1
|
Salerno B, Cornaggia M, Sabatino R, Di Cesare A, Mantovani C, Barco L, Cordioli B, Bano L, Losasso C. The "best practices for farming" successfully contributed to decrease the antibiotic resistance gene abundances within dairy farms. Front Vet Sci 2025; 11:1420282. [PMID: 39840338 PMCID: PMC11748548 DOI: 10.3389/fvets.2024.1420282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/19/2024] [Indexed: 01/23/2025] Open
Abstract
Introduction Farms are significant hotspots for the dissemination of antibiotic-resistant bacteria and genes (ARGs) into the environment and directly to humans. The prevalence of ARGs on farms underscores the need for effective strategies to reduce their spread. This study aimed to evaluate the impact of a guideline on "best practices for farming" aimed at reducing the dissemination of antibiotic resistance. Methods A guideline focused on prudent antibiotic use, selective therapy, and hygienic and immune-prophylactic practices was developed and provided to the owners of 10 selected dairy farms and their veterinarians. Fecal samples were collected from lactating cows, dry cows, and calves both before and after the implementation of the guideline. ARGs (bla TEM, ermB, sul2, and tetA) were initially screened by end-point PCR, followed by quantification using digital droplet PCR. ARG abundance was expressed in relative terms by dividing the copy number of ARGs by the copy number of the 16S rRNA gene. Results The ARG abundances were higher in lactating cows compared to other categories. Despite similar levels of antibiotic administration (based on veterinary prescription data from the sampled farms) in both sampling campaigns, the total abundance of selected ARGs, particularly bla TEM and tetA, significantly decreased after the adoption of the farming guidelines. Discussion This study highlights the positive impact of prudent antibiotic use and the implementation of farming best practices in reducing the abundance of ARGs. The lactating cow category emerged as a crucial point of intervention for reducing the spread of antibiotic resistance. These findings contribute to ongoing efforts to address antibiotic resistance in farm environments and strengthen the evidence supporting the adoption of good farming practices.
Collapse
Affiliation(s)
- Barbara Salerno
- Laboratory of Microbial Ecology and Genomics, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Matteo Cornaggia
- Microbiology and Veterinary Diagnostic Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Villorba, Italy
| | - Raffaella Sabatino
- Molecular Ecology Group (MEG), Water Research Institute-National Research Council of Italy (CNR-IRSA), Verbania, Italy
| | - Andrea Di Cesare
- Molecular Ecology Group (MEG), Water Research Institute-National Research Council of Italy (CNR-IRSA), Verbania, Italy
| | - Claudio Mantovani
- Science Communication Unit, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Lisa Barco
- Laboratory of Microbial Ecology and Genomics, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Benedetta Cordioli
- Microbiology and Veterinary Diagnostic Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Villorba, Italy
| | - Luca Bano
- Microbiology and Veterinary Diagnostic Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Villorba, Italy
| | - Carmen Losasso
- Laboratory of Microbial Ecology and Genomics, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| |
Collapse
|
2
|
Mirabile A, Sangiorgio G, Bonacci PG, Bivona D, Nicitra E, Bonomo C, Bongiorno D, Stefani S, Musso N. Advancing Pathogen Identification: The Role of Digital PCR in Enhancing Diagnostic Power in Different Settings. Diagnostics (Basel) 2024; 14:1598. [PMID: 39125474 PMCID: PMC11311727 DOI: 10.3390/diagnostics14151598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
Digital polymerase chain reaction (dPCR) has emerged as a groundbreaking technology in molecular biology and diagnostics, offering exceptional precision and sensitivity in nucleic acid detection and quantification. This review highlights the core principles and transformative potential of dPCR, particularly in infectious disease diagnostics and environmental surveillance. Emphasizing its evolution from traditional PCR, dPCR provides accurate absolute quantification of target nucleic acids through advanced partitioning techniques. The review addresses the significant impact of dPCR in sepsis diagnosis and management, showcasing its superior sensitivity and specificity in early pathogen detection and identification of drug-resistant genes. Despite its advantages, challenges such as optimization of experimental conditions, standardization of data analysis workflows, and high costs are discussed. Furthermore, we compare various commercially available dPCR platforms, detailing their features and applications in clinical and research settings. Additionally, the review explores dPCR's role in water microbiology, particularly in wastewater surveillance and monitoring of waterborne pathogens, underscoring its importance in public health protection. In conclusion, future prospects of dPCR, including methodological optimization, integration with innovative technologies, and expansion into new sectors like metagenomics, are explored.
