1
|
Song R, Liu F, Shi X, Sun S, Chen J, Gao H. Effects of new hypoglycemic drugs on patients with heart failure: a systematic review and network meta-analysis. Postgrad Med J 2025; 101:330-350. [PMID: 39487697 DOI: 10.1093/postmj/qgae148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/08/2024] [Accepted: 10/12/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Currently, there is no relevant study comparing sodium-dependent glucose transporter 2 inhibitors (SGLT2i), glucagon-like peptide-1 receptor agonists (GLP-1RA), and dipeptidyl peptidase inhibitor (DPP4i) head to head to evaluate their comprehensive impact on heart failure patients. METHODS We conducted a comprehensive literature search across multiple databases. Utilizing the risk of bias tool from the Cochrane Collaboration, the methodological quality of included studies was critically assessed and potential publication bias was examined via funnel plots. RESULTS All results are presented as mean difference; 95% confidence interval (MD; 95% CI). The network meta-analysis indicated that in regards to left ventricular function, there is a big difference in the left ventricular ejection fraction (LVEF) of Empagliflozin 25 mg (13.64; 0.26, 27.01) compared to Canagliflozin 100 mg; and significant differences in the left ventricular end-diastolic volume (LVEDV) and left ventricular end-systolic volume (LVESV) of Dapagliflozin 10 mg (-0.76; -1.27, -0.25 and -0.95; -1.86, -0.05), Vildagliptin 50 mg (-1.05; -1.47, -0.63 and -1.12; -2.19, -0.05), and Sitagliptin 100 mg (-1.34; -2.31, -0.38 and -1.89; -3.50, -0.27) compared to Empagliflozin 10 mg. In terms of the quality of life, there are significant differences in the N-terminal pro-B-type natriuretic peptide (NT-proBNP) and the Quality of life score of Sitagliptin 100 mg (408.08; 213.59, 602.57 and 3.74; 1.57, 5.92) compared to Dapagliflozin 5 mg. In terms of the cardiovascular outcome events, there is a significant difference in the heart failure rehospitalization rate of Dapagliflozin 10 mg (0.45; 0.25, 0.82) and Empagliflozin 10 mg (0.48; 0.28, 0.81) compared to Liraglutide 1.8 mg. Further significant differences are found in the all-cause mortality of Dapagliflozin 10 mg (0.81; 0.66, 0.98) compared to Vildagliptin 50 mg; the cardiovascular death of Albiglutide 30 mg (0.49; 0.28, 0.86) compared to Exenatide 2 mg; and the arrhythmic events of Liraglutide 1.8 mg (0.49; 0.26, 0.90) compared to Empagliflozin 10 mg. The network meta-analysis of SGLT2i, GLP-1RA, and DPP4i as a class of drugs showed that GLP-1RA is superior to SGLT2i in improving LVEF and reducing myocardial infarction/acute coronary syndrome, whereas DPP4i is superior to SGLT2i in improving LVEDV and LVESV. CONCLUSIONS GLP-1RA is superior to SGLT2i in improving LVEF and reducing myocardial infarction/acute coronary syndrome, whereas DPP4i is superior to SGLT2i in improving LVEDV and LVESV. Key message What is already known on this topic-It has been confirmed that three new hypoglycemic drugs have a protective effect on the cardiovascular system. Studies have shown that sodium-dependent glucose transporter 2 inhibitors (SGLT2i) can improve cardiovascular outcomes and enhance the quality of life of heart failure patients. Currently, SGLT2i is widely used in the clinical treatment of heart failure, and related studies have shown that glucagon-like peptide-1 receptor agonists (GLP-1RA) and dipeptidyl peptidase inhibitor (DPP4i) also play important roles in the treatment of heart failure. What this study adds-However, there is no relevant research on whether these drugs' clinical efficacy is dose-dependent. How this study might affect research, practice, or policy-This study included different doses of hypoglycemic drugs and used a network meta-analysis method to comprehensively evaluate the effects of three hypoglycemic drugs on heart function, quality of life, and prognosis in heart failure patients, providing a basis for clinical practice.
Collapse
Affiliation(s)
- Ruirui Song
- Department of Cardiology, Shandong University of Traditional Chinese Medicine, Second Affiliated Hospital, No. 1 Jingba Road Jinan, Shandong Province 250001, China
| | - Fang Liu
- Department of Cardiology, Shandong University of Traditional Chinese Medicine, Second Affiliated Hospital, No. 1 Jingba Road Jinan, Shandong Province 250001, China
| | - Xiaojing Shi
- Department of Cardiology, Shandong University of Traditional Chinese Medicine, Second Affiliated Hospital, No. 1 Jingba Road Jinan, Shandong Province 250001, China
| | - Songtao Sun
- Department of Cardiology, Shandong University of Traditional Chinese Medicine, Second Affiliated Hospital, No. 1 Jingba Road Jinan, Shandong Province 250001, China
| | - Jun Chen
- Department of Cardiology, Shandong University of Traditional Chinese Medicine, Second Affiliated Hospital, No. 1 Jingba Road Jinan, Shandong Province 250001, China
| | - Hongmei Gao
- Department of Cardiology, Shandong University of Traditional Chinese Medicine, Second Affiliated Hospital, No. 1 Jingba Road Jinan, Shandong Province 250001, China
| |
Collapse
|
2
|
Wong KCK, Ismail HS, Connelly KA, Verma S, Ng MY, Deva DP, Yan AT, Jimenez-Juan L. Relationship between saxagliptin use and left ventricular diastolic function assessed by cardiac MRI. Acta Diabetol 2024; 61:91-97. [PMID: 37691025 DOI: 10.1007/s00592-023-02177-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/18/2023] [Indexed: 09/12/2023]
Abstract
AIMS Type 2 diabetes mellitus (T2DM) increases the risk of major cardiovascular events. In SAVOR-TIMI53 trial, the excess heart failure (HF) hospitalization among patients with T2DM in the saxagliptin group remains poorly understood. Our aim was to evaluate left ventricular (LV) diastolic function after 6 months of saxagliptin treatment using cardiac magnetic resonance imaging (CMR) in patients with T2DM. METHODS In this prospective study, 16 T2DM patients without HF were prescribed saxagliptin as part of routine guideline-directed management. CMR performed at baseline and 6 months after initiation of saxagliptin treatment were evaluated in a blinded fashion. We assessed LV diastolic function by measuring LV peak filling rate with correction for end-diastolic volume (PFR/LVEDV), time to peak filling rate with correction for cardiac cycle (TPF/RR), and early diastolic strain rate parameters [global longitudinal diastolic strain rate (GLSR-E), global circumferential diastolic strain rate (GCSR-E)] by feature tracking (FT-CMR). RESULTS Among the 16 patients (mean age of 59.9, 69% males, mean hemoglobin A1c 8.3%, mean left ventricular ejection fraction 57%), mean PFR was 314 ± 108 ml/s at baseline and did not change over 6 months (- 2.7, 95% CI - 35.6, 30.2, p = 0.86). There were also no significant changes in other diastolic parameters including PFR/EDV, TPF, TPF/RR, and GLSR-E and GCSR-E (all p > 0.50). CONCLUSION In T2DM patients without HF receiving saxagliptin over 6 months, there were no significant subclinical changes in LV diastolic function as assessed by CMR.
Collapse
Affiliation(s)
- Kathy C K Wong
- Department of Medical Imaging, St. Michael's Hospital, 30 Bond Street, Toronto, M5B 1W8, Canada
- Department of Medical Imaging, University of Toronto, Toronto, Canada
- Department of Diagnostic Radiology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Huda S Ismail
- Department of Medical Imaging, St. Michael's Hospital, 30 Bond Street, Toronto, M5B 1W8, Canada
- Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Kim A Connelly
- Division of Cardiology, St. Michael's Hospital, 30 Bond Street, Toronto, M5B 1W8, Canada
- Department of Medicine, University of Toronto, Toronto, Canada
- Keenan Research Centre for Biomedical Science in the Li Ka Shing Knowledge Institute of Unity Health Toronto, Toronto, Canada
| | - Subodh Verma
- Keenan Research Centre for Biomedical Science in the Li Ka Shing Knowledge Institute of Unity Health Toronto, Toronto, Canada
- Division of Cardiac Surgery, St. Michael's Hospital, Toronto, Canada
- Department of Surgery and Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Ming-Yen Ng
- Department of Diagnostic Radiology, The University of Hong Kong, Pok Fu Lam, Hong Kong
- Division of Cardiac Imaging, HKU-Shenzhen Hospital, Shenzhen, China
| | - Djeven P Deva
- Department of Medical Imaging, St. Michael's Hospital, 30 Bond Street, Toronto, M5B 1W8, Canada
- Department of Medical Imaging, University of Toronto, Toronto, Canada
- Keenan Research Centre for Biomedical Science in the Li Ka Shing Knowledge Institute of Unity Health Toronto, Toronto, Canada
| | - Andrew T Yan
- Department of Medical Imaging, St. Michael's Hospital, 30 Bond Street, Toronto, M5B 1W8, Canada.
- Department of Medical Imaging, University of Toronto, Toronto, Canada.
- Division of Cardiology, St. Michael's Hospital, 30 Bond Street, Toronto, M5B 1W8, Canada.
- Department of Medicine, University of Toronto, Toronto, Canada.
| | - Laura Jimenez-Juan
- Department of Medical Imaging, St. Michael's Hospital, 30 Bond Street, Toronto, M5B 1W8, Canada.
- Department of Medical Imaging, University of Toronto, Toronto, Canada.
- Keenan Research Centre for Biomedical Science in the Li Ka Shing Knowledge Institute of Unity Health Toronto, Toronto, Canada.
| |
Collapse
|
3
|
Ohm B, Moneke I, Jungraithmayr W. Targeting cluster of differentiation 26 / dipeptidyl peptidase 4 (CD26/DPP4) in organ fibrosis. Br J Pharmacol 2023; 180:2846-2861. [PMID: 36196001 DOI: 10.1111/bph.15967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/07/2022] [Accepted: 09/29/2022] [Indexed: 11/28/2022] Open
Abstract
Cluster of differentiation 26 (CD26)/dipeptidyl peptidase 4 (DPP4) is an exopeptidase that is expressed as a transmembrane protein in many organs but also present in a circulating soluble form. Beyond its enzymatic and costimulatory activity, CD26/DPP4 is involved in the pathogenesis of chronic fibrotic diseases across many organ types, such as liver cirrhosis, kidney fibrosis and lung fibrosis. Organ fibrosis is associated with a high morbidity and mortality, and there are no causative therapies that can effectively attenuate the progress of the disease. Growing evidence suggests that inhibiting CD26/DPP4 can modulate the profibrotic tissue microenvironment and thus reduce fibrotic changes within affected organs. This review summarizes the role of CD26/DPP4 in fibroproliferative disorders and highlights new opportunities for an antifibrotic treatment by CD26/DPP4 inhibition. As a major advantage, CD26/DPP4 inhibitors have been in safe and routine clinical use in type 2 diabetes for many years and thus qualify for repurposing to repurpose as a promising therapeutic against fibrosis. LINKED ARTICLES: This article is part of a themed issue on Translational Advances in Fibrosis as a Therapeutic Target. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.22/issuetoc.
Collapse
Affiliation(s)
- Birte Ohm
- Department of Thoracic Surgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Isabelle Moneke
- Department of Thoracic Surgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Wolfgang Jungraithmayr
- Department of Thoracic Surgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
4
|
Balogh DB, Wagner LJ, Fekete A. An Overview of the Cardioprotective Effects of Novel Antidiabetic Classes: Focus on Inflammation, Oxidative Stress, and Fibrosis. Int J Mol Sci 2023; 24:7789. [PMID: 37175496 PMCID: PMC10177821 DOI: 10.3390/ijms24097789] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Metabolic diseases, particularly diabetes mellitus (DM), are significant global public health concerns. Despite the widespread use of standard-of-care therapies, cardiovascular disease (CVD) remains the leading cause of death among diabetic patients. Early and evidence-based interventions to reduce CVD are urgently needed. Large clinical trials have recently shown that sodium-glucose cotransporter-2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor agonists (GLP-1RA) ameliorate adverse cardiorenal outcomes in patients with type 2 DM. These quite unexpected positive results represent a paradigm shift in type 2 DM management, from the sole importance of glycemic control to the simultaneous improvement of cardiovascular outcomes. Moreover, SGLT2i is also found to be cardio- and nephroprotective in non-diabetic patients. Several mechanisms, which may be potentially independent or at least separate from the reduction in blood glucose levels, have already been identified behind the beneficial effect of these drugs. However, there is still much to be understood regarding the exact pathomechanisms. This review provides an overview of the current literature and sheds light on the modes of action of novel antidiabetic drugs, focusing on inflammation, oxidative stress, and fibrosis.
Collapse
Affiliation(s)
- Dora Bianka Balogh
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1085 Budapest, Hungary
- MTA-SE Lendület “Momentum” Diabetes Research Group, 1083 Budapest, Hungary
| | - Laszlo Jozsef Wagner
- Department of Surgery, Transplantation, and Gastroenterology, Semmelweis University, 1085 Budapest, Hungary
| | - Andrea Fekete
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1085 Budapest, Hungary
- MTA-SE Lendület “Momentum” Diabetes Research Group, 1083 Budapest, Hungary
| |
Collapse
|
5
|
Jung I, Kwon H, Park SE, Han KD, Park YG, Rhee EJ, Lee WY. The Effects of Glucose Lowering Agents on the Secondary Prevention of Coronary Artery Disease in Patients with Type 2 Diabetes. Endocrinol Metab (Seoul) 2021; 36:977-987. [PMID: 34645126 PMCID: PMC8566121 DOI: 10.3803/enm.2021.1046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/06/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Patients with diabetes have a higher risk of requiring repeated percutaneous coronary intervention (PCI) than non-diabetic patients. We aimed to evaluate and compare the effects of anti-diabetic drugs on the secondary prevention of myocardial infarction among type 2 diabetes mellitus patients. METHODS We analyzed the general health check-up dataset and claims data of the Korean National Health Insurance Service of 199,714 participants (age ≥30 years) who underwent PCIs between 2010 and 2013. Those who underwent additional PCI within 1 year of their first PCI (n=3,325) and those who died within 1 year (n=1,312) were excluded. Patients were classified according to their prescription records for glucose-lowering agents. The primary endpoint was the incidence rate of coronary revascularization. RESULTS A total of 35,348 patients were included in the study. Metformin significantly decreased the risk of requiring repeat PCI in all patients (adjusted hazard ratio [aHR], 0.77). In obese patients with body mass index (BMI) ≥25 kg/m2, patients treated with thiazolidinedione (TZD) exhibited a decreased risk of requiring repeat revascularization than those who were not treated with TZD (aHR, 0.77; 95% confidence interval, 0.63 to 0.95). Patients treated with metformin showed a decreased risk of requiring revascularization regardless of their BMI. Insulin, meglitinide, and alpha-glucosidase inhibitor were associated with increased risk of repeated PCI. CONCLUSION The risk of requiring repeat revascularization was lower in diabetic patients treated with metformin and in obese patients treated with TZD. These results suggest that physicians should choose appropriate glucose-lowering agents for the secondary prevention of coronary artery disease.
