1
|
Pandey A, Goswami A, Jithin B, Shukla S. Autophagy: The convergence point of aging and cancer. Biochem Biophys Rep 2025; 42:101986. [PMID: 40224538 PMCID: PMC11986642 DOI: 10.1016/j.bbrep.2025.101986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/10/2025] [Accepted: 03/20/2025] [Indexed: 04/15/2025] Open
Abstract
Autophagy, a dynamic intracellular degradation system, is critical for cellular renovation and maintaining equilibrium. By eliminating damaged components and recycling essential molecules, autophagy safeguards cellular integrity and function. The versatility of the autophagy process across various biological functions enable cells to adapt and maintain homeostasis under unfavourable conditions. Disruptions in autophagy can shift a cell from a healthy state to a disease state or, conversely, support a return to health. This review delves into the multifaceted role of autophagy during aging and age-related diseases such as cancer, highlighting its significance as a unifying target with promising therapeutic implications. Cancer development is a dynamic process characterized by the acquisition of diverse survival capabilities for proliferating at different stages. This progression unfolds over time, with cancer cells exploiting autophagy to overcome encountered stress conditions during tumor development. Notably, there are several common pathways that utilize the autophagy process during aging and cancer development. This highlights the importance of autophagy as a crucial therapeutic target, holding the potential to not only impede the growth of tumor but also enhance the patient's longevity. This review aims to simplify the intricate relationship between cancer and aging, with a particular focus on the role of autophagy.
Collapse
Affiliation(s)
- Anchala Pandey
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, 462066, India
| | | | | | - Sanjeev Shukla
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, 462066, India
| |
Collapse
|
2
|
Wei W, Dang Y, Chen G, Han C, Zhang S, Zhu Z, Bie X, Xue J. Comprehensive analysis of senescence-related genes identifies prognostic clusters with distinct characteristics in glioma. Sci Rep 2025; 15:9540. [PMID: 40108265 PMCID: PMC11923138 DOI: 10.1038/s41598-025-93482-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 03/07/2025] [Indexed: 03/22/2025] Open
Abstract
Cellular senescence, defined as a state of permanent arrest in cell growth, is regarded as a crucial tumor suppression mechanism. However, accumulating scientific evidence suggests that senescent cells play a detrimental role in the progression of cancer. Unfortunately, the current lack of reliable markers that specifically reflect the level of senescence in cancer greatly hinders our in-depth understanding of this important biological foundation. Therefore, the search for more specific and reliable markers to reveal the specific role of senescent cells in cancer progression is particularly urgent and important. To uncover the role of senescence in gliomas, we collected senescence-related genes for integrated analysis. Consensus clustering was used to subtype gliomas based on the senescence gene set, and we identified two robust prognostic clusters of gliomas with distinct survival outcomes, multi-omics landscapes, immune characteristics, and differential drug responses. Multiple external datasets were used to validate the stability of our subtypes. Various computational and experimental methods, including WGCNA (Weighted Gene Co-expression Network Analysis), ssGSEA (single-sample Gene Set Enrichment Analysis), and machine learning algorithms (lasso regression, support vector machines, random forests), were employed for analysis. We found that CEBPB and LMNA are associated with poor prognosis in gliomas and may mediate immunosuppression and tumor proliferation. Drug prediction indicated that dasatinib is a potential therapeutic agent. Our findings provide insights into the role of the senescence gene set in patient stratification and precision medicine.
Collapse
Affiliation(s)
- Wenyuan Wei
- Department of Neurosurgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Ying Dang
- Department of Neurosurgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
- Department of Neurosurgery, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Gang Chen
- Department of Neurosurgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Chao Han
- Department of Neurosurgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Siwei Zhang
- Department of Neurosurgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Ziqiang Zhu
- Department of Neurosurgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Xiaohua Bie
- Department of Neurosurgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China.
| | - Jungang Xue
- Department of Neurosurgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China.