Collapse
Affiliation(s)
- Alessia Mirabile
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (A.M.); (G.S.); (P.G.B.); (D.B.); (E.N.); (C.B.); (S.S.); (N.M.)
| | - Giuseppe Sangiorgio
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (A.M.); (G.S.); (P.G.B.); (D.B.); (E.N.); (C.B.); (S.S.); (N.M.)
| | - Paolo Giuseppe Bonacci
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (A.M.); (G.S.); (P.G.B.); (D.B.); (E.N.); (C.B.); (S.S.); (N.M.)
| | - Dalida Bivona
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (A.M.); (G.S.); (P.G.B.); (D.B.); (E.N.); (C.B.); (S.S.); (N.M.)
| | - Emanuele Nicitra
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (A.M.); (G.S.); (P.G.B.); (D.B.); (E.N.); (C.B.); (S.S.); (N.M.)
| | - Carmelo Bonomo
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (A.M.); (G.S.); (P.G.B.); (D.B.); (E.N.); (C.B.); (S.S.); (N.M.)
| | - Dafne Bongiorno
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (A.M.); (G.S.); (P.G.B.); (D.B.); (E.N.); (C.B.); (S.S.); (N.M.)
| | - Stefania Stefani
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (A.M.); (G.S.); (P.G.B.); (D.B.); (E.N.); (C.B.); (S.S.); (N.M.)
- U.O.C. Laboratory Analysis Unit, University Hospital Policlinico-San Marco, Via Santa Sofia 78, 95123 Catania, Italy
| | - Nicolò Musso
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (A.M.); (G.S.); (P.G.B.); (D.B.); (E.N.); (C.B.); (S.S.); (N.M.)
| |
Collapse
|
3
|
Bourdonnais E, Le Bris C, Brauge T, Midelet G. Monitoring indicator genes to assess antimicrobial resistance contamination in phytoplankton and zooplankton communities from the English Channel and the North Sea. Front Microbiol 2024; 15:1313056. [PMID: 38389523 PMCID: PMC10882542 DOI: 10.3389/fmicb.2024.1313056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Phytoplankton and zooplankton play a crucial role in marine ecosystems as the basis of the food webs but are also vulnerable to environmental pollutants. Among emerging pollutants, antimicrobial resistance (AMR) is a major public health problem encountered in all environmental compartments. However, the role of planktonic communities in its dissemination within the marine environment remains largely unexplored. In this study, we monitored four genes proposed as AMR indicators (tetA, blaTEM, sul1, and intI1) in phytoplankton and zooplankton samples collected in the English Channel and the North Sea. The indicator gene abundance was mapped to identify the potential sources of contamination. Correlation was assessed with environmental parameters to explore the potential factors influencing the abundance of AMR in the plankton samples. The prevalence in phytoplankton and zooplankton of sul1 and intI1, the most quantified indicator genes, ranged from 63 to 88%. A higher level of phytoplankton and zooplankton carrying these genes was observed near the French and English coasts in areas subjected to anthropogenic discharges from the lands but also far from the coasts. Correlation analysis demonstrated that water temperature, pH, dissolved oxygen and turbidity were correlated to the abundance of indicator genes associated with phytoplankton and zooplankton samples. In conclusion, the sul1 and intI1 genes would be suitable indicators for monitoring AMR contamination of the marine environment, either in phytoplankton and zooplankton communities or in seawater. This study fills a part of the gaps in knowledge about the AMR transport by marine phytoplankton and zooplankton, which may play a role in the transmission of resistance to humans through the marine food webs.