Collapse
Affiliation(s)
- Inha Jung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul,
Korea
| | - Hyemi Kwon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul,
Korea
| | - Se Eun Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul,
Korea
| | - Kyung-Do Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul,
Korea
| | - Yong-Gyu Park
- Department of Biostatistics, Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul,
Korea
| | - Eun-Jung Rhee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul,
Korea
| | - Won-Young Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul,
Korea
| |
Collapse
|
6
|
Kadoglou NPE, Korakas E, Lampropoulos S, Maratou E, Kassimis G, Patsourakos N, Plotas P, Moutsatsou P, Lambadiari V. Plasma nesfatin-1 and DDP-4 levels in patients with coronary artery disease: Kozani study. Cardiovasc Diabetol 2021; 20:166. [PMID: 34389003 PMCID: PMC8362239 DOI: 10.1186/s12933-021-01355-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
Background Nesfatin-1, a novel adipokine and dipeptidyl peptidase-4 (DPP4), a mam malian serine protease, are potent factors of atherosclerosis. In the present cross-sectional study, we investigated whether the plasma nesfatin-1 and DPP4 is associated with the prevalence and severity of coronary artery disease (CAD) with and without diabetes mellitus (DM). Methods We consecutively enrolled a total of 240 patients with significant CAD (previous revascularization or angiographically-proven coronary artery stenosis > 50%) presented with either unstable angina (UA, N = 76) or stable chronic CAD (SCAD, N = 165). 85 patients with at least 2 classical cardiovascular risk factors but without significant CAD served as controls. The severity of CAD was assessed using coronary angiography by the Gensini score. Clinical parameters, glycemic and lipid profile, high-sensitivity CRP (hsCRP), nesfatin-1 and DPP4 levels were assayed. Results No differences were found for age, sex, hypertension and diabetes distribution between groups. Low nesfatin-1 levels were found in both CAD groups (UA & SCAD) with respect to controls. The difference between UA and SCAD groups was marginally non-significant. There was a significant increase of DPP4 along UA to SCAD and control groups. Differences between groups remained unchanged in non-diabetic participants. Nesfatin-1 significantly correlated to hsCRP (r = − 0.287, p = 0.036), HOMA-IR (r = − 0.587, p = 0.007) and hyperlipidemia (r = − 0.331, p = 0.034). DPP4 was significantly associated with hs-CRP (r = 0.353 p < 0.001) and FPG (r = 0.202, p = 0.020) in univariate analysis, but those correlations were lost in multiple regression analysis. There was a negative correlation between nesfatin-1 and the severity of CAD, quantified by the Gensini score (r = − 0.511, p < 0.001), but no association was found for DPP4. Conclusions Serum DPP4 levels are increased in patients with CAD, while serum nesfatin-1 levels have a negative association with both the incidence and the severity of CAD. These results are independent of the presence of diabetes mellitus. In addition, both peptides have a strong association with hsCRP. Trial registration ClinicalTrials.gov Identifier: NCT00306176
Collapse
Affiliation(s)
- Nikolaos P E Kadoglou
- Medical School, University of Cyprus, 215/6 Old road Lefkosias-Lemesou, Aglantzia, 2029, Nicosia, Cyprus.
| | - Emmanouil Korakas
- 2nd Department of Internal Medicine, Research Institute and Diabetes Centre, Athens University Medical School, Attikon University General Hospital, Athens, Greece
| | | | - Eirini Maratou
- 2nd Department of Internal Medicine, Research Institute and Diabetes Centre, Athens University Medical School, Attikon University General Hospital, Athens, Greece
| | - George Kassimis
- 2nd Cardiology Department, "Hippokration" Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Panagiotis Plotas
- Department of Cardiology, University of Patras Medical School, Patras, Greece
| | - Paraskevi Moutsatsou
- Department of Clinical Biochemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Vaia Lambadiari
- 2nd Department of Internal Medicine, Research Institute and Diabetes Centre, Athens University Medical School, Attikon University General Hospital, Athens, Greece
| |
Collapse
|
7
|
Simanenkova AV, Minasian SM, Karonova TL, Vlasov TD, Timkina NV, Khalzova АK, Fuks OS, Shimshilashvili AA, Timofeeva VA, Borshchev YY, Galagudza MM. Comparative evaluation of empagliflozin, canagliflozin and sitagliptin cardioprotective properties in rats with experimental type 2 diabetes mellitus. DIABETES MELLITUS 2021; 24:111-121. [DOI: 10.14341/dm12714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Background: Myocardial infarction (MI) is one of the leading causes of mortality in patients with type 2 diabetes mellitus (DM), therefore it is essential to give preference to a glucose-lowering drug having optimal cardioprotective properties. A comparative study of the various sodium-glucose co-transporter inhibitors representatives’ protective effects in experimental MI was not carried out within the framework of one study.Aim: To evaluate the influence of empagliflozin (EMPA) and canagliflozin (CANA), in comparison with sitagliptin (SITA), on hemodynamic parameters and myocardial damage area in rats with diabetes type 2 model in experimental MI.Materials and methods: Type 2 DM was modelled in Wistar rats by means of 4-week high-fat diet followed by nicotinamide 230 mg/kg and streptozotocin 60 mg/kg administration. 4 weeks after DM induction the following groups were made: «DM+SITA» — treatment with SITA 50 mg/kg, «DM+EMPA» — treatment with EMPA 2 mg/kg, «DM+CANA» — treatment with CANA 25 mg/kg per os once daily for 8 weeks. Animals in «DM» group remained untreated for the following 8 weeks. Rats in control group were fed with standard chow. 16 weeks after the experiment beginning transient global myocardial ischemia was modelled in all rats. Hemodynamic parameters and myocardium necrosis area were evaluated.Results: The necrosis area was larger in «DM» group, than in control one (p=0.018). Infarction size in «DM+SITA» did not differ from that in «DM» group (62.92(41.29;75.84) and 57.26(45.51;70.08)%, р=0.554). Necrosis area in «DM+EMPA» and «DM+CANA» groups was smaller than in «DM» group (37.90(20.76;54.66)%, 46.15(29.77;50.55) vs 57.26(45.51;70.08)%, р=0.008 and р=0.009, respectively). Necrosis size did not differ between «DM+EMPA» and «DM+CANA» groups (p=0.630). Ischemic contracture in «DM+CANA» group was less prominent than under the use of all other glucose-lowering drugs. We observed increase of coronary blood flow in «DM+EMPA» group, in comparison with «DM», «DM+CANA» and «DM+SITA» groups.Conclusions: SITA does not have cardioprotective effect in ischemia-reperfusion injury in diabetic rats. EMPA and CANA have similarly prominent infarct-limiting properties. EMPA is able to increase coronary blood flow, whereas cardioprotective action of CANA is associated with ischemic contracture diminishing.
Collapse
Affiliation(s)
- A. V. Simanenkova
- Almazov National Medical Research Centre, Pavlov First Saint-Petersburg State Medical University
| | - S. M. Minasian
- Almazov National Medical Research Centre; Pavlov First Saint-Petersburg State Medical University
| | - T. L. Karonova
- Almazov National Medical Research Centre; Pavlov First Saint-Petersburg State Medical University
| | - T. D. Vlasov
- Pavlov First Saint-Petersburg State Medical University
| | | | | | - O. S. Fuks
- Almazov National Medical Research Centre
| | | | | | | | - M. M. Galagudza
- Almazov National Medical Research Centre; Pavlov First Saint-Petersburg State Medical University
| |
Collapse
|
8
|
Bradic J, Milosavljevic I, Bolevich S, Litvitskiy PF, Jeremic N, Bolevich S, Zivkovic V, Srejovic I, Jeremic J, Jovicic N, Mitrovic S, Jakovljevic V. Dipeptidyl peptidase 4 inhibitors attenuate cardiac ischaemia-reperfusion injury in rats with diabetes mellitus type 2. Clin Exp Pharmacol Physiol 2021; 48:575-584. [PMID: 33352623 DOI: 10.1111/1440-1681.13450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/11/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022]
Abstract
The aim of our study was to assess and compare the effects of dipeptidyl peptidase 4 (DPP4) inhibitors, saxagliptin and sitagliptin, on metabolic control of disease and cardiac function in rats with diabetes mellitus type 2 (T2DM). This research would provide novel understanding into the potentially protective effects of DPP4 inhibitors in helping salvage of the heart exposed to ischaemia-reperfusion (I-R) injury. Forty-eight Wistar albino rats were randomly divided into four groups: CTRL, Control healthy group; T2DM, rats with T2DM; T2DM + Sit, rats with T2DM treated with 0.6 mg/kg of sitagliptin; T2DM + Sax, rats with T2DM treated with 0.45 mg/kg of saxagliptin for 3 weeks. At the end of the protocol, in vivo cardiac function was assessed by echocardiography, while in the blood samples glucose and insulin were determined. Additionally, ex vivo heart function was estimated on a model of I-R injury using Langendorff apparatus. Immunohistochemical analysis was used to determine the degree of myocardial apoptosis and necrosis, while DPP4 staining was performed to assess the cardiac DPP4 expression. Data were analyzed using a one-way analysis of variance (ANOVA) and the post hoc Bonferroni test for multiple comparisons. Improved glycoregulation was noticed in rats that received DPP4 inhibitors compared to untreated diabetic rats (P < .05). Moreover, better in vivo systolic function was observed in rats treated with both DPP4 inhibitors as evidenced by an increase in fractional shortening when compared to T2DM (P < .05). Most parameters of cardiac function in treated rats remained unaltered during reperfusion, thus suggesting that both drugs protected myocardium during flow restoration. Better effects on coronary circulation were achieved after sitagliptin application. Additionally, both DPP4 inhibitors showed similar potential to attenuate cardiac necrosis and apoptosis. Saxagliptin and sitagliptin might be efficient in preserving myocardial function and morphology in ex vivo induced I-R cardiac injury in rats with T2DM.
Collapse
Affiliation(s)
- Jovana Bradic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Isidora Milosavljevic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Stefani Bolevich
- Department of Pathophysiology, 1st Moscow State Medical University IM Sechenov, Moscow, Russia
| | - Peter F Litvitskiy
- Department of Pathophysiology, 1st Moscow State Medical University IM Sechenov, Moscow, Russia
| | - Nevena Jeremic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Sergey Bolevich
- Department of Human Pathology, 1st Moscow State Medical University IM Sechenov, Moscow, Russia
| | - Vladimir Zivkovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Ivan Srejovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Jovana Jeremic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nemanja Jovicic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Slobodanka Mitrovic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Vladimir Jakovljevic
- Department of Human Pathology, 1st Moscow State Medical University IM Sechenov, Moscow, Russia
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
9
|
Abstract
Previous studies have demonstrated that individuals with type 2 diabetes mellitus (T2DM) have a two- to fourfold propensity to develop cardiovascular disease (CVD) than nondiabetic population, making CVD a major cause of death and disability among people with T2DM. The present treatment options for management of diabetes propose the earlier and more frequent use of new antidiabetic drugs that could control hyperglycaemia and reduce the risk of cardiovascular events. Findings from basic and clinical studies pointed out DPP-4 inhibitors as potentially novel pharmacological tools for cardioprotection. There is a growing body of evidence suggesting that these drugs have ability to protect the heart against acute ischaemia-reperfusion injury as well as reduce the size of infarction. Consequently, the prevention of degradation of the incretin hormones by the use of DPP-4 inhibitors represents a new strategy in the treatment of patients with T2DM and reduction of CV events in these patients. Here, we discuss the cardioprotective effects of DPP-4 inhibitors as well as proposed pathways that these hypoglycaemic agents target in the cardiovascular system.
Collapse
|
10
|
Arad M, Waldman M, Abraham NG, Hochhauser E. Therapeutic approaches to diabetic cardiomyopathy: Targeting the antioxidant pathway. Prostaglandins Other Lipid Mediat 2020; 150:106454. [PMID: 32413571 DOI: 10.1016/j.prostaglandins.2020.106454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/23/2020] [Accepted: 05/06/2020] [Indexed: 12/25/2022]
Abstract
The global epidemic of cardiovascular disease continues unabated and remains the leading cause of death both in the US and worldwide. We hereby summarize the available therapies for diabetes and cardiovascular disease in diabetics. Clearly, the current approaches to diabetic heart disease often target the manifestations and certain mediators but not the specific pathways leading to myocardial injury, remodeling and dysfunction. Better understanding of the molecular events determining the evolution of diabetic cardiomyopathy will provide insight into the development of specific and targeted therapies. Recent studies largely increased our understanding of the role of enhanced inflammatory response, ROS production, as well as the contribution of Cyp-P450-epoxygenase-derived epoxyeicosatrienoic acid (EET), Peroxisome Proliferator-Activated Receptor Gamma Coactivator-1α (PGC-1α), Heme Oxygenase (HO)-1 and 20-HETE in pathophysiology and therapy of cardiovascular disease. PGC-1α increases production of the HO-1 which has a major role in protecting the heart against oxidative stress, microcirculation and mitochondrial dysfunction. This review describes the potential drugs and their downstream targets, PGC-1α and HO-1, as major loci for developing therapeutic approaches beside diet and lifestyle modification for the treatment and prevention of heart disease associated with obesity and diabetes.
