1
|
Kop LFM, Koch H, Dalcin Martins P, Suarez C, Karačić S, Persson F, Wilén BM, Hagelia P, Jetten MSM, Lücker S. High diversity of nitrifying bacteria and archaea in biofilms from a subsea tunnel. FEMS Microbiol Ecol 2025; 101:fiaf032. [PMID: 40156577 PMCID: PMC11995701 DOI: 10.1093/femsec/fiaf032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/12/2025] [Accepted: 03/27/2025] [Indexed: 04/01/2025] Open
Abstract
Microbial biofilm formation can contribute to the accelerated deterioration of steel-reinforced concrete structures and significantly impact their service life, making it critical to understand the diversity of the biofilm community and prevailing processes in these habitats. Here, we analyzed 16S rRNA gene amplicon and metagenomics sequencing data to study the abundance and diversity of nitrifiers within biofilms on the concrete surface of the Oslofjord subsea road tunnel in Norway. We showed that the abundance of nitrifiers varied greatly in time and space, with a mean abundance of 24.7 ± 15% but a wide range between 1.2% and 61.4%. We hypothesize that niche differentiation allows the coexistence of several nitrifier groups and that their high diversity increases the resilience to fluctuating environmental conditions. Strong correlations were observed between the nitrifying families Nitrosomonadaceae and Nitrospinaceae, and the iron-oxidizing family Mariprofundaceae. Metagenome-assembled genome analyses suggested that early Mariprofundaceae colonizers may provide a protected environment for nitrifiers in exchange for nitrogen compounds and vitamin B12, but further studies are needed to elucidate the spatial organization of the biofilms and the cooperative and competitive interactions in this environment. Together, this research provides novel insights into the diverse communities of nitrifiers living within biofilms on concrete surfaces and establishes a foundation for future experimental studies of concrete biofilms.
Collapse
Affiliation(s)
- Linnea F M Kop
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Hanna Koch
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
- Bioresources Unit, Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria
| | - Paula Dalcin Martins
- Ecosystems and Landscape Dynamics, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1090 GE Amsterdam, The Netherlands
| | - Carolina Suarez
- Division of Water Resources Engineering, Faculty of Engineering LTH, Lund University, John Ericssons väg 1, 221 00 Lund, Sweden
| | - Sabina Karačić
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Sven Hultins gata 6, 412 96 Gothenburg, Sweden
- Institute of Medical Microbiology, Immunology and Parasitology, Universitätsklinikum Bonn, Venusberg – Campus 1, 53127 Bonn, Germany
| | - Frank Persson
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Sven Hultins gata 6, 412 96 Gothenburg, Sweden
| | - Britt-Marie Wilén
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Sven Hultins gata 6, 412 96 Gothenburg, Sweden
| | - Per Hagelia
- Construction Division, The Norwegian Public Roads Administration, Innspurten 11C, 0663 Oslo Norway
- Müller-Sars Biological Station, Ørje, PO Box 64, NO-1871 Ørje, Norway
| | - Mike S M Jetten
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Sebastian Lücker
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|
2
|
Wang T, Tao B, Zuo B, Yan G, Liu S, Wang R, Zhao Z, Chu F, Li Z, Yamauchi Y, Xu X. Challenges and Opportunities of Uranium Extraction From Seawater: a Systematic Roadmap From Laboratory to Industry. SMALL METHODS 2025; 9:e2401598. [PMID: 39663693 DOI: 10.1002/smtd.202401598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Indexed: 12/13/2024]
Abstract
Uranium extraction from seawater (UES) is crucial for ensuring the sustainable development of nuclear power and has seen significant advancements in recent years. However, natural seawater is a highly complex biogeochemical system, characterized by an extremely low uranium (U) concentration (≈3.3 µg L-1), abundant competitive ions, and significant marine biological pollution, making UES a formidable challenge. This review addresses the challenges encountered in UES and explores potential methods for enhancing the industrial UES system, including membrane separation, electrochemistry, photocatalysis, and biosorption. Additionally, several representative marine tests are summarized and restrictive factors of large-scale UES are analyzed. Finally, the further development of UES from laboratory to industry applications is promoted, with a focus on technological innovation. The goal is to stimulate innovative ideas and provide fresh insights for the future development of the UES system, bridging the gap between laboratory research and industrial implementation.
Collapse
Affiliation(s)
- Tao Wang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Binbin Tao
- College of Innovation and Industrial Engineering, Wanjiang University of Technology, Maanshan, 243011, China
| | - Bin Zuo
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022, China
- Key Laboratory of Xinjiang Coal Resources Green Mining, Ministry of Education, Xinjiang Institute of Engineering, Urumqi, 830023, China
| | - Guoze Yan
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Shaoqing Liu
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Ruoyu Wang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Zhongzhou Zhao
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Feifei Chu
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Zhengtong Li
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Yusuke Yamauchi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Aichi, 464-8601, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Xingtao Xu
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022, China
- Key Laboratory of Xinjiang Coal Resources Green Mining, Ministry of Education, Xinjiang Institute of Engineering, Urumqi, 830023, China
| |
Collapse
|
3
|
Bénuffé D, Radouani F, Quemener M, Ozier O, Fauchon M, Toueix Y, Faӱ F, Magueresse A, Lescop B, Rioual S, Zongo P, Roos C, Hellio C, Salvin P. Multifactored accelerated marine corrosion of immersed steels influenced by washed ashore Sargassum rafts. MARINE ENVIRONMENTAL RESEARCH 2025; 204:106924. [PMID: 39756246 DOI: 10.1016/j.marenvres.2024.106924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 12/12/2024] [Accepted: 12/20/2024] [Indexed: 01/07/2025]
Abstract
Since 2011, massive strandings of Sargassum (brown alga) have significantly affected Caribbean islands causing major health, environmental and economic problems. Amongst them, the degradation of algae releases corrosive gases, hydrogen sulphide (H2S) and ammonia (NH3) which causes an accelerated corrosion of the metallic structures of these coastal areas. The aim of this study was to quantify the impact of Sargassum strandings on the corrosion of three types of steels (DC01 carbon steel, 304L and 316L stainless steels) immersed for up to 120 days at various sites in Martinique which were gradually impacted by Sargassum. A multidisciplinary approach was developed, incorporating: (i) surface analysis through macrophotography and corrosion product examination, (ii) weight loss measurements, and (iii) analysis of physicochemical parameters alongside microbial composition. As a result, in the presence of degraded Sargassum, an anaerobic, reducing and more acidic environment was correlated with high corrosion rates for all studied steels. When high density of Sargassum sp. was present, elemental sulphur was identified in the corrosion product layers of DC01 and 316L. Moreover, in this condition, sulphate-reducing bacteria (SRB) were observed in the surface biofilms of 304L coupons such as Desulfobulbus rhabdoformis. All these factors have highlighted the aggressiveness of the medium resulting from the presence of decomposing Sargassum, leading to increased corrosion rates. Our work provides new information on the importance of managing Sargassum strandings in order to avoid accelerated degradation of metallic structures in harbours and coastal zones.
Collapse
Affiliation(s)
- Diana Bénuffé
- L3MA UR4_1 UFR STE Universite des Antilles, Campus de Schoelcher, Schoelcher, 97275, France
| | - Fatima Radouani
- L3MA UR4_1 UFR STE Universite des Antilles, Campus de Schoelcher, Schoelcher, 97275, France
| | - Maxence Quemener
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, IUEM, F-29280 Plouzane, France
| | - Olivia Ozier
- L3MA UR4_1 UFR STE Universite des Antilles, Campus de Schoelcher, Schoelcher, 97275, France
| | - Marilyne Fauchon
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, IUEM, F-29280 Plouzane, France
| | - Yannick Toueix
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, IUEM, F-29280 Plouzane, France
| | - Fabienne Faӱ
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, IUEM, 56100, Lorient, France
| | | | - Benoit Lescop
- Lab-STICC, UMR CNRS 6285, Université de Bretagne Occidentale, 29200, Brest, France
| | - Stéphane Rioual
- Lab-STICC, UMR CNRS 6285, Université de Bretagne Occidentale, 29200, Brest, France
| | - Pascal Zongo
- L3MA UR4_1 UFR STE Universite des Antilles, Campus de Schoelcher, Schoelcher, 97275, France
| | - Christophe Roos
- L3MA UR4_1 UFR STE Universite des Antilles, Campus de Schoelcher, Schoelcher, 97275, France
| | - Claire Hellio
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, IUEM, F-29280 Plouzane, France
| | - Paule Salvin
- L3MA UR4_1 UFR STE Universite des Antilles, Campus de Schoelcher, Schoelcher, 97275, France.
| |
Collapse
|
4
|
Joo SH, Knauer K, Su C, Toborek M. Antibiotic resistance in plastisphere. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2025; 13:115217. [PMID: 40265125 PMCID: PMC12013715 DOI: 10.1016/j.jece.2024.115217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Microbial life on plastic debris, called plastisphere, has invoked special attention on aquatic ecosystems as emerging habitats for antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB). There is scarce information concerning how properties of plastics influence ARGs and ARB, the effect of biofilms on enrichment of ARGs and ARB, and, especially, the influence of plastic transformation on ARGs and ARB. Limited research has shown that microplastic (MP) surfaces influence proliferation of antibiotic resistance (AR), aged MPs exhibit increased toxicity due to more adsorption-desorption of AR, and MP transformation is correlated with disseminating AR. Prevention measures of AR include minimizing MP releasing into aquatic environments and sewage treatment plants. The future research should aim to identify the interface mechanisms of transformed MNPs and antibiotics alone, or mixed with other contaminants, property changes of MNPs, and associated toxicity evaluation.
Collapse
Affiliation(s)
- Sung Hee Joo
- Department of Engineering & Engineering Technology, College of Aerospace, Computing, Engineering, and Design, Metropolitan State University of Denver, CO, USA
- National Renewable Energy Laboratory, 15013 Denver W Pkwy, Golden, CO, USA
| | - Katrina Knauer
- National Renewable Energy Laboratory, 15013 Denver W Pkwy, Golden, CO, USA
| | - Chunming Su
- Groundwater Characterization and Remediation Division, Center for Environmental Solutions and Emergency Response, Office of Research and Development, US. Environmental Protection Agency, 919 Kerr Research Drive, Ada, OK 74820, USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Miami, 1011 NW 15th Street, Miami, FL 33136, USA
| |
Collapse
|
5
|
Wu Z, Thoresen PP, Maršík D, Matsakas L, Kulišová M, Fous K, Maťátková O, Masák J, Rova U, Ytreberg E, Granhag L, Christakopoulos P, Shi Y. High acetone soluble organosolv lignin extraction and its application towards green antifouling and wear-resistant coating. Int J Biol Macromol 2024; 282:137456. [PMID: 39532169 DOI: 10.1016/j.ijbiomac.2024.137456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/31/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Marine fouling poses significant challenges to the efficiency and longevity of marine engineering equipment. To address this issue, developing effective marine antifouling coatings is critical to ensure the economic viability, environmental sustainability, and safety of offshore operations. In this study, we developed an innovative green antifouling and wear-resistant coating based on lignin, a renewable and sustainable resource. Lignin is considered environmentally friendly because it is abundant, biodegradable, and reduces reliance on petroleum-based materials. The coating was formulated with a controlled hydrophilic-to-hydrophobic ratio of 2:8, leveraging lignin's unique properties. Applying lignin increased the water contact angle by 14.5 %, improving surface hydrophobicity and contributing to the coating's antifouling efficacy. Moreover, the mechanical strength of the coating was enhanced by approximately 200 %, significantly boosting its durability in harsh marine environments. Additionally, the friction coefficient was reduced by about 85 %, further preventing organism adhesion. These results demonstrate that lignin-based coatings offer a greener alternative to traditional antifouling solutions. The results of this study not only help advance antifouling coating technology but are also consistent with the broader goal of promoting environmental responsibility in marine engineering practice.
Collapse
Affiliation(s)
- Zhipeng Wu
- Division of Machine Elements, Luleå University of Technology, 97187 Luleå, Sweden
| | - Petter Paulsen Thoresen
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 97187 Luleå, Sweden
| | - Dominik Maršík
- Department of Biotechnology, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 97187 Luleå, Sweden
| | - Markéta Kulišová
- Department of Biotechnology, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Karel Fous
- Department of Biotechnology, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Olga Maťátková
- Department of Biotechnology, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Jan Masák
- Department of Biotechnology, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 97187 Luleå, Sweden
| | - Erik Ytreberg
- Department of Mechanics and Maritime Sciences, Chalmers University of Technology, SE 412 96, Gothenburg, Sweden
| | - Lena Granhag
- Department of Mechanics and Maritime Sciences, Chalmers University of Technology, SE 412 96, Gothenburg, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 97187 Luleå, Sweden.
| | - Yijun Shi
- Division of Machine Elements, Luleå University of Technology, 97187 Luleå, Sweden.
| |
Collapse
|
6
|
Sajid S, Zhang G, Zhang Z, Chen L, Lu Y, Fang JKH, Cai L. Comparative analysis of biofilm bacterial communities developed on different artificial reef materials. J Appl Microbiol 2024; 135:lxae268. [PMID: 39439203 DOI: 10.1093/jambio/lxae268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/12/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024]
Abstract
AIMS Artificial reefs play a vital role in restoring and creating new habitats for marine species by providing suitable substrates, especially in areas where natural substrates have been degraded or lost due to declining water quality, destructive fishing practices, and coral diseases. Artificial reef restoration aimed at coral larval settlement is gaining prominence and initially depends on the development of biofilms on reef surfaces. In this study, we hypothesized that different artificial reef materials selectively influence the composition of biofilm bacterial communities, which in turn affected coral larval settlement and the overall success of coral rehabilitation efforts. To test this hypothesis, we evaluated the impact of six different reef-made materials (porcelain, granite, coral skeleton, calcium carbonate, shell cement, and cement) on the development of biofilm bacterial communities and their potential to support coral larval settlement. METHODS AND RESULTS The biofilm bacterial communities were developed on different artificial reef materials and studied using 16S rRNA gene amplicon sequencing and analysis. The bacterial species richness and evenness were significantly (P < 0.05) low in the seawater, while these values were high in the reef materials. At the phylum level, the biofilm bacterial composition of all materials and seawater was majorly composed of Pseudomonadota, Cyanobacteria, and Bacteroidetes; however, significantly (P < 0.05) low Bacteroidetes were found in the seawater. At the genus level, Thalassomonas, Glaciecola, Halomicronema, Lewinella, Hyphomonas, Thalassospira, Polaribacter, and Tenacibaculum were significantly (P < 0.05) low in the coral skeleton and seawater, compared to the other reef materials. The genera Pseudoaltermonas and Thalassomonas (considered potential inducers of coral larval settlement) were highly abundant in the shell-cement biofilm, while low values were found in the biofilm of the other materials. CONCLUSION The biofilm bacterial community composition can be selective for different substrate materials, such as shell cement exhibited higher abundances of bacteria known to facilitate coral larval settlement, highlighting their potential in enhancing restoration outcomes.