Collapse
Affiliation(s)
- Erwan Bourdonnais
- ANSES, Laboratoire de Sécurité des Aliments, Unité Bactériologie et Parasitologie des Produits de la Pêche et de l'Aquaculture, Boulogne-sur-Mer, France
- Univ. du Littoral Côte d'Opale, UMR 1158 BioEcoAgro, Institut Charles Viollette, Unité sous Contrat ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. de Picardie Jules Verne, Univ. de Liège, Junia, Boulogne-sur-Mer, France
| | - Cédric Le Bris
- Univ. du Littoral Côte d'Opale, UMR 1158 BioEcoAgro, Institut Charles Viollette, Unité sous Contrat ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. de Picardie Jules Verne, Univ. de Liège, Junia, Boulogne-sur-Mer, France
| | - Thomas Brauge
- ANSES, Laboratoire de Sécurité des Aliments, Unité Bactériologie et Parasitologie des Produits de la Pêche et de l'Aquaculture, Boulogne-sur-Mer, France
| | - Graziella Midelet
- ANSES, Laboratoire de Sécurité des Aliments, Unité Bactériologie et Parasitologie des Produits de la Pêche et de l'Aquaculture, Boulogne-sur-Mer, France
| |
Collapse
|
4
|
Di Cesare A, Sabatino R, Sbaffi T, Fontaneto D, Brambilla D, Beghi A, Pandolfi F, Borlandelli C, Fortino D, Biccai G, Genoni P, Corno G. Anthropogenic pollution drives the bacterial resistome in a complex freshwater ecosystem. CHEMOSPHERE 2023; 331:138800. [PMID: 37121282 DOI: 10.1016/j.chemosphere.2023.138800] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/06/2023] [Accepted: 04/27/2023] [Indexed: 05/03/2023]
Abstract
Aquatic ecosystems in anthropogenically impacted areas are important reservoirs of antibiotic resistance genes (ARGs) of allochthonous origin. However, the dynamics of the different ARGs within the bacterial communities of lakes and rivers, as well as the factors that drive their selection, are not completely understood. In this study, we analysed the fate of the bacterial resistome (total content of ARGs and of metal resistance genes, MRGs) for a period of six months (summer-winter) in a continuum lake-river-lake system (Lake Varese, River Bardello, Lake Maggiore) in Northern Italy, by shotgun metagenomics. The metagenomic data were then compared with chemical, physical and microbiological data, to infer the role of anthropogenic pressure in the different sampling stations. ARGs and MRGs were more abundant and diverse in the River Bardello, characterised by the highest anthropogenic pollution. The date of sampling influenced ARGs and MRGs, with higher abundances in summer (August) than in fall or in winter, when the impact of the treated wastewater discharge in the river was limited by a higher water flow from Lake Varese. ARG and MRG abundances were significantly correlated and they co-occurred in the main network analysis modules with potential pathogenic bacteria. Different levels of anthropogenic impact selectively promoted specific ARGs while others, generally abundant in waters, were not affected by anthropogenic pressure. Reducing the level of anthropogenic pressure resulted in a rapid decrease of most ARGs. From our results, the role of anthropogenic pressure in promoting the spread of specific antibiotic resistances and of potential pathogens in aquatic ecosystem becomes clear. Finally we highlight the strict correlation between ARGs and MRGs suggesting their potential co-selection in stressed aquatic bacterial communities.
Collapse
Affiliation(s)
- Andrea Di Cesare
- National Research Council of Italy - Water Research Institute (CNR-IRSA) Molecular Ecology Group (MEG), Verbania, Italy
| | - Raffaella Sabatino
- National Research Council of Italy - Water Research Institute (CNR-IRSA) Molecular Ecology Group (MEG), Verbania, Italy
| | - Tomasa Sbaffi
- National Research Council of Italy - Water Research Institute (CNR-IRSA) Molecular Ecology Group (MEG), Verbania, Italy
| | - Diego Fontaneto
- National Research Council of Italy - Water Research Institute (CNR-IRSA) Molecular Ecology Group (MEG), Verbania, Italy
| | - Diego Brambilla
- National Research Council of Italy - Water Research Institute (CNR-IRSA) Molecular Ecology Group (MEG), Verbania, Italy
| | - Andrea Beghi
- Regional Environmental Protection Agency of Lombardia, Italy
| | - Franca Pandolfi
- Regional Environmental Protection Agency of Lombardia, Italy
| | | | - Davide Fortino
- Regional Environmental Protection Agency of Lombardia, Italy
| | - Giovanni Biccai
- Regional Environmental Protection Agency of Lombardia, Italy
| | - Pietro Genoni
- Regional Environmental Protection Agency of Lombardia, Italy
| | - Gianluca Corno
- National Research Council of Italy - Water Research Institute (CNR-IRSA) Molecular Ecology Group (MEG), Verbania, Italy.
| |
Collapse
|
5
|
Doni L, Oliveri C, Lasa A, Di Cesare A, Petrin S, Martinez-Urtaza J, Coman F, Richardson A, Vezzulli L. Large-scale impact of the 2016 Marine Heatwave on the plankton-associated microbial communities of the Great Barrier Reef (Australia). MARINE POLLUTION BULLETIN 2023; 188:114685. [PMID: 36739716 DOI: 10.1016/j.marpolbul.2023.114685] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
The Great Barrier Reef (GBR) is the world's largest coral ecosystem and is threatened by climate change. This study investigated the impact of the 2016 Marine Heatwave (MHW) on plankton associated microbial communities along a ∼800 km transect in the GBR. 16S rRNA gene metabarcoding of archived plankton samples collected from November 2014 to August 2016 in this region showed a significant increase in Planctomycetes and bacteria belonging to the genus Vibrio and Synechococcus during and after the heatwave. Notably, Droplet Digital PCR and targeted metagenomic analysis applied on samples collected four months after the MHW event revealed the presence of several potential pathogenic Vibrio species previously associated with diseases in aquatic animals. Overall, the 2016 MHW significantly impacted the surface picoplankton community and fostered the spread of potentially pathogenic bacteria across the GBR providing an additional threat for marine biodiversity in this area.