Collapse
Affiliation(s)
- Michael Arad
- Leviev Heart Center, Sheba Medical Center, Tel Hashomer, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Maayan Waldman
- Leviev Heart Center, Sheba Medical Center, Tel Hashomer, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Cardiac Research Laboratory, Felsenstein Medical Research Institute, Tel Aviv University, Tel Aviv, Israel
| | - Nader G Abraham
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | - Edith Hochhauser
- Cardiac Research Laboratory, Felsenstein Medical Research Institute, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
11
|
Shao S, Xu Q, Yu X, Pan R, Chen Y. Dipeptidyl peptidase 4 inhibitors and their potential immune modulatory functions. Pharmacol Ther 2020; 209:107503. [PMID: 32061923 PMCID: PMC7102585 DOI: 10.1016/j.pharmthera.2020.107503] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/30/2020] [Indexed: 12/25/2022]
Abstract
Dipeptidyl peptidase 4 (DPP4) inhibitors (DPP4is) are oral anti-diabetic drugs (OADs) for the treatment of type 2 diabetes mellitus (T2DM) through inhibiting the degradation of incretin peptides. Numerous investigations have been focused on the effects of DPP4is on glucose homeostasis. However, there are limited evidences demonstrating their Potential modulatory functions in the immune system. DPP4, originally known as the lymphocyte cell surface protein CD26, is widely expressed in many types of immune cells including CD4(+) and CD8(+) T cells, B cells, NK cells, dendritic cells, and macrophages; and regulate the functions of these cells. In addition, DPP4 is capable of modulating plenty of cytokines, chemokines and peptide hormones. Accordingly, DPP4/CD26 is speculated to be involved in various immune/inflammatory diseases and DPP4is may become a new drug class applied in these diseases. This review focuses on the regulatory effects of DPP4is on immune functions and their possible underlying mechanisms. Further clinical studies will be necessitated to fully evaluate the administration of DPP4is in diabetic patients with or without immune diseases.
Collapse
Affiliation(s)
- Shiying Shao
- Division of Endocrinology, Department of Internal Medicine, Tongji hospital, Tongji medical college, Huazhong University of Science & Technology, Wuhan 430030, PR China
| | - QinQin Xu
- Division of Endocrinology, Department of Internal Medicine, Tongji hospital, Tongji medical college, Huazhong University of Science & Technology, Wuhan 430030, PR China
| | - Xuefeng Yu
- Division of Endocrinology, Department of Internal Medicine, Tongji hospital, Tongji medical college, Huazhong University of Science & Technology, Wuhan 430030, PR China
| | - Ruping Pan
- Department of Nuclear Medicine, Tongji hospital, Tongji medical college, Huazhong University of Science & Technology, Wuhan 430030, PR China
| | - Yong Chen
- Division of Endocrinology, Department of Internal Medicine, Tongji hospital, Tongji medical college, Huazhong University of Science & Technology, Wuhan 430030, PR China.
| |
Collapse
|
12
|
Connelly KA, Zhang Y, Desjardins JF, Nghiem L, Visram A, Batchu SN, Yerra VG, Kabir G, Thai K, Advani A, Gilbert RE. Load-independent effects of empagliflozin contribute to improved cardiac function in experimental heart failure with reduced ejection fraction. Cardiovasc Diabetol 2020; 19:13. [PMID: 32035482 PMCID: PMC7007658 DOI: 10.1186/s12933-020-0994-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/26/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND AIMS Sodium-glucose linked cotransporter-2 (SGLT2) inhibitors reduce the likelihood of hospitalization for heart failure and cardiovascular death in both diabetic and non-diabetic individuals with reduced ejection fraction heart failure. Because SGLT2 inhibitors lead to volume contraction with reductions in both preload and afterload, these load-dependent factors are thought to be major contributors to the cardioprotective effects of the drug class. Beyond these effects, we hypothesized that SGLT2 inhibitors may also improve intrinsic cardiac function, independent of loading conditions. METHODS Pressure-volume (P-V) relationship analysis was used to elucidate changes in intrinsic cardiac function, independent of alterations in loading conditions in animals with experimental myocardial infarction, a well-established model of HFrEF. Ten-week old, non-diabetic Fischer F344 rats underwent ligation of the left anterior descending (LAD) coronary artery to induce myocardial infarction (MI) of the left ventricle (LV). Following confirmation of infarct size with echocardiography 1-week post MI, animals were randomized to receive vehicle, or the SGLT2 inhibitor, empagliflozin. Cardiac function was assessed by conductance catheterization just prior to termination 6 weeks later. RESULTS The circumferential extent of MI in animals that were subsequently randomized to vehicle or empagliflozin groups was similar. Empagliflozin did not affect fractional shortening (FS) as assessed by echocardiography. In contrast, load-insensitive measures of cardiac function were substantially improved with empagliflozin. Load-independent measures of cardiac contractility, preload recruitable stroke work (PRSW) and end-systolic pressure volume relationship (ESPVR) were higher in rats that had received empagliflozin. Consistent with enhanced cardiac performance in the heart failure setting, systolic blood pressure (SBP) was higher in rats that had received empagliflozin despite its diuretic effects. A trend to improved diastolic function, as evidenced by reduction in left ventricular end-diastolic pressure (LVEDP) was also seen with empagliflozin. MI animals treated with vehicle demonstrated myocyte hypertrophy, interstitial fibrosis and evidence for changes in key calcium handling proteins (all p < 0.05) that were not affected by empagliflozin therapy. CONCLUSION Empagliflozin therapy improves cardiac function independent of loading conditions. These findings suggest that its salutary effects are, at least in part, due to actions beyond a direct effect of reduced preload and afterload.
Collapse
Affiliation(s)
- Kim A Connelly
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 61 Queen Street East, Toronto, M5C 2T2, ON, Canada.
| | - Yanling Zhang
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 61 Queen Street East, Toronto, M5C 2T2, ON, Canada
| | - Jean-François Desjardins
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 61 Queen Street East, Toronto, M5C 2T2, ON, Canada
| | - Linda Nghiem
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 61 Queen Street East, Toronto, M5C 2T2, ON, Canada
| | - Aylin Visram
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 61 Queen Street East, Toronto, M5C 2T2, ON, Canada
| | - Sri N Batchu
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 61 Queen Street East, Toronto, M5C 2T2, ON, Canada
| | - Verra G Yerra
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 61 Queen Street East, Toronto, M5C 2T2, ON, Canada
| | - Golam Kabir
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 61 Queen Street East, Toronto, M5C 2T2, ON, Canada
| | - Kerri Thai
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 61 Queen Street East, Toronto, M5C 2T2, ON, Canada
| | - Andrew Advani
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 61 Queen Street East, Toronto, M5C 2T2, ON, Canada
| | - Richard E Gilbert
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 61 Queen Street East, Toronto, M5C 2T2, ON, Canada.
| |
Collapse
|
13
|
Dipeptidyl dipeptidase-4 inhibitor recovered ischemia through an increase in vasculogenic endothelial progenitor cells and regeneration-associated cells in diet-induced obese mice. PLoS One 2019; 14:e0205477. [PMID: 30889182 PMCID: PMC6424405 DOI: 10.1371/journal.pone.0205477] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 02/18/2019] [Indexed: 01/21/2023] Open
Abstract
Metabolic syndrome (MS), overlapping type 2 diabetes, hyperlipidemia, and/or hypertension, owing to high-fat diet, poses risk for cardiovascular disease. A critical feature associated with such risk is the functional impairment of endothelial progenitor cells (EPCs). Dipeptidyl dipeptidase-4 inhibitors (DPP-4 i) not only inhibit degradation of incretins to control blood glucose levels, but also improve EPC bioactivity and induce anti-inflammatory effects in tissues. In the present study, we investigated the effects of such an inhibitor, MK-06266, in an ischemia model of MS using diet-induced obese (DIO) mice. EPC bioactivity was examined in MK-0626-administered DIO mice and a non-treated control group, using an EPC colony-forming assay and bone marrow cKit+ Sca-1+ lineage-cells, and peripheral blood-mononuclear cells. Our results showed that, in vitro, the effect of MK-0626 treatment on EPC bioactivities and differentiation was superior compared to the control. Furthermore, microvascular density and pericyte-recruited arteriole number increased in MK-0626-administered mice, but not in the control group. Lineage profiling of isolated cells from ischemic tissues revealed that MK-0626 administration has an inhibitory effect on unproductive inflammation. This occurred via a decrease in the influx of total blood cells and pro-inflammatory cells such as neutrophils, total macrophages, M1, total T-cells, cytotoxic T-cells, and B-cells, with a concomitant increase in number of regeneration-associated cells, such as M2/M ratio and Treg/T-helper. Laser Doppler analysis revealed that at day 14 after ischemic injury, blood perfusion in hindlimb was greater in MK-0626-treated DIO mice, but not in control. In conclusion, the DPP-4 i had a positive effect on EPC differentiation in MS model of DIO mice. Following ischemic injury, DPP-4 i sharply reduced recruitment of pro-inflammatory cells into ischemic tissue and triggered regeneration and reparation, making it a promising therapeutic agent for MS treatment.
Collapse
|
14
|
Bistola V, Lambadiari V, Dimitriadis G, Ioannidis I, Makrilakis K, Tentolouris N, Tsapas A, Parissis J. Possible mechanisms of direct cardiovascular impact of GLP-1 agonists and DPP4 inhibitors. Heart Fail Rev 2019; 23:377-388. [PMID: 29383638 DOI: 10.1007/s10741-018-9674-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Diabetes mellitus is a leading cause of cardiovascular morbidity and mortality worldwide. Traditional antidiabetic therapies targeting hyperglycemia reduce diabetic microvascular complications but have minor effects on macrovascular complications, including cardiovascular disease. Instead, cardiovascular complications are improved by antidiabetic medications (metformin) and other therapies (statins, antihypertensive medications) ameliorating insulin resistance and other associated metabolic abnormalities. Novel classes of antidiabetic drugs have proven efficacious in improving glycemia, while at the same time exert beneficial effects on pathophysiologic mechanisms of diabetes-related cardiovascular disease. In the present review, we will present current evidence of the cardiovascular effects of two new classes of antidiabetic medications, glucagon-like peptide 1 (GLP-1) agonists and dipeptidyl peptidase-4 (DPP4) inhibitors, focusing from mechanistic preclinical and clinical investigation to late-phase clinical testing.
Collapse
Affiliation(s)
- Vasiliki Bistola
- Heart Failure Unit, Department of Cardiology, Attikon University Hospital, National and Kapodistrian University of Athens, Medical School, Rimini 1 Chaidari, 12461, Athens, Greece.
| | - Vaia Lambadiari
- 2nd Department of Internal medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - George Dimitriadis
- 2nd Department of Internal medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Ioannis Ioannidis
- Diabetes and Obesity Center, Konstantopouleio Hospital, Athens, Greece
| | - Konstantinos Makrilakis
- First Department of Propaedeutic Internal Medicine, Diabetes Center, National and Kapodistrian University of Athens Medical School, Laiko General Hospital, Athens, Greece
| | - Nikolaos Tentolouris
- First Department of Propaedeutic Internal Medicine, Diabetes Center, National and Kapodistrian University of Athens Medical School, Laiko General Hospital, Athens, Greece
| | - Apostolos Tsapas
- Clinical Research and Evidence-Based Medicine Unit, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - John Parissis
- Heart Failure Unit, Department of Cardiology, Attikon University Hospital, National and Kapodistrian University of Athens, Medical School, Rimini 1 Chaidari, 12461, Athens, Greece
| |
Collapse
|
15
|
Shah SR, Iqbal SM, Alweis R, Roark S. A closer look at heart failure in patients with concurrent diabetes mellitus using glucose lowering drugs. Expert Rev Clin Pharmacol 2018; 12:45-52. [PMID: 30488734 DOI: 10.1080/17512433.2019.1552830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Type 2 diabetes (T2D) is an independent risk factor for heart failure (HF). With concomitant T2D and HF, recent data suggests an incremental risk of cardiovascular death and hospitalization for HF, as compared to patients with HF without T2D. Areas covered: Management of these two diseases has been a challenge for physicians. The treatment goals for HF patients in T2D are very important. They serve as the endpoint in using a specific treatment for management and treatment of T2D patients hence, decreasing mortality rates. In this review, we examine the effects of oral antidiabetic drugs on HF patients, discussing current evidence-based up-to-date management strategies and guidelines in the general population with HF and T2D. Expert commentary: Future in the management of T2D in HF patients looks bright. Augmenting data on potential cardiovascular side effects of antidiabetic drugs is valuable since millions of people are treated over many years. Newer novel drugs targeting specific signaling pathways are approaching the stages of clinical investigation. They have been a highly attractive concept for the future in the management of these patients. However, while advances in technology elucidated many aspects of these diseases, many mysteries still remain.
