polerovirus Turnip yellows virus (TuYV), which is strictly transmitted by aphids, and aphid's life traits in six Arabidopsis thaliana mutants (xth33, ss3-2, nata1, myc234, quad, atr1D, and pad4-1). We observed that mutations affecting the carbohydrate metabolism, the synthesis of a non-protein amino acid and the glucosinolate pathway had an effect on TuYV accumulation. However, the virus titer did not correlate with the virus transmission efficiency. Some mutations in A. thaliana affect the aphid feeding behavior but often only in infected plants. The duration of the phloem sap ingestion phase, together with the time preceding the first sap ingestion, affect the virus transmission rate more than the virus titer did. Our results also show that the aphids reared on infected mutant plants had a reduced biomass regardless of the mutation and the duration of the sap ingestion phase.
Collapse
|
25
|
Islam W, Noman A, Naveed H, Alamri SA, Hashem M, Huang Z, Chen HYH. Plant-insect vector-virus interactions under environmental change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 701:135044. [PMID: 31726403 DOI: 10.1016/j.scitotenv.2019.135044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
Insects play an important role in the spread of viruses from infected plants to healthy hosts through a variety of transmission strategies. Environmental factors continuously influence virus transmission and result in the establishment of infection or disease. Plant virus diseases become epidemic when viruses successfully dominate the surrounding ecosystem. Plant-insect vector-virus interactions influence each other; pushing each other for their benefit and survival. These interactions are modulated through environmental factors, though environmental influences are not readily predictable. This review focuses on exploiting the diverse relationships, embedded in the plant-insect vector-virus triangle by highlighting recent research findings. We examined the interactions between viruses, insect vectors, and host plants, and explored how these interactions affect their behavior.
Collapse
Affiliation(s)
- Waqar Islam
- College of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China; Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350007, China
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad 38000, Pakistan
| | - Hassan Naveed
- College of Life Science, Leshan Normal University, Leshan, Sichuan 614004, China
| | - Saad A Alamri
- King Khalid University, Faculty of Science, Biological Science Department, P.O. Box 10255, Abha 61321, Saudi Arabia; Prince Sultan Ben Abdulaziz Center for Environmental and Tourism Research and Studies, King Khalid University, Abha, Saudi Arabia
| | - Mohamed Hashem
- King Khalid University, Faculty of Science, Biological Science Department, P.O. Box 10255, Abha 61321, Saudi Arabia; Assiut University, Faculty of Science, Botany Department, Assiut 71516, Egypt
| | - Zhiqun Huang
- College of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China; Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350007, China.
| | - Han Y H Chen
- College of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China; Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350007, China; Faculty of Natural Resources Management, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada.
| |
Collapse
|
26
|
Mauck KE, Kenney J, Chesnais Q. Progress and challenges in identifying molecular mechanisms underlying host and vector manipulation by plant viruses. CURRENT OPINION IN INSECT SCIENCE 2019; 33:7-18. [PMID: 31358199 DOI: 10.1016/j.cois.2019.01.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/28/2018] [Accepted: 01/05/2019] [Indexed: 06/10/2023]
Abstract
Plant virus infection fundamentally alters chemical and behavioral phenotypes of hosts and vectors. These alterations often enhance virus transmission, leading researchers to surmise that such effects are manipulations caused by virus adaptations and not just by-products of pathology. But identification of the virus components behind manipulation is missing from most studies performed to date. Here, we evaluate causative empirical evidence that virus components are the drivers of manipulated host and vector phenotypes. To do so, we link findings and methodologies on virus pathology with observational and functional genomics studies on virus manipulation. Our synthesis provides an overview of progress, areas of synergy, and new approaches that will lead to an improved mechanistic understanding of host and vector manipulation by plant viruses.