| |
Collapse
|
3
|
Liu S, Meng Y, Zhang Y, Qiu L, Wan X, Yang X, Zhang Y, Liu X, Wen L, Lei X, Zhang B, Han J. Integrative analysis of senescence-related genes identifies robust prognostic clusters with distinct features in hepatocellular carcinoma. J Adv Res 2025; 69:107-123. [PMID: 38614215 PMCID: PMC11954806 DOI: 10.1016/j.jare.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/15/2024] Open
Abstract
INTRODUCTION Senescence refers to a state of permanent cell growth arrest and is regarded as a tumor suppressive mechanism, whereas accumulative evidence demonstrate that senescent cells play an adverse role during cancer progression. The scarcity of specific and reliable markers reflecting senescence level in cancer impede our understanding of this biological basis. OBJECTIVES Senescence-related genes (SRGs) were collected for integrative analysis to reveal the role of senescence in hepatocellular carcinoma (HCC). METHODS Consensus clustering was used to subtype HCC based on SRGs. Several computational methods, including single sample gene set enrichment analysis (ssGSEA), fuzzy c-means algorithm, were performed. Data of drug sensitivities were utilized to screen potential therapeutic agents for different senescence patients. Additionally, we developed a method called signature-related gene analysis (SRGA) for identification of markers relevant to phenotype of interest. Experimental strategies consisting quantitative real-time PCR (qRT-PCR), β-galactosidase assay, western blot, and tumor-T cell co-culture system were used to validate the findings in vitro. RESULTS We identified three robust prognostic clusters of HCC patients with distinct survival outcome, mutational landscape, and immune features. We further extracted signature genes of senescence clusters to construct the senescence scoring system and profile senescence level in HCC at bulk and single-cell resolution. Senescence-induced stemness reprogramming was confirmed both in silico and in vitro. HCC patients with high senescence were immune suppressed and sensitive to Tozasertib and other drugs. We suggested that MAFG, PLIN3, and 4 other genes were pertinent to HCC senescence, and MAFG potentially mediated immune suppression, senescence, and stemness. CONCLUSION Our findings provide insights into the role of SRGs in patients stratification and precision medicine.
Collapse
Affiliation(s)
- Sicheng Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yang Meng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yaguang Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lei Qiu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaowen Wan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuyang Yang
- Research Laboratory of Cancer Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yang Zhang
- Research Laboratory of Cancer Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xueqin Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Linda Wen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xue Lei
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Zhang
- Research Laboratory of Cancer Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Junhong Han
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
4
|
Kiselev IS, Baulina NM, Favorova OO. Epigenetic Clock: DNA Methylation as a Marker of Biological Age and Age-Associated Diseases. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:S356-S372. [PMID: 40164166 DOI: 10.1134/s0006297924602843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/11/2024] [Accepted: 07/20/2024] [Indexed: 04/02/2025]
Abstract
Age is one of the key criteria of human health used in practical medicine to predict the risk of common chronic diseases. However, biological age, which reflects the state of an individual organism, functional capabilities, social well-being, and risk of premature death from various causes, often does not coincide with chronological age. To determine biological age of a particular individuals and the rate of their aging, specific panels of DNA methylation markers called "epigenetic clock" (EC) were proposed. This review summarizes the data about the main types of ECs developed to date and their key characteristics. We described the results of works studying individual aging rates in common age-associated diseases and outlined main directions, development of which could expand application of ECs in fundamental and practical medicine. There is no doubt that revealing complex mechanisms underlying interaction between the rate of epigenetic aging and the risk of age-associated diseases could play a key role for prediction and early diagnosis, as well as for the development of preventive measures that could delay onset of the disease.
Collapse
Affiliation(s)
- Ivan S Kiselev
- Chazov National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, 121552, Russia.
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, 117513, Russia
| | - Natalia M Baulina
- Chazov National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, 121552, Russia
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, 117513, Russia
| | - Olga O Favorova
- Chazov National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, 121552, Russia
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, 117513, Russia
| |
Collapse
|
5
|
Cakmak P, Jurmeister P, Divé I, Zeiner PS, Steinbach JP, Fenton TR, Plate KH, Czabanka M, Harter PN, Weber KJ. DNA methylation-based analysis reveals accelerated epigenetic aging in giant cell-enriched adult-type glioblastoma. Clin Epigenetics 2024; 16:179. [PMID: 39663543 PMCID: PMC11636044 DOI: 10.1186/s13148-024-01793-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/24/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND Giant cell (gc)-enriched glioblastoma (gcGB) represents a distinct histological variant of isocitrate dehydrogenase wild-type adult-type glioblastoma with notable enlarged mono- or multinuclear tumor cells. While some studies suggest a survival advantage for gcGB patients, the underlying causes remain elusive. GcGBs are associated with TP53 mutations, and gcs were shown to accumulate DNA double-strand breaks and show deficient mitosis, potentially triggering cellular senescence programs. Epigenetic clocks have emerged as valuable tools for assessing tumor-induced age acceleration (DNAMethAgeAcc), which has lately proved itself as prognostic biomarker in glioblastoma. Our study aimed to comprehensively analyze the methylome and key metabolic proteins of gcGBs, hypothesizing that they undergo cellular aging programs compared to non-gcGBs. RESULTS A total of 310 epigenetically classified GBs, including 26 gcGBs, and nine adults with malignant gliomas allocating to pediatric high-grade glioma molecular subclasses (summarized as "pediatric GB") were included. DNAMethAgeAcc was computed by subtraction of chronological patient ages from DNA methylome-derived age estimations and its increase was associated with better survival within gcGB and non-gcGB. GcGBs were significantly more often allocated to the subgroup with increased DNAMethAgeAcc and demonstrated the highest DNAMethAgeAcc. Hypothetical senescence/aging-induced changes of the tumor microenvironment were addressed by tumor deconvolution, which was able to identify a cluster enriched for tumors with increased DNAMethAgeAcc. Key metabolic protein expression did not differ between gcGB and non-gcGB and tumor with versus without increased DNAMethAgeAcc but for elevated levels of one single mitochondrial marker, anti-mitochondrial protein MT-C02, in gcGBs. CONCLUSIONS With its sped-up epigenetic aging, gcGB presented as the epigenetic oldest GB variant in our cohort. Whereas the correlation between accelerated tumor-intrinsic epigenetic aging and cellular senescence in gcGB stays elusive, fostering epigenetic aging programs in GB might be of interest for future exploration of alternative treatment options in GB patients.