Collapse
Affiliation(s)
- Lapo Doni
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132 Genoa, Italy
| | - Caterina Oliveri
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132 Genoa, Italy
| | - Aide Lasa
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132 Genoa, Italy; Centro de Investigación Mariña da Universidade de Vigo (CIM-UVigo), Departamento de Ecología y Biología Animal, Universidade de Vigo, 36310 Vigo, Spain
| | - Andrea Di Cesare
- Water Research Institute (IRSA) - MEG Molecular Ecology Group, CNR - National Research Council of Italy, Verbania 28922, Italy
| | - Sara Petrin
- Laboratory of Microbial ecology and Genomics, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro 35020, Italy
| | - Jaime Martinez-Urtaza
- Department of Genetics and Microbiology, Facultat de Biociéncies, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain
| | - Frank Coman
- CSIRO Oceans and Atmosphere, EcoSciences Precinct, 41 Boggo Road, Dutton Park, Brisbane 4102, QLD, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO) Oceans and Atmosphere, BioSciences Precinct (QBP), St Lucia, QLD, Australia
| | - Anthony Richardson
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Oceans and Atmosphere, BioSciences Precinct (QBP), St Lucia, QLD, Australia; Centre for Applications in Natural Resource Mathematics, School of Mathematics and Physics, University of Queensland, Saint Lucia 4072, QLD, Australia
| | - Luigi Vezzulli
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132 Genoa, Italy.
| |
Collapse
|
6
|
Sabatino R, Cabello-Yeves PJ, Eckert EM, Corno G, Callieri C, Brambilla D, Dzhembekova N, Moncheva S, Di Cesare A. Antibiotic resistance genes correlate with metal resistances and accumulate in the deep water layers of the Black Sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:120033. [PMID: 36030962 DOI: 10.1016/j.envpol.2022.120033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/25/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Seas and oceans are a global reservoir of antibiotic resistance genes (ARGs). Only a few studies investigated the dynamics of ARGs along the water column of the Black Sea, a unique environment, with a peculiar geology, biology and history of anthropogenic pollution. In this study, we analyzed metagenomic data from two sampling campaigns (2013 and 2019) collected across three different sites in the Western Black Sea at depths ranging from 5 to 2000 m. The data were processed to annotate ARGs, metal resistance genes (MRGs) and integron integrase genes. The ARG abundance was significantly higher in the deep water layers and depth was the main driver of beta-diversity both for ARGs and MRGs. Moreover, ARG and MRG abundances strongly correlated (r = 0.95). The integron integrase gene abundances and composition were not influenced by the water depth and did not correlate with ARGs. The analysis of the obtained MAGs showed that some of them harbored intI gene together with several ARGs and MRGs, suggesting the presence of multidrug resistant bacteria and that MRGs and integrons could be involved in the selection of ARGs. These results demonstrate that the Black Sea is not only an important reservoir of ARGs, but also that they accumulate in the deep water layers where co-selection with MRGs could be assumed as a relevant mechanism of their persistence.
Collapse
Affiliation(s)
- Raffaella Sabatino
- Water Research Institute - National Research Council of Italy (CNR-IRSA), Molecular Ecology Group (MEG), Largo Tonolli 50, 28922, Verbania (VB), Italy
| | - Pedro J Cabello-Yeves
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel, Hernández, San Juan de Alicante, Alicante, Spain
| | - Ester M Eckert
- Water Research Institute - National Research Council of Italy (CNR-IRSA), Molecular Ecology Group (MEG), Largo Tonolli 50, 28922, Verbania (VB), Italy
| | - Gianluca Corno
- Water Research Institute - National Research Council of Italy (CNR-IRSA), Molecular Ecology Group (MEG), Largo Tonolli 50, 28922, Verbania (VB), Italy
| | - Cristiana Callieri
- Water Research Institute - National Research Council of Italy (CNR-IRSA), Molecular Ecology Group (MEG), Largo Tonolli 50, 28922, Verbania (VB), Italy
| | - Diego Brambilla
- Water Research Institute - National Research Council of Italy (CNR-IRSA), Molecular Ecology Group (MEG), Largo Tonolli 50, 28922, Verbania (VB), Italy
| | - Nina Dzhembekova
- Institute for Oceanology Fridtj of Nansen, Bulgarian Academy of Sciences, First May Street 40, P.O. Box 152, 9000, Varna, Bulgaria
| | - Snejana Moncheva
- Institute for Oceanology Fridtj of Nansen, Bulgarian Academy of Sciences, First May Street 40, P.O. Box 152, 9000, Varna, Bulgaria
| | - Andrea Di Cesare
- Water Research Institute - National Research Council of Italy (CNR-IRSA), Molecular Ecology Group (MEG), Largo Tonolli 50, 28922, Verbania (VB), Italy.