Collapse
Affiliation(s)
- Sumbal Sajid
- Shenzhen Institute of Guangdong Ocean University, Binhai 2nd Road, Shenzhen 518120, China
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Guoqiang Zhang
- Shenzhen Institute of Guangdong Ocean University, Binhai 2nd Road, Shenzhen 518120, China
| | - Zongyao Zhang
- Shenzhen Institute of Guangdong Ocean University, Binhai 2nd Road, Shenzhen 518120, China
| | - Lianguo Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yishan Lu
- Shenzhen Institute of Guangdong Ocean University, Binhai 2nd Road, Shenzhen 518120, China
| | - James Kar-Hei Fang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Lin Cai
- Shenzhen Institute of Guangdong Ocean University, Binhai 2nd Road, Shenzhen 518120, China
| |
Collapse
|
7
|
Liu X, Zou L, Li B, Di Martino P, Rittschof D, Yang JL, Maki J, Liu W, Gu JD. Chemical signaling in biofilm-mediated biofouling. Nat Chem Biol 2024; 20:1406-1419. [PMID: 39349970 DOI: 10.1038/s41589-024-01740-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 08/14/2024] [Indexed: 10/27/2024]
Abstract
Biofouling is the undesirable accumulation of living organisms and their metabolites on submerged surfaces. Biofouling begins with adhesion of biomacromolecules and/or microorganisms and can lead to the subsequent formation of biofilms that are predominantly regulated by chemical signals, such as cyclic dinucleotides and quorum-sensing molecules. Biofilms typically release chemical cues that recruit or repel other invertebrate larvae and algal spores. As such, harnessing the biochemical mechanisms involved is a promising avenue for controlling biofouling. Here, we discuss how chemical signaling affects biofilm formation and dispersion in model species. We also examine how this translates to marine biofouling. Both inductive and inhibitory effects of chemical cues from biofilms on macrofouling are also discussed. Finally, we outline promising mitigation strategies by targeting chemical signaling to foster biofilm dispersion or inhibit biofouling.
Collapse
Affiliation(s)
- Xiaobo Liu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China.
| | - Ling Zou
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Boqiao Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Patrick Di Martino
- Groupe Biofilm et Comportement Microbien aux Interfaces, Laboratoire ERRMECe, Cergy Paris Université, Cergy-Pontoise, France
| | - Daniel Rittschof
- Duke Marine Laboratory, Nicholas School of the Environment, Duke University, Beaufort, NC, USA
| | - Jin-Long Yang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - James Maki
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA
| | - Weijie Liu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China.
| | - Ji-Dong Gu
- Environmental Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou, China.
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion-Israel Institute of Technology, Shantou, China.
| |
Collapse
|
8
|
Papale M, Fazi S, Severini M, Scarinci R, Dell'Acqua O, Azzaro M, Venuti V, Fazio B, Fazio E, Crupi V, Irrera A, Rizzo C, Giudice AL, Caruso G. Structural properties and microbial diversity of the biofilm colonizing plastic substrates in Terra Nova Bay (Antarctica). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173773. [PMID: 38844237 DOI: 10.1016/j.scitotenv.2024.173773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/15/2024]
Abstract
Microbial colonization on plastic polymers has been extensively explored, however the temporal dynamics of biofilm community in Antarctic environments are almost unknown. As a contribute to fill this knowledge gap, the structural characteristics and microbial diversity of the biofilm associated with polyvinyl chloride (PVC) and polyethylene (PE) panels submerged at 5 m of depth and collected after 3, 9 and 12 months were investigated in four coastal sites of the Ross Sea. Additional panels placed at 5 and 20 m were retrieved after 12 months. Chemical characterization was performed by FTIR-ATR and Raman (through Surface-Enhanced Raman Scattering, SERS) spectroscopy. Bacterial community composition was quantified at a single cell level by Catalyzed Reporter Deposition Fluorescence In Situ Hybridization (CARD-FISH) and Confocal Laser Scanning Microscopy (CLSM); microbial diversity was assessed by 16S rRNA gene sequencing. This multidisciplinary approach has provided new insights into microbial community dynamics during biofouling process, shedding light on the biofilm diversity and temporal succession on plastic substrates in the Ross Sea. Significant differences between free-living and microbial biofilm communities were found, with a more consolidated and structured community composition on PVC compared to PE. Spectral features ascribable to tyrosine, polysaccharides, nucleic acids and lipids characterized the PVC-associated biofilms. Pseudomonadota (among Gamma-proteobacteria) and Alpha-proteobacteria dominated the microbial biofilm community. Interestingly, in Road Bay, close to the Italian "Mario Zucchelli" research station, the biofilm growth - already observed during summer season, after 3 months of submersion - continued afterwards leading to a massive microbial abundance at the end of winter (after 12 months). After 3 months, higher percentages of Gamma-proteobacteria in Road Bay than in the not-impacted site were found. These observations lead us to hypothesize that in this site microbial fouling developed during the first 3 months could serve as a starter pioneering community stimulating the successive growth during winter.
Collapse
Affiliation(s)
- Maria Papale
- Institute of Polar Sciences, National Research Council (CNR-ISP), Spianata S. Raineri 86, 98122 Messina, Italy
| | - Stefano Fazi
- Water Research Institute, National Research Council (CNR-IRSA), Via Salaria km 29.300 CP10, 00015 Monterotondo, Rome, Italy; National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy
| | - Maila Severini
- Water Research Institute, National Research Council (CNR-IRSA), Via Salaria km 29.300 CP10, 00015 Monterotondo, Rome, Italy
| | - Roberta Scarinci
- Water Research Institute, National Research Council (CNR-IRSA), Via Salaria km 29.300 CP10, 00015 Monterotondo, Rome, Italy
| | - Ombretta Dell'Acqua
- DISTAV, Department of Earth, Environmental and Life Sciences, University of Genoa, Corso Europa, 26, 16132 Genoa, Italy
| | - Maurizio Azzaro
- Institute of Polar Sciences, National Research Council (CNR-ISP), Spianata S. Raineri 86, 98122 Messina, Italy
| | - Valentina Venuti
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Barbara Fazio
- URT "LabSens of Beyond Nano" of the Department of Physical Sciences and Technologies of Matter, National Research Council (CNR- DSFTM-ME), Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy; Institute for Chemical and Physical Processes, National Research Council (CNR-IPCF), Viale Ferdinando Stagno d'Alcontres, 37, 98158 Messina, Messina, Italy
| | - Enza Fazio
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Vincenza Crupi
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Alessia Irrera
- URT "LabSens of Beyond Nano" of the Department of Physical Sciences and Technologies of Matter, National Research Council (CNR- DSFTM-ME), Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy.
| | - Carmen Rizzo
- Institute of Polar Sciences, National Research Council (CNR-ISP), Spianata S. Raineri 86, 98122 Messina, Italy; Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Sicily Marine Centre, Villa Pace, Contrada Porticatello 29, 98167 Messina, Italy
| | - Angelina Lo Giudice
- Institute of Polar Sciences, National Research Council (CNR-ISP), Spianata S. Raineri 86, 98122 Messina, Italy; National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy
| | - Gabriella Caruso
- Institute of Polar Sciences, National Research Council (CNR-ISP), Spianata S. Raineri 86, 98122 Messina, Italy.
| |
Collapse
|
9
|
Hird C, Jékely G, Williams EA. Microalgal biofilm induces larval settlement in the model marine worm Platynereis dumerilii. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240274. [PMID: 39295916 PMCID: PMC11407872 DOI: 10.1098/rsos.240274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/17/2024] [Accepted: 08/12/2024] [Indexed: 09/21/2024]
Abstract
A free-swimming larval stage features in many marine invertebrate life cycles. To transition to a seafloor-dwelling juvenile stage, larvae need to settle out of the plankton, guided by specific environmental cues that lead them to an ideal habitat for their future life on the seafloor. Although the marine annelid Platynereis dumerilii has been cultured in research laboratories since the 1950s and has a free-swimming larval stage, specific environmental cues that induce settlement in this nereid worm are yet to be identified. Here, we demonstrate that microalgal biofilm is a key settlement cue for P. dumerilii larvae, inducing earlier onset of settlement and enhancing subsequent juvenile growth as a primary food source. We tested the settlement response of P. dumerilii to 40 different strains of microalgae, predominantly diatom species, finding that P. dumerilii have species-specific preferences in their choice of settlement substrate. The most effective diatom species for inducing P. dumerilii larval settlement were benthic pennate species including Grammatophora marina, Achnanthes brevipes and Nitzschia ovalis. The identification of specific environmental cues for P. dumerilii settlement enables a link between its ecology and the sensory and nervous system signalling that regulates larval behaviour and development. Incorporation of diatoms into P. dumerilii culture practices will improve the husbandry of this marine invertebrate model.
Collapse
Affiliation(s)
- Cameron Hird
- Scymaris Ltd, Brixham Laboratory, Freshwater Quarry, Brixham, Devon TQ5 8BA, UK
- University of Exeter, Biosciences, Faculty of Health and Life Sciences, Streatham Campus, Exeter EX4 4QD, UK
| | - Gáspár Jékely
- University of Heidelberg, Centre for Organismal Studies, Im Neuenheimer Feld 230, Heidelberg 69120, Germany
- University of Exeter Living Systems Institute, Streatham Campus, Exeter EX4 4QD, UK
| | - Elizabeth A Williams
- University of Exeter, Biosciences, Faculty of Health and Life Sciences, Streatham Campus, Exeter EX4 4QD, UK
| |
Collapse
|
10
|
Krueger Q, Phippen B, Reitzel A. Antibiotics alter development and gene expression in the model cnidarian Nematostella vectensis. PeerJ 2024; 12:e17349. [PMID: 38784394 PMCID: PMC11114123 DOI: 10.7717/peerj.17349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Background Antibiotics are commonly used for controlling microbial growth in diseased organisms. However, antibiotic treatments during early developmental stages can have negative impacts on development and physiology that could offset the positive effects of reducing or eliminating pathogens. Similarly, antibiotics can shift the microbial community due to differential effectiveness on resistant and susceptible bacteria. Though antibiotic application does not typically result in mortality of marine invertebrates, little is known about the developmental and transcriptional effects. These sublethal effects could reduce the fitness of the host organism and lead to negative changes after removal of the antibiotics. Here, we quantify the impact of antibiotic treatment on development, gene expression, and the culturable bacterial community of a model cnidarian, Nematostella vectensis. Methods Ampicillin, streptomycin, rifampicin, and neomycin were compared individually at two concentrations, 50 and 200 µg mL-1, and in combination at 50 µg mL-1 each, to assess their impact on N. vectensis. First, we determined the impact antibiotics have on larval development. Next Amplicon 16S rDNA gene sequencing was used to compare the culturable bacteria that persist after antibiotic treatment to determine how these treatments may differentially select against the native microbiome. Lastly, we determined how acute (3-day) and chronic (8-day) antibiotic treatments impact gene expression of adult anemones. Results Under most exposures, the time of larval settlement extended as the concentration of antibiotics increased and had the longest delay of 3 days in the combination treatment. Culturable bacteria persisted through a majority of exposures where we identified 359 amplicon sequence variants (ASVs). The largest proportion of bacteria belonged to Gammaproteobacteria, and the most common ASVs were identified as Microbacterium and Vibrio. The acute antibiotic exposure resulted in differential expression of genes related to epigenetic mechanisms and neural processes, while constant application resulted in upregulation of chaperones and downregulation of mitochondrial genes when compared to controls. Gene Ontology analyses identified overall depletion of terms related to development and metabolism in both antibiotic treatments. Discussion Antibiotics resulted in a significant increase to settlement time of N. vectensis larvae. Culturable bacterial species after antibiotic treatments were taxonomically diverse. Additionally, the transcriptional effects of antibiotics, and after their removal result in significant differences in gene expression that may impact the physiology of the anemone, which may include removal of bacterial signaling on anemone gene expression. Our research suggests that impacts of antibiotics beyond the reduction of bacteria may be important to consider when they are applied to aquatic invertebrates including reef building corals.