Collapse
Affiliation(s)
- Pinar Cakmak
- Goethe University Frankfurt, University Hospital, Neurological Institute (Edinger Institute), Frankfurt, Germany
- Goethe University Frankfurt, Frankfurt Cancer Institute (FCI), Frankfurt, Germany
| | - Philipp Jurmeister
- Ludwig Maximilians University Munich, University Hospital, Institute of Pathology, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, a partnership between German Cancer Research Center (DKFZ) and University/University Hospital, Ludwig Maximilians University Munich, Munich, Germany
| | - Iris Divé
- Goethe University Frankfurt, Frankfurt Cancer Institute (FCI), Frankfurt, Germany
- Goethe University Frankfurt, University Hospital, Dr. Senckenberg Institute of Neurooncology, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Goethe University Frankfurt, University Hospital, University Cancer Center (UCT), Frankfurt, Germany
| | - Pia S Zeiner
- Goethe University Frankfurt, Frankfurt Cancer Institute (FCI), Frankfurt, Germany
- Goethe University Frankfurt, University Hospital, Dr. Senckenberg Institute of Neurooncology, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Goethe University Frankfurt, University Hospital, University Cancer Center (UCT), Frankfurt, Germany
- Goethe University Frankfurt, University Hospital, Department of Neurology, Frankfurt, Germany
| | - Joachim P Steinbach
- Goethe University Frankfurt, Frankfurt Cancer Institute (FCI), Frankfurt, Germany
- Goethe University Frankfurt, University Hospital, Dr. Senckenberg Institute of Neurooncology, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Goethe University Frankfurt, University Hospital, University Cancer Center (UCT), Frankfurt, Germany
| | - Tim R Fenton
- Somers Cancer Research, Southampton General Hospital, Southampton, UK
| | - Karl H Plate
- Goethe University Frankfurt, University Hospital, Neurological Institute (Edinger Institute), Frankfurt, Germany
- Goethe University Frankfurt, Frankfurt Cancer Institute (FCI), Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Goethe University Frankfurt, University Hospital, University Cancer Center (UCT), Frankfurt, Germany
| | - Marcus Czabanka
- Goethe University Frankfurt, University Hospital, Department of Neurosurgery, Frankfurt, Germany
| | - Patrick N Harter
- German Cancer Consortium (DKTK), Partner Site Munich, a partnership between German Cancer Research Center (DKFZ) and University/University Hospital, Ludwig Maximilians University Munich, Munich, Germany
- Ludwig Maximilians University Munich, University Hospital, Center for Neuropathology and Prion Research, Munich, Germany
| | - Katharina J Weber
- Goethe University Frankfurt, University Hospital, Neurological Institute (Edinger Institute), Frankfurt, Germany.
- Goethe University Frankfurt, Frankfurt Cancer Institute (FCI), Frankfurt, Germany.
- German Cancer Consortium (DKTK), Partner Site Frankfurt, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Goethe University Frankfurt, University Hospital, University Cancer Center (UCT), Frankfurt, Germany.
| |
Collapse
|
6
|
Chaudhary V, Bhattacharjee D, Devi NK, Saraswathy KN. Global DNA Methylation Levels Viz-a-Viz Genetic and Biochemical Variations in One Carbon Metabolic Pathway: An Exploratory Study from North India. Biochem Genet 2024; 62:4738-4754. [PMID: 38356009 DOI: 10.1007/s10528-023-10659-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/29/2023] [Indexed: 02/16/2024]
Abstract
Despite the importance of one carbon metabolic pathway (OCMP) in modulating the DNA methylation process, only a few population-based studies have explored their relationship among healthy individuals. This study aimed to understand the variations in global DNA methylation levels with respect to selected genetic (CBS 844ins68, MTRR A66G, MTR A2756G, and MTHFR C677T polymorphisms) and biochemical (folate, vitamin B12, and homocysteine) markers associated with OCMP among healthy North Indian adults. The study has been conducted among 1095 individuals of either sex (69.5% females), aged 30-75 years. A sample of 5 mL of blood was collected from each participant. Homocysteine, folate, and vitamin B12 levels were determined using the chemiluminescence technique. Restriction digestion was performed for genotyping MTRR A66G, MTR A2756G, and MTHFR C677T polymorphisms and allele-specific PCR amplification for CBS 844ins68 polymorphism. Global DNA methylation levels were analyzed using ELISA-based colorimetric technique. Of the selected genetic and biochemical markers, the mutant MTRR A66G allele was positively associated with global DNA methylation levels. Further, advanced age was inversely associated with methylation levels. MTRR 66GG genotype group was hypermethylated than other genotypes in folate replete and vitamin B12 deficient group (a condition prevalent among vegetarians), suggesting that the G allele may be more efficient than the wild-type allele in such conditions. Global DNA methylation levels appeared to be more influenced by genetic than biochemical factors. MTRR 66G allele may have a selective advantage in vitamin B12 deficient conditions. Further research should be undertaken to understand how genetics affects epigenetic processes.