| |
Collapse
|
7
|
Salerno B, Cornaggia M, Sabatino R, Di Cesare A, Furlan M, Barco L, Orsini M, Cordioli B, Mantovani C, Bano L, Losasso C. Calves as Main Reservoir of Antibiotic Resistance Genes in Dairy Farms. Front Public Health 2022; 10:918658. [PMID: 35795698 PMCID: PMC9251204 DOI: 10.3389/fpubh.2022.918658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
A side effect of antibiotic usage is the emergence and dissemination of antibiotic resistance genes (ARGs) within microbial communities. The spread of ARGs among pathogens has emerged as a public health concern. While the distribution of ARGs is documented on a global level, their routes of transmission have not been clarified yet; for example, it is not clear whether and to what extent the emergence of ARGs originates in farms, following the selective pressure exerted by antibiotic usage in animal husbandry, and if they can spread into the environment. Here we address this cutting edge issue by combining data regarding antimicrobial usage and quantitative data from selected ARGs (blaTEM, blaCTXM, ermB, vanA, qnrS, tetA, sul2, and mcr-1) encoding for resistance to penicillins, macrolides-lincosamides-streptogramins, glycopeptides, quinolones, tetracyclines, sulfonamides, and colistin at the farm level. Results suggest that dairy farms could be considered a hotspot of ARGs, comprising those classified as the highest risk for human health and that a correlation existed between the usage of penicillins and blaTEM abundances, meaning that, although the antibiotic administration is not exclusive, it remains a certain cause of the ARGs' selection and spread in farms. Furthermore, this study identified the role of calves as the main source of ARGs spread in dairy farms, claiming the need for targeted actions in this productive category to decrease the load of ARGs along the production chain.
Collapse
Affiliation(s)
- Barbara Salerno
- Laboratory of Microbial Ecology and Genomics, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Matteo Cornaggia
- Laboratory of Clinical Diagnostics, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Raffaella Sabatino
- National Research Council of Italy-Water Research Institute (CNR-IRSA), Verbania, Italy
| | - Andrea Di Cesare
- National Research Council of Italy-Water Research Institute (CNR-IRSA), Verbania, Italy
| | - Maddalena Furlan
- Laboratory of Microbial Ecology and Genomics, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Lisa Barco
- Laboratory of Microbial Ecology and Genomics, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Massimiliano Orsini
- Laboratory of Microbial Ecology and Genomics, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Benedetta Cordioli
- Laboratory of Clinical Diagnostics, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Claudio Mantovani
- National Research Council of Italy-Water Research Institute (CNR-IRSA), Verbania, Italy
- Laboratory of Science Communication, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Luca Bano
- Laboratory of Clinical Diagnostics, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Carmen Losasso
- Laboratory of Microbial Ecology and Genomics, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
- *Correspondence: Carmen Losasso
| |
Collapse
|
8
|
Metagenomic Characterization of Microbial Pollutants and Antibiotic- and Metal-Resistance Genes in Sediments from the Canals of Venice. WATER 2022. [DOI: 10.3390/w14071161] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The spread of fecal pollutants and antibiotic resistance in the aquatic environment represents a major public health concern and is predicted to increase in light of climate change consequences and the increasing human population pressure on the lagoon and coastal areas. The city of Venice (Italy) is affected by diverse microbial pollution sources, including domestic wastewaters that, due to the lack of modern sewage treatment infrastructure in the historical city center, are released into canals. The outflowing jets of its tidal inlets thus represent a source of contamination for the nearby beaches on the barrier island separating the lagoon from the sea. Metagenomic analyses of DNA extracted from sediment samples from six sites in the canals of the city’s historic center were undertaken to characterize the microbial community composition, the presence of fecal microbes as well as other non-enteric pathogens, and the content of genes related to antibiotic (AB) and heavy metal (HM) resistance, and virulence. The six sites hosted similar prokaryotic communities, although variations in community composition likely related to oxygen availability were observed. All sites displayed relatively high levels of fecal contamination, including the presence of Fecal Indicator Bacteria, sewage- and alternative feces-associated bacteria. Relatively high levels of other potential pathogens were also found. About 1 in 500 genes identified at these sites are related to AB and HM resistance; conversely, genes related to virulence were rare. Our data suggest the existence of widespread sediment microbial pollution in the canals of Venice, coupled with the prevalence of ARGs to antibiotics frequently used in humans as well as of HMRGs to toxic metals that still persists in the lagoon. All of this evidence raises concerns about the consequences on the water quality of the lagoon and adjacent marine areas and the potential risks for humans, deserving further studies.
