1
|
Sit B, Fakoya B, Waldor MK. Animal models for dissecting Vibrio cholerae intestinal pathogenesis and immunity. Curr Opin Microbiol 2022; 65:1-7. [PMID: 34695646 PMCID: PMC8792189 DOI: 10.1016/j.mib.2021.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 02/03/2023]
Abstract
The human diarrheal disease cholera is caused by the bacterium Vibrio cholerae. Efforts to develop animal models that closely mimic cholera to study the pathogenesis of this disease began >125 years ago. Here, we review currently used non-surgical, oral inoculation-based animal models for investigation of V. cholerae intestinal colonization and disease and highlight recent discoveries that have illuminated mechanisms of cholera pathogenesis and immunity, particularly in the area of how V. cholerae interacts with the gut microbiome to influence infection. The emergence of high-throughput tools for studies of pathogen-host interactions, along with continued advances in host genetic engineering and manipulation in animal models of V. cholerae will deepen understanding of cholera pathogenesis, uncovering knowledge important for control of this globally important bacterial pathogen.
Collapse
Affiliation(s)
- Brandon Sit
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA,Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Bolutife Fakoya
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA,Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew K. Waldor
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA,Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Massachusetts, USA,Howard Hughes Medical Institute, Bethesda, Maryland, USA,corresponding author: , Phone: 6175254646, Address: MCP-759, 181 Longwood Avenue, Boston, Massachusetts, USA 02115
| |
Collapse
|
2
|
Zhu H, Liu Y, Li S, Jin Y, Zhao L, Zhao F, Feng J, Yan W, Wei Y. Altered gut microbiota after traumatic splenectomy is associated with endotoxemia. Emerg Microbes Infect 2018; 7:197. [PMID: 30498207 PMCID: PMC6265257 DOI: 10.1038/s41426-018-0202-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/31/2018] [Indexed: 12/28/2022]
Abstract
Splenectomy carries a long-term risk of postoperative infection, and the chronic, low-grade inflammation associated with endotoxemia may be related to the gut microbiota. In this study, to increase our understanding of the potential cause of the high rate of infection in postsplenectomy patients, we evaluated the differences in the gut microbiota and plasma lipopolysaccharide level of patients after splenectomy relative to those of healthy controls. Thirty-two patients having undergone splenectomy and 42 healthy individuals were enrolled into the splenectomy (SP) and healthy control (HC) groups, respectively. The SP group was subdivided into three subgroups according to the length of their postoperative time. Fecal samples were used for gut microbiota analysis via 16s rRNA gene sequencing, blood examinations and plasma lipopolysaccharide measurements were also taken. Significant differences were observed in gut microbiota composition with regard to the relative bacterial abundances of 2 phyla, 7 families, and 15 genera. The lipopolysaccharide level was significantly higher in the SP group than in the HC group and were negatively associated with five bacterial families with low abundance in the SP group. The degree of the microbiota alteration increased with the length of the postoperative time. The PICRUSt analysis showed that the relative abundances of lipopolysaccharide biosynthesis proteins and lipopolysaccharide biosynthesis pathways were higher in the SP group and were positively associated with the plasma lipopolysaccharide level. Significant alterations were observed in the gut microbiota of the splenectomized patients and were associated with plasma lipopolysaccharide level. Further studies are needed to verify whether such alterations after splenectomy are related to an increased risk of complications.
Collapse
Affiliation(s)
- Hua Zhu
- Department of Oncology and Laparoscopy Surgery, the First Affiliated Hospital of Harbin Medical University, 150001, Harbin, China
| | - Yang Liu
- Department of Oncology and Laparoscopy Surgery, the First Affiliated Hospital of Harbin Medical University, 150001, Harbin, China
| | - Shengda Li
- Department of Oncology and Laparoscopy Surgery, the First Affiliated Hospital of Harbin Medical University, 150001, Harbin, China
| | - Ye Jin
- Department of Oncology and Laparoscopy Surgery, the First Affiliated Hospital of Harbin Medical University, 150001, Harbin, China
| | - Lei Zhao
- Department of Oncology and Laparoscopy Surgery, the First Affiliated Hospital of Harbin Medical University, 150001, Harbin, China
| | - Fuya Zhao
- Department of Oncology and Laparoscopy Surgery, the First Affiliated Hospital of Harbin Medical University, 150001, Harbin, China
| | - Jing Feng
- Department of Oncology and Laparoscopy Surgery, the First Affiliated Hospital of Harbin Medical University, 150001, Harbin, China
| | - Wei Yan
- Department of Oncology and Laparoscopy Surgery, the First Affiliated Hospital of Harbin Medical University, 150001, Harbin, China
| | - Yunwei Wei
- Department of Oncology and Laparoscopy Surgery, the First Affiliated Hospital of Harbin Medical University, 150001, Harbin, China.