Collapse
Affiliation(s)
- Vineet Chaudhary
- Department of Anthropology, University of Delhi, Delhi, 110007, India
| | | | | | | |
Collapse
|
7
|
Gu Y, Qiu Y, Li Y, Wen W. Research progress on the regulatory mechanism of cell senescence in arsenic toxicity: a systematic review. Toxicol Res (Camb) 2024; 13:tfae136. [PMID: 39184219 PMCID: PMC11339171 DOI: 10.1093/toxres/tfae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/12/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024] Open
Abstract
As an element with metalloid properties, arsenic is pervasively present in the environment and is recognized as a potent carcinogen. Consequently, the issue of human arsenic exposure has become a significant concern within the global public health sector. Numerous studies have indicated that arsenic induces cellular senescence through various mechanisms, including triggering epigenetic alterations, inducing the senescence-associated secretory phenotype (SASP), promoting telomere shortening, and causing mitochondrial dysfunction. This article collates and summarizes the latest research advancements on the involvement of cellular senescence in arsenic toxicity and explores the mechanisms of arsenic-induced toxicity. This study aims to provide new perspectives and directions for future research on arsenic toxicity and the development of prevention and treatment strategies.
Collapse
Affiliation(s)
- Yun Gu
- The School of Public Health, Dali University, Dali, China
| | - Ying Qiu
- The Second People’s Hospital of Yunnan Province, Kunming, China
- Kunming Medical University, Kunming, China
| | - Yujian Li
- The Second People’s Hospital of Yunnan Province, Kunming, China
- Kunming Medical University, Kunming, China
| | - Weihua Wen
- Yunnan Center for Disease Control and Prevention, Kunming, China
| |
Collapse
|
8
|
Corveleyn L, Sen P, Adams P, Sidoli S. Linking Aging to Cancer: The Role of Chromatin Biology. J Gerontol A Biol Sci Med Sci 2024; 79:glae133. [PMID: 38761362 PMCID: PMC11170291 DOI: 10.1093/gerona/glae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Indexed: 05/20/2024] Open
Abstract
Epigenetic changes have been established to be a hallmark of aging, which implies that aging science requires collaborating with the field of chromatin biology. DNA methylation patterns, changes in relative abundance of histone post-translational modifications, and chromatin remodeling are the central players in modifying chromatin structure. Aging is commonly associated with an overall increase in chromatin instability, loss of homeostasis, and decondensation. However, numerous publications have highlighted that the link between aging and chromatin changes is not nearly as linear as previously expected. This complex interplay of these epigenetic elements during the lifetime of an organism likely contributes to cellular senescence, genomic instability, and disease susceptibility. Yet, the causal links between these phenomena still need to be fully unraveled. In this perspective article, we discuss potential future directions of aging chromatin biology.
Collapse
Affiliation(s)
- Laura Corveleyn
- Laboratory of Pharmaceutical Biotechnology, Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Payel Sen
- Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, Maryland, USA
| | - Peter Adams
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, California, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, New York, New York, USA
| |
Collapse
|
9
|
Liu J, Qu Y, Zhao Y, Liang F, Ji L, Wang Z, Li J, Zang Z, Huang H, Zhang J, Gu W, Dai L, Yang R. CCDC12 gene methylation in peripheral blood as a potential biomarker for breast cancer detection. Biomarkers 2024; 29:265-275. [PMID: 38776382 DOI: 10.1080/1354750x.2024.2358302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Aberrant DNA methylation has been identified as biomarkers for breast cancer detection. Coiled-coil domain containing 12 gene (CCDC12) implicated in tumorigenesis. This study aims to investigate the potential of blood-based CCDC12 methylation for breast cancer detection. METHODS DNA methylation level of CpG sites (Cytosine-phosphate Guanine dinucleotides) in CCDC12 gene was measured by mass spectrometry in 255 breast cancer patients, 155 patients with benign breast nodules and 302 healthy controls. The association between CCDC12 methylation and breast cancer risk was evaluated by logistic regression and receiver operating characteristic curve analysis. RESULTS A total of eleven CpG sites were analyzed. The CCDC12 methylation levels were higher in breast cancer patients. Compared to the lowest tertile of methylation level in CpG_6,7, CpG_10 and CpG_11, the highest quartile was associated with 82, 91 and 95% increased breast cancer risk, respectively. The CCDC12 methylation levels were associated with estrogen receptor (ER) and human epidermal growth factor 2 (HER2) status. In ER-negative and HER2-positive (ER-/HER2+) breast cancer subtype, the combination of four sites CpG_2, CpG_5, CpG_6,7 and CpG_11 methylation levels could distinguish ER-/HER2+ breast cancer from the controls (AUC = 0.727). CONCLUSION The hypermethylation levels of CCDC12 in peripheral blood could be used for breast cancer detection.