Collapse
Affiliation(s)
- Kerry E Mauck
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA.
| | - Jaimie Kenney
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA
| | - Quentin Chesnais
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
27
|
Wang RL, Zhu-Salzman K, Elzaki MEA, Huang QQ, Chen S, Ma ZH, Liu SW, Zhang JE. Mikania Micrantha Wilt Virus Alters Insect Vector's Host Preference to Enhance Its Own Spread. Viruses 2019; 11:E336. [PMID: 30970658 PMCID: PMC6521231 DOI: 10.3390/v11040336] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 01/29/2023] Open
Abstract
As an invasive weed, Mikaniamicrantha Kunth has caused serious damage to natural forest ecosystems in South China in recent years. Mikania micrantha wilt virus (MMWV), an isolate of the Gentian mosaic virus (GeMV), is transmitted by Myzuspersicae (Sulzer) in a non-persistent manner and can effectively inhibit the growth of M. micrantha. To explore the MMWV-M. micrantha-M. persicae interaction and its impact on the invasion of M. micrantha, volatile compounds (VOCs) emitted from healthy, mock-inoculated, and MMWV-infected plants were collected, and effects on host preference of the apterous and alate aphids were assessed with Y-shaped olfactometers. Gas chromatography-mass spectrometry (GC-MS) analysis indicated that MMWV infection changed the VOC profiles, rendering plants more attractive to aphids. Clip-cages were used to document the population growth rate of M.persicae fed on healthy, mock-inoculated, or MMWV-infected plants. Compared to those reared on healthy plants, the population growth of M. persicae drastically decreased on the MMWV-infected plants. Plant host choice tests based on visual and contact cues were also conducted using alate M.persicae. Interestingly, the initial attractiveness of MMWV-infected plants diminished, and more alate M. persicae moved to healthy plants. Taken together, MMWV appeared to be able to manipulate its plant host to first attract insect vectors to infected plants but then repel viruliferous vectors to promote its own dispersal. Its potential application for invasive weed management is discussed.
Collapse
Affiliation(s)
- Rui-Long Wang
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Keyan Zhu-Salzman
- Departments of Entomology, Texas A&M University, College Station, TX 77843, USA.
| | | | - Qiao-Qiao Huang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Shi Chen
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| | - Zhi-Hui Ma
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Shi-Wei Liu
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Jia-En Zhang
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
28
|
Loxdale HD. Aspects, Including Pitfalls, of Temporal Sampling of Flying Insects, with Special Reference to Aphids. INSECTS 2018; 9:E153. [PMID: 30388726 PMCID: PMC6316496 DOI: 10.3390/insects9040153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 12/31/2022]
Abstract
Since the advent and widespread use of high-resolution molecular markers in the late 1970s, it is now well established that natural populations of insects are not necessarily homogeneous genetically and show variations at different spatial scales due to a variety of reasons, including hybridization/introgression events. In a similar vein, populations of insects are not necessarily homogenous in time, either over the course of seasons or even within a single season. This of course has profound consequences for surveys examining, for whatever reason/s, the temporal population patterns of insects, especially flying insects as mostly discussed here. In the present article, the topics covered include climate and climate change; changes in ecological niches due to changes in available hosts, i.e., essentially, adaptation events; hybridization influencing behaviour⁻host shifts; infection by pathogens and parasites/parasitoids; habituation to light, sound and pheromone lures; chromosomal/genetic changes affecting physiology and behaviour; and insecticide resistance. If such phenomena-i.e., aspects and pitfalls-are not considered during spatio-temporal study programmes, which is even more true in the light of the recent discovery of morphologically similar/identical cryptic species, then the conclusions drawn in terms of the efforts to combat pest insects or conserve rare and endangered species may be in error and hence end in failure.
Collapse
Affiliation(s)
- Hugh D Loxdale
- School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, Wales, UK.
| |
Collapse
|
29
|
Claudel P, Chesnais Q, Fouché Q, Krieger C, Halter D, Bogaert F, Meyer S, Boissinot S, Hugueney P, Ziegler-Graff V, Ameline A, Brault V. The Aphid-Transmitted Turnip yellows virus Differentially Affects Volatiles Emission and Subsequent Vector Behavior in Two Brassicaceae Plants. Int J Mol Sci 2018; 19:E2316. [PMID: 30087282 PMCID: PMC6121887 DOI: 10.3390/ijms19082316] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/27/2018] [Accepted: 08/03/2018] [Indexed: 12/04/2022] Open
Abstract
Aphids are important pests which cause direct damage by feeding or indirect prejudice by transmitting plant viruses. Viruses are known to induce modifications of plant cues in ways that can alter vector behavior and virus transmission. In this work, we addressed whether the modifications induced by the aphid-transmitted Turnip yellows virus (TuYV) in the model plant Arabidopsis thaliana also apply to the cultivated plant Camelina sativa, both belonging to the Brassicaceae family. In most experiments, we observed a significant increase in the relative emission of volatiles from TuYV-infected plants. Moreover, due to plant size, the global amounts of volatiles emitted by C. sativa were higher than those released by A. thaliana. In addition, the volatiles released by TuYV-infected C. sativa attracted the TuYV vector Myzus persicae more efficiently than those emitted by non-infected plants. In contrast, no such preference was observed for A. thaliana. We propose that high amounts of volatiles rather than specific metabolites are responsible for aphid attraction to infected C. sativa. This study points out that the data obtained from the model pathosystem A. thaliana/TuYV cannot be straightforwardly extrapolated to a related plant species infected with the same virus.