Collapse
Affiliation(s)
- Quinton Krueger
- Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America
- Computational Intelligence to Predict Health and Environmental Risks (CIPHER) Center, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Britney Phippen
- Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Adam Reitzel
- Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America
- Computational Intelligence to Predict Health and Environmental Risks (CIPHER) Center, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| |
Collapse
|
11
|
Messer LF, Lee CE, Wattiez R, Matallana-Surget S. Novel functional insights into the microbiome inhabiting marine plastic debris: critical considerations to counteract the challenges of thin biofilms using multi-omics and comparative metaproteomics. MICROBIOME 2024; 12:36. [PMID: 38389111 PMCID: PMC10882806 DOI: 10.1186/s40168-024-01751-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/03/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND Microbial functioning on marine plastic surfaces has been poorly documented, especially within cold climates where temperature likely impacts microbial activity and the presence of hydrocarbonoclastic microorganisms. To date, only two studies have used metaproteomics to unravel microbial genotype-phenotype linkages in the marine 'plastisphere', and these have revealed the dominance of photosynthetic microorganisms within warm climates. Advancing the functional representation of the marine plastisphere is vital for the development of specific databases cataloging the functional diversity of the associated microorganisms and their peptide and protein sequences, to fuel biotechnological discoveries. Here, we provide a comprehensive assessment for plastisphere metaproteomics, using multi-omics and data mining on thin plastic biofilms to provide unique insights into plastisphere metabolism. Our robust experimental design assessed DNA/protein co-extraction and cell lysis strategies, proteomics workflows, and diverse protein search databases, to resolve the active plastisphere taxa and their expressed functions from an understudied cold environment. RESULTS For the first time, we demonstrate the predominance and activity of hydrocarbonoclastic genera (Psychrobacter, Flavobacterium, Pseudomonas) within a primarily heterotrophic plastisphere. Correspondingly, oxidative phosphorylation, the citrate cycle, and carbohydrate metabolism were the dominant pathways expressed. Quorum sensing and toxin-associated proteins of Streptomyces were indicative of inter-community interactions. Stress response proteins expressed by Psychrobacter, Planococcus, and Pseudoalteromonas and proteins mediating xenobiotics degradation in Psychrobacter and Pseudoalteromonas suggested phenotypic adaptations to the toxic chemical microenvironment of the plastisphere. Interestingly, a targeted search strategy identified plastic biodegradation enzymes, including polyamidase, hydrolase, and depolymerase, expressed by rare taxa. The expression of virulence factors and mechanisms of antimicrobial resistance suggested pathogenic genera were active, despite representing a minor component of the plastisphere community. CONCLUSION Our study addresses a critical gap in understanding the functioning of the marine plastisphere, contributing new insights into the function and ecology of an emerging and important microbial niche. Our comprehensive multi-omics and comparative metaproteomics experimental design enhances biological interpretations to provide new perspectives on microorganisms of potential biotechnological significance beyond biodegradation and to improve the assessment of the risks associated with microorganisms colonizing marine plastic pollution. Video Abstract.
Collapse
Affiliation(s)
- Lauren F Messer
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland
| | - Charlotte E Lee
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland
| | - Ruddy Wattiez
- Proteomics and Microbiology Department, University of Mons, Mons, 7000, Belgium
| | - Sabine Matallana-Surget
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland.
| |
Collapse
|
12
|
Cooney C, Sommer B, Marzinelli EM, Figueira WF. The role of microbial biofilms in range shifts of marine habitat-forming organisms. Trends Microbiol 2024; 32:190-199. [PMID: 37633773 DOI: 10.1016/j.tim.2023.07.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/28/2023]
Abstract
Marine species, such as corals and kelp, are responding to climate change by altering their distributions. Microbial biofilms underpin key processes that affect the establishment, maintenance, and function of these dominant habitat-formers. Climate-mediated changes to microbial biofilms can therefore strongly influence species' range shifts. Here, we review emerging research on the interactions between benthic biofilms and habitat-formers and identify two key areas of interaction where climate change can impact this dynamic: (i) via direct effects on biofilm composition, and (ii) via impacts on the complex feedback loops which exist between the biofilm microbes and habitat-forming organisms. We propose that these key interactions will be fundamental in driving the speed and extent of tropicalisation of coastal ecosystems under climate change.
Collapse
Affiliation(s)
- Christopher Cooney
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Brigitte Sommer
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia; School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Ezequiel M Marzinelli
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Will F Figueira
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
13
|
Sun X, Wai OWH, Xie J, Li X. Biomineralization To Prevent Microbially Induced Corrosion on Concrete for Sustainable Marine Infrastructure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:522-533. [PMID: 38052449 PMCID: PMC10785763 DOI: 10.1021/acs.est.3c04680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/05/2023] [Accepted: 11/10/2023] [Indexed: 12/07/2023]
Abstract
Microbially induced corrosion (MIC) on concrete represents a serious issue impairing the lifespan of coastal/marine infrastructure. However, currently developed concrete corrosion protection strategies have limitations in wide applications. Here, a biomineralization method was proposed to form a biomineralized film on concrete surfaces for corrosion inhibition. Laboratory seawater corrosion experiments were conducted under different conditions [e.g., chemical corrosion (CC), MIC, and biomineralization for corrosion inhibition]. A combination of chemical and mechanical property measurements of concrete (e.g., sulfate concentrations, permeability, mass, and strength) and a genotypic-based investigation of formed concrete biofilms was conducted to evaluate the effectiveness of the biomineralization approach on corrosion inhibition. The results show that MIC resulted in much higher corrosion rates than CC. However, the biomineralization treatment effectively inhibited corrosion because the biomineralized film decreased the total and relative abundance of sulfate-reducing bacteria (SRB) and acted as a protective layer to control the diffusion of sulfate and isolate the concrete from the corrosive SRB communities, which helps extend the lifespan of concrete structures. Moreover, this technique had no negative impact on the native marine microbial communities. Our study contributes to the potential application of biomineralization for corrosion inhibition to achieve long-term sustainability for major marine concrete structures.
Collapse
Affiliation(s)
- Xiaohao Sun
- Department
of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Onyx W. H. Wai
- Department
of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
- Research
Institute for Sustainable Urban Development, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR, China
| | - Jiawen Xie
- Department
of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Xiangdong Li
- Department
of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
- Research
Institute for Sustainable Urban Development, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR, China
| |
Collapse
|
14
|
Karyani TZ, Ghattavi S, Homaei A. Application of enzymes for targeted removal of biofilm and fouling from fouling-release surfaces in marine environments: A review. Int J Biol Macromol 2023; 253:127269. [PMID: 37804893 DOI: 10.1016/j.ijbiomac.2023.127269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/07/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Biofouling causes adverse issues in underwater structures including ship hulls, aquaculture cages, fishnets, petroleum pipelines, sensors, and other equipment. Marine constructions and vessels frequently are using coatings with antifouling properties. During the previous ten years, several alternative strategies have been used to combat the biofilm and biofouling that have developed on different abiotic or biotic surfaces. Enzymes have frequently been suggested as a cost-effective, substitute, eco-friendly, for conventional antifouling and antibiofilm substances. The destruction of sticky biopolymers, biofilm matrix disorder, bacterial signal interference, and the creation of biocide or inhibitors are among the catalytic reactions of enzymes that really can successfully prevent the formation of biofilms. In this review we presented enzymes that have antifouling and antibiofilm properties in the marine environment like α-amylase, protease, lysozymes, glycoside hydrolase, aminopeptidases, oxidase, haloperoxidase and lipases. We also overviewed the function, benefits and challenges of enzymes in removing biofouling. The reports suggest enzymes are good candidates for marine environment. According to the findings of a review of studies in this field, none of the enzymes were able to inhibit the development of biofilm by a site marine microbial community when used alone and we suggest using other enzymes or a mixture of enzymes for antifouling and antibiofilm purposes in the sea environment.
Collapse
Affiliation(s)
- Tayebeh Zarei Karyani
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Saba Ghattavi
- Fisheries Department, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.
| |
Collapse
|
15
|
Naik AT, Kamensky KM, Hellum AM, Moisander PH. Disturbance frequency directs microbial community succession in marine biofilms exposed to shear. mSphere 2023; 8:e0024823. [PMID: 37931135 PMCID: PMC10790581 DOI: 10.1128/msphere.00248-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/30/2023] [Indexed: 11/08/2023] Open
Abstract
IMPORTANCE Disturbances are major drivers of community succession in many microbial systems; however, relatively little is known about marine biofilm community succession, especially under antifouling disturbance. Antifouling technologies exert strong local disturbances on marine biofilms, and resulting biomass losses can be accompanied by shifts in biofilm community composition and succession. We address this gap in knowledge by bridging microbial ecology with antifouling technology development. We show that disturbance by shear can strongly alter marine biofilm community succession, acting as a selective filter influenced by frequency of exposure. Examining marine biofilm succession patterns with and without shear revealed stable associations between key prokaryotic and eukaryotic taxa, highlighting the importance of cross-domain assessment in future marine biofilm research. Describing how compounded top-down and bottom-up disturbances shape the succession of marine biofilms is valuable for understanding the assembly and stability of these complex microbial communities and predicting species invasiveness.
Collapse
Affiliation(s)
- Abhishek T. Naik
- Department of Biology, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts, USA
- School of Marine Science and Technology, University of Massachusetts Dartmouth, New Bedford, Massachusetts, USA
| | | | - Aren M. Hellum
- Naval Undersea Warfare Center, Newport, Rhode Island, USA
| | - Pia H. Moisander
- Department of Biology, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts, USA
- School of Marine Science and Technology, University of Massachusetts Dartmouth, New Bedford, Massachusetts, USA
| |
Collapse
|
16
|
Bhalerao A, Dueker U, Weber M, Eich A, Lott C, Endres HJ, Nogueira R. Bacterial diversity of biofilms on polyhydroxybutyrate exposed to marine conditions: Ex-situ vs. in-situ tests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167458. [PMID: 37777124 DOI: 10.1016/j.scitotenv.2023.167458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
Biofilms form on any available surface and, depending on the characteristics of the material and the environmental conditions, biodegradation can take place. We compared the bacterial composition of polyhydroxybutyrate (PHB)-related biofilm communities from marine ex-situ and in-situ tests to assess the differences in diversity and abundance between these two biofilms. This comparison will help to better assess the transferability of tank tests to real-life scenarios. The in-situ tests were set up in the Mediterranean Sea on the Island of Elba, Italy where PHB-tensile bars were lodged in the sediments. This created a water-exposed aerobic and mud-planted anaerobic scenario. The ex-situ tests were modeled after in-situ tests and performed in temperature-controlled tanks. The PHB-related biofilms were harvested after 240 days of exposure along with planktonic bacteria, and particle- and sediment-related biofilm. The bacterial composition was elucidated using 16S rDNA sequencing. Biofilms harvested from the in-situ test were more diverse, less even, and contained more rare species compared to biofilms from the ex-situ test. The PHB-related biofilm was characterized by a higher abundance of the bacterial order Desulfobacterales. The composition of PHB-related biofilm varied significantly between the two tests and between aerobic and anaerobic conditions. The composition of PHB-related biofilm was significantly different from planktonic bacteria, particle, and sediment-related biofilm, showing the influence of PHB on the biofilm composition. Thus, the ex-situ tank test for PHB degradation cannot, in terms of bacterial composition, simulate the in-situ conditions to their full extent.
Collapse
Affiliation(s)
- Aniruddha Bhalerao
- Institute of Sanitary Engineering and Waste Management, Leibniz University Hannover, Welfengarten 1, D-30167 Hannover, Germany
| | - Urda Dueker
- Institute of Sanitary Engineering and Waste Management, Leibniz University Hannover, Welfengarten 1, D-30167 Hannover, Germany
| | - Miriam Weber
- HYDRA Marine Sciences GmbH, Steinfeldweg 15, 77815 Bühl, Germany
| | - Andreas Eich
- HYDRA Marine Sciences GmbH, Steinfeldweg 15, 77815 Bühl, Germany
| | - Christian Lott
- HYDRA Marine Sciences GmbH, Steinfeldweg 15, 77815 Bühl, Germany
| | - Hans Josef Endres
- Institute for Plastics and Circulation Technology, Leibniz University Hannover, An der Universität 2, 30823 Garbsen, Germany
| | - Regina Nogueira
- Institute of Sanitary Engineering and Waste Management, Leibniz University Hannover, Welfengarten 1, D-30167 Hannover, Germany.
| |
Collapse
|
17
|
Zhou K, Wong TY, Long L, Anantharaman K, Zhang W, Wong WC, Zhang R, Qian PY. Genomic and transcriptomic insights into complex virus-prokaryote interactions in marine biofilms. THE ISME JOURNAL 2023; 17:2303-2312. [PMID: 37875603 PMCID: PMC10689801 DOI: 10.1038/s41396-023-01546-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023]
Abstract
Marine biofilms are complex communities of microorganisms that play a crucial ecological role in oceans. Although prokaryotes are the dominant members of these biofilms, little is known about their interactions with viruses. By analysing publicly available and newly sequenced metagenomic data, we identified 2446 virus-prokaryote connections in 84 marine biofilms. Most of these connections were between the bacteriophages in the Uroviricota phylum and the bacteria of Proteobacteria, Cyanobacteria and Bacteroidota. The network of virus-host pairs is complex; a single virus can infect multiple prokaryotic populations or a single prokaryote is susceptible to several viral populations. Analysis of genomes of paired prokaryotes and viruses revealed the presence of 425 putative auxiliary metabolic genes (AMGs), 239 viral genes related to restriction-modification (RM) systems and 38,538 prokaryotic anti-viral defence-related genes involved in 15 defence systems. Transcriptomic evidence from newly established biofilms revealed the expression of viral genes, including AMGs and RM, and prokaryotic defence systems, indicating the active interplay between viruses and prokaryotes. A comparison between biofilms and seawater showed that biofilm prokaryotes have more abundant defence genes than seawater prokaryotes, and the defence gene composition differs between biofilms and the surrounding seawater. Overall, our study unveiled active viruses in natural biofilms and their complex interplay with prokaryotes, which may result in the blooming of defence strategists in biofilms. The detachment of bloomed defence strategists may reduce the infectivity of viruses in seawater and result in the emergence of a novel role of marine biofilms.