Collapse
Affiliation(s)
- Jingjing Liu
- Henan Institute of Medical and Pharmaceutical Sciences & Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, China
| | - Yunhui Qu
- Department of Clinical Laboratory in the First Affiliated Hospital & Key Clinical Laboratory of Henan Province, Zhengzhou University, Zhengzhou, Henan, China
| | - Yutong Zhao
- Henan Institute of Medical and Pharmaceutical Sciences & Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, China
| | - Feifei Liang
- BGI College, Zhengzhou University, Zhengzhou, China
| | - Longtao Ji
- BGI College, Zhengzhou University, Zhengzhou, China
| | - Zhi Wang
- BGI College, Zhengzhou University, Zhengzhou, China
| | - Jinyu Li
- Department of Otology, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Zishan Zang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haixia Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jie Zhang
- Department of Clinical Laboratory, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Wanjian Gu
- Department of Clinical Laboratory, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Liping Dai
- Henan Institute of Medical and Pharmaceutical Sciences & Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, China
| | - Rongxi Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
10
|
Conde-Torres D, Blanco-González A, Seco-González A, Suárez-Lestón F, Cabezón A, Antelo-Riveiro P, Piñeiro Á, García-Fandiño R. Unraveling lipid and inflammation interplay in cancer, aging and infection for novel theranostic approaches. Front Immunol 2024; 15:1320779. [PMID: 38361953 PMCID: PMC10867256 DOI: 10.3389/fimmu.2024.1320779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
The synergistic relationships between Cancer, Aging, and Infection, here referred to as the CAIn Triangle, are significant determinants in numerous health maladies and mortality rates. The CAIn-related pathologies exhibit close correlations with each other and share two common underlying factors: persistent inflammation and anomalous lipid concentration profiles in the membranes of affected cells. This study provides a comprehensive evaluation of the most pertinent interconnections within the CAIn Triangle, in addition to examining the relationship between chronic inflammation and specific lipidic compositions in cellular membranes. To tackle the CAIn-associated diseases, a suite of complementary strategies aimed at diagnosis, prevention, and treatment is proffered. Our holistic approach is expected to augment the understanding of the fundamental mechanisms underlying these diseases and highlight the potential of shared features to facilitate the development of novel theranostic strategies.
Collapse
Affiliation(s)
- Daniel Conde-Torres
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Organic Chemistry Department, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Alexandre Blanco-González
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Organic Chemistry Department, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- MD.USE Innovations S.L., Edificio Emprendia, Santiago de Compostela, Spain
| | - Alejandro Seco-González
- Organic Chemistry Department, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Fabián Suárez-Lestón
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Organic Chemistry Department, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- MD.USE Innovations S.L., Edificio Emprendia, Santiago de Compostela, Spain
| | - Alfonso Cabezón
- Organic Chemistry Department, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Paula Antelo-Riveiro
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Organic Chemistry Department, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ángel Piñeiro
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Rebeca García-Fandiño
- Organic Chemistry Department, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
11
|
Li D, Ju F, Wang H, Fan C, Jacob JC, Gul S, Zaliani A, Wartmann T, Polidori MC, Bruns CJ, Zhao Y. Combination of the biomarkers for aging and cancer? - Challenges and current status. Transl Oncol 2023; 38:101783. [PMID: 37716258 PMCID: PMC10514562 DOI: 10.1016/j.tranon.2023.101783] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/18/2023] Open
Abstract
The proportion of patients diagnosed with cancer has been shown to rise with the increasing aging global population. Advanced age is a major risk factor for morbidity and mortality in older adults. As individuals experience varying health statuses, particularly with age, it poses a challenge for medical professionals in the cancer field to obtain standardized treatment outcomes. Hence, relying solely on chronological age and disease-related parameters is inadequate for clinical decision-making for elderly patients. With functional, multimorbidity-related, and psychosocial changes that occur with aging, oncologic diseases may develop and be treated differently from younger patients, leading to unique challenges in treatment efficacy and tolerance. To overcome this challenge, personalized therapy using biomarkers has emerged as a promising solution. Various categories of biomarkers, including inflammatory, hematological, metabolic, endocrine, and DNA modification-related indicators, may display features related to both cancer and aging, aiding in the development of innovative therapeutic approaches for patients with cancer in old age. Furthermore, physical functional measurements as non-molecular phenotypic biomarkers are being investigated for their potential complementary role in structured multidomain strategies to combat age-related diseases such as cancer. This review provides insight into the current developments, recent discoveries, and significant challenges in cancer and aging biomarkers, with a specific focus on their application in advanced age.