Collapse
|
9
|
Di Cesare A, Sabatino R, Yang Y, Brambilla D, Li P, Fontaneto D, Eckert EM, Corno G. Contribution of plasmidome, metal resistome and integrases to the persistence of the antibiotic resistome in aquatic environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 297:118774. [PMID: 34974089 DOI: 10.1016/j.envpol.2021.118774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/14/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Wastewater treatment plants (WWTPs) are among the main hotspots of antibiotic resistance genes (ARGs) in the environment. Previously, we demonstrated that, by increasing anthropogenic pollution, the antibiotic resistome persisted in the microbial community of rivers and lakes, independently by changes in community composition. In this study, we reanalysed the data to test for the relation of metal resistance genes (MRGs), plasmids, and integrons to the persistence of the antibiotic resistome. The experiment consisted in replicated co-cultures of riverine or lacustrine microbial communities and WWTP effluents in different proportions. Samples before (T0) and after a short period of incubation (TF) were collected and community metagenomic data were obtained by shotgun sequencing. The data were processed to annotate MRGs, plasmids, and integrases. The integrases stabilized in the aquatic environment following the degree of contamination with effluent water (in particular in one site), whereas MRGs and plasmids showed stochastic trajectories. These results confirm the potential correlation between integrons and anthropogenic pollution, and the reliability of intI1 as a pollution marker. Only in one site MRGs, plasmids, and ARGs were correlated, highlighting their partial contribution to the persistence of ARGs in surface waters.
Collapse
Affiliation(s)
- Andrea Di Cesare
- Water Research Institute (IRSA) - MEG Molecular Ecology Group, CNR - National Research Council of Italy, Largo Tonolli 50, 28922, Verbania, Italy.
| | - Raffaella Sabatino
- Water Research Institute (IRSA) - MEG Molecular Ecology Group, CNR - National Research Council of Italy, Largo Tonolli 50, 28922, Verbania, Italy
| | - Ying Yang
- School of Marine Sciences, Sun Yat-sen University, 519082, Zhuhai, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 519082, Zhuhai, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, 519082, China
| | - Diego Brambilla
- Water Research Institute (IRSA) - MEG Molecular Ecology Group, CNR - National Research Council of Italy, Largo Tonolli 50, 28922, Verbania, Italy
| | - Pu Li
- School of Marine Sciences, Sun Yat-sen University, 519082, Zhuhai, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 519082, Zhuhai, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, 519082, China
| | - Diego Fontaneto
- Water Research Institute (IRSA) - MEG Molecular Ecology Group, CNR - National Research Council of Italy, Largo Tonolli 50, 28922, Verbania, Italy
| | - Ester M Eckert
- Water Research Institute (IRSA) - MEG Molecular Ecology Group, CNR - National Research Council of Italy, Largo Tonolli 50, 28922, Verbania, Italy
| | - Gianluca Corno
- Water Research Institute (IRSA) - MEG Molecular Ecology Group, CNR - National Research Council of Italy, Largo Tonolli 50, 28922, Verbania, Italy
| |
Collapse
|
10
|
Competitiveness of Quantitative Polymerase Chain Reaction (qPCR) and Droplet Digital Polymerase Chain Reaction (ddPCR) Technologies, with a Particular Focus on Detection of Antibiotic Resistance Genes (ARGs). Appl Microbiol 2021. [DOI: 10.3390/applmicrobiol1030028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
With fast-growing polymerase chain reaction (PCR) technologies and various application methods, the technique has benefited science and medical fields. While having strengths and limitations on each technology, there are not many studies comparing the efficiency and specificity of PCR technologies. The objective of this review is to summarize a large amount of scattered information on PCR technologies focused on the two majorly used technologies: qPCR (quantitative polymerase chain reaction) and ddPCR (droplet-digital polymerase chain reaction). Here we analyze and compare the two methods for (1) efficiency, (2) range of detection and limitations under different disciplines and gene targets, (3) optimization, and (4) status on antibiotic resistance genes (ARGs) analysis. It has been identified that the range of detection and quantification limit varies depending on the PCR method and the type of sample. Careful optimization of target gene analysis is essential for building robust analysis for both qPCR and ddPCR. In our era where mutation of genes may lead to a pandemic of viral infectious disease or antibiotic resistance-induced health threats, this study hopes to set guidelines for meticulous detection, quantification, and analysis to help future prevention and protection of global health, the economy, and ecosystems.