Collapse
Affiliation(s)
- Kun Zhou
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Tin Yan Wong
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Lexin Long
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | | | - Weipeng Zhang
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Wai Chuen Wong
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Rui Zhang
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.
| | - Pei-Yuan Qian
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
18
|
Portas A, Carriot N, Ortalo-Magné A, Damblans G, Thiébaut M, Culioli G, Quillien N, Briand JF. Impact of hydrodynamics on community structure and metabolic production of marine biofouling formed in a highly energetic estuary. MARINE ENVIRONMENTAL RESEARCH 2023; 192:106241. [PMID: 37922705 DOI: 10.1016/j.marenvres.2023.106241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/02/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
Biofouling is a specific lifestyle including both marine prokaryotic and eukaryotic communities. Hydrodynamics are poorly studied parameters affecting biofouling formation. This study aimed to investigate how water dynamics in the Etel Estuary (Northwest Atlantic coasts of France) influences the colonization of artificial substrates. Hydrodynamic conditions, mainly identified as shear stress, were characterized by measuring current velocity, turbulence intensity and energy using Acoustic Doppler Current Profiler (ADCP). One-month biofouling was analyzed by coupling metabarcoding (16S rRNA, 18S rRNA and COI genes), untargeted metabolomics (liquid chromatography coupled with high-resolution mass spectrometry, LC-HRMS) and characterization of the main biochemical components of the microbial exopolymeric matrix. A higher richness was observed for biofouling communities (prokaryotes and eukaryotes) exposed to the strongest currents. Ectopleura (Cnidaria) and its putative symbionts Endozoicomonas (Gammaproteobacteria) were dominant in the less dynamic conditions. Eukaryotes assemblages were specifically shaped by shear stress, leading to drastic changes in metabolite profiles. Under high hydrodynamic conditions, the exopolymeric matrix increased and was composed of 6 times more polysaccharides than proteins, these latter playing a crucial role in the adhesion and cohesion properties of biofilms. This original multidisciplinary approach demonstrated the importance of shear stress on both the structure of marine biofouling and the metabolic response of these complex communities.
Collapse
Affiliation(s)
- Aurélie Portas
- France Energies Marines, Plouzané, France; MAPIEM, EA 4323, Université de Toulon, France
| | | | | | | | | | - Gérald Culioli
- MAPIEM, EA 4323, Université de Toulon, France; IMBE, Aix-Marseille Université, Avignon Université, CNRS, IRD, Avignon, France
| | | | | |
Collapse
|
19
|
Turnlund AC, Vanwonterghem I, Botté ES, Randall CJ, Giuliano C, Kam L, Bell S, O'Brien P, Negri AP, Webster NS, Lurgi M. Linking differences in microbial network structure with changes in coral larval settlement. ISME COMMUNICATIONS 2023; 3:114. [PMID: 37865659 PMCID: PMC10590418 DOI: 10.1038/s43705-023-00320-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 10/23/2023]
Abstract
Coral cover and recruitment have decreased on reefs worldwide due to climate change-related disturbances. Achieving reliable coral larval settlement under aquaculture conditions is critical for reef restoration programmes; however, this can be challenging due to the lack of reliable and universal larval settlement cues. To investigate the role of microorganisms in coral larval settlement, we undertook a settlement choice experiment with larvae of the coral Acropora tenuis and microbial biofilms grown for different periods on the reef and in aquaria. Biofilm community composition across conditioning types and time was profiled using 16S and 18S rRNA gene sequencing. Co-occurrence networks revealed that strong larval settlement correlated with diverse biofilm communities, with specific nodes in the network facilitating connections between modules comprised of low- vs high-settlement communities. Taxa associated with high-settlement communities were identified as Myxoccales sp., Granulosicoccus sp., Alcanivoraceae sp., unassigned JTB23 sp. (Gammaproteobacteria), and Pseudovibrio denitrificans. Meanwhile, taxa closely related to Reichenbachiella agariperforans, Pleurocapsa sp., Alcanivorax sp., Sneathiella limmimaris, as well as several diatom and brown algae were associated with low settlement. Our results characterise high-settlement biofilm communities and identify transitionary taxa that may develop settlement-inducing biofilms to improve coral larval settlement in aquaculture.
Collapse
Affiliation(s)
- Abigail C Turnlund
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, St Lucia, QLD, 4072, Australia
| | - Inka Vanwonterghem
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, St Lucia, QLD, 4072, Australia
| | - Emmanuelle S Botté
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Carly J Randall
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | | | - Lisa Kam
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Sara Bell
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Paul O'Brien
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, St Lucia, QLD, 4072, Australia
| | - Andrew P Negri
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Nicole S Webster
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, St Lucia, QLD, 4072, Australia
- Australian Institute of Marine Science, Townsville, QLD, Australia
- Department of Climate Change, Energy, the Environment and Water, Australian Antarctic Division, Kingston, ACT, Australia
| | - Miguel Lurgi
- Department of Biosciences, Swansea University, Swansea, SA2 8PP, UK.
| |
Collapse
|
20
|
Golinia P, Nasrolahi A, Ghazilou A. Temporal variations of biofouling assemblages of a coral reef ecosystem during a monsoon period. BIOFOULING 2023; 39:1004-1014. [PMID: 38240106 DOI: 10.1080/08927014.2023.2300141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/23/2023] [Indexed: 02/27/2024]
Abstract
Coral reefs are highly biodiverse ecosystems, enriched by a range of biofouling species. Temporal variations in biofouling can affect ecosystem stability, but these diverse coral-associated communities remain underexplored in some regions. In the present study, biofouling assemblages of coral reefs in the Chabahar Bay were investigated during a summer monsoon at three deployment periods. In total, 26 taxa were identified with barnacles and polychaetes being the dominant taxa during the whole study. The coverage percentage was driven mostly by the encrusting taxa such as bryozoans and algae while biomass was determined by the dominance of shell-forming taxa. The results of PERMANOVA showed that the effects of the submersion period were significant on the assemblage structure. Biofouling assessment plays a pivotal role in safeguarding the intricate balance and long-term health of coral reef ecosystems. For a comprehensive understanding of biofouling dynamics and interactions with coral-associated species, conducting long-term studies is vital.
Collapse
Affiliation(s)
- Parissa Golinia
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Ali Nasrolahi
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Amir Ghazilou
- Iranian National Institute for Oceanography and Atmospheric Science (INIOAS), Tehran, Iran
| |
Collapse
|
21
|
Mugge RL, Rakocinski CF, Woolsey M, Hamdan LJ. Proximity to built structures on the seabed promotes biofilm development and diversity. BIOFOULING 2023; 39:706-718. [PMID: 37746691 DOI: 10.1080/08927014.2023.2255141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 08/30/2023] [Indexed: 09/26/2023]
Abstract
The rapidly expanding built environment in the northern Gulf of Mexico includes thousands of human built structures (e.g. platforms, shipwrecks) on the seabed. Primary-colonizing microbial biofilms transform structures into artificial reefs capable of supporting biodiversity, yet little is known about formation and recruitment of biofilms. Short-term seafloor experiments containing steel surfaces were placed near six structures, including historic shipwrecks and modern decommissioned energy platforms. Biofilms were analyzed for changes in phylogenetic composition, richness, and diversity relative to proximity to the structures. The biofilm core microbiome was primarily composed of iron-oxidizing Mariprofundus, sulfur-oxidizing Sulfurimonas, and biofilm-forming Rhodobacteraceae. Alpha diversity and richness significantly declined as a function of distance from structures. This study explores how built structures influence marine biofilms and contributes knowledge on how anthropogenic activity impacts microbiomes on the seabed.
Collapse
Affiliation(s)
- Rachel L Mugge
- School of Ocean Science and Engineering, University of Southern Mississippi, Ocean Springs, Mississippi, USA
| | - Chet F Rakocinski
- School of Ocean Science and Engineering, University of Southern Mississippi, Ocean Springs, Mississippi, USA
| | - Max Woolsey
- Hydrographic Science Research Center, University of Southern Mississippi, Stennis Space Center, Mississippi, USA
| | - Leila J Hamdan
- School of Ocean Science and Engineering, University of Southern Mississippi, Ocean Springs, Mississippi, USA
| |
Collapse
|
22
|
Khandeparker L, Desai DV, Teja Mittireddi R, Panda E, Hede N, Mapari K. Efficacy of amorphous TiO x-coated surfaces against micro- and macrofouling through laboratory microcosms and field studies. BIOFOULING 2023; 39:853-866. [PMID: 37965754 DOI: 10.1080/08927014.2023.2279997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 10/28/2023] [Indexed: 11/16/2023]
Abstract
In this study, Soda Lime Glass (SLG) and Stainless Steel (SS316L) substrata coated with Titanium oxide (TiOx) were tested for their efficacy in the laboratory microcosms and in field against micro- and macrofouling. Laboratory microcosm studies were conducted for five days using natural biofilms, single-species diatom (Navicula sp.), and bacterial biofilms, whereas field observations were conducted for 30 days. The TiOx-coating induced change in the mean contact angle of the substratum and rendered SS316L more hydrophilic and SLG hydrophobic, which influenced the Navicula sp. biofilm, and bacterial community structure of the biofilm. Overall, the TiOx-coated SS316L showed minimal microfouling, whereas non-coated SLG exhibited greater efficacy in deterring/preventing macrofouling organisms. Moreover, the reduction in macrofouling could be attributed to high abundance of Actinobacteria. Unraveling the mechanism of action needs future studies emphasizing biochemical processes and pathways.
Collapse
Affiliation(s)
- Lidita Khandeparker
- Biological Oceanography Division, CSIR - National Institute of Oceanography, Goa, India
| | - Dattesh V Desai
- Biological Oceanography Division, CSIR - National Institute of Oceanography, Goa, India
| | - Ravi Teja Mittireddi
- Materials Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
| | - Emila Panda
- Materials Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
| | - Niyati Hede
- Biological Oceanography Division, CSIR - National Institute of Oceanography, Goa, India
| | - Kaushal Mapari
- Biological Oceanography Division, CSIR - National Institute of Oceanography, Goa, India
| |
Collapse
|
23
|
Pedicini L, Vannini C, Rindi F, Ravaglioli C, Bertocci I, Bulleri F. Variations in epilithic microbial biofilm composition and recruitment of a canopy-forming alga between pristine and urban rocky shores. MARINE ENVIRONMENTAL RESEARCH 2023; 188:106035. [PMID: 37267663 DOI: 10.1016/j.marenvres.2023.106035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/04/2023]
Abstract
Brown algae of the genus Ericaria are habitat formers on Mediterranean rocky shores supporting marine biodiversity and ecosystem functioning. Their population decline has prompted attempts for restoration of threatened populations. Although epilithic microbial biofilms (EMBs) are determinant for macroalgal settlement, their role in regulating the recovery of populations through the recruitment of new thalli is yet to be explored. In this study, we assessed variations in microbial biofilms composition on the settlement of Ericaria amentacea at sites exposed to different human pressures. Artificial fouling surfaces were deployed in two areas at each of three study sites in the Ligurian Sea (Capraia Island, Secche della Meloria and the mainland coast of Livorno), to allow bacterial biofilm colonization. In the laboratory, zygotes of E. amentacea were released on these surfaces to evaluate the survival of germlings. The EMB's composition was assessed through DNA metabarcoding analysis, which revealed a difference between the EMB of Capraia Island and that of Livorno. Fouling surfaces from Capraia Island had higher rates of zygote settlement than the other two sites. This suggests that different environmental conditions can influence the EMB composition on substrata, possibly influencing algal settlement rate. Assessing the suitability of rocky substrata for E. amentacea settlement is crucial for successful restoration.
Collapse
Affiliation(s)
- Ludovica Pedicini
- Dipartimento di Biologia, Università di Pisa, CoNISMa, Via Derna 1, 56126, Pisa, Italy.
| | - Claudia Vannini
- Dipartimento di Biologia, Università di Pisa, CoNISMa, Via Derna 1, 56126, Pisa, Italy; Centro Interdipartimentale di Ricerca per lo Studio degli Effetti del Cambiamento Climatico (CIRSEC), Università di Pisa, Pisa, Italy
| | - Fabio Rindi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, I-60131, Ancona, Italy; National Biodiversity Future Center, Italy
| | - Chiara Ravaglioli
- Dipartimento di Biologia, Università di Pisa, CoNISMa, Via Derna 1, 56126, Pisa, Italy
| | - Iacopo Bertocci
- Dipartimento di Biologia, Università di Pisa, CoNISMa, Via Derna 1, 56126, Pisa, Italy; Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Fabio Bulleri
- Dipartimento di Biologia, Università di Pisa, CoNISMa, Via Derna 1, 56126, Pisa, Italy; Centro Interdipartimentale di Ricerca per lo Studio degli Effetti del Cambiamento Climatico (CIRSEC), Università di Pisa, Pisa, Italy
| |
Collapse
|
24
|
Weber F, Esmaeili N. Marine biofouling and the role of biocidal coatings in balancing environmental impacts. BIOFOULING 2023; 39:661-681. [PMID: 37587856 DOI: 10.1080/08927014.2023.2246906] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023]
Abstract
Marine biofouling is a global problem affecting various industries, particularly the shipping industry due to long-distance voyages across various ecosystems. Therein fouled hulls cause increased fuel consumption, greenhouse gas emissions, and the spread of invasive aquatic species. To counteract these issues, biofouling management plans are employed using manual cleaning protocols and protective coatings. This review provides a comprehensive overview of adhesion strategies of marine organisms, and currently available mitigation methods. Further, recent developments and open challenges of antifouling (AF) and fouling release (FR) coatings are discussed with regards to the future regulatory environment. Finally, an overview of the environmental and economic impact of fouling is provided to point out why and when the use of biocidal solutions is beneficial in the overall perspective.
Collapse
Affiliation(s)
- Florian Weber
- Department of Materials and Nanotechnology, SINTEF, Oslo, Norway
| | | |
Collapse
|
25
|
Biology and Regulation of Staphylococcal Biofilm. Int J Mol Sci 2023; 24:ijms24065218. [PMID: 36982293 PMCID: PMC10049468 DOI: 10.3390/ijms24065218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/15/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Despite continuing progress in medical and surgical procedures, staphylococci remain the major Gram-positive bacterial pathogens that cause a wide spectrum of diseases, especially in patients requiring the utilization of indwelling catheters and prosthetic devices implanted temporarily or for prolonged periods of time. Within the genus, if Staphylococcus aureus and S. epidermidis are prevalent species responsible for infections, several coagulase-negative species which are normal components of our microflora also constitute opportunistic pathogens that are able to infect patients. In such a clinical context, staphylococci producing biofilms show an increased resistance to antimicrobials and host immune defenses. Although the biochemical composition of the biofilm matrix has been extensively studied, the regulation of biofilm formation and the factors contributing to its stability and release are currently still being discovered. This review presents and discusses the composition and some regulation elements of biofilm development and describes its clinical importance. Finally, we summarize the numerous and various recent studies that address attempts to destroy an already-formed biofilm within the clinical context as a potential therapeutic strategy to avoid the removal of infected implant material, a critical event for patient convenience and health care costs.