Collapse
Affiliation(s)
- Dai Li
- Department of General, Visceral, Tumor and Transplantation Surgery, University Hospital of Cologne, Kerpener Straße 62, 50937 Cologne, Germany; Department of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Feng Ju
- Department of General, Visceral, Tumor and Transplantation Surgery, University Hospital of Cologne, Kerpener Straße 62, 50937 Cologne, Germany
| | - Han Wang
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chunfu Fan
- Medical faculty, University of Cologne, Germany
| | | | - Sheraz Gul
- Fraunhofer Institute for Translational Medicine and Pharmacology, Schnackenburgallee 114, d-22525 Hamburg, Germany; Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hamburg Site, Schnackenburgallee 114, d-22525 Hamburg, Germany
| | - Andrea Zaliani
- Fraunhofer Institute for Translational Medicine and Pharmacology, Schnackenburgallee 114, d-22525 Hamburg, Germany; Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hamburg Site, Schnackenburgallee 114, d-22525 Hamburg, Germany
| | - Thomas Wartmann
- Department of General, Visceral und Vascular Surgery, Otto von Guericke University, Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany
| | - Maria Cristina Polidori
- Ageing Clinical Research, Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress-Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne Germany
| | - Christiane J Bruns
- Department of General, Visceral, Tumor and Transplantation Surgery, University Hospital of Cologne, Kerpener Straße 62, 50937 Cologne, Germany; Center for Integrated Oncology (CIO) Aachen, Bonn, Cologne and Düsseldorf, Cologne, Germany
| | - Yue Zhao
- Department of General, Visceral, Tumor and Transplantation Surgery, University Hospital of Cologne, Kerpener Straße 62, 50937 Cologne, Germany.
| |
Collapse
|
12
|
Yang T, Xiao Y, Cheng Y, Huang J, Wei Q, Li C, Shang H. Epigenetic clocks in neurodegenerative diseases: a systematic review. J Neurol Neurosurg Psychiatry 2023; 94:1064-1070. [PMID: 36963821 DOI: 10.1136/jnnp-2022-330931] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/03/2023] [Indexed: 03/26/2023]
Abstract
BACKGROUND Biological ageing is one of the principal risk factors for neurodegenerative diseases. It is becoming increasingly clear that acceleration of DNA methylation age, as measured by the epigenetic clock, is closely associated with many age-related diseases. METHODS We searched the PubMed and Web of Science databases to identify eligible studies reporting epigenetic clocks in several neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD). RESULTS Twenty-three studies (12 for AD, 4 for PD, 5 for ALS, and 2 for HD) were included. We systematically summarised the clinical utility of 11 epigenetic clocks (based on blood and brain tissues) in assessing the risk factors, age of onset, diagnosis, progression, prognosis and pathology of AD, PD, ALS and HD. We also critically described our current understandings to these evidences, and further discussed key challenges, potential mechanisms and future perspectives of epigenetic ageing in neurodegenerative diseases. CONCLUSIONS Epigenetic clocks hold great potential in neurodegenerative diseases. Further research is encouraged to evaluate the clinical utility and promote the application. PROSPERO REGISTRATION NUMBER CRD42022365233.
Collapse
Affiliation(s)
- Tianmi Yang
- Department of Neurology, Sichuan University, Chengdu, Sichuan, China
| | - Yi Xiao
- Department of Neurology, Sichuan University, Chengdu, Sichuan, China
| | - Yangfan Cheng
- Department of Neurology, Sichuan University, Chengdu, Sichuan, China
| | - Jingxuan Huang
- Department of Neurology, Sichuan University, Chengdu, Sichuan, China
| | - Qianqian Wei
- Department of Neurology, Sichuan University, Chengdu, Sichuan, China
| | - Chunyu Li
- Department of Neurology, Sichuan University, Chengdu, Sichuan, China
| | - Huifang Shang
- Department of Neurology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
13
|
Harvanek ZM, Boks MP, Vinkers CH, Higgins-Chen AT. The Cutting Edge of Epigenetic Clocks: In Search of Mechanisms Linking Aging and Mental Health. Biol Psychiatry 2023; 94:694-705. [PMID: 36764569 PMCID: PMC10409884 DOI: 10.1016/j.biopsych.2023.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
Individuals with psychiatric disorders are at increased risk of age-related diseases and early mortality. Recent studies demonstrate that this link between mental health and aging is reflected in epigenetic clocks, aging biomarkers based on DNA methylation. The reported relationships between epigenetic clocks and mental health are mostly correlational, and the mechanisms are poorly understood. Here, we review recent progress concerning the molecular and cellular processes underlying epigenetic clocks as well as novel technologies enabling further studies of the causes and consequences of epigenetic aging. We then review the current literature on how epigenetic clocks relate to specific aspects of mental health, such as stress, medications, substance use, health behaviors, and symptom clusters. We propose an integrated framework where mental health and epigenetic aging are each broken down into multiple distinct processes, which are then linked to each other, using stress and schizophrenia as examples. This framework incorporates the heterogeneity and complexity of both mental health conditions and aging, may help reconcile conflicting results, and provides a basis for further hypothesis-driven research in humans and model systems to investigate potentially causal mechanisms linking aging and mental health.