Collapse
|
11
|
Toubiana M, Salles C, Tournoud MG, Licznar-Fajardo P, Zorgniotti I, Trémélo ML, Jumas-Bilak E, Robert S, Monfort P. Monitoring Urban Beach Quality on a Summer Day: Determination of the Origin of Fecal Indicator Bacteria and Antimicrobial Resistance at Prophète Beach, Marseille (France). Front Microbiol 2021; 12:710346. [PMID: 34512587 PMCID: PMC8424182 DOI: 10.3389/fmicb.2021.710346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 07/26/2021] [Indexed: 11/27/2022] Open
Abstract
A highly frequented beach in Marseille, France, was monitored on an hourly basis during a summer day in July 2018, to determine possible water and sand fecal pollution, in parallel with influx of beach users from 8 a.m. to 8 p.m. Fecal indicator bacteria were enumerated, together with four host-associated fecal molecular markers selected to discriminate human, dog, horse, or gull/seagull origins of the contamination. The antimicrobial resistance of bacteria in water and sand was evaluated by quantifying (i) the class 1, 2, and 3 integron integrase genes intI, and (ii) blaTEM, blaCTX–M, and blaSHV genes encoding endemic beta-lactamase enzymes. The number of beach users entering and leaving per hour during the observation period was manually counted. Photographs of the beach and the bathing area were taken every hour and used to count the number of persons in the water and on the sand, using a photo-interpretation method. The number of beach users increased from early morning to a peak by mid-afternoon, totaling more than 1,800, a very large number of users for such a small beach (less than 1 ha). An increase in fecal contamination in the water corresponded to the increase in beach attendance and number of bathers, with maximum numbers observed in the mid-afternoon. The human-specific fecal molecular marker HF183 indicated the contamination was of human origin. In the water, the load of Intl2 and 3 genes was lower than Intl1 but these genes were detected only during peak attendance and highest fecal contamination. The dynamics of the genes encoding B-lactamases involved in B-lactams resistance notably was linked to beach attendance and human fecal contamination. Fecal indicator bacteria, integron integrase genes intI, and genes encoding B-lactamases were detected in the sand. This study shows that bathers and beach users can be significant contributors to contamination of seawater and beach sand with bacteria of fecal origin and with bacteria carrying integron-integrase genes and beta lactamase encoding genes. High influx of users to beaches is a significant factor to be considered in order to reduce contamination and manage public health risk.
Collapse
Affiliation(s)
- Mylène Toubiana
- HydroSciences Montpellier, UMR 5151 Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Christian Salles
- HydroSciences Montpellier, UMR 5151 Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Marie-George Tournoud
- HydroSciences Montpellier, UMR 5151 Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Patricia Licznar-Fajardo
- HydroSciences Montpellier, UMR 5151 Université de Montpellier, CNRS, IRD, Montpellier, France.,Département d'Hygiène Hospitalière, CHU Montpellier, Montpellier, France
| | - Isabelle Zorgniotti
- HydroSciences Montpellier, UMR 5151 Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Marie-Laure Trémélo
- ESPACE, UMR 7300 Aix Marseille Université, Avignon Université, Université Côte d'Azur, CNRS, Aix-en-Provence, France
| | - Estelle Jumas-Bilak
- HydroSciences Montpellier, UMR 5151 Université de Montpellier, CNRS, IRD, Montpellier, France.,Département d'Hygiène Hospitalière, CHU Montpellier, Montpellier, France
| | - Samuel Robert
- ESPACE, UMR 7300 Aix Marseille Université, Avignon Université, Université Côte d'Azur, CNRS, Aix-en-Provence, France
| | - Patrick Monfort
- HydroSciences Montpellier, UMR 5151 Université de Montpellier, CNRS, IRD, Montpellier, France
| |
Collapse
|
12
|
Vezzulli L, Martinez-Urtaza J, Stern R. Continuous Plankton Recorder in the omics era: from marine microbiome to global ocean observations. Curr Opin Biotechnol 2021; 73:61-66. [PMID: 34314925 DOI: 10.1016/j.copbio.2021.07.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 12/26/2022]
Abstract
First routinely deployed in 1931 the Continuous Plankton Recorder (CPR) technology has established the most extensive, marine biological sampling programme in the world. With more than 90 years of sampling, over a total of 8 million nautical miles covered and 500 000 curated samples, the CPR survey provides a gold mine of information available to marine researchers. Such information is likely to exponentially increase thanks to new cutting-edge molecular technologies that are beginning to be applied on CPR samples. In this review we aim to address the exciting developments that the genomic revolution is having on CPR applications from the study of marine microbiome to ocean plankton communities leading to a new 'digital era' of the global ocean CPR observation programme.