Collapse
Affiliation(s)
- Syed Raza Shah
- a North Florida Regional Medical Center , University of Central Florida (Gainesville) , Gainesville , FL , USA
| | - Sana Muhammad Iqbal
- b Department of Medicine , Dow University of Health Sciences (DUHS) , Karachi , Pakistan
| | - Richard Alweis
- c Department of Medicine , Rochester Regional Health System , Rochester , NY , USA
| | - Steven Roark
- d North Florida Regional Medical Center, The Cardiac and Vascular Institute , University of Central Florida (Gainesville) , Gainesville , FL , USA
| |
Collapse
|
16
|
Noels H, Theelen W, Sternkopf M, Jankowski V, Moellmann J, Kraemer S, Lehrke M, Marx N, Martin L, Marx G, Jankowski J, Goetzenich A, Stoppe C. Reduced post-operative DPP4 activity associated with worse patient outcome after cardiac surgery. Sci Rep 2018; 8:11820. [PMID: 30087386 PMCID: PMC6081383 DOI: 10.1038/s41598-018-30235-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/19/2018] [Indexed: 01/04/2023] Open
Abstract
Cardiac surgery with cardiopulmonary bypass (CPB) triggers myocardial ischemia/reperfusion injury contributing to organ dysfunction. Preclinical studies revealed that dipeptidyl peptidase (DPP4) inhibition is protective during myocardial infarction. Here, we assessed for the first time the relation of peri-operative DPP4-activity in serum of 46 patients undergoing cardiac surgery with patients' post-operative organ dysfunction during intensive care unit (ICU) stay. Whereas a prior myocardial infarction significantly reduced pre-operative DDP4-activity, patients with preserved left ventricular function showed an intra-operative decrease of DPP4-activity. The latter correlated with aortic cross clamping time, indicative for the duration of surgery-induced myocardial ischemia. As underlying mechanism, mass-spectrometry revealed increased DPP4 oxidation by cardiac surgery, with DPP4 oxidation reducing DPP4-activity in vitro. Further, post-operative DPP4-activity was negatively correlated with the extent of post-operative organ injury as measured by SAPS II and SOFA scoring, circulating levels of creatinine and lactate, as well as patients' stay on the ICU. In conclusion, cardiac surgery reduces DPP4-activity through oxidation, with low post-operative DPP4-activity being associated with organ dysfunction and worse outcome of patients during the post-operative ICU stay. This likely reflects the severity of myocardial ischemia/reperfusion injury and may suggest potential beneficial effects of anti-oxidative treatments during cardiac surgery.
Collapse
Affiliation(s)
- Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, RWTH Aachen University, Aachen, Germany.
| | - Wendy Theelen
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Marieke Sternkopf
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Vera Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Julia Moellmann
- Department of Internal Medicine I-Cardiology, University Hospital Aachen, Aachen, Germany
| | - Sandra Kraemer
- Department of Thoracic, Cardiac and Vascular Surgery, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Michael Lehrke
- Department of Internal Medicine I-Cardiology, University Hospital Aachen, Aachen, Germany
| | - Nikolaus Marx
- Department of Internal Medicine I-Cardiology, University Hospital Aachen, Aachen, Germany
| | - Lukas Martin
- Department of Intensive Care Medicine, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Gernot Marx
- Department of Intensive Care Medicine, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, RWTH Aachen University, Aachen, Germany.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Andreas Goetzenich
- Department of Thoracic, Cardiac and Vascular Surgery, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Christian Stoppe
- Department of Intensive Care Medicine, University Hospital, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
17
|
Connelly KA, Zhang Y, Desjardins JF, Thai K, Gilbert RE. Dual inhibition of sodium-glucose linked cotransporters 1 and 2 exacerbates cardiac dysfunction following experimental myocardial infarction. Cardiovasc Diabetol 2018; 17:99. [PMID: 29981571 PMCID: PMC6035399 DOI: 10.1186/s12933-018-0741-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 07/02/2018] [Indexed: 12/17/2022] Open
Abstract
Background Inhibiting both type 1 and 2 sodium–glucose linked cotransporter (SGLT1/2) offers the potential to not only increase glucosuria beyond that seen with selective SGLT2 inhibition alone but to reduce glucose absorption from the gut and to thereby also stimulate glucagon-like peptide 1 secretion. However, beyond the kidney and gut, SGLT1 is expressed in a range of other organs particularly the heart where it potentially assists GLUT-mediated glucose transport. Since cardiac myocytes become more reliant on glucose as a fuel source in the setting of stress, the present study sought to compare the effects of dual SGLT1/2 inhibition with selective SGLT2 inhibition in the normal and diseased heart. Methods Fischer F344 rats underwent ligation of the left anterior descending coronary artery or sham ligation before being randomized to receive the dual SGLT1/2 inhibitor, T-1095, the selective SGLT2 inhibitor, dapagliflozin or vehicle. In addition to measuring laboratory parameters, animals also underwent echocardiography and cardiac catheterization to assess systolic and diastolic function in detail. Results When compared with rats that had received either vehicle or dapagliflozin, T-1095 exacerbated cardiac dysfunction in the post myocardial infarction setting. In addition to higher lung weights, T-1095 treated rats had evidence of worsened systolic function with lower ejection fractions and reduction in the rate of left ventricle pressure rise in early systole (dP/dtmax). Diastolic function was also worse in animals that had received T-1095 with prolongation of the time constant for isovolumic-pressure decline (Tau) and an increase in the end-diastolic pressure volume relationship, indices of the active, energy-dependent and passive phases of cardiac relaxation. Conclusions The exacerbation of post myocardial infarction cardiac dysfunction with T-1095 in the experimental setting suggests the need for caution with the use of dual SGLT1/2 inhibitors in humans.
Collapse
Affiliation(s)
- Kim A Connelly
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 61 Queen Street East, Toronto, ON, M5C 2T2, Canada
| | - Yanling Zhang
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 61 Queen Street East, Toronto, ON, M5C 2T2, Canada
| | - Jean-François Desjardins
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 61 Queen Street East, Toronto, ON, M5C 2T2, Canada
| | - Kerri Thai
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 61 Queen Street East, Toronto, ON, M5C 2T2, Canada
| | - Richard E Gilbert
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 61 Queen Street East, Toronto, ON, M5C 2T2, Canada.
| |
Collapse
|
18
|
Zhou Y, Guo Z, Yan W, Wang W. Cardiovascular effects of sitagliptin - An anti-diabetes medicine. Clin Exp Pharmacol Physiol 2018; 45:628-635. [DOI: 10.1111/1440-1681.12953] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 04/03/2018] [Accepted: 04/12/2018] [Indexed: 01/28/2023]
Affiliation(s)
- Yi Zhou
- Department of Physiology and Pathophysiology; School of Basic Medical Sciences; Capital Medical University; Beijing China
| | - Zhiying Guo
- Department of Pathophysiology; School of Basic Medicine; Jining Medical University; Shandong China
- Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases; Beijing China
| | - Wenjing Yan
- Department of Physiology and Pathophysiology; School of Basic Medical Sciences; Capital Medical University; Beijing China
| | - Wen Wang
- Department of Physiology and Pathophysiology; School of Basic Medical Sciences; Capital Medical University; Beijing China
- Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases; Beijing China
| |
Collapse
|
19
|
Krittanawong C, Xanthopoulos A, Kitai T, Branis N, Zhang H, Kukin M. DPP-4 inhibitors and heart failure: a potential role for pharmacogenomics. Heart Fail Rev 2018; 23:355-361. [PMID: 28986727 DOI: 10.1007/s10741-017-9655-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
There remains an ongoing controversy regarding the safety of dipeptidyl peptidase-4 (DPP-4) inhibitors and the risk of developing heart failure (HF). In addition, none of the animal studies suggested a mechanism for the DPP-4 inhibitors and HF risk. To date, advances in pharmacogenomics have enabled the identification of genetic variants in DPP-4 gene. Studies have shown that genetic polymorphisms in the gene encoding DPP-4 may be associated with potential pathways involved in HF risk. This review discusses the contradictory findings of DPP-4 inhibitors and HF and a potential role for pharmacogenomics. Pharmacogenomics of DPP-4 inhibitors is promising, and genetic information from randomized control trials is urgently needed to gain a full understanding of the safety of DPP-4 inhibitors and the risk of HF.
Collapse
Affiliation(s)
- Chayakrit Krittanawong
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai, Mount Sinai St. Luke's and West hospitals, 1 Gustave L. Levy Pl, New York, NY, 10029, USA.
- Division of Cardiovascular Disease, Icahn School of Medicine at Mount Sinai, Mount Sinai St. Luke's hospital, Mount Sinai Heart, New York, NY, USA.
| | - Andrew Xanthopoulos
- Department of Cardiology, University General Hospital of Larissa, Larissa, Greece
| | - Takeshi Kitai
- Department of Cardiovascular Medicine, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Natalia Branis
- Division of Endocrinology, Diabetes and Nutrition, Icahn School of Medicine at Mount Sinai, Mount Sinai St. Luke's and West hospitals, New York, NY, USA
| | - HongJu Zhang
- Division of Cardiovascular Disease, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Marrick Kukin
- Division of Cardiovascular Disease, Icahn School of Medicine at Mount Sinai, Mount Sinai St. Luke's hospital, Mount Sinai Heart, New York, NY, USA
| |
Collapse
|
20
|
Aroor AR, Manrique-Acevedo C, DeMarco VG. The role of dipeptidylpeptidase-4 inhibitors in management of cardiovascular disease in diabetes; focus on linagliptin. Cardiovasc Diabetol 2018; 17:59. [PMID: 29669555 PMCID: PMC5907287 DOI: 10.1186/s12933-018-0704-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/12/2018] [Indexed: 12/15/2022] Open
Abstract
Multiple population based analyses have demonstrated a high incidence of cardiovascular disease (CVD) and cardiovascular (CV) mortality in subjects with T2DM that reduces life expectancy by as much as 15 years. Importantly, the CV system is particularly sensitive to the metabolic and immune derangements present in obese pre-diabetic and diabetic individuals; consequently, CV dysfunction is often the initial CV derangement to occur and promotes the progression to end organ/tissue damage in T2DM. Specifically, diabetic CVD can manifest as microvascular complications, such as nephropathy, retinopathy, and neuropathy, as well as, macrovascular impairments, including ischemic heart disease, peripheral vascular disease, and cerebrovascular disease. Despite some progress in prevention and treatment of CVD, mainly via blood pressure and dyslipidemia control strategies, the impact of metabolic disease on CV outcomes is still a major challenge and persists in proportion to the epidemics of obesity and diabetes. There is abundant pre-clinical and clinical evidence implicating the DPP-4-incretin axis in CVD. In this regard, linagliptin is a unique DPP-4 inhibitor with both CV and renal safety profiles. Moreover, it exerts beneficial CV effects beyond glycemic control and beyond class effects. Linagliptin is protective for both macrovascular and microvascular complications of diabetes in preclinical models, as well as clinical models. Given the role of endothelial-immune cell interactions as one of the key events in the initiation and progression of CVD, linagliptin modulates these cell–cell interactions by affecting two important pathways involving stimulation of NO signaling and potent inhibition of a key immunoregulatory molecule.
Collapse
Affiliation(s)
- Annayya R Aroor
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO, USA.,Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri-Columbia School of Medicine, One Hospital Drive, Columbia, MO, 65212, USA.,Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Camila Manrique-Acevedo
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO, USA.,Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri-Columbia School of Medicine, One Hospital Drive, Columbia, MO, 65212, USA.,Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Vincent G DeMarco
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO, USA. .,Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri-Columbia School of Medicine, One Hospital Drive, Columbia, MO, 65212, USA. .,Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA. .,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
21
|
Suman RK. Natural dipeptidyl peptidase-4 inhibitor Terminalia arjuna mitigates myocardial infarction co-existing with diabetes in experimental rats. ACTA ACUST UNITED AC 2018. [DOI: 10.15406/jdmdc.2018.05.00137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Dipeptidyl peptidase IV (DPP-IV) inhibition prevents fibrosis in adipose tissue of obese mice. Biochim Biophys Acta Gen Subj 2018; 1862:403-413. [DOI: 10.1016/j.bbagen.2017.11.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 11/10/2017] [Accepted: 11/13/2017] [Indexed: 01/07/2023]
|
23
|
McMurray JJ, Ponikowski P, Bolli GB, Lukashevich V, Kozlovski P, Kothny W, Lewsey JD, Krum H. Effects of Vildagliptin on Ventricular Function in Patients With Type 2 Diabetes Mellitus and Heart Failure. JACC-HEART FAILURE 2018; 6:8-17. [DOI: 10.1016/j.jchf.2017.08.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 08/01/2017] [Accepted: 08/03/2017] [Indexed: 02/06/2023]
|
24
|
Abstract
Over the past two decades, therapeutics for diabetes have evolved from drugs with known heart failure risk to classes with potential benefit for patients with heart failure. As many as 25 to 35 % of patients with heart failure carry a diagnosis of type 2 diabetes mellitus. Therefore, newer drug classes including dipeptidyl peptidase 4 (DPP-4) inhibitors, glucagon-like peptide 1 (GIP-1) agonists, and sodium-glucose cotransporter 2 (SGLT-2) inhibitors are being examined for cardiovascular safety as well as their effects on left ventricular function, quality of life, and other measures of disease progression. The purpose of this review is to summarize the existing evidence on these classes of anti-diabetic agents in patients with heart failure.
Collapse
|
25
|
Kosi-Trebotic L, Thomas A, Harreiter J, Chmelik M, Trattnig S, Kautzky-Willer A. Gliptin therapy reduces hepatic and myocardial fat in type 2 diabetic patients. Eur J Clin Invest 2017; 47:829-838. [PMID: 28815568 DOI: 10.1111/eci.12817] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/13/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Increased hepatic fat and cardiac fat are common in patients with type 2 diabetes mellitus (T2DM) and are associated with a greater risk of liver fibrosis and cardiovascular (CV) events. Sex-specific differences of dipeptidyl peptidase-four (DPP-4) inhibitor effects on hepatic (HCL) and myocardial fat content (MYCL) have not yet been evaluated. METHOD Forty-one T2DM patients (20 male, 21 female) received a gliptin add-on therapy if HbA1c goals were not reached under metformin monotherapy. They underwent cardiac and liver magnetic resonance tomography and spectroscopy before and 6 months after therapy initiation. Plasma samples were analysed for the growth differentiation factor 15 (GDF-15), a novel marker for cardiovascular risk. RESULTS Thirty-eight patients on gliptin therapy completed the study. We observed a positive correlation between MYCL and HCL before therapy (R = 0·41, P = 0·05). After 6 months of therapy, we noticed a significant weight reduction in women only (P = 0·02) whereas waist circumference decreased similarly in both sexes. HbA1c sunk significantly in both sexes (P = 0·002). HCL decreased significantly (P = 0·0004), with women featuring higher basal HCL (P < 0·05). MYCL decreased in women only (P = 0·01) and GDF-15 comparably in both sexes (P < 0·05). CONCLUSIONS 6 months of DPP-4-therapy led to a significant overall decrease in HCL and body weight such as a reduction of MYCL only in women. This preliminary data set could implicate that gliptin may be a feasible therapy option in fatty liver patients with diabetes potentially including positive effects on cardiovascular function particularly in women.