Collapse
Affiliation(s)
- Zachary M Harvanek
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Marco P Boks
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University of Utrecht, Utrecht, the Netherlands
| | - Christiaan H Vinkers
- Department of Psychiatry, Amsterdam University Medical Center, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Mood, Anxiety, Psychosis, Sleep & Stress program, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Albert T Higgins-Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut; Department of Pathology, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
14
|
Soda K. Changes in Whole Blood Polyamine Levels and Their Background in Age-Related Diseases and Healthy Longevity. Biomedicines 2023; 11:2827. [PMID: 37893199 PMCID: PMC10604715 DOI: 10.3390/biomedicines11102827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
The relationship between polyamines and healthy longevity has received much attention in recent years. However, conducting research without understanding the properties of polyamines can lead to unexpected pitfalls. The most fundamental consideration in conducting polyamine studies is that bovine serum used for cell culture contains bovine serum amine oxidase. Bovine serum amine oxidase, which is not inactivated by heat treatment, breaks down spermine and spermidine to produce the highly toxic aldehyde acrolein, which causes cell damage and activates autophagy. However, no such enzyme activity has been found in humans. Polyamine catabolism does not produce toxic aldehydes under normal conditions, but inflammation and some pathogens provoke an inducible enzyme, spermine oxidase, which only breaks down spermine to produce acrolein, resulting in cytotoxicity and the activation of autophagy. Therefore, spermine oxidase activation reduces spermine concentration and the ratio of spermine to spermidine, a feature recently reported in patients with age-related diseases. Spermine, which is increased by a long-term, continuous high polyamine diet, suppresses aberrant gene methylation and the pro-inflammatory status that progress with age and are strongly associated with the development of several age-related diseases and senescence. Changes in spermine concentration and the spermine/spermidine ratio should be considered as indicators of human health status.
Collapse
Affiliation(s)
- Kuniyasu Soda
- Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan;
- Saitama Ken-o Hospital, Saitama 363-0008, Japan
| |
Collapse
|
15
|
Mongelli A, Mengozzi A, Geiger M, Gorica E, Mohammed SA, Paneni F, Ruschitzka F, Costantino S. Mitochondrial epigenetics in aging and cardiovascular diseases. Front Cardiovasc Med 2023; 10:1204483. [PMID: 37522089 PMCID: PMC10382027 DOI: 10.3389/fcvm.2023.1204483] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023] Open
Abstract
Mitochondria are cellular organelles which generate adenosine triphosphate (ATP) molecules for the maintenance of cellular energy through the oxidative phosphorylation. They also regulate a variety of cellular processes including apoptosis and metabolism. Of interest, the inner part of mitochondria-the mitochondrial matrix-contains a circular molecule of DNA (mtDNA) characterised by its own transcriptional machinery. As with genomic DNA, mtDNA may also undergo nucleotide mutations that have been shown to be responsible for mitochondrial dysfunction. During physiological aging, the mitochondrial membrane potential declines and associates with enhanced mitophagy to avoid the accumulation of damaged organelles. Moreover, if the dysfunctional mitochondria are not properly cleared, this could lead to cellular dysfunction and subsequent development of several comorbidities such as cardiovascular diseases (CVDs), diabetes, respiratory and cardiovascular diseases as well as inflammatory disorders and psychiatric diseases. As reported for genomic DNA, mtDNA is also amenable to chemical modifications, namely DNA methylation. Changes in mtDNA methylation have shown to be associated with altered transcriptional programs and mitochondrial dysfunction during aging. In addition, other epigenetic signals have been observed in mitochondria, in particular the interaction between mtDNA methylation and non-coding RNAs. Mitoepigenetic modifications are also involved in the pathogenesis of CVDs where oxygen chain disruption, mitochondrial fission, and ROS formation alter cardiac energy metabolism leading to hypertrophy, hypertension, heart failure and ischemia/reperfusion injury. In the present review, we summarize current evidence on the growing importance of epigenetic changes as modulator of mitochondrial function in aging. A better understanding of the mitochondrial epigenetic landscape may pave the way for personalized therapies to prevent age-related diseases.