Collapse
|
26
|
Kwan KY, Yang X, Wang CC, Kuang Y, Wen Y, Tan KA, Xu P, Zhen W, Wang X, Zhu J, Huang X. Chemically mediated rheotaxis of endangered tri-spine horseshoe crab: potential dispersing mechanism to vegetated nursery habitats along the coast. PeerJ 2022; 10:e14465. [PMID: 36523452 PMCID: PMC9745956 DOI: 10.7717/peerj.14465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 11/04/2022] [Indexed: 12/09/2022] Open
Abstract
Background An enhanced understanding of larval ecology is fundamental to improve the management of locally depleted horseshoe crab populations in Asia. Recent studies in the northern Beibu Gulf, China demonstrated that nesting sites of Asian horseshoe crabs are typically close to their nursery beaches with high-density juveniles distributed around mangrove, seagrass and other structured habitats. Methods A laboratory Y-maze chamber was used to test whether the dispersal of early-stage juvenile tri-spine horseshoe crab Tachypleus tridentatus is facilitated by chemical cues to approach suitable nursery habitats. The juvenile orientation to either side of the chamber containing controlled seawater or another with various vegetation cues, as well as their movement time, the largest distance and displacement were recorded. Results The juveniles preferred to orient toward seagrass Halophila beccarii cues when the concentration reached 0.5 g l-1, but ceased at 2 g l-1. The results can be interpreted as a shelter-seeking process to get closer to the preferred settlement habitats. However, the juveniles exhibited avoidance behaviors in the presence of mangrove Avicennia marina and invasive saltmarsh cordgrass Spartina alterniflora at 2 g l-1. The juveniles also spent less time moving in the presence of the A. marina cue, as well as reduced displacement in water containing the S. alterniflora cue at 1 and 2 g l-1. These results may explain the absence of juvenile T. tridentatus within densely vegetated areas, which have generally higher organic matter and hydrogen sulfide. Conclusion Early-stage juvenile T. tridentatus are capable of detecting and responding to habitat chemical cues, which can help guide them to high-quality settlement habitats. Preserving and restoring seagrass beds in the intertidal areas should be prioritized when formulating habitat conservation and management initiatives for the declining horseshoe crab populations.
Collapse
Affiliation(s)
- Kit Yue Kwan
- College of Marine Sciences, Beibu Gulf Ocean Development Research Centre, Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf University, Qinzhou, Guangxi, China
| | - Xin Yang
- College of Marine Sciences, Beibu Gulf Ocean Development Research Centre, Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf University, Qinzhou, Guangxi, China
| | - Chun-Chieh Wang
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, China
| | - Yang Kuang
- College of Marine Sciences, Beibu Gulf Ocean Development Research Centre, Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf University, Qinzhou, Guangxi, China
| | - Yulong Wen
- College of Marine Sciences, Beibu Gulf Ocean Development Research Centre, Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf University, Qinzhou, Guangxi, China
| | - Kian Ann Tan
- College of Marine Sciences, Beibu Gulf Ocean Development Research Centre, Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf University, Qinzhou, Guangxi, China
| | - Peng Xu
- College of Marine Sciences, Beibu Gulf Ocean Development Research Centre, Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf University, Qinzhou, Guangxi, China
| | - Wenquan Zhen
- College of Marine Sciences, Beibu Gulf Ocean Development Research Centre, Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf University, Qinzhou, Guangxi, China
| | - Xueping Wang
- College of Marine Sciences, Beibu Gulf Ocean Development Research Centre, Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf University, Qinzhou, Guangxi, China
| | - Junhua Zhu
- College of Marine Sciences, Beibu Gulf Ocean Development Research Centre, Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf University, Qinzhou, Guangxi, China
| | - Xing Huang
- College of Marine Sciences, Beibu Gulf Ocean Development Research Centre, Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf University, Qinzhou, Guangxi, China
| |
Collapse
|
27
|
Zarei Jeliani Z, Sourinejad I, Afrand M, Shahdadi A, Yousefzadi M. Molecular Identification of Biofilm-Forming Marine Bacterial Strains Isolated from Different Substrates of Mangrove Habitat. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY, TRANSACTIONS A: SCIENCE 2022. [DOI: 10.1007/s40995-022-01383-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Mathur V, Ulanova D. Microbial Metabolites Beneficial to Plant Hosts Across Ecosystems. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02073-x. [PMID: 35867138 DOI: 10.1007/s00248-022-02073-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Plants are intimately connected with their associated microorganisms. Chemical interactions via natural products between plants and their microbial symbionts form an important aspect in host health and development, both in aquatic and terrestrial ecosystems. These interactions range from negative to beneficial for microbial symbionts as well as their hosts. Symbiotic microbes synchronize their metabolism with their hosts, thus suggesting a possible coevolution among them. Metabolites, synthesized from plants and microbes due to their association and coaction, supplement the already present metabolites, thus promoting plant growth, maintaining physiological status, and countering various biotic and abiotic stress factors. However, environmental changes, such as pollution and temperature variations, as well as anthropogenic-induced monoculture settings, have a significant influence on plant-associated microbial community and its interaction with the host. In this review, we put the prominent microbial metabolites participating in plant-microbe interactions in the natural terrestrial and aquatic ecosystems in a single perspective and have discussed commonalities and differences in these interactions for adaptation to surrounding environment and how environmental changes can alter the same. We also present the status and further possibilities of employing chemical interactions for environment remediation. Our review thus underlines the importance of ecosystem-driven functional adaptations of plant-microbe interactions in natural and anthropogenically influenced ecosystems and their possible applications.
Collapse
Affiliation(s)
- Vartika Mathur
- Animal Plant Interactions Lab, Department of Zoology, Sri Venkateswara College, Benito Juarez Marg, Dhaula Kuan, New Delhi-110021, India.
| | - Dana Ulanova
- Department of Marine Resource Sciences, Faculty of Agriculture and Marine Science, Kochi University, Monobe, Nankoku city, Kochi, 783-8502, Japan.
- Center for Advanced Marine Core Research, Kochi University, Monobe, Nankoku city, Kochi, 783-8502, Japan.
| |
Collapse
|
29
|
Abstract
Marine biofilms are ubiquitous in the marine environment. These complex microbial communities rapidly respond to environmental changes and encompass hugely diverse microbial structures, functions and metabolisms. Nevertheless, knowledge is limited on the microbial community structures and functions of natural marine biofilms and their influence on global geochemical cycles. Microbial cues, including secondary metabolites and microbial structures, regulate interactions between microorganisms, with their environment and with other benthic organisms, which affects their community succession and metamorphosis. Furthermore, marine biofilms are key mediators of marine biofouling, which greatly affect marine industries. In this Review, we discuss marine biofilm dynamics, including their diversity, abundance and functions. We also highlight knowledge gaps, areas for future research and potential biotechnological applications of marine biofilms.
Collapse
|
30
|
Xia Y, Jayathilake PG, Li B, Zuliani P, Deehan D, Longyear J, Stoodley P, Chen J. Coupled CFD-DEM modelling to predict how EPS affects bacterial biofilm deformation, recovery and detachment under flow conditions. Biotechnol Bioeng 2022; 119:2551-2563. [PMID: 35610631 PMCID: PMC9544383 DOI: 10.1002/bit.28146] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/07/2022] [Accepted: 05/14/2022] [Indexed: 11/21/2022]
Abstract
The deformation and detachment of bacterial biofilm are related to the structural and mechanical properties of the biofilm itself. Extracellular polymeric substances (EPS) play an important role on keeping the mechanical stability of biofilms. The understanding of biofilm mechanics and detachment can help to reveal biofilm survival mechanisms under fluid shear and provide insight about what flows might be needed to remove biofilm in a cleaning cycle or for a ship to remove biofilms. However, how the EPS may affect biofilm mechanics and its deformation in flow conditions remains elusive. To address this, a coupled computational fluid dynamic– discrete element method (CFD‐DEM) model was developed. The mechanisms of biofilm detachment, such as erosion and sloughing have been revealed by imposing hydrodynamic fluid flow at different velocities and loading rates. The model, which also allows adjustment of the proportion of different functional groups of microorganisms in the biofilm, enables the study of the contribution of EPS toward biofilm resistance to fluid shear stress. Furthermore, the stress–strain curves during biofilm deformation have been captured by loading and unloading fluid shear stress to study the viscoelastic properties of the biofilm. Our predicted emergent viscoelastic properties of biofilms were consistent with relevant experimental measurements.
Collapse
Affiliation(s)
- Yuqing Xia
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K
| | | | - Bowen Li
- School of Computing, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K
| | - Paolo Zuliani
- School of Computing, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K
| | - David Deehan
- The Medical School, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K.,Freeman Hospital, Newcastle upon Tyne, NE7 7DN, U.K
| | - Jennifer Longyear
- Marin, Protective, and Yacht Coatings, AkzoNobel, Gateshead, NE10 0JY, U.K
| | - Paul Stoodley
- Department of Microbial Infection and Immunity and the Department of Orthopaedics, The Ohio State University, Columbus, OH, 43210, USA.,National Centre for Advanced Tribology at Southampton (nCATS), National Biofilm Innovation Centre (NBIC), Mechanical Engineering, University of Southampton, Southampton, S017 1BJ, U.K
| | - Jinju Chen
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K
| |
Collapse
|
31
|
Ma S, Li Y, Guan F, Zhang L, Li J, Tai Y, Ren H, Duan J. Variations in microbial community on different materials in Sanya Marine Environment Experimental Station, China. Can J Microbiol 2022; 68:447-455. [PMID: 35412394 DOI: 10.1139/cjm-2022-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Marine biofouling occurs through the colonization of undesired microorganisms on the surfaces of structures. In this study, four immersion cycles (2, 5, 15, and 25 days) of total immersion in seawater were carried out at the Sanya Marine Environmental Test Station using three materials: industrial pure titanium (Ti), hot-dip zinc (Zn), and glass slide (GS). Three phyla, four classes, and nine bacterial genera were identified. The dominant genera were Pseudomonas, Alteromonas, and Pseudoalteromonas. The number of bacteria increased with soaking time. Sixty-one species of diatoms belonging to 30 genera, 24 families, and 16 orders were detected, among which the dominant genera were Amphora, Nitzschia, and Navicula. Four genera of ciliates belonged to two classes, three orders, and four families, among which the dominant species were Euplotes sp. and Uronema marinum. Tubular polychaetes was the dominant metazoans. Species diversity increased over time. The highest biofilm diversity was observed on the GS surface. The diversity of biofilms on the Ti surface was higher than that on the Zn surface. This study provides basic data for marine material research, marine corrosion, and national defence construction.
Collapse
Affiliation(s)
- Shide Ma
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.,Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yuhang Li
- Laboratory of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Fang Guan
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.,Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Linlin Zhang
- College of Safety and Environment Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Ju Li
- Laboratory of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yu Tai
- Qingdao Tony Machinery and Equipment Co., Ltd., Qingdao, 266000, China
| | - Haitao Ren
- Luoyang Ship Material Research Institute (LSMRI), Sanya, 572032, China
| | - Jizhou Duan
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.,Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
32
|
Li QC, Wang B, Zeng YH, Cai ZH, Zhou J. The Microbial Mechanisms of a Novel Photosensitive Material (Treated Rape Pollen) in Anti-Biofilm Process under Marine Environment. Int J Mol Sci 2022; 23:ijms23073837. [PMID: 35409199 PMCID: PMC8998240 DOI: 10.3390/ijms23073837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 02/01/2023] Open
Abstract
Marine biofouling is a worldwide problem in coastal areas and affects the maritime industry primarily by attachment of fouling organisms to solid immersed surfaces. Biofilm formation by microbes is the main cause of biofouling. Currently, application of antibacterial materials is an important strategy for preventing bacterial colonization and biofilm formation. A natural three-dimensional carbon skeleton material, TRP (treated rape pollen), attracted our attention owing to its visible-light-driven photocatalytic disinfection property. Based on this, we hypothesized that TRP, which is eco-friendly, would show antifouling performance and could be used for marine antifouling. We then assessed its physiochemical characteristics, oxidant potential, and antifouling ability. The results showed that TRP had excellent photosensitivity and oxidant ability, as well as strong anti-bacterial colonization capability under light-driven conditions. Confocal laser scanning microscopy showed that TRP could disperse pre-established biofilms on stainless steel surfaces in natural seawater. The biodiversity and taxonomic composition of biofilms were significantly altered by TRP (p < 0.05). Moreover, metagenomics analysis showed that functional classes involved in the antioxidant system, environmental stress, glucose−lipid metabolism, and membrane-associated functions were changed after TRP exposure. Co-occurrence model analysis further revealed that TRP markedly increased the complexity of the biofilm microbial network under light irradiation. Taken together, these results demonstrate that TRP with light irradiation can inhibit bacterial colonization and prevent initial biofilm formation. Thus, TRP is a potential nature-based green material for marine antifouling.
Collapse
Affiliation(s)
- Qing-Chao Li
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (Q.-C.L.); (Y.-H.Z.); (Z.-H.C.)
| | - Bo Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
| | - Yan-Hua Zeng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (Q.-C.L.); (Y.-H.Z.); (Z.-H.C.)
| | - Zhong-Hua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (Q.-C.L.); (Y.-H.Z.); (Z.-H.C.)
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (Q.-C.L.); (Y.-H.Z.); (Z.-H.C.)