Collapse
Affiliation(s)
- Lana Kosi-Trebotic
- Gender Medicine Unit, Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Anita Thomas
- Gender Medicine Unit, Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Jürgen Harreiter
- Gender Medicine Unit, Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Marek Chmelik
- Department of Radiodiagnostics, Centre of Excellence, High-Field MR, Medical University of Vienna, Vienna, Austria
| | - Siegfried Trattnig
- Department of Radiodiagnostics, Centre of Excellence, High-Field MR, Medical University of Vienna, Vienna, Austria
| | - Alexandra Kautzky-Willer
- Gender Medicine Unit, Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
26
|
von Lewinski D, Kolesnik E, Wallner M, Resl M, Sourij H. New Antihyperglycemic Drugs and Heart Failure: Synopsis of Basic and Clinical Data. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1253425. [PMID: 28894748 PMCID: PMC5574229 DOI: 10.1155/2017/1253425] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/12/2017] [Indexed: 12/24/2022]
Abstract
The assessment of the cardiovascular safety profile of any newly developed antihyperglycemic drug is mandatory before registration, as a meta-analysis raised alarm describing a significant increase in myocardial infarction with the thiazolidinedione rosiglitazone. The first results from completed cardiovascular outcome trials are already available: TECOS, SAVOR-TIMI, and EXAMINE investigated dipeptidyl peptidase 4 (DPP-4) inhibitors, ELIXA, LEADER, and SUSTAIN-6 investigated glucagon-like peptide 1 (GLP-1) receptor agonists, and EMPA-REG OUTCOME and CANVAS investigated sodium-dependent glucose transporter 2 (SGLT-2) inhibitors. LEADER, SUSTAIN-6, EMPA-REG OUTCOME, and CANVAS showed potential beneficial results, while the SAVOR-TIMI trial had an increased rate of hospitalization for heart failure. Meanwhile, the same drugs are investigated in preclinical experiments mainly using various animal models, which aim to find interactions and elucidate the underlying downstream mechanisms between the antihyperglycemic drugs and the cardiovascular system. Yet the direct link for observed effects, especially for DPP-4 and SGLT-2 inhibitors, is still unknown. Further inquiry into these mechanisms is crucial for the interpretation of the clinical trials' outcome and, vice versa, the clinical trials provide hints for an involvement of the cardiovascular system. The synopsis of preclinical and clinical data is essential for a detailed understanding of benefits and risks of new antihyperglycemic drugs.
Collapse
Affiliation(s)
- Dirk von Lewinski
- Department of Cardiology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Ewald Kolesnik
- Department of Cardiology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Markus Wallner
- Department of Cardiology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Michael Resl
- Department of Endocrinology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
- Department of Internal Medicine, Hospital Barmherzige Brüder Linz, Seilerstätte 2, 4021 Linz, Austria
| | - Harald Sourij
- Department of Endocrinology and Diabetology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| |
Collapse
|
27
|
Wang MT, Lin SC, Tang PL, Hung WT, Cheng CC, Yang JS, Chang HT, Liu CP, Mar GY, Huang WC. The impact of DPP-4 inhibitors on long-term survival among diabetic patients after first acute myocardial infarction. Cardiovasc Diabetol 2017; 16:89. [PMID: 28697774 PMCID: PMC5505012 DOI: 10.1186/s12933-017-0572-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 07/04/2017] [Indexed: 12/29/2022] Open
Abstract
Background Previous studies regarding the cardioprotective effects of dipeptidyl peptidase 4 (DPP-4) inhibitors have not provided sufficient evidence of a relationship between DPP-4 inhibition and actual cardiovascular outcomes. This study aimed to evaluate the impact of DPP-4 inhibitors on the survival of diabetic patients after first acute myocardial infarction (AMI). Methods This was a nationwide, propensity score-matched, case–control study of 186,112 first AMI patients, 72,924 of whom had diabetes. A propensity score, one-to-one matching technique was used to match 2672 controls to 2672 patients in the DPP-4 inhibitor group for analysis. Controls were matched based on gender, age, and a history of hypertension, dyslipidemia, diabetes, peripheral vascular disease, heart failure, cerebrovascular accident, end-stage renal disease, chronic obstructive pulmonary disease, and percutaneous coronary intervention. Results DPP-4 inhibitors improve the overall 3-year survival rate (log rank P < 0.0001), whether male or female. Cox proportional hazard regression showed DPP-4 inhibitor is beneficial in diabetes patients after AMI (HR = 0.86; 95% CI 0.78–0.95), especially in those patients with hypertension (HR = 0.87; 95% CI 0.78–0.97; P = 0.0103) and cerebrovascular disease (HR = 0.83; 95% CI 0.72–0.97; P = 0.018), but without dyslipidemia (HR = 0.78; 95% CI 0.67–0.92; P = 0.0029), without peripheral vascular disease (HR = 0.86; 95% CI 0.78–0.96; P = 0.0047), without heart failure (HR = 0.84; 95% CI 0.73–0.96; P = 0.0106), without end stage renal disease (HR = 0.86; 95% CI 0.77–0.95; P = 0.0035), and without chronic obstructive pulmonary disease (HR = 0.87; 95% CI 0.78–0.97; P = 0.0096). Conclusions DPP-4 inhibitor therapy improved long-term survival in diabetic patients after first AMI, regardless of gender.
Collapse
Affiliation(s)
- Mei-Tzu Wang
- Critical Care Center and Cardiovascular Medical Center, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Sheng-Che Lin
- Critical Care Center and Cardiovascular Medical Center, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Pei-Ling Tang
- Critical Care Center and Cardiovascular Medical Center, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Wang-Ting Hung
- Critical Care Center and Cardiovascular Medical Center, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Chin-Chang Cheng
- Critical Care Center and Cardiovascular Medical Center, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Physical Therapy, Fooyin University, Kaohsiung, Taiwan
| | - Jin-Shiou Yang
- Department of Physical Therapy, Fooyin University, Kaohsiung, Taiwan
| | - Hong-Tai Chang
- Critical Care Center and Cardiovascular Medical Center, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Chun-Peng Liu
- Critical Care Center and Cardiovascular Medical Center, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Department of Physical Therapy, Fooyin University, Kaohsiung, Taiwan
| | - Guang-Yuan Mar
- Critical Care Center and Cardiovascular Medical Center, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Wei-Chun Huang
- Critical Care Center and Cardiovascular Medical Center, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan. .,School of Medicine, National Yang-Ming University, Taipei, Taiwan. .,Department of Physical Therapy, Fooyin University, Kaohsiung, Taiwan. .,Section of Critical Care Medicine, Kaohsiung Veterans General Hospital, No. 386, Dazhong 1st Rd., Zuoying Dist., Kaohsiung City, 813, Taiwan.
| |
Collapse
|
28
|
Li JW, Chen YD, Chen WR, You Q, Li B, Zhou H, Zhang Y, Han TW. Prognostic value of plasma DPP4 activity in ST-elevation myocardial infarction. Cardiovasc Diabetol 2017; 16:72. [PMID: 28587613 PMCID: PMC5461628 DOI: 10.1186/s12933-017-0553-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 05/20/2017] [Indexed: 01/03/2023] Open
Abstract
Background Dipeptidyl peptidase-4 (DPP4) regulates blood glucose levels and inflammation, and it is also implicated in the pathophysiological process of myocardial infarction (MI). Plasma DPP4 activity (DPP4a) may provide prognostic information regarding outcomes for ST-segment elevation MI (STEMI) patients. Methods Blood samples were obtained from 625 consecutively admitted, percutaneous coronary intervention-treated STEMI patients with a mean age of 57 years old. DPP4a was quantified using enzymatic assays. Results The median follow-up period was 30 months. Multivariate Cox-regression analyses (adjusted for confounding variables) showed that a 1 U/L increase of DPP4a did not associate with risks of major adverse cardiac or cerebrovascular events (MACCE), cardiovascular mortality, MI, heart failure readmission, stroke, non-cardiovascular mortality and repeated revascularization. However, in a subset of 149 diabetic STEMI patients, DPP4a associated with an increased risk of MACCE (HR 1.16; 95% CI 1.04–1.30; p = 0.01). Conclusions DPP4a did not associate with cardiovascular events and non-cardiovascular mortality in non-diabetic STEMI patients. However, DPP4a may be associated with future MACCE in diabetic STEMI patients. Trial registration NCT03046576, registered on 5 February, 2017, retrospectively registered Electronic supplementary material The online version of this article (doi:10.1186/s12933-017-0553-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jing-Wei Li
- Department of Cardiology, People's Liberation Army General Hospital, No. 28 Fuxing Road, Wukesong, Haidian District, Beijing, 100853, China.,Department of Cardiology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yun-Dai Chen
- Department of Cardiology, People's Liberation Army General Hospital, No. 28 Fuxing Road, Wukesong, Haidian District, Beijing, 100853, China.
| | - Wei-Ren Chen
- Department of Cardiology, People's Liberation Army General Hospital, No. 28 Fuxing Road, Wukesong, Haidian District, Beijing, 100853, China
| | - Qi You
- Department of Cardiology, People's Liberation Army General Hospital, No. 28 Fuxing Road, Wukesong, Haidian District, Beijing, 100853, China
| | - Bo Li
- Department of Cardiology, People's Liberation Army General Hospital, No. 28 Fuxing Road, Wukesong, Haidian District, Beijing, 100853, China
| | - Hao Zhou
- Department of Cardiology, People's Liberation Army General Hospital, No. 28 Fuxing Road, Wukesong, Haidian District, Beijing, 100853, China
| | - Ying Zhang
- Department of Cardiology, People's Liberation Army General Hospital, No. 28 Fuxing Road, Wukesong, Haidian District, Beijing, 100853, China
| | - Tian-Wen Han
- Department of Cardiology, People's Liberation Army General Hospital, No. 28 Fuxing Road, Wukesong, Haidian District, Beijing, 100853, China
| |
Collapse
|
29
|
Abstract
Scarring and fibrosis are an enormous public health concern, resulting in excessive morbidity and mortality in addition to countless lost health care dollars. Recent advances in cell and developmental biology promise a better understanding of scarring and fibrosis and may translate to new clinical therapies.
Collapse
|
30
|
Aroor AR, Habibi J, Kandikattu HK, Garro-Kacher M, Barron B, Chen D, Hayden MR, Whaley-Connell A, Bender SB, Klein T, Padilla J, Sowers JR, Chandrasekar B, DeMarco VG. Dipeptidyl peptidase-4 (DPP-4) inhibition with linagliptin reduces western diet-induced myocardial TRAF3IP2 expression, inflammation and fibrosis in female mice. Cardiovasc Diabetol 2017; 16:61. [PMID: 28476142 PMCID: PMC5420102 DOI: 10.1186/s12933-017-0544-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/29/2017] [Indexed: 12/12/2022] Open
Abstract
Background Diastolic dysfunction (DD), a hallmark of obesity and primary defect in heart failure with preserved ejection fraction, is a predictor of future cardiovascular events. We previously reported that linagliptin, a dipeptidyl peptidase-4 inhibitor, improved DD in Zucker Obese rats, a genetic model of obesity and hypertension. Here we investigated the cardioprotective effects of linagliptin on development of DD in western diet (WD)-fed mice, a clinically relevant model of overnutrition and activation of the renin-angiotensin-aldosterone system. Methods Female C56Bl/6 J mice were fed an obesogenic WD high in fat and simple sugars, and supplemented or not with linagliptin for 16 weeks. Results WD induced oxidative stress, inflammation, upregulation of Angiotensin II type 1 receptor and mineralocorticoid receptor (MR) expression, interstitial fibrosis, ultrastructural abnormalities and DD. Linagliptin inhibited cardiac DPP-4 activity and prevented molecular impairments and associated functional and structural abnormalities. Further, WD upregulated the expression of TRAF3IP2, a cytoplasmic adapter molecule and a regulator of multiple inflammatory mediators. Linagliptin inhibited its expression, activation of its downstream signaling intermediates NF-κB, AP-1 and p38-MAPK, and induction of multiple inflammatory mediators and growth factors that are known to contribute to development and progression of hypertrophy, fibrosis and contractile dysfunction. Linagliptin also inhibited WD-induced collagens I and III expression. Supporting these in vivo observations, linagliptin inhibited aldosterone-mediated MR-dependent oxidative stress, upregulation of TRAF3IP2, proinflammatory cytokine, and growth factor expression, and collagen induction in cultured primary cardiac fibroblasts. More importantly, linagliptin inhibited aldosterone-induced fibroblast activation and migration. Conclusions Together, these in vivo and in vitro results suggest that inhibition of DPP-4 activity by linagliptin reverses WD-induced DD, possibly by targeting TRAF3IP2 expression and its downstream inflammatory signaling.