| |
Collapse
|
3
|
Weiberg D, Basic M, Smoczek M, Bode U, Bornemann M, Buettner M. Participation of the spleen in the IgA immune response in the gut. PLoS One 2018; 13:e0205247. [PMID: 30286198 PMCID: PMC6171922 DOI: 10.1371/journal.pone.0205247] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 09/23/2018] [Indexed: 11/18/2022] Open
Abstract
The role of the spleen in the induction of an immune response to orally administered antigens is still under discussion. Although it is well known that after oral antigen administration specific germinal centres are not only formed in the Peyers patches (PP) and the mesenteric lymph nodes (mLN) but also in the spleen, there is still a lack of functional data showing a direct involvement of splenic B cells in an IgA immune response in the gut. In addition, after removal of mLN a high level of IgA+ B cells was observed in the gut. Therefore, in this study we analysed the role of the spleen in the induction of IgA+ B cells in the gut after mice were orally challenged with antigens. Here we have shown that antigen specific splenic IgM+ B cells after in vitro antigen stimulation as well as oral immunisation of donor mice were able to migrate into the gut of recipient mice, where they predominantly switch to IgA+ plasma cells. Furthermore, stimulation of recipient mice by orally administered antigens enhanced the migration of the splenic B cells into the gut as well as their switch to IgA+ plasma cells. Removal of the mLN led to a higher activation level of the splenic B cells. Altogether, our results imply that splenic IgM+ B cells migrate in the intestinal lamina propria, where they differentiate into IgA+ plasma cells and subsequently proliferate. In conclusion, we demonstrated that the spleen plays a major role in the gut immune response serving as a reservoir of immune cells that migrate to the site of antigen entrance.
Collapse
Affiliation(s)
- Desiree Weiberg
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Marijana Basic
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Margarethe Smoczek
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Ulrike Bode
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Melanie Bornemann
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Manuela Buettner
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
- * E-mail:
| |
Collapse
|
5
|
Alam MM, Bufano MK, Xu P, Kalsy A, Yu Y, Freeman YW, Sultana T, Rashu MR, Desai I, Eckhoff G, Leung DT, Charles RC, LaRocque RC, Harris JB, Clements JD, Calderwood SB, Qadri F, Vann WF, Kováč P, Ryan ET. Evaluation in mice of a conjugate vaccine for cholera made from Vibrio cholerae O1 (Ogawa) O-specific polysaccharide. PLoS Negl Trop Dis 2014; 8:e2683. [PMID: 24516685 PMCID: PMC3916310 DOI: 10.1371/journal.pntd.0002683] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 12/18/2013] [Indexed: 11/18/2022] Open
Abstract
Background Protective immunity against cholera is serogroup specific. Serogroup specificity in Vibrio cholerae is determined by the O-specific polysaccharide (OSP) of lipopolysaccharide (LPS). Generally, polysaccharides are poorly immunogenic, especially in young children. Methodology Here we report the evaluation in mice of a conjugate vaccine for cholera (OSP:TThc) made from V. cholerae O1 Ogawa O-Specific Polysaccharide–core (OSP) and recombinant tetanus toxoid heavy chain fragment (TThc). We immunized mice intramuscularly on days 0, 21, and 42 with OSP:TThc or OSP only, with or without dmLT, a non-toxigenic immunoadjuvant derived from heat labile toxin of Escherichia coli. Principal Findings We detected significant serum IgG antibody responses targeting OSP following a single immunization in mice receiving OSP:TThc with or without adjuvant. Anti-LPS IgG responses were detected following a second immunization in these cohorts. No anti-OSP or anti-LPS IgG responses were detected at any time in animals receiving un-conjugated OSP with or without immunoadjuvant, and in animals receiving immunoadjuvant alone. Responses were highest following immunization with adjuvant. Serum anti-OSP IgM responses were detected in mice receiving OSP:TThc with or without immunoadjuvant, and in mice receiving unconjugated OSP. Serum anti-LPS IgM and vibriocidal responses were detected in all vaccine cohorts except in mice receiving immunoadjuvant alone. No significant IgA anti-OSP or anti-LPS responses developed in any group. Administration of OSP:TThc and adjuvant also induced memory B cell responses targeting OSP and resulted in 95% protective efficacy in a mouse lethality cholera challenge model. Conclusion We describe a protectively immunogenic cholera conjugate in mice. Development of a cholera conjugate vaccine could assist in inducing long-term protective immunity, especially in young children who respond poorly to polysaccharide antigens. Cholera is a severe dehydrating diarrheal illness of humans caused by organisms Vibrio cholerae serogroups O1 or O139 serogroup organisms. Protective immunity against cholera is serogroup specific. Serogroup specificity in V. cholerae is determined by the O-specific polysaccharide (OSP) of lipopolysaccharide (LPS). Generally, polysaccharides are poorly immunogenic, especially in young children. Unfortunately, children bear a large burden of cholera globally. Here we describe a novel cholera conjugate vaccine and show that it induces immune responses in mice, including memory responses, to OSP, the T cell-independent antigen that probably is the target of protective immunity to cholera. These responses were highest following immunization of the vaccine with a novel immunoadjuvant, dmLT. We also show that immunization of mice with this conjugate vaccine protects against challenge with wild-type V. cholerae. A protectively immunogenic cholera conjugate vaccine that induces long-term memory responses could have particular utility in young children who are most at risk of cholera.
Collapse
Affiliation(s)
- Mohammad Murshid Alam
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- International Centre for Diarrheal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | - Megan Kelly Bufano
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Peng Xu
- NIDDK, LBC, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Anuj Kalsy
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Y. Yu
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Y. Wu Freeman
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Tania Sultana
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- International Centre for Diarrheal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | - Md. Rasheduzzaman Rashu
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- International Centre for Diarrheal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | - Ishaan Desai
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Grace Eckhoff
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Daniel T. Leung
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- International Centre for Diarrheal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Richelle C. Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Regina C. LaRocque
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jason B. Harris
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - John D. Clements
- Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Stephen B. Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Firdausi Qadri
- International Centre for Diarrheal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | - W. F. Vann
- CBER, FDA, Laboratory of Bacterial Toxins, Bethesda, Maryland, United States of America
| | - Pavol Kováč
- NIDDK, LBC, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Edward T. Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|