- Correspondence:
| |
Collapse
|
33
|
Wang J, Tang X, Mo Z, Mao Y. Metagenome-Assembled Genomes From Pyropia haitanensis Microbiome Provide Insights Into the Potential Metabolic Functions to the Seaweed. Front Microbiol 2022; 13:857901. [PMID: 35401438 PMCID: PMC8984609 DOI: 10.3389/fmicb.2022.857901] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/28/2022] [Indexed: 12/24/2022] Open
Abstract
Pyropia is an economically important edible red alga worldwide. The aquaculture industry and Pyropia production have grown considerably in recent decades. Microbial communities inhabit the algal surface and produce a variety of compounds that can influence host adaptation. Previous studies on the Pyropia microbiome were focused on the microbial components or the function of specific microbial lineages, which frequently exclude metabolic information and contained only a small fraction of the overall community. Here, we performed a genome-centric analysis to study the metabolic potential of the Pyropia haitanensis phycosphere bacteria. We reconstructed 202 unique metagenome-assembled genomes (MAGs) comprising all major taxa present within the P. haitanensis microbiome. The addition of MAGs to the genome tree containing all publicly available Pyropia-associated microorganisms increased the phylogenetic diversity by 50% within the bacteria. Metabolic reconstruction of the MAGs showed functional redundancy across taxa for pathways including nitrate reduction, taurine metabolism, organophosphorus, and 1-aminocyclopropane-1-carboxylate degradation, auxin, and vitamin B12 synthesis. Some microbial functions, such as auxin and vitamin B12 synthesis, that were previously assigned to a few Pyropia-associated microorganisms were distributed across the diverse epiphytic taxa. Other metabolic pathways, such as ammonia oxidation, denitrification, and sulfide oxidation, were confined to specific keystone taxa.
Collapse
Affiliation(s)
- Junhao Wang
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xianghai Tang
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhaolan Mo
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Yunxiang Mao
- Key Laboratory of Utilization and Conservation of Tropical Marine Bioresource (Ministry of Education), College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya, China
- Yazhou Bay Innovation Research Institute, Hainan Tropical Ocean University, Sanya, China
- Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources of Hainan Province, Hainan Tropical Ocean University, Sanya, China
| |
Collapse
|
34
|
Quémener M, Kikionis S, Fauchon M, Toueix Y, Aulanier F, Makris AM, Roussis V, Ioannou E, Hellio C. Antifouling Activity of Halogenated Compounds Derived from the Red Alga Sphaerococcus coronopifolius: Potential for the Development of Environmentally Friendly Solutions. Mar Drugs 2021; 20:md20010032. [PMID: 35049887 PMCID: PMC8778584 DOI: 10.3390/md20010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 11/24/2022] Open
Abstract
Nowadays, biofouling is responsible for enormous economic losses in the maritime sector, and its treatment with conventional antifouling paints is causing significant problems to the environment. Biomimetism and green chemistry approaches are very promising research strategies for the discovery of new antifouling compounds. This study focused on the red alga Sphaerococcus coronopifolius, which is known as a producer of bioactive secondary metabolites. Fifteen compounds, including bromosphaerol (1), were tested against key marine biofoulers (five marine bacteria and three microalgae) and two enzymes associated with the adhesion process in macroalgae and invertebrates. Each metabolite presented antifouling activity against at least one organism/enzyme. This investigation also revealed that two compounds, sphaerococcinol A (4) and 14R-hydroxy-13,14-dihydro-sphaerococcinol A (5), were the most potent compounds without toxicity towards oyster larvae used as non-target organisms. These compounds are of high potential as they are active towards key biofoulers and could be produced by a cultivable alga, a fact that is important from the green chemistry point of view.
Collapse
Affiliation(s)
- Maxence Quémener
- Laboratoire des Sciences de l’Environnement Marin (LEMAR), Université de Brest, CNRS, IRD, Ifremer, F-29280 Plouzané, France; (M.Q.); (M.F.); (Y.T.); (F.A.)
| | - Stefanos Kikionis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (S.K.); (V.R.)
| | - Marilyne Fauchon
- Laboratoire des Sciences de l’Environnement Marin (LEMAR), Université de Brest, CNRS, IRD, Ifremer, F-29280 Plouzané, France; (M.Q.); (M.F.); (Y.T.); (F.A.)
| | - Yannick Toueix
- Laboratoire des Sciences de l’Environnement Marin (LEMAR), Université de Brest, CNRS, IRD, Ifremer, F-29280 Plouzané, France; (M.Q.); (M.F.); (Y.T.); (F.A.)
| | - Fanny Aulanier
- Laboratoire des Sciences de l’Environnement Marin (LEMAR), Université de Brest, CNRS, IRD, Ifremer, F-29280 Plouzané, France; (M.Q.); (M.F.); (Y.T.); (F.A.)
| | - Antonios M. Makris
- Institute of Applied Biosciences, Centre for Research & Technology, Hellas (CERTH), 570 01 Thessaloniki, Greece;
| | - Vassilios Roussis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (S.K.); (V.R.)
| | - Efstathia Ioannou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (S.K.); (V.R.)
- Correspondence: (E.I.); (C.H.)
| | - Claire Hellio
- Laboratoire des Sciences de l’Environnement Marin (LEMAR), Université de Brest, CNRS, IRD, Ifremer, F-29280 Plouzané, France; (M.Q.); (M.F.); (Y.T.); (F.A.)
- Correspondence: (E.I.); (C.H.)
| |
Collapse
|
35
|
Tan J, Liang X, Yang J, Zhou S. Sol-gel-derived hard coatings from tetraethoxysilane and organoalkoxysilanes bearing zwitterionic and isothiazolinone groups and their antifouling behaviors. J Mater Chem B 2021; 10:406-417. [PMID: 34935850 DOI: 10.1039/d1tb02069b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Current environmentally friendly marine antifouling (AF) coatings are mainly polymeric with a relatively low hardness. Hard sol-gel-derived AF coatings for underwater robot-cleaning are seldom used. In this work, two new organoalkoxysilanes, i.e., (N-methoxyacylethyl)-3-aminopropyltriethoxysilane and 2-(2-hydroxy-3-(3-(trimethoxysilyl)propoxy)propyl)benzo[d]isothiazol-3(2H)-one, were synthesized by a facile method. These two precursors were used with tetraethoxysilane (TEOS) to produce three series of hybrid AF coatings with zwitterionic group (Z-χ), antibacterial group (1,2-benzisothiazolin-3-one) (A-χ) and zwitterionic and antibacterial groups (S-χ) by a sol-gel process. The hardness of the coatings was measured using a pencil hardness tester and the AF behaviors of the coatings were examined by laboratory and field assays. A pencil hardness up to 5 H was achieved and slight deterioration was observed after 9 months of immersion in artificial seawater for the A-χ and S-χ coatings at a sufficiently high TEOS content. A synergistic effect between the zwitterion and antimicrobial agents existed but was not obvious. A higher TEOS content led to a higher hardness and better AF performance regardless of the type of AF group. Even with the same biofilm formation after field assay, coatings with a higher TEOS content exhibited a better resistance to mussel settlement.
Collapse
Affiliation(s)
- Jinyan Tan
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Advanced Coatings Research Center of Ministry of Education of China, Fudan University, Shanghai 200433, China.
| | - Xiao Liang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Jinlong Yang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Shuxue Zhou
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Advanced Coatings Research Center of Ministry of Education of China, Fudan University, Shanghai 200433, China.
| |
Collapse
|
36
|
Impacts of UV-C irradiation on marine biofilm community succession. Appl Environ Microbiol 2021; 88:e0229821. [PMID: 34936837 DOI: 10.1128/aem.02298-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Marine biofilms are diverse microbial communities and important ecological habitats forming on surfaces submerged in the ocean. Biofilm communities resist environmental disturbance, making them a nuisance to some human activities ('biofouling'). Anti-fouling solutions rarely address the underlying stability or compositional responses of these biofilms. Using bulk measurements and molecular analyses, we examined temporal and UV-C antifouling-based shifts in marine biofilms in the coastal Western North Atlantic Ocean during early fall. Over a 24-d period, bacterial communities shifted from early dominance of Gammaproteobacteria to increased proportions of Alphaproteobacteria, Bacteroidia and Acidimicrobiia. In a network analysis based on temporal covariance, Rhodobacteraceae (Alphaproteobacteria) nodes were abundant and densely connected with generally positive correlations. In the eukaryotic community, persistent algal, protistan, and invertebrate groups were observed, although consistent temporal succession was not detected. Biofilm UV-C treatment at 13 and 20 days resulted in losses of chlorophyll a and transparent exopolymer particles, indicating biomass disruption. Bacterial community shifts suggested that UV-C treatment decreased biofilm maturation rate and was associated with proportional shifts among diverse bacterial taxa. UV-C treatment was also associated with increased proportions of protists potentially involved in detritivory and parasitism. Older biofilm communities had increased resistance to UV-C, suggesting that early biofilms are more susceptible to UV-C based antifouling. The results suggest that UV-C irradiation is potentially an effective antifouling method in marine environments in terms of biomass removal and in slowing maturation. However, as they mature, biofilm communities may accumulate microbial members that are tolerant or resilient under UV-treatment. Importance Marine biofilms regulate processes from organic matter and pollutant turnover to eukaryotic settlement and growth. Biofilm growth and eukaryotic settlement interfering with human activities via growth on ship hulls, aquaculture operations, or other marine infrastructure are called 'biofouling'. There is a need to develop sustainable anti-fouling techniques by minimizing impacts to surrounding biota. We use the biofouling-antifouling framework to test hypotheses about marine biofilm succession and stability in response to disturbance, using a novel UV-C LED device. We demonstrate strong bacterial biofilm successional patterns and detect taxa potentially contributing to stability under UV-C stress. Despite UV-C-associated biomass losses and varying UV susceptibility of microbial taxa, we detected high compositional resistance among biofilm bacterial communities, suggesting decoupling of disruption in biomass and community composition following UV-C irradiation. We also report microbial covariance patterns over 24 days of biofilm growth, pointing to areas for study of microbial interactions and targeted antifouling.
Collapse
|
37
|
La Marca EC, Catania V, Tagliavia M, Mannino AM, Chemello R, Quatrini P. Temporal dynamic of biofilms enhances the settlement of the central-Mediterranean reef-builder Dendropoma cristatum (Biondi, 1859). MARINE ENVIRONMENTAL RESEARCH 2021; 172:105484. [PMID: 34695696 DOI: 10.1016/j.marenvres.2021.105484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/14/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
Research on marine invertebrate settlement provides baseline knowledge for restoration technique implementation, especially for biogenic engineers with limited dispersion ability. Previously, we determined that the maturity of a biofilm strongly enhances the settlement of the vermetid reef-builder Dendropoma cristatum. To elucidate settlement-related biofilm features, here we analyse the structure and composition of marine biofilms over time, through microscopic observations, eukaryotic and prokaryotic fingerprinting analyses and 16S rDNA Illumina sequencing. The vermetid settlement temporal increase matched with the higher biofilm coverage on the substratum and the reduction of the eukaryotic abundance and diversity. The prokaryotic assemblage become, over time, more similar to that found on the reef-associated biofilm. Vermetids may detect these differences and selectively settle on those biofilms which show an advantageous structure and composition. These outcomes may support the production of ideal substrates for vermetid colonization and their further translocation to repopulate degraded reefs.
Collapse
Affiliation(s)
- Emanuela Claudia La Marca
- Dipartimento di Scienze della Terra e del Mare, University of Palermo, 90123, Palermo, Italy; Consorzio Nazionale Interuniversitario per le Scienze del Mare, 00196, Rome, Italy.
| | - Valentina Catania
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, 90128, Palermo, Italy
| | - Marcello Tagliavia
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, 90128, Palermo, Italy; Istituto per la Ricerca e l'Innovazione Biomedica, Consiglio Nazionale delle Ricerche, Palermo, 90146, Palermo, Italy
| | - Anna Maria Mannino
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, 90128, Palermo, Italy; Consorzio Nazionale Interuniversitario per le Scienze del Mare, 00196, Rome, Italy
| | - Renato Chemello
- Dipartimento di Scienze della Terra e del Mare, University of Palermo, 90123, Palermo, Italy; Consorzio Nazionale Interuniversitario per le Scienze del Mare, 00196, Rome, Italy
| | - Paola Quatrini
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, 90128, Palermo, Italy
| |
Collapse
|
38
|
Resende DISP, Almeida JR, Pereira S, Campos A, Lemos A, Plowman JE, Thomas A, Clerens S, Vasconcelos V, Pinto M, Correia-da-Silva M, Sousa E. From Natural Xanthones to Synthetic C-1 Aminated 3,4-Dioxygenated Xanthones as Optimized Antifouling Agents. Mar Drugs 2021; 19:638. [PMID: 34822509 PMCID: PMC8618441 DOI: 10.3390/md19110638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 01/20/2023] Open
Abstract
Biofouling, which occurs when certain marine species attach and accumulate in artificial submerged structures, represents a serious economic and environmental issue worldwide. The discovery of new non-toxic and eco-friendly antifouling systems to control or prevent biofouling is, therefore, a practical and urgent need. In this work, the antifouling activity of a series of 24 xanthones, with chemical similarities to natural products, was exploited. Nine (1, 2, 4, 6, 8, 16, 19, 21, and 23) of the tested xanthones presented highly significant anti-settlement responses at 50 μM against the settlement of mussel Mytilus galloprovincialis larvae and low toxicity to this macrofouling species. Xanthones 21 and 23 emerged as the most effective larval settlement inhibitors (EC50 = 7.28 and 3.57 µM, respectively). Additionally, xanthone 23 exhibited a therapeutic ratio (LC50/EC50) > 15, as required by the US Navy program attesting its suitability as natural antifouling agents. From the nine tested xanthones, none of the compounds were found to significantly inhibit the growth of the marine biofilm-forming bacterial strains tested. Xanthones 4, 6, 8, 16, 19, 21, and 23 were found to be non-toxic to the marine non-target species Artemia salina (<10% mortality at 50 μM). Insights on the antifouling mode of action of the hit xanthones 21 and 23 suggest that these two compounds affected similar molecular targets and cellular processes in mussel larvae, including that related to mussel adhesion capacity. This work exposes for the first time the relevance of C-1 aminated xanthones with a 3,4-dioxygenated pattern of substitution as new non-toxic products to prevent marine biofouling.