Collapse
Affiliation(s)
- Annayya R Aroor
- Diabetes and Cardiovascular Center, Department of Medicine, University of Missouri, Columbia, MO, USA.,Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA
| | - Javad Habibi
- Diabetes and Cardiovascular Center, Department of Medicine, University of Missouri, Columbia, MO, USA.,Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA
| | - Hemanth Kumar Kandikattu
- Diabetes and Cardiovascular Center, Department of Medicine, University of Missouri, Columbia, MO, USA.,Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA
| | - Mona Garro-Kacher
- Diabetes and Cardiovascular Center, Department of Medicine, University of Missouri, Columbia, MO, USA.,Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA
| | - Brady Barron
- Diabetes and Cardiovascular Center, Department of Medicine, University of Missouri, Columbia, MO, USA.,Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA
| | - Dongqing Chen
- Diabetes and Cardiovascular Center, Department of Medicine, University of Missouri, Columbia, MO, USA.,Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA
| | - Melvin R Hayden
- Diabetes and Cardiovascular Center, Department of Medicine, University of Missouri, Columbia, MO, USA
| | - Adam Whaley-Connell
- Division of Nephrology, Department of Medicine, University of Missouri, Columbia, MO, USA.,Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA
| | - Shawn B Bender
- Biomedical Sciences, University of Missouri, Columbia, MO, USA.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.,Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA
| | | | - Jaume Padilla
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.,Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA.,Department of Child Health, University of Missouri, Columbia, MO, USA
| | - James R Sowers
- Diabetes and Cardiovascular Center, Department of Medicine, University of Missouri, Columbia, MO, USA.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.,Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA
| | - Bysani Chandrasekar
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri, Columbia, MO, USA.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.,Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA
| | - Vincent G DeMarco
- Diabetes and Cardiovascular Center, Department of Medicine, University of Missouri, Columbia, MO, USA. .,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA. .,Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA. .,Department of Medicine, Division of Endocrinology, University of Missouri School of Medicine, Columbia, MO, 65212, USA.
| |
Collapse
|
31
|
Li JW, Chen YD, Chen WR, Jing J, Liu J, Yang YQ. Plasma DPP4 activity is associated with no-reflow and major bleeding events in Chinese PCI-treated STEMI patients. Sci Rep 2016; 6:39412. [PMID: 28000723 PMCID: PMC5175165 DOI: 10.1038/srep39412] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/23/2016] [Indexed: 01/08/2023] Open
Abstract
Dipeptidyl peptidase-4 (DPP4) is an important regulator of incretins and inflammation, and it is involved in the pathophysiological process of myocardial infarction (MI). This study investigated the role of plasma DPP4 activity (DPP4a) in patients with ST-segment elevation myocardial infarction (STEMI) who had undergone percutaneous coronary intervention (PCI). We recruited 747 consecutive PCI-treated STEMI patients from a tertiary referral center from January 2014 to October 2015. The outcomes of interest were the rates of no-reflow, in-hospital major adverse cardiac or cerebrovascular events (iMACCE), in-hospital complications (IHC) and in-hospital major bleeding. The DPP4a was lower in STEMI patients compared with the controls (p < 0.0001). Multivariate logistic-regression analyses (adjusted for confounding variables) showed that a 1 U/L increase in DPP4a was associated with an increased rate of no-reflow events (odds ratio [OR]: 1.07; 95% CI: 1.02-1.11; p < 0.01) and a decreased rate of major bleeding events (OR: 0.90; 95% CI: 0.82-0.98; p = 0.02). There were no associations between DPP4a and either iMACCE or IHC. In conclusions, high levels of DPP4a are independently associated with an increased rate of no-reflow events and a decreased rate of major bleeding events in PCT-treated STEMI patients.
Collapse
Affiliation(s)
- Jing Wei Li
- Department of Cardiology, People’s Liberation Army General Hospital, Beijing, China
- Department of Cardiology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yun Dai Chen
- Department of Cardiology, People’s Liberation Army General Hospital, Beijing, China
| | - Wei Ren Chen
- Department of Cardiology, People’s Liberation Army General Hospital, Beijing, China
| | - Jing Jing
- Department of Cardiology, People’s Liberation Army General Hospital, Beijing, China
| | - Jie Liu
- Department of Cardiology, People’s Liberation Army General Hospital, Beijing, China
| | - Yong Qiang Yang
- Department of Cardiology, People’s Liberation Army General Hospital, Beijing, China
| |
Collapse
|
32
|
Effects of linagliptin and liraglutide on glucose- and angiotensin II-induced collagen formation and cytoskeleton degradation in cardiac fibroblasts in vitro. Acta Pharmacol Sin 2016; 37:1349-1358. [PMID: 27498780 DOI: 10.1038/aps.2016.72] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/31/2016] [Indexed: 12/22/2022]
Abstract
AIM Glucagon-like peptide-1 (GLP-1) agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors can not only lower blood glucose levels, but also alleviate cardiac remodeling after myocardial ischemia and hypertension. In the present study, we investigated the effects of a DPP-4 inhibitor (linagliptin) and a GLP-1 activator (liraglutide) on glucose- and angiotensin II (Ang II)-induced collagen formation and cytoskeleton reorganization in cardiac fibroblasts in vitro, and elucidated the related mechanisms. METHODS Cardiac fibroblasts were isolated from the hearts of 6-week-old C57BL/6 mice, and then exposed to different concentrations of glucose or Ang II for 24 h. The expression of fibrotic signals (fibronectin, collagen-1, -3 and -4), as well as ERK1/2 and NF-κB-p65 in the fibroblasts was examined using Western blotting assays. F-actin degradation was detected under inverted laser confocal microscope in fibroblasts stained with Rhodamine phalloidin. RESULTS Glucose (1-40 mmol/L) and Ang II (10-8-10-5 mol/L) dose-dependently increased the expression of fibronectin, collagens, phospho-ERK1/2 and phospho-NF-κB-p65 in cardiac fibroblasts. High concentrations of glucose (≥40 mmol/L) and Ang II (≥10-6 mol/L) caused a significant degradation of F-actin (less assembly F-actin fibers and more disassembly fibers). ERK1/2 inhibitor U0126 (10 μmol/L) and NF-κB inhibitor JSH-23 (10 μmol/L) both markedly suppressed glucose- and angiotensin II-induced fibronectin and collagen expressions in cardiac fibroblasts. Furthermore, pretreatment with liraglutide (10-100 nmol/L) or linagliptin (3 and 30 nmol/L) significantly decreased glucose- and Ang II-induced expression of fibrotic signals, phospho-ERK1/2 and phospho-NF-κB-p65 in cardiac fibroblasts. Moreover, pretreatment with liraglutide (30 nmol/L) or liraglutide (100 nmol/L) markedly inhibited glucose-induced F-actin degradation, however, only liraglutide inhibited Ang II-induced F-actin degradation. CONCLUSION Linagliptin and liraglutide inhibit glucose- and Ang II-induced collagen formation in cardiac fibroblasts via activation of the ERK/NF-κB/pathway. Linagliptin and liraglutide also markedly inhibit glucose-induced F-actin degradation in cardiac fibroblasts, but only liraglutide inhibits Ang II-induced F-actin degradation.
Collapse
|
33
|
Takada S, Masaki Y, Kinugawa S, Matsumoto J, Furihata T, Mizushima W, Kadoguchi T, Fukushima A, Homma T, Takahashi M, Harashima S, Matsushima S, Yokota T, Tanaka S, Okita K, Tsutsui H. Dipeptidyl peptidase-4 inhibitor improved exercise capacity and mitochondrial biogenesis in mice with heart failure via activation of glucagon-like peptide-1 receptor signalling. Cardiovasc Res 2016; 111:338-47. [PMID: 27450980 DOI: 10.1093/cvr/cvw182] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 06/23/2016] [Indexed: 02/07/2023] Open
Abstract
AIMS Exercise capacity is reduced in heart failure (HF) patients, due mostly to skeletal muscle abnormalities including impaired energy metabolism, mitochondrial dysfunction, fibre type transition, and atrophy. Glucagon-like peptide-1 (GLP-1) has been shown to improve exercise capacity in HF patients. We investigated the effects of the administration of a dipeptidyl peptidase (DPP)-4 inhibitor on the exercise capacity and skeletal muscle abnormalities in an HF mouse model after myocardial infarction (MI). METHODS AND RESULTS MI was created in male C57BL/6J mice by ligating the left coronary artery, and a sham operation was performed in other mice. The mice were then divided into two groups according to the treatment with or without a DPP-4 inhibitor, MK-0626 [1 mg/kg body weight (BW)/day] provided in the diet. Four weeks later, the exercise capacity evaluated by treadmill test was revealed to be limited in the MI mice, and it was ameliorated in the MI + MK-0626 group without affecting the infarct size or cardiac function. The citrate synthase activity, mitochondrial oxidative phosphorylation capacity, supercomplex formation, and their quantity were reduced in the skeletal muscle from the MI mice, and these decreases were normalized in the MI + MK-0626 group, in association with the improvement of mitochondrial biogenesis. Immunohistochemical staining also revealed that a shift toward the fast-twitch fibre type in the MI mice was also reversed by MK-0626. Favourable effects of MK-0626 were significantly inhibited by treatment of GLP-1 antagonist, Exendin-(9-39) (150 pmol/kg BW/min, subcutaneous osmotic pumps) in MI + MK-0626 mice. Similarly, exercise capacity and mitochondrial function were significantly improved by treatment of GLP-1 agonist, Exendin-4 (1 nmol/kg/BW/h, subcutaneous osmotic pumps). CONCLUSIONS A DPP-4 inhibitor may be a novel therapeutic agent against the exercise intolerance seen in HF patients by improving the mitochondrial biogenesis in their skeletal muscle.
Collapse
Affiliation(s)
- Shingo Takada
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yoshihiro Masaki
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shintaro Kinugawa
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Junichi Matsumoto
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Takaaki Furihata
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Wataru Mizushima
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Tomoyasu Kadoguchi
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Arata Fukushima
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Tsuneaki Homma
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masashige Takahashi
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shinichi Harashima
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine Kyoto University, Kyoto, Japan
| | - Shouji Matsushima
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Takashi Yokota
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Koichi Okita
- Graduate School of Program in Lifelong Sport, Hokusho University, Ebetsu, Japan
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
34
|
Testosterone and Voluntary Exercise Promote Angiogenesis in Hearts of Rats with Diabetes by Enhancing Expression of VEGF-A and SDF-1a. Can J Diabetes 2016; 40:436-441. [PMID: 27444229 DOI: 10.1016/j.jcjd.2016.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 01/28/2016] [Accepted: 03/08/2016] [Indexed: 11/21/2022]
Abstract
OBJECTIVES Impaired angiogenesis in cardiac tissue is a major complication of diabetes. This study was aimed to evaluate the effects of testosterone and voluntary exercise on vascular endothelial growth factor-A (VEGF-A), stromal cell-derived factor 1a (SDF-1a) and myocardial capillary density in heart of rats with diabetes. METHODS Type 1 diabetes was induced by intraperitoneal injection of 55 mg/kg of streptozotocin in 80 male Wistar rats. After 42 days of treatment with testosterone (2 mg/kg/day) or voluntary exercise alone or in combination, angiogenesis was determined in the hearts by immunostaining for PECAM-1/CD31. The expressions of VEGF-A and SDF-1a levels in heart were also determined by the ELISA method. RESULTS Our results showed that capillary density, VEGF-A and SDF-1a levels in the heart were significantly decreased in castrated rats with diabetes, whereas these effects were reversed by testosterone and exercise. Furthermore, simultaneous treatment of castrated rats with diabetes with testosterone and exercise had a synergistic effect on capillary density, VEGF-A and SDF-1a levels in the heart. In the group with diabetes, either testosterone or exercise increased capillary density, VEGF-A and SDF-1a protein levels in heart tissue. However, the effects of combination therapy in rats with diabetes with testosterone and exercise on capillary density, VEGF-A and SDF-1a levels in the heart was synergistic. CONCLUSIONS Our findings suggest that testosterone and exercise can promote neoangiogenesis in rats with diabetes and in castrated rats with diabetes. The proangiogenesis effect of testosterone and exercise is associated with the enhanced expression of VEGF-A and SDF-1a in heart tissue.
Collapse
|
35
|
Al-Rasheed NM, Al-Rasheed NM, Hasan IH, Al-Amin MA, Al-Ajmi HN, Mahmoud AM. Sitagliptin attenuates cardiomyopathy by modulating the JAK/STAT signaling pathway in experimental diabetic rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:2095-107. [PMID: 27418808 PMCID: PMC4933570 DOI: 10.2147/dddt.s109287] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Sitagliptin, a dipeptidyl peptidase-4 inhibitor, has been reported to promote cardioprotection in diabetic hearts by limiting hyperglycemia and hyperlipidemia. However, little is known about the involvement of the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway modulation in the cardioprotective effects of sitagliptin. The current study aimed to investigate the protective effects of sitagliptin against diabetic cardiomyopathy (DCM), focusing on the modulation of the JAK/STAT pathway. Diabetes was induced by streptozotocin injection, and rats received sitagliptin orally and daily for 90 days. Diabetic rats exhibited hyperglycemia, hyperlipidemia, and a significant increase in heart-to-body weight (HW/BW) ratio. Serum troponin I and creatine kinase MB, cardiac interleukin-6 (IL-6), lipid peroxidation, and nitric oxide levels showed significant increase in diabetic rats. In contrast, both enzymatic and nonenzymatic antioxidant defenses were significantly declined in the heart of diabetic rats. Histopathological study revealed degenerations, increased collagen deposition in the heart of diabetic rats. Sitagliptin alleviated hyperglycemia, hyperlipidemia, HW/BW ratio, histological architecture, oxidative stress, and inflammation, and rejuvenated the antioxidant defenses. In addition, cardiac levels of pJAK2 and pSTAT3 were increased in diabetic rats, an effect which was remarkably decreased after sitagliptin treatment. In conclusion, these results confer an evidence that sitagliptin has great therapeutic potential on DCM through down-regulation of the JAK/STAT signaling pathway.
Collapse
Affiliation(s)
- Nouf M Al-Rasheed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University
| | - Nawal M Al-Rasheed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University; Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Iman H Hasan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University
| | - Maha A Al-Amin
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University
| | - Hanaa N Al-Ajmi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University
| | - Ayman M Mahmoud
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
36
|
Modulation of myocardial injury and collagen deposition following ischaemia-reperfusion by linagliptin and liraglutide, and both together. Clin Sci (Lond) 2016; 130:1353-62. [PMID: 27129181 DOI: 10.1042/cs20160061] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/26/2016] [Indexed: 12/21/2022]
Abstract
Studies have indicated that dipeptidyl peptidase-4 (DPP-4) inhibitors and glucagon-like peptide-1 (GLP-1) agonists reduce infarct size after myocardial ischaemia. Whether these agents modify cardiac remodelling after ischaemia is unclear. Furthermore, it is not known if combination of the two types of drugs is superior to either agent alone. We investigated the modulatory effect of the DPP-4 inhibitor linagliptin alone, the GLP-1 activator liraglutide alone, or the two agents together on myocardial infarct size, left ventricular contractile function and cardiac remodelling signals after a brief period of left coronary artery (LCA) occlusion. C57BL/6 mice were treated with vehicle, the DPP-4 inhibitor linagliptin, the GLP-1 activator liraglutide, or both agents together for 5 days, and then subjected to LCA occlusion (1 h) and reperfusion (3 h). Ischaemia-reperfusion increased reactive oxygen species (ROS) generation and expression of NADPH oxidase (p47(phox), p22(phox) and gp91(phox) subtypes), collagens, fibronectin and proinflammatory cytokines (interleukin 6, tumour necrosis factor α and monocyte chemoattractant protein-1) in the LCA-supplied regions. Pre-treatment with linagliptin or liraglutide reduced infarct size, protected cardiomyocytes from injury and preserved cardiac contractile function in a similar fashion. It is interesting that profibrotic (collagen deposition) signals were expressed soon after ischaemia-reperfusion. Both linagliptin and liraglutide suppressed ROS generation, NADPH oxidase and proinflammatory signals, and reduced collagen deposition. Addition of linagliptin or liraglutide had no significant additive effect above and beyond that of liraglutide and linagliptin given alone. In conclusion, linagliptin and liraglutide can improve cardiac contractile function and indices of cardiac remodelling, which may be related to their role in inhibition of ROS production and proinflammatory cytokines after ischaemia.