Collapse
Affiliation(s)
- Patricia Claudel
- SVQV, Université de Strasbourg, INRA, 28 rue de Herrlisheim, 68000 Colmar, France.
| | - Quentin Chesnais
- UMR CNRS 7058 EDYSAN, Université de Picardie Jules Verne, 80039 Amiens, France.
- Department of Entomology, University of California, Entomology Building, 900 University Ave., Riverside, CA 92521, USA.
| | - Quentin Fouché
- UMR CNRS 7058 EDYSAN, Université de Picardie Jules Verne, 80039 Amiens, France.
- CHU Lille, EA 7367-UTML-Unité de Taphonomie Médico-Légale, Université de Lille, 59000 Lille, France.
| | - Célia Krieger
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 67000 Strasbourg, France.
| | - David Halter
- SVQV, Université de Strasbourg, INRA, 28 rue de Herrlisheim, 68000 Colmar, France.
| | - Florent Bogaert
- SVQV, Université de Strasbourg, INRA, 28 rue de Herrlisheim, 68000 Colmar, France.
| | - Sophie Meyer
- SVQV, Université de Strasbourg, INRA, 28 rue de Herrlisheim, 68000 Colmar, France.
| | - Sylvaine Boissinot
- SVQV, Université de Strasbourg, INRA, 28 rue de Herrlisheim, 68000 Colmar, France.
| | - Philippe Hugueney
- SVQV, Université de Strasbourg, INRA, 28 rue de Herrlisheim, 68000 Colmar, France.
| | - Véronique Ziegler-Graff
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 67000 Strasbourg, France.
| | - Arnaud Ameline
- UMR CNRS 7058 EDYSAN, Université de Picardie Jules Verne, 80039 Amiens, France.
| | - Véronique Brault
- SVQV, Université de Strasbourg, INRA, 28 rue de Herrlisheim, 68000 Colmar, France.
| |
Collapse
|
30
|
Mauck KE, Chesnais Q, Shapiro LR. Evolutionary Determinants of Host and Vector Manipulation by Plant Viruses. Adv Virus Res 2018; 101:189-250. [PMID: 29908590 DOI: 10.1016/bs.aivir.2018.02.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Plant viruses possess adaptations for facilitating acquisition, retention, and inoculation by vectors. Until recently, it was hypothesized that these adaptations are limited to virus proteins that enable virions to bind to vector mouthparts or invade their internal tissues. However, increasing evidence suggests that viruses can also manipulate host plant phenotypes and vector behaviors in ways that enhance their own transmission. Manipulation of vector-host interactions occurs through virus effects on host cues that mediate vector orientation, feeding, and dispersal behaviors, and thereby, the probability of virus transmission. Effects on host phenotypes vary by pathosystem but show a remarkable degree of convergence among unrelated viruses whose transmission is favored by the same vector behaviors. Convergence based on transmission mechanism, rather than phylogeny, supports the hypothesis that virus effects are adaptive and not just by-products of infection. Based on this, it has been proposed that viruses manipulate hosts through multifunctional proteins that facilitate exploitation of host resources and elicitation of specific changes in host phenotypes. But this proposition is rarely discussed in the context of the numerous constraints on virus evolution imposed by molecular and environmental factors, which figure prominently in research on virus-host interactions not dealing with host manipulation. To explore the implications of this oversight, we synthesized available literature to identify patterns in virus effects among pathogens with shared transmission mechanisms and discussed the results of this synthesis in the context of molecular and environmental constraints on virus evolution, limitations of existing studies, and prospects for future research.
Collapse
Affiliation(s)
- Kerry E Mauck
- Department of Entomology, University of California, Riverside, Riverside, CA, United States.
| | - Quentin Chesnais
- Department of Entomology, University of California, Riverside, Riverside, CA, United States
| | - Lori R Shapiro
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|