Collapse
Affiliation(s)
- Diana I. S. P. Resende
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General, Norton de Matos S/N, 4450-208 Matosinhos, Portugal; (D.I.S.P.R.); (J.R.A.); (S.P.); (A.C.); (V.V.); (M.P.); (E.S.)
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
| | - Joana R. Almeida
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General, Norton de Matos S/N, 4450-208 Matosinhos, Portugal; (D.I.S.P.R.); (J.R.A.); (S.P.); (A.C.); (V.V.); (M.P.); (E.S.)
| | - Sandra Pereira
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General, Norton de Matos S/N, 4450-208 Matosinhos, Portugal; (D.I.S.P.R.); (J.R.A.); (S.P.); (A.C.); (V.V.); (M.P.); (E.S.)
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4069-007 Porto, Portugal
| | - Alexandre Campos
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General, Norton de Matos S/N, 4450-208 Matosinhos, Portugal; (D.I.S.P.R.); (J.R.A.); (S.P.); (A.C.); (V.V.); (M.P.); (E.S.)
| | - Agostinho Lemos
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
| | - Jeffrey E. Plowman
- AgResearch Ltd., 1365 Springs Rd, Lincoln 7674, New Zealand; (J.E.P.); (A.T.); (S.C.)
| | - Ancy Thomas
- AgResearch Ltd., 1365 Springs Rd, Lincoln 7674, New Zealand; (J.E.P.); (A.T.); (S.C.)
| | - Stefan Clerens
- AgResearch Ltd., 1365 Springs Rd, Lincoln 7674, New Zealand; (J.E.P.); (A.T.); (S.C.)
- Biomolecular Interaction Centre, University of Canterbury, Christchurch 8041, New Zealand
- Riddet Institute, Massey University, Palmerston North 4474, New Zealand
| | - Vitor Vasconcelos
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General, Norton de Matos S/N, 4450-208 Matosinhos, Portugal; (D.I.S.P.R.); (J.R.A.); (S.P.); (A.C.); (V.V.); (M.P.); (E.S.)
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4069-007 Porto, Portugal
| | - Madalena Pinto
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General, Norton de Matos S/N, 4450-208 Matosinhos, Portugal; (D.I.S.P.R.); (J.R.A.); (S.P.); (A.C.); (V.V.); (M.P.); (E.S.)
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
| | - Marta Correia-da-Silva
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General, Norton de Matos S/N, 4450-208 Matosinhos, Portugal; (D.I.S.P.R.); (J.R.A.); (S.P.); (A.C.); (V.V.); (M.P.); (E.S.)
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
| | - Emília Sousa
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General, Norton de Matos S/N, 4450-208 Matosinhos, Portugal; (D.I.S.P.R.); (J.R.A.); (S.P.); (A.C.); (V.V.); (M.P.); (E.S.)
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
| |
Collapse
|
39
|
Cavalcanti GS, Alker AT, Delherbe N, Malter KE, Shikuma NJ. The Influence of Bacteria on Animal Metamorphosis. Annu Rev Microbiol 2021; 74:137-158. [PMID: 32905754 DOI: 10.1146/annurev-micro-011320-012753] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The swimming larvae of many marine animals identify a location on the seafloor to settle and undergo metamorphosis based on the presence of specific surface-bound bacteria. While bacteria-stimulated metamorphosis underpins processes such as the fouling of ship hulls, animal development in aquaculture, and the recruitment of new animals to coral reef ecosystems, little is known about the mechanisms governing this microbe-animal interaction. Here we review what is known and what we hope to learn about how bacteria and the factors they produce stimulate animal metamorphosis. With a few emerging model systems, including the tubeworm Hydroides elegans, corals, and the hydrozoan Hydractinia, we have begun to identify bacterial cues that stimulate animal metamorphosis and test hypotheses addressing their mechanisms of action. By understanding the mechanisms by which bacteria promote animal metamorphosis, we begin to illustrate how, and explore why, the developmental decision of metamorphosis relies on cues from environmental bacteria.
Collapse
Affiliation(s)
- Giselle S Cavalcanti
- Viral Information Institute and Department of Biology, San Diego State University, San Diego, California 92182, USA; , , , ,
| | - Amanda T Alker
- Viral Information Institute and Department of Biology, San Diego State University, San Diego, California 92182, USA; , , , ,
| | - Nathalie Delherbe
- Viral Information Institute and Department of Biology, San Diego State University, San Diego, California 92182, USA; , , , ,
| | - Kyle E Malter
- Viral Information Institute and Department of Biology, San Diego State University, San Diego, California 92182, USA; , , , ,
| | - Nicholas J Shikuma
- Viral Information Institute and Department of Biology, San Diego State University, San Diego, California 92182, USA; , , , ,
| |
Collapse
|
40
|
Wiegand S, Rast P, Kallscheuer N, Jogler M, Heuer A, Boedeker C, Jeske O, Kohn T, Vollmers J, Kaster AK, Quast C, Glöckner FO, Rohde M, Jogler C. Analysis of Bacterial Communities on North Sea Macroalgae and Characterization of the Isolated Planctomycetes Adhaeretor mobilis gen. nov., sp. nov., Roseimaritima multifibrata sp. nov., Rosistilla ulvae sp. nov. and Rubripirellula lacrimiformis sp. nov. Microorganisms 2021; 9:microorganisms9071494. [PMID: 34361930 PMCID: PMC8303584 DOI: 10.3390/microorganisms9071494] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 12/31/2022] Open
Abstract
Planctomycetes are bacteria that were long thought to be unculturable, of low abundance, and therefore neglectable in the environment. This view changed in recent years, after it was shown that members of the phylum Planctomycetes can be abundant in many aquatic environments, e.g., in the epiphytic communities on macroalgae surfaces. Here, we analyzed three different macroalgae from the North Sea and show that Planctomycetes is the most abundant bacterial phylum on the alga Fucus sp., while it represents a minor fraction of the surface-associated bacterial community of Ulva sp. and Laminaria sp. Especially dominant within the phylum Planctomycetes were Blastopirellula sp., followed by Rhodopirellula sp., Rubripirellula sp., as well as other Pirellulaceae and Lacipirellulaceae, but also members of the OM190 lineage. Motivated by the observed abundance, we isolated four novel planctomycetal strains to expand the collection of species available as axenic cultures since access to different strains is a prerequisite to investigate the success of planctomycetes in marine environments. The isolated strains constitute four novel species belonging to one novel and three previously described genera in the order Pirellulales, class Planctomycetia, phylum Planctomycetes.
Collapse
Affiliation(s)
- Sandra Wiegand
- Department of Microbiology, Radboud University, 6525 AJ Nijmegen, The Netherlands; (S.W.); (N.K.); (T.K.)
- Institute for Biological Interfaces 5 (IBG-5), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (J.V.); (A.-K.K.)
| | - Patrick Rast
- Leibniz Institute DSMZ, 38124 Braunschweig, Germany; (P.R.); (A.H.); (C.B.); (O.J.)
| | - Nicolai Kallscheuer
- Department of Microbiology, Radboud University, 6525 AJ Nijmegen, The Netherlands; (S.W.); (N.K.); (T.K.)
- Institute of Bio- and Geosciences, Biotechnology (IBG-1), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Mareike Jogler
- Department of Microbial Interactions, Institute of Microbiology, Friedrich-Schiller University, 07743 Jena, Germany;
| | - Anja Heuer
- Leibniz Institute DSMZ, 38124 Braunschweig, Germany; (P.R.); (A.H.); (C.B.); (O.J.)
| | - Christian Boedeker
- Leibniz Institute DSMZ, 38124 Braunschweig, Germany; (P.R.); (A.H.); (C.B.); (O.J.)
| | - Olga Jeske
- Leibniz Institute DSMZ, 38124 Braunschweig, Germany; (P.R.); (A.H.); (C.B.); (O.J.)
| | - Timo Kohn
- Department of Microbiology, Radboud University, 6525 AJ Nijmegen, The Netherlands; (S.W.); (N.K.); (T.K.)
| | - John Vollmers
- Institute for Biological Interfaces 5 (IBG-5), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (J.V.); (A.-K.K.)
| | - Anne-Kristin Kaster
- Institute for Biological Interfaces 5 (IBG-5), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (J.V.); (A.-K.K.)
| | - Christian Quast
- Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany;
| | - Frank Oliver Glöckner
- Alfred Wegener Institute Bremerhaven, MARUM, University of Bremen, 28359 Bremen, Germany;
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
| | - Christian Jogler
- Department of Microbiology, Radboud University, 6525 AJ Nijmegen, The Netherlands; (S.W.); (N.K.); (T.K.)
- Department of Microbial Interactions, Institute of Microbiology, Friedrich-Schiller University, 07743 Jena, Germany;
- Correspondence: ; Tel.: +49-364-194-9301
| |
Collapse
|
41
|
Nelson TF, Reddy CM, Ward CP. Product Formulation Controls the Impact of Biofouling on Consumer Plastic Photochemical Fate in the Ocean. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8898-8907. [PMID: 34132543 DOI: 10.1021/acs.est.1c02079] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The photodegradation rates of floating marine plastics govern their environmental lifetimes, but the controls on this process remain poorly understood. Photodegradation of these materials has so far been studied under ideal conditions in the absence of environmental factors such as biofouling, which may slow photochemical transformation rates through light screening. To investigate this interaction, we incubated different plastics in continuous flow seawater mesocosms to follow (i) the extent of biofilm growth on the samples and (ii) decreases in light transmittance through the samples over time. We used consumer products with high relevance (e.g., shopping bags, water bottles, and packaging materials) and with different formulations, referring to primary polymers (polyethylene (PE) and polyethylene terephthalate (PET)) and inorganic additives (titanium dioxide (TiO2)). The behavior of consumer-relevant formulations was compared to those of pure PE and PET films, revealing that the relative effects of UV- and, to a lesser extent, visible-light screening differ based on the formulation of the product. Pure PE showed greater relative UV-transmittance decreases (Δ = -34% through the entire sample, accounting for biofilm on both sides of the plastic film) than PET (Δ = -20%) and PE products with TiO2 (Δ = < -10%). Our results demonstrate that even with biofouling, photodegradation remains a highly relevant process for the fate of marine plastics. However, we expect photodegradation rates of plastics in the ocean to be slower than those measured in laboratory studies, due to light screening by biofilms, and the specific formulation of plastic products is a key determinant of the extent of this effect.
Collapse
Affiliation(s)
- Taylor F Nelson
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Christopher M Reddy
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Collin P Ward
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| |
Collapse
|
42
|
Subba Rao T, Murthy PS, Veeramani P, Narayanan DS, Ramesh R, Jyothi BN, Muthukumaran D, Murugesan M, Vadivelan A, Dharani G, Santhanakumar J, Ramadass GA. Assessment of biogrowth assemblages with depth in a seawater intake system of a coastal power station. BIOFOULING 2021; 37:506-520. [PMID: 34139900 DOI: 10.1080/08927014.2021.1933457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
Marine biogrowth infestation of a seawater intake system was investigated. A digital camera fixed onto a skid was used to record the biogrowth at intervals of 5 m up to a depth of 55 m. Divers inspected the intake shaft and collected the biogrowth samples for biomass estimation. A biomass density of 7.5 kg m-2 and 28.2 kg m-2 was recorded at 5 and 30 m depths respectively. Inspection by the divers revealed that hard-shelled organisms such as oysters and brown and green mussels were observed in plenty up to a thickness of 15 cm and bryozoans grew as epibionts. At lower depths (<40 m), hydroids grew on the shells of green mussels along with silt accumulation. The biofouling community was composed of 46 organisms, exhibiting variation in distribution and abundance. The study explains the extent and type of marine biogrowth phenomena with depth and describes biofouling preventive methods.Supplemental data for this article is available online at https://doi.org/10.1080/08927014.2021.1933457 .