Collapse
|
37
|
Connelly KA, Advani A, Zhang Y, Advani SL, Kabir G, Abadeh A, Desjardins JF, Mitchell M, Thai K, Gilbert RE. Dipeptidyl peptidase-4 inhibition improves cardiac function in experimental myocardial infarction: Role of stromal cell-derived factor-1α. J Diabetes 2016; 8:63-75. [PMID: 25565455 DOI: 10.1111/1753-0407.12258] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 11/21/2014] [Accepted: 12/11/2014] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND In addition to degrading glucagon-like peptide-1 (GLP-1), dipeptidyl peptidase-4 (DPP-4) inactivates several chemokines, including stromal cell-derived factor-1α (SDF-1α), a pro-angiogenic and cardiomyocyte protective protein. We hypothesized that DPP-4 inhibition may confer benefit following myocardial infarction (MI) in the diabetic setting as a consequence of enhanced SDF-1α availability rather than potentiating GLP-1. To test this we compared the effects of saxagliptin with those of liraglutide and used the SDF-1α receptor (CXCR4) antagonist plerixafor. METHODS Studies were conducted in streptozotocin-diabetic rats. Rats were randomized to receive saxagliptin (10 mg/kg per day), liraglutide (0.2 mg/kg, s.c., b.i.d.), plerixafor (1 mg/kg per day, s.c.), saxagliptin plus plerixafor or vehicle (1% phosphate-buffered saline). Two weeks later, rats underwent experimental MI, with cardiac function examined 4 weeks after MI. RESULTS Glycemic control and MI size were similar in all groups. Four weeks after MI, mortality was reduced in saxagliptin-treated rats compared with vehicle treatment (P < 0.05). Furthermore, rats receiving saxagliptin had improved cardiac function compared with vehicle-treated rats (P < 0.05). Antagonism of CXCR4 prevented the improvement in cardiac function in saxagliptin-treated rats and was associated with increased mortality (P < 0.05). CONCLUSION Saxagliptin-mediated DPP-4 inhibition, but not liraglutide-mediated GLP-1R agonism, improved cardiac function after MI independent of glucose lowering. These findings suggest that non-GLP-1 actions of DPP-4 inhibition, such as SDF-1α potentiation, mediate biological effects.
Collapse
Affiliation(s)
- Kim A Connelly
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Andrew Advani
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Yanling Zhang
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Suzanne L Advani
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Golam Kabir
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Armin Abadeh
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Jean-Francois Desjardins
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Melissa Mitchell
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Kerri Thai
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Richard E Gilbert
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
38
|
Paneni F. DPP-4 inhibitors, heart failure and type 2 diabetes: all eyes on safety. Cardiovasc Diagn Ther 2015; 5:471-8. [PMID: 26672798 PMCID: PMC4666697 DOI: 10.3978/j.issn.2223-3652.2015.09.06] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 09/23/2015] [Indexed: 12/12/2022]
Abstract
Epidemiological analyses have clearly outlined the association between heart failure (HF) and diabetes (DM). HF patients with concomitant DM show a further increase in morbidity and mortality due to coexistence of several mechanisms including disturbed neurohormonal axis as well as structural and functional abnormalities occurring in the diabetic myocardium. Although several studies have shown that poor glycemic control-as indicated by HbA1c levels-may be associated with an increased risk of HF, this issue remains poorly understood and further evidence is required to show unequivocal benefits of this approach. In the attempt to explore the effects of new anti-hyperglycemic therapies, randomized trials have shown that some glucose-lowering drugs-thought not affecting cardiovascular (CV) death or ischemic complications-might significantly increase the risk of HF-hospitalizations in DM patients. Specifically, the use of dipeptidyl-peptidase-4 (DDP-4) inhibitors (DPP-4i) has recently raised a major safety concern owing to an increase of HF hospitalizations in SAVOR-TIMI 53 trial. In contrast with these findings, the more recent TECOS study as well as new TECOS sub-analyses presented at the last ESC Congress-have yielded to the conclusion that the DPP-4i sitagliptin is not associated with any sort of HF risk. Therefore, increased risk of HF hospitalizations does not seem to be a class effect of DPP-4i. The present article critically discusses available evidence concerning DPP-4i and risk of HF in patients with type 2 diabetes (T2D). The use of DPP-4i in combination therapy is also discussed, in light of the recent EMPA-REG trial.
Collapse
Affiliation(s)
- Francesco Paneni
- Cardiology Unit, Department of Medicine, Karolinska University Hospital, Solna, Stockholm, Sweden
| |
Collapse
|
39
|
Aroor AR, Sowers JR, Jia G, DeMarco VG. Pleiotropic effects of the dipeptidylpeptidase-4 inhibitors on the cardiovascular system. Am J Physiol Heart Circ Physiol 2015; 307:H477-92. [PMID: 24929856 DOI: 10.1152/ajpheart.00209.2014] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dipeptidylpeptidase-4 (DPP-4) is a ubiquitously expressed transmembrane protein that removes NH2-terminal dipeptides from various substrate hormones, chemokines, neuropeptides, and growth factors. Two known substrates of DPP-4 include the incretin hormones glucagon-like peptide-1 (GLP-1) and gastric inhibitory peptide, which are secreted by enteroendocrine cells in response to postprandial hyperglycemia and account for 60–70% of postprandial insulin secretion. DPP-4 inhibitors (DPP-4i) block degradation of GLP-1 and gastric inhibitory peptide, extend their insulinotropic effect, and improve glycemia. Since 2006, several DPP-4i have become available for treatment of type 2 diabetes mellitus. Clinical trials confirm that DPP-4i raises GLP-1 levels in plasma and improves glycemia with very low risk for hypoglycemia and other side effects. Recent studies also suggest that DPP-4i confers cardiovascular and kidney protection, beyond glycemic control, which may reduce the risk for further development of the multiple comorbidities associated with obesity/type 2 diabetes mellitus, including hypertension and cardiovascular disease (CVD) and kidney disease. The notion that DPP-4i may improve CVD outcomes by mechanisms beyond glycemic control is due to both GLP-1-dependent and GLP-1-independent effects. The CVD protective effects by DPP-4i result from multiple factors including insulin resistance, oxidative stress, dyslipidemia, adipose tissue dysfunction, dysfunctional immunity, and antiapoptotic properties of these agents in the heart and vasculature. This review focuses on cellular and molecular mechanisms mediating the CVD protective effects of DPP-4i beyond favorable effects on glycemic control.
Collapse
|
40
|
Zhong J, Goud A, Rajagopalan S. Glycemia Lowering and Risk for Heart Failure: Recent Evidence from Studies of Dipeptidyl Peptidase Inhibition. Circ Heart Fail 2015; 8:819-825. [PMID: 26199308 DOI: 10.1161/circheartfailure.114.001967] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 04/22/2015] [Indexed: 01/12/2023]
Affiliation(s)
- Jixin Zhong
- From the Division of Cardiovascular Medicine, University of Maryland, Baltimore
| | - Aditya Goud
- From the Division of Cardiovascular Medicine, University of Maryland, Baltimore
| | - Sanjay Rajagopalan
- From the Division of Cardiovascular Medicine, University of Maryland, Baltimore.
| |
Collapse
|
41
|
Nishikido T, Oyama JI, Ohira H, Node K. The effects and safety of vildagliptin on cardiac function after acute myocardial infarction. Int J Cardiol 2015; 188:13-5. [DOI: 10.1016/j.ijcard.2015.03.433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 03/31/2015] [Indexed: 01/09/2023]
|
42
|
Godinho R, Mega C, Teixeira-de-Lemos E, Carvalho E, Teixeira F, Fernandes R, Reis F. The Place of Dipeptidyl Peptidase-4 Inhibitors in Type 2 Diabetes Therapeutics: A "Me Too" or "the Special One" Antidiabetic Class? J Diabetes Res 2015; 2015:806979. [PMID: 26075286 PMCID: PMC4449938 DOI: 10.1155/2015/806979] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 04/09/2015] [Accepted: 04/11/2015] [Indexed: 12/12/2022] Open
Abstract
Incretin-based therapies, the most recent therapeutic options for type 2 diabetes mellitus (T2DM) management, can modify various elements of the disease, including hypersecretion of glucagon, abnormal gastric emptying, postprandial hyperglycaemia, and, possibly, pancreatic β cell dysfunction. Dipeptidyl peptidase-4 (DPP-4) inhibitors (gliptins) increase glucagon-like peptide-1 (GLP-1) availability and correct the "incretin defect" seen in T2DM patients. Clinical studies have shown good glycaemic control with minimal risk of hypoglycaemia or any other adverse effects, despite the reports of pancreatitis, whose association remains to be proved. Recent studies have been focusing on the putative ability of DPP-4 inhibitors to preserve pancreas function, in particular due to the inhibition of apoptotic pathways and stimulation of β cell proliferation. In addition, other cytoprotective effects on other organs/tissues that are involved in serious T2DM complications, including the heart, kidney, and retina, have been increasingly reported. This review outlines the therapeutic potential of DPP-4 inhibitors for the treatment of T2DM, focusing on their main features, clinical applications, and risks, and discusses the major challenges for the future, in particular the possibility of becoming the preferred therapy for T2DM due to their ability to modify the natural history of the disease and ameliorate nephropathy, retinopathy, and cardiovascular complications.
Collapse
Affiliation(s)
- Ricardo Godinho
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, Coimbra University, 3000-548 Coimbra, Portugal
| | - Cristina Mega
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, Coimbra University, 3000-548 Coimbra, Portugal
- ESAV, Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal
| | - Edite Teixeira-de-Lemos
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, Coimbra University, 3000-548 Coimbra, Portugal
- ESAV, Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal
| | - Eugénia Carvalho
- Center for Neuroscience and Cell Biology-Institute for Biomedical Imaging and Life Sciences (CNC.IBILI) Research Unit, University of Coimbra, 3000-548 Coimbra, Portugal
- The Portuguese Diabetes Association (APDP), 1250-189 Lisbon, Portugal
| | - Frederico Teixeira
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, Coimbra University, 3000-548 Coimbra, Portugal
| | - Rosa Fernandes
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, Coimbra University, 3000-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology-Institute for Biomedical Imaging and Life Sciences (CNC.IBILI) Research Unit, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Flávio Reis
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, Coimbra University, 3000-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology-Institute for Biomedical Imaging and Life Sciences (CNC.IBILI) Research Unit, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
43
|
Zhong J, Maiseyeu A, Davis SN, Rajagopalan S. DPP4 in cardiometabolic disease: recent insights from the laboratory and clinical trials of DPP4 inhibition. Circ Res 2015; 116:1491-1504. [PMID: 25858071 PMCID: PMC4394189 DOI: 10.1161/circresaha.116.305665] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 03/11/2015] [Indexed: 12/11/2022]
Abstract
The discovery of incretin-based medications represents a major therapeutic advance in the pharmacological management of type 2 diabetes mellitus (T2DM), as these agents avoid hypoglycemia, weight gain, and simplify the management of T2DM. Dipeptidyl peptidase-4 (CD26, DPP4) inhibitors are the most widely used incretin-based therapy for the treatment of T2DM globally. DPP4 inhibitors are modestly effective in reducing HbA1c (glycated hemoglobin) (≈0.5%) and while these agents were synthesized with the understanding of the role that DPP4 plays in prolonging the half-life of incretins such as glucagon-like peptide-1 and gastric inhibitory peptide, it is now recognized that incretins are only one of many targets of DPP4. The widespread expression of DPP4 on blood vessels, myocardium, and myeloid cells and the nonenzymatic function of CD26 as a signaling and binding protein, across a wide range of species, suggest a teleological role in cardiovascular regulation and inflammation. Indeed, DPP4 is upregulated in proinflammatory states including obesity, T2DM, and atherosclerosis. Consistent with this maladaptive role, the effects of DPP4 inhibition seem to exert a protective role in cardiovascular disease at least in preclinical animal models. Although 2 large clinical trials suggest a neutral effect on cardiovascular end points, current limitations of performing trials in T2DM over a limited time horizon on top of maximal medical therapy must be acknowledged before rendering judgment on the cardiovascular efficacy of these agents. This review will critically review the science of DPP4 and the effects of DPP4 inhibitors on the cardiovascular system.
Collapse
Affiliation(s)
- Jixin Zhong
- From the Divisions of Cardiovascular Medicine and Endocrinology, University of Maryland, Baltimore
| | - Andrei Maiseyeu
- From the Divisions of Cardiovascular Medicine and Endocrinology, University of Maryland, Baltimore
| | - Stephen N Davis
- From the Divisions of Cardiovascular Medicine and Endocrinology, University of Maryland, Baltimore
| | - Sanjay Rajagopalan
- From the Divisions of Cardiovascular Medicine and Endocrinology, University of Maryland, Baltimore.
| |
Collapse
|
44
|
Hanna A, Connelly KA, Josse RG, McIntyre RS. The non-glycemic effects of incretin therapies on cardiovascular outcomes, cognitive function and bone health. Expert Rev Endocrinol Metab 2015; 10:101-114. [PMID: 30289042 DOI: 10.1586/17446651.2015.972370] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The incretin therapies, glucagon-like peptide-1 receptor agonists and dipeptidyl-peptidase-4 inhibitors, have been developed to lower blood glucose levels in patients with Type 2 diabetes. However, in addition to being a treatment strategy to improve metabolic control, incretin therapies have shown effects independent of glycemic control, including the potential to positively impact cardiovascular events, cognitive deficits and bone mineral density. This paper outlines the non-glycemic effects of incretin therapies on cardiovascular disease, cognitive function and bone health.