Collapse
Affiliation(s)
- Luigi Vezzulli
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132 Genoa, Italy.
| | - Jaime Martinez-Urtaza
- Department of Genetics and Microbiology, Facultat de Biociéncies, Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain
| | - Rowena Stern
- The Marine Biological Association the Laboratory, Citadel Hill Plymouth, PL1 2PB Devon, UK
| |
Collapse
|
13
|
Sabatino R, Di Cesare A, Dzhembekova N, Fontaneto D, Eckert EM, Corno G, Moncheva S, Bertoni R, Callieri C. Spatial distribution of antibiotic and heavy metal resistance genes in the Black Sea. MARINE POLLUTION BULLETIN 2020; 160:111635. [PMID: 32919124 DOI: 10.1016/j.marpolbul.2020.111635] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/06/2020] [Accepted: 08/30/2020] [Indexed: 06/11/2023]
Abstract
Antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) are worldwide considered as emerging contaminants of large interest, and a primary threat to human health. It is becoming clear that the environment plays a central role in the transmission, spread, and evolution of antibiotic resistance. Although marine systems have been largely investigated, only a few studies have considered the presence of ARGs in meso- and bathypelagic waters. To date, no molecular based studies have yet been made to investigate the occurrence of ARGs in the Black Sea, the largest meromictic basin in the world, receiving water from a number of important European rivers and their residues of anthropogenic activities in permanently stratified mesopelagic water masses. In this study, we determined the presence and the abundance of five ARGs (blaCTXM, ermB, qnrS, sul2, tetA) and of the heavy metal resistance gene (HMRG) czcA, in different sampling sites in the eastern and western Black Sea, at several depths (up to 1000 m) and various distances from the shoreline. Three ARGs (blaCTXM, sul2, and tetA) and czcA were present in at least 43% of the analysed samples, whereas ermB and qnrS were never detected. In particular, sul2 abundances increased significantly in coastal location, whereas tetA increased with sampling depth. These findings point out the Black Sea as a source of ARGs and HMRGs distributed along the whole water column.
Collapse
Affiliation(s)
- Raffaella Sabatino
- Water Research Institute - National Research Council of Italy (CNR-IRSA), Molecular Ecology Group (MEG), Largo Tonolli 50, 28922 Verbania (VB), Italy.
| | - Andrea Di Cesare
- Water Research Institute - National Research Council of Italy (CNR-IRSA), Molecular Ecology Group (MEG), Largo Tonolli 50, 28922 Verbania (VB), Italy
| | - Nina Dzhembekova
- Institute for Oceanology Fridtjof Nansen, Bulgarian Academy of Sciences, First May Street 40, P.O. Box 152, 9000 Varna, Bulgaria
| | - Diego Fontaneto
- Water Research Institute - National Research Council of Italy (CNR-IRSA), Molecular Ecology Group (MEG), Largo Tonolli 50, 28922 Verbania (VB), Italy
| | - Ester M Eckert
- Water Research Institute - National Research Council of Italy (CNR-IRSA), Molecular Ecology Group (MEG), Largo Tonolli 50, 28922 Verbania (VB), Italy
| | - Gianluca Corno
- Water Research Institute - National Research Council of Italy (CNR-IRSA), Molecular Ecology Group (MEG), Largo Tonolli 50, 28922 Verbania (VB), Italy
| | - Snejana Moncheva
- Institute for Oceanology Fridtjof Nansen, Bulgarian Academy of Sciences, First May Street 40, P.O. Box 152, 9000 Varna, Bulgaria
| | - Roberto Bertoni
- Water Research Institute - National Research Council of Italy (CNR-IRSA), Molecular Ecology Group (MEG), Largo Tonolli 50, 28922 Verbania (VB), Italy
| | - Cristiana Callieri
- Water Research Institute - National Research Council of Italy (CNR-IRSA), Molecular Ecology Group (MEG), Largo Tonolli 50, 28922 Verbania (VB), Italy
| |
Collapse
|