Collapse
Affiliation(s)
- T Subba Rao
- Biofouling & Thermal Ecology Section, Water & Steam Chemistry Division, Bhabha Atomic Research Centre Facilities, Kalpakkam, India
- Homi Bhabha National Institute, Mumbai, India
| | - P S Murthy
- Biofouling & Thermal Ecology Section, Water & Steam Chemistry Division, Bhabha Atomic Research Centre Facilities, Kalpakkam, India
- Homi Bhabha National Institute, Mumbai, India
| | - P Veeramani
- Biofouling & Thermal Ecology Section, Water & Steam Chemistry Division, Bhabha Atomic Research Centre Facilities, Kalpakkam, India
| | - D S Narayanan
- Deep Sea Technology Group, National Institute of Ocean Technology, Chennai, India
| | - R Ramesh
- Deep Sea Technology Group, National Institute of Ocean Technology, Chennai, India
| | - B N Jyothi
- Deep Sea Technology Group, National Institute of Ocean Technology, Chennai, India
| | - D Muthukumaran
- Deep Sea Technology Group, National Institute of Ocean Technology, Chennai, India
| | - M Murugesan
- Deep Sea Technology Group, National Institute of Ocean Technology, Chennai, India
| | - A Vadivelan
- Deep Sea Technology Group, National Institute of Ocean Technology, Chennai, India
| | - G Dharani
- Marine Biotechnology Division, National Institute of Ocean Technology, Chennai, India
| | - J Santhanakumar
- Marine Biotechnology Division, National Institute of Ocean Technology, Chennai, India
| | - G A Ramadass
- Deep Sea Technology Group, National Institute of Ocean Technology, Chennai, India
| |
Collapse
|
43
|
Espinel-Velasco N, Tobias-Hünefeldt SP, Karelitz S, Hoffmann LJ, Morales SE, Lamare MD. Reduced seawater pH alters marine biofilms with impacts for marine polychaete larval settlement. MARINE ENVIRONMENTAL RESEARCH 2021; 167:105291. [PMID: 33691257 DOI: 10.1016/j.marenvres.2021.105291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
Ocean acidification (OA) can negatively affect early-life stages of marine organisms, with the key processes of larval settlement and metamorphosis potentially vulnerable to reduced seawater pH. Settlement success depends strongly on suitable substrates and environmental cues, with marine biofilms as key settlement inducers for a range of marine invertebrate larvae. This study experimentally investigated (1) how seawater pH determines growth and community composition of marine biofilms, and (2) whether marine biofilms developed under different pH conditions can alter settlement success in the New Zealand serpulid polychaete Galeolaria hystrix. Biofilms were developed under six pH(T) treatments (spanning from 7.0 to 8.1 [ambient]) in a flow-through system for up to 14 months. Biofilms of different ages (7, 10 and 14 months) were used to assay successful settlement of competent G. hystrix larvae reared under ambient conditions. Biofilm microbiomes were characterized through amplicon sequencing of the small subunit ribosomal rRNA gene (16S and 18S). Biofilm community composition was stable over time within each pH treatment and biofilm age did not affect larval settlement selectivity. Seawater pH treatment strongly influenced biofilm community composition, as well as subsequent settlement success when biofilms were presented to competent Galeolaria larvae. Exposure to biofilms incubated under OA-treatments caused a decrease in larval settlement of up to 40% compared to the ambient treatments. We observed a decrease in settlement on biofilms relative to ambient pH for slides incubated at pH 7.9 and 7.7. This trend was reversed at pH 7.4, resulting in high settlement, comparable to ambient biofilms. Settlement decreased on biofilms from pH 7.2, and no settlement was observed on biofilms from pH 7.0. For the first time, we show that long-term incubation of marine biofilms under a wide range of reduced seawater pH treatments can alter marine biofilms in such a way that settlement success in marine invertebrates can be compromised.
Collapse
Affiliation(s)
- Nadjejda Espinel-Velasco
- Department of Marine Science, University of Otago, Dunedin, 9054, New Zealand; Norwegian Polar Institute, Fram Centre, 9296, Tromsø, Norway.
| | | | - Sam Karelitz
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, 03824, USA
| | - Linn J Hoffmann
- Botany Department, University of Otago, Dunedin, 9054, New Zealand
| | - Sergio E Morales
- Department of Microbiology and Immunology, University of Otago, Dunedin, 9054, New Zealand
| | - Miles D Lamare
- Department of Marine Science, University of Otago, Dunedin, 9054, New Zealand
| |
Collapse
|
44
|
Ecological drivers switch from bottom-up to top-down during model microbial community successions. THE ISME JOURNAL 2021; 15:1085-1097. [PMID: 33230267 PMCID: PMC8115227 DOI: 10.1038/s41396-020-00833-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 01/29/2023]
Abstract
Bottom-up selection has an important role in microbial community assembly but is unable to account for all observed variance. Other processes like top-down selection (e.g., predation) may be partially responsible for the unexplained variance. However, top-down processes and their interaction with bottom-up selective pressures often remain unexplored. We utilised an in situ marine biofilm model system to test the effects of bottom-up (i.e., substrate properties) and top-down (i.e., large predator exclusion via 100 µm mesh) selective pressures on community assembly over time (56 days). Prokaryotic and eukaryotic community compositions were monitored using 16 S and 18 S rRNA gene amplicon sequencing. Higher compositional variance was explained by growth substrate in early successional stages, but as biofilms mature, top-down predation becomes progressively more important. Wooden substrates promoted heterotrophic growth, whereas inert substrates' (i.e., plastic, glass, tile) lack of degradable material selected for autotrophs. Early wood communities contained more mixotrophs and heterotrophs (e.g., the total abundance of Proteobacteria and Euglenozoa was 34% and 41% greater within wood compared to inert substrates). Inert substrates instead showed twice the autotrophic abundance (e.g., cyanobacteria and ochrophyta made up 37% and 10% more of the total abundance within inert substrates than in wood). Late native (non-enclosed) communities were mostly dominated by autotrophs across all substrates, whereas high heterotrophic abundance characterised enclosed communities. Late communities were primarily under top-down control, where large predators successively pruned heterotrophs. Integrating a top-down control increased explainable variance by 7-52%, leading to increased understanding of the underlying ecological processes guiding multitrophic community assembly and successional dynamics.
Collapse
|
45
|
Prospects of Microalgae for Biomaterial Production and Environmental Applications at Biorefineries. SUSTAINABILITY 2021. [DOI: 10.3390/su13063063] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Microalgae are increasingly viewed as renewable biological resources for a wide range of chemical compounds that can be used as or transformed into biomaterials through biorefining to foster the bioeconomy of the future. Besides the well-established biofuel potential of microalgae, key microalgal bioactive compounds, such as lipids, proteins, polysaccharides, pigments, vitamins, and polyphenols, possess a wide range of biomedical and nutritional attributes. Hence, microalgae can find value-added applications in the nutraceutical, pharmaceutical, cosmetics, personal care, animal food, and agricultural industries. Microalgal biomass can be processed into biomaterials for use in dyes, paints, bioplastics, biopolymers, and nanoparticles, or as hydrochar and biochar in solid fuel cells and soil amendments. Equally important is the use of microalgae in environmental applications, where they can serve in heavy metal bioremediation, wastewater treatment, and carbon sequestration thanks to their nutrient uptake and adsorptive properties. The present article provides a comprehensive review of microalgae specifically focused on biomaterial production and environmental applications in an effort to assess their current status and spur further deployment into the commercial arena.
Collapse
|
46
|
Liu M, Li S, Wang H, Jiang R, Zhou X. Research progress of environmentally friendly marine antifouling coatings. Polym Chem 2021. [DOI: 10.1039/d1py00512j] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The antifouling mechanisms and research progress in the past three years of environmentally friendly marine antifouling coatings are introduced in this work.
Collapse
Affiliation(s)
- Mengyue Liu
- School of Chemistry and Life Sciences
- Suzhou University of Science andTechnology
- Suzhou 215009
- China
| | - Shaonan Li
- School of Chemistry and Life Sciences
- Suzhou University of Science andTechnology
- Suzhou 215009
- China
| | - Hao Wang
- School of Chemistry and Life Sciences
- Suzhou University of Science andTechnology
- Suzhou 215009
- China
| | - Rijia Jiang
- School of Chemistry and Life Sciences
- Suzhou University of Science andTechnology
- Suzhou 215009
- China
| | - Xing Zhou
- School of Chemistry and Life Sciences
- Suzhou University of Science andTechnology
- Suzhou 215009
- China
| |
Collapse
|
47
|
Gingichashvili S, Feuerstein O, Steinberg D. Topography and Expansion Patterns at the Biofilm-Agar Interface in Bacillus subtilis Biofilms. Microorganisms 2020; 9:E84. [PMID: 33396528 PMCID: PMC7823598 DOI: 10.3390/microorganisms9010084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/27/2020] [Accepted: 12/30/2020] [Indexed: 12/15/2022] Open
Abstract
Bacterial biofilms are complex microbial communities that are formed on various natural and synthetic surfaces. In contrast to bacteria in their planktonic form, biofilms are characterized by their relatively low susceptibility to anti-microbial treatments, in part due to limited diffusion throughout the biofilm and the complex distribution of bacterial cells within. The virulence of biofilms is therefore a combination of the structural properties and patterns of adhesion that anchor them to their host surface. In this paper, we analyze the topographical properties of Bacillus subtilis' biofilm-agar interface across different growth conditions. B. subtilis colonies were grown to maturity on biofilm-promoting agar-based media (LBGM), under standard and stress-inducing growth conditions. The biofilm-agar interface of the colony-type biofilms was modeled using confocal microscopy and computational analysis. Profilometry data were obtained from the macrocolonies and used for the analysis of the surface topography as it relates to the adhesion modes present at the biofilm-agar interface. Fluorescent microspheres were utilized to monitor the expansion patterns present at the interface between the macrocolonies and the solid growth medium. Contact surface analysis revealed topographical changes that could have a direct effect on the adhesion strength of the biofilm to its host surface, thus affecting its potential susceptibility to anti-microbial agents. The topographical characteristics of the biofilm-agar interface partially define the macrocolony structure and may have significant effects on bacterial survival and virulence.
Collapse
Affiliation(s)
- Sarah Gingichashvili
- Biofilm Research Laboratory, Faculty of Dental Medicine, Institute of Dental Sciences, Hebrew University-Hadassah, Jerusalem 9112001, Israel;
- Department of Prosthodontics, Faculty of Dental Medicine, Hebrew University-Hadassah, Jerusalem 9112001, Israel;
| | - Osnat Feuerstein
- Department of Prosthodontics, Faculty of Dental Medicine, Hebrew University-Hadassah, Jerusalem 9112001, Israel;
| | - Doron Steinberg
- Biofilm Research Laboratory, Faculty of Dental Medicine, Institute of Dental Sciences, Hebrew University-Hadassah, Jerusalem 9112001, Israel;
| |
Collapse
|
48
|
Salikin NH, Nappi J, Majzoub ME, Egan S. Combating Parasitic Nematode Infections, Newly Discovered Antinematode Compounds from Marine Epiphytic Bacteria. Microorganisms 2020; 8:E1963. [PMID: 33322253 PMCID: PMC7764037 DOI: 10.3390/microorganisms8121963] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023] Open
Abstract
Parasitic nematode infections cause debilitating diseases and impede economic productivity. Antinematode chemotherapies are fundamental to modern medicine and are also important for industries including agriculture, aquaculture and animal health. However, the lack of suitable treatments for some diseases and the rise of nematode resistance to many available therapies necessitates the discovery and development of new drugs. Here, marine epiphytic bacteria represent a promising repository of newly discovered antinematode compounds. Epiphytic bacteria are ubiquitous on marine surfaces where they are under constant pressure of grazing by bacterivorous predators (e.g., protozoans and nematodes). Studies have shown that these bacteria have developed defense strategies to prevent grazers by producing toxic bioactive compounds. Although several active metabolites against nematodes have been identified from marine bacteria, drug discovery from marine microorganisms remains underexplored. In this review, we aim to provide further insight into the need and potential for marine epiphytic bacteria to become a new source of antinematode drugs. We discuss current and emerging strategies, including culture-independent high throughput screening and the utilization of Caenorhabditis elegans as a model target organism, which will be required to advance antinematode drug discovery and development from marine microbial sources.
Collapse
Affiliation(s)
- Nor Hawani Salikin
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, UNSW, Sydney, NSW 2052, Australia; (N.H.S.); (J.N.); (M.E.M.)
- School of Industrial Technology, Universiti Sains Malaysia, USM, 11800 Penang, Malaysia
| | - Jadranka Nappi
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, UNSW, Sydney, NSW 2052, Australia; (N.H.S.); (J.N.); (M.E.M.)
| | - Marwan E. Majzoub
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, UNSW, Sydney, NSW 2052, Australia; (N.H.S.); (J.N.); (M.E.M.)
| | - Suhelen Egan
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, UNSW, Sydney, NSW 2052, Australia; (N.H.S.); (J.N.); (M.E.M.)
| |
Collapse
|
49
|
Plakunov VK, Gannesen AV, Mart’yanov SV, Zhurina MV. Biocorrosion of Synthetic Plastics: Degradation Mechanisms and Methods of Protection. Microbiology (Reading) 2020. [DOI: 10.1134/s0026261720060144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
50
|
Wang R, Ding W, Long L, Lan Y, Tong H, Saha S, Wong YH, Sun J, Li Y, Zhang W, Qian PY. Exploring the Influence of Signal Molecules on Marine Biofilms Development. Front Microbiol 2020; 11:571400. [PMID: 33281767 PMCID: PMC7691533 DOI: 10.3389/fmicb.2020.571400] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/27/2020] [Indexed: 01/10/2023] Open
Abstract
Microbes respond to environmental stimuli through complicated signal transduction systems. In microbial biofilms, because of complex multiple species interactions, signals transduction systems are of an even higher complexity. Here, we performed a signal-molecule-treatment experiment to study the role of different signal molecules, including N-hexanoyl-L-homoserine lactone (C6-HSL), N-dodecanoyl-L-homoserine lactone (C12-HSL), Pseudomonas quinolone signal (PQS), and cyclic di-GMP (c-di-GMP), in the development of marine biofilms. Comparative metagenomics suggested a distinctive influence of these molecules on the microbial structure and function of multi-species biofilm communities in its developing stage. The PQS-treated biofilms shared the least similarity with the control and initial biofilms. The role of PQS in biofilm development was further explored experimentally with the strain Erythrobacter sp. HKB8 isolated from marine biofilms. Comparative transcriptomic analysis showed that 314 genes, such as those related to signal transduction and biofilm formation, were differentially expressed in the untreated and PQS-treated Erythrobacter sp. HKB8 biofilms. Our study demonstrated the different roles of signal molecules in marine biofilm development. In particular, the PQS-based signal transduction system, which is frequently detected in marine biofilms, may play an important role in regulating microbe-microbe interactions and the assemblage of biofilm communities.
Collapse
Affiliation(s)
- Ruojun Wang
- Department of Ocean Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong.,Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Wei Ding
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Lexin Long
- Department of Ocean Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong.,Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Kowloon, Hong Kong.,Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Yi Lan
- Department of Ocean Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong.,Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Haoya Tong
- Department of Ocean Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong.,Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Subhasish Saha
- Department of Ocean Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Yue Him Wong
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Jin Sun
- Department of Ocean Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong.,Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Yongxin Li
- Department of Ocean Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong.,The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam, Hong Kong.,The Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong
| | - Weipeng Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Pei-Yuan Qian
- Department of Ocean Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong.,Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Kowloon, Hong Kong
| |
Collapse
|