Collapse
Affiliation(s)
- Amir Hanna
- a 1 Department of Medicine, University of Toronto, Toronto, ON, Canada
- b 2 Division of Endocrinology and Metabolism, St. Michael's Hospital, Toronto, ON, Canada
| | - Kim A Connelly
- c 3 Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital and Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Robert G Josse
- a 1 Department of Medicine, University of Toronto, Toronto, ON, Canada
- b 2 Division of Endocrinology and Metabolism, St. Michael's Hospital, Toronto, ON, Canada
| | - Roger S McIntyre
- d 4 Mood Disorder Psychopharmacology Unit, University Health Network, University of Toronto, Toronto, ON, Canada
- e 5 Department of Psychiatry and Pharmacology, and Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
45
|
Clifton P. Do dipeptidyl peptidase IV (DPP-IV) inhibitors cause heart failure? Clin Ther 2014; 36:2072-2079. [PMID: 25453730 DOI: 10.1016/j.clinthera.2014.10.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/10/2014] [Accepted: 10/15/2014] [Indexed: 12/11/2022]
Abstract
PURPOSE Although recent reports suggest an association between saxagliptin and an increased risk of admissions for heart failure, it is not clear whether dipeptidyl peptidase IV (DPP-IV) inhibition contributes to heart failure in high-risk patients. The purpose of this research is to understand heart failure risk among high-risk patients with type 2 diabetes. METHODS This is a systematic review of data published in full papers and abstract form using the terms DPP-IV inhibitors and heart failure published since October 2013. Data from insurance and hospital databases were combined with those from multiple published trials, including the Saxagliptin Assessment of Vascular Outcomes Recorded in Patients with Diabetes Mellitus-Thrombolysis in Myocardial Infarction 53 (SAVOR-TIMI 53) trial; Examination of Cardiovascular Outcomes With Alogliptin Versus Standard of Care (EXAMINE), and Vildagliptin in Ventricular Dysfunction Diabetes (VIVIDD) trial as well as pooled analyses of linagliptin and saxagliptin placebo-controlled trials to examine heart failure among patients represented in those datasets. FINDINGS A meta-analysis of the 9 datasets showed an increase in heart failure with dipeptidyl peptidase IV inhibitors of 15% (P = 0.017). There was no statistical heterogeneity, nor was there a statistical difference between cohort studies and randomized, controlled trials (P = 0.3), even though cohort studies alone were not significant (relative risk: 1.1; P = 0.32). Removing SAVOR-TIMI 53 data produced an insignificant increase in heart failure of 12% (P = 0.09) in the rest of the studies. In the randomized, controlled trials, the increased risk was 24% (P = 0.002). There was no statistical difference between those studies with and without baseline cardiovascular disease (P = 0.58), although the cardiovascular disease studies were borderline significant (P = 0.06). There was no publication bias. IMPLICATIONS There are data from studies using sitagliptin, saxagliptin, and alogliptin showing that these agents may increase the risk of hospitalization for heart failure. More data are required for a definitive conclusion.
Collapse
Affiliation(s)
- Peter Clifton
- University of South Australia, Adelaide, South Australia, Australia.
| |
Collapse
|
46
|
Seino Y, Yabe D. Glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1: Incretin actions beyond the pancreas. J Diabetes Investig 2014; 4:108-30. [PMID: 24843641 PMCID: PMC4019264 DOI: 10.1111/jdi.12065] [Citation(s) in RCA: 195] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 01/24/2013] [Indexed: 12/14/2022] Open
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are the two primary incretin hormones secreted from the intestine on ingestion of various nutrients to stimulate insulin secretion from pancreatic β-cells glucose-dependently. GIP and GLP-1 undergo degradation by dipeptidyl peptidase-4 (DPP-4), and rapidly lose their biological activities. The actions of GIP and GLP-1 are mediated by their specific receptors, the GIP receptor (GIPR) and the GLP-1 receptor (GLP-1R), which are expressed in pancreatic β-cells, as well as in various tissues and organs. A series of investigations using mice lacking GIPR and/or GLP-1R, as well as mice lacking DPP-4, showed involvement of GIP and GLP-1 in divergent biological activities, some of which could have implications for preventing diabetes-related microvascular complications (e.g., retinopathy, nephropathy and neuropathy) and macrovascular complications (e.g., coronary artery disease, peripheral artery disease and cerebrovascular disease), as well as diabetes-related comorbidity (e.g., obesity, non-alcoholic fatty liver disease, bone fracture and cognitive dysfunction). Furthermore, recent studies using incretin-based drugs, such as GLP-1 receptor agonists, which stably activate GLP-1R signaling, and DPP-4 inhibitors, which enhance both GLP-1R and GIPR signaling, showed that GLP-1 and GIP exert effects possibly linked to prevention or treatment of diabetes-related complications and comorbidities independently of hyperglycemia. We review recent findings on the extrapancreatic effects of GIP and GLP-1 on the heart, brain, kidney, eye and nerves, as well as in the liver, fat and several organs from the perspective of diabetes-related complications and comorbidities.
Collapse
Affiliation(s)
| | - Daisuke Yabe
- Division of Diabetes Clinical Nutrition and Endocrinology Kansai Electric Power Hospital Osaka Japan
| |
Collapse
|
47
|
Dipeptidyl peptidase-4 inhibitors are associated with improved left ventricular diastolic function after acute myocardial infarction in diabetic patients. Heart Vessels 2014; 30:696-701. [PMID: 24736945 DOI: 10.1007/s00380-014-0509-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 03/28/2014] [Indexed: 12/30/2022]
Abstract
Dipeptidyl peptidase-4 (DPP4) is an integral membrane glycoprotein that modulates the pathological state of diabetes mellitus (DM), and DPP4 inhibitors are a new class of anti-type-2 DM drugs. Recent preclinical studies have associated DPP4 inhibition with improved myocardial systolic and diastolic function. Based on preclinical findings, we investigated associations between the administration of DPP4 inhibitors and cardiac function after acute myocardial infarction (AMI) in a clinical setting. We enrolled 34 patients with diabetes who were treated for acute myocardial infarction at our hospital between January 2010 and December 2012. We retrospectively compared changes in cardiac parameters determined by trans-thoracic echocardiography between patients treated with (DPP4-I group; n = 13) or without (non-DPP4-I group; n = 21) a DPP4 inhibitor during follow-up. The values of E/e' and of e'/a' significantly decreased and increased, respectively, in the DPP4-I, compared with the non-DPP4-I group (-2.53 ± 5.53 vs. 2.58 ± 5.68, p = 0.038 and 0.08 ± 0.23 vs. -0.12 ± 0.21, p = 0.036, respectively). We concluded that DPP4 inhibitors could improve E/e' and e'/a' in patients with DM and AMI and thus might be effective for treating left ventricular diastolic failure.
Collapse
|
48
|
The emerging role of dipeptidyl peptidase-4 inhibitors in cardiovascular protection: current position and perspectives. Cardiovasc Drugs Ther 2014; 27:297-307. [PMID: 23645229 DOI: 10.1007/s10557-013-6459-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Dipeptidyl peptidase-4 (DPP-4 or CD26) inhibitors, a new class of oral anti-hyperglycemic agents that prolong the bioavailability of the endogenously secreted incretin hormone glucagon-like peptide-1 (GLP-1) and the glucose-dependent insulinotropic polypeptide (GIP), are effective in the treatment of diabetes. Accumulating data have indicated that DPP-4 inhibitors play important protective roles in the cardiovascular system. DPP-4 inhibitors act to decrease myocardial infarct size, stabilize the cardiac electrophysiological state during myocardial ischemia, reduce ischemia/reperfusion injury, and prevent left ventricular remodeling after myocardial infarction. Moreover, DPP-4 inhibitors can mobilize stem/progenitor cells to move to sites of cardiovascular injury, thus further promoting tissue repair. In addition, DPP-4 inhibitors not only improve myocardial metabolism but also regulate cardioactive peptides. DPP-4 inhibitors can also protect the vasculature through their anti-inflammatory and anti-atherosclerotic effects and through the ability of the inhibitors to promote vascular relaxation. Finally, the potential effects of DPP-4 inhibitors on blood pressure and lipid metabolism have also been investigated. However, some reports on the cardioprotective activities of DPP-4 inhibitors are controversial. Herein, we summarize the available data on cardiovascular protection by DPP-4 inhibitors that have emerged in recent years and discuss current position and future perspectives concerning the use of DPP-4 inhibitors in cardiovascular medicine.
Collapse
|
49
|
Huynh K, Bernardo BC, McMullen JR, Ritchie RH. Diabetic cardiomyopathy: mechanisms and new treatment strategies targeting antioxidant signaling pathways. Pharmacol Ther 2014; 142:375-415. [PMID: 24462787 DOI: 10.1016/j.pharmthera.2014.01.003] [Citation(s) in RCA: 425] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 01/08/2014] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease is the primary cause of morbidity and mortality among the diabetic population. Both experimental and clinical evidence suggest that diabetic subjects are predisposed to a distinct cardiomyopathy, independent of concomitant macro- and microvascular disorders. 'Diabetic cardiomyopathy' is characterized by early impairments in diastolic function, accompanied by the development of cardiomyocyte hypertrophy, myocardial fibrosis and cardiomyocyte apoptosis. The pathophysiology underlying diabetes-induced cardiac damage is complex and multifactorial, with elevated oxidative stress as a key contributor. We now review the current evidence of molecular disturbances present in the diabetic heart, and their role in the development of diabetes-induced impairments in myocardial function and structure. Our focus incorporates both the contribution of increased reactive oxygen species production and reduced antioxidant defenses to diabetic cardiomyopathy, together with modulation of protein signaling pathways and the emerging role of protein O-GlcNAcylation and miRNA dysregulation in the progression of diabetic heart disease. Lastly, we discuss both conventional and novel therapeutic approaches for the treatment of left ventricular dysfunction in diabetic patients, from inhibition of the renin-angiotensin-aldosterone-system, through recent evidence favoring supplementation of endogenous antioxidants for the treatment of diabetic cardiomyopathy. Novel therapeutic strategies, such as gene therapy targeting the phosphoinositide 3-kinase PI3K(p110α) signaling pathway, and miRNA dysregulation, are also reviewed. Targeting redox stress and protective protein signaling pathways may represent a future strategy for combating the ever-increasing incidence of heart failure in the diabetic population.
Collapse
Affiliation(s)
- Karina Huynh
- Baker IDI Heart & Diabetes Institute, Melbourne, Australia; Department of Medicine, Monash University, Clayton, Victoria, Australia
| | | | - Julie R McMullen
- Baker IDI Heart & Diabetes Institute, Melbourne, Australia; Department of Medicine, Monash University, Clayton, Victoria, Australia; Department of Physiology, Monash University, Clayton, Victoria, Australia.
| | - Rebecca H Ritchie
- Baker IDI Heart & Diabetes Institute, Melbourne, Australia; Department of Medicine, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
50
|
Ravassa S, Barba J, Coma-Canella I, Huerta A, López B, González A, Díez J. The activity of circulating dipeptidyl peptidase-4 is associated with subclinical left ventricular dysfunction in patients with type 2 diabetes mellitus. Cardiovasc Diabetol 2013; 12:143. [PMID: 24099410 PMCID: PMC3852480 DOI: 10.1186/1475-2840-12-143] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 09/15/2013] [Indexed: 12/25/2022] Open
Abstract
Background Patients with type 2 diabetes mellitus (T2DM) present subclinical left ventricular systolic and/or diastolic dysfunction (LVD). Dipeptidyl peptidase-4 (DPP4) inactivates peptides that possess cardioprotective actions. Our aim was to analyze whether the activity of circulating DPP4 is associated with echocardiographically defined LVD in asymptomatic patients with T2DM. Methods In this cross-sectional study, we examined 83 T2DM patients with no coronary or valve heart disease and 59 age and gender-matched non-diabetic subjects. Plasma DPP4 activity (DPP4a) was measured by enzymatic assay and serum amino-terminal pro-brain natriuretic peptide (NT-proBNP) was measured by enzyme-linked immunosorbent assay. LV function was assessed by two-dimensional echocardiographic imaging, targeted M-mode recordings and Doppler ultrasound measurements. Differences in means were assessed by t-tests and one-way ANOVA. Associations were assessed by adjusted multiple linear regression and logistic regression analyses. Results DPP4a was increased in T2DM patients as compared with non-diabetic subjects (5855 ± 1632 vs 5208 ± 957 pmol/min/mL, p < 0.05). Clinical characteristics and echocardiographic parameters assessing LV morphology were similar across DPP4a tertiles in T2DM patients. However, prevalence of LVD progressively increased across incremental DPP4a tertiles (13%, 39% and 71%, all p < 0.001). Multivariate regression analysis confirmed the independent associations of DPP4a with LVD in T2DM patients (p < 0.05). Similarly, multiple logistic regression analysis showed that an increase of 100 pmol/min/min plasma DPP4a was independently associated with an increased frequency of LVD with an adjusted odds ratio of 1.10 (95% CI, 1.04 to 1.15, p = 0.001). Conclusions An excessive activity of circulating DPP4 is independently associated with subclinical LVD in T2DM patients. Albeit descriptive, these findings suggest that DPP4 may be involved in the mechanisms of LVD in T2DM.
Collapse
Affiliation(s)
- Susana Ravassa
- Division of Cardiovascular Sciences, Centre for Applied Medical Research, University of Navarra, Pamplona, Spain.
| | | | | | | | | | | | | |
Collapse
|