Collapse
Affiliation(s)
- Alessia Mongelli
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, Zurich University Hospital and University of Zürich, Zurich, Switzerland
| | - Alessandro Mengozzi
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, Zurich University Hospital and University of Zürich, Zurich, Switzerland
| | - Martin Geiger
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, Zurich University Hospital and University of Zürich, Zurich, Switzerland
| | - Era Gorica
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, Zurich University Hospital and University of Zürich, Zurich, Switzerland
| | - Shafeeq Ahmed Mohammed
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, Zurich University Hospital and University of Zürich, Zurich, Switzerland
| | - Francesco Paneni
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, Zurich University Hospital and University of Zürich, Zurich, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Frank Ruschitzka
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, Zurich University Hospital and University of Zürich, Zurich, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Sarah Costantino
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, Zurich University Hospital and University of Zürich, Zurich, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
16
|
Hallmarks and Biomarkers of Skin Senescence: An Updated Review of Skin Senotherapeutics. Antioxidants (Basel) 2023; 12:antiox12020444. [PMID: 36830002 PMCID: PMC9952625 DOI: 10.3390/antiox12020444] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Aging is a complex process characterized by an ongoing decline in physiological functions, leading to degenerative diseases and an increased probability of death. Cellular senescence has been typically considered as an anti-proliferative process; however, the chronic accumulation of senescent cells contributes to tissue dysfunction and aging. In this review, we discuss some of the most important hallmarks and biomarkers of cellular senescence with a special focus on skin biomarkers, reactive oxygen species (ROS), and senotherapeutic strategies to eliminate or prevent senescence. Although most of them are not exclusive to senescence, the expression of the senescence-associated beta-galactosidase (SA-β-gal) enzyme seems to be the most reliable biomarker for distinguishing senescent cells from those arrested in the cell cycle. The presence of a stable DNA damage response (DDR) and the accumulation of senescence-associated secretory phenotype (SASP) mediators and ROS are the most representative hallmarks for senescence. Senotherapeutics based on natural compounds such as quercetin, naringenin, and apigenin have shown promising results regarding SASP reduction. These compounds seem to prevent the accumulation of senescent cells, most likely through the inhibition of pro-survival signaling pathways. Although studies are still required to verify their short- and long-term effects, these therapies may be an effective strategy for skin aging.
Collapse
|
17
|
Khan M, Ai M, Du K, Song J, Wang B, Lin J, Ren A, Chen C, Huang Z, Qiu W, Zhang J, Tian Y, Yuan Y. Pyroptosis relates to tumor microenvironment remodeling and prognosis: A pan-cancer perspective. Front Immunol 2022; 13:1062225. [PMID: 36605187 PMCID: PMC9808401 DOI: 10.3389/fimmu.2022.1062225] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
Background and aim Pyroptosis is an inflammatory form of programmed cell death implicated in inflammation and disease. Moreover, inducing pyroptosis has been appreciated as anti-cancer therapy for its ability to unleash anti-cancer immune responses. Methods Utilizing the data available in The Cancer Genome Atlas (TCGA), pyroptosis-related genes' (PRGs) expression, genomic aberrations, and clinical significance were systematically analyzed in pan-cancer. A GSVA score was obtained to rate pyroptosis level and divide the cancers into pyroptosis-low and pyroptosis-high groups. Immunohistochemistry (IHC) was used to evaluate the differential expression of major PRGs (GSDMC, GSDMD, GSDME, NLRP3, NLRC4, IL1B) in selected tumor types (COAD, HNSC, KIRC, LIHC, LUAD, LUSC). Selection of tumors for immunohistochemistry (IHC) was based on their expression pattern in TCGA cancers, clinical relevance, tumor epidemiology, and sample availability. Results Differential expression of PRGs was evident in various cancers and associated with prognosis which was driven by genomic variations and epigenetic abnormalities, such as single nucleotide variations (SNVs), copy number variation (CNV) and DNA methylation level. For example, methylation of PRGs in lower grade glioma (LGG), uveal melanoma (UVM) and kidney renal clear cell carcinoma (KIRC) were predictive of improved survival as upregulation of PRGs was risky in these cancers. Pyroptosis level significantly differentiated tumor from normal samples in 15 types of cancers, exhibited a progressive trend with cancer stage, observed variation among cancer subtypes, and showed a significant association with cancer prognosis. Higher pyroptosis level was associated with worst prognosis in majority of the cancers in terms of OS (KIRC, LGG, and UVM), PFS (GBM, KIRC, LGG, PRAD, THCA, and THYM) and DSS (KIRC and LGG) as estimated by Kaplan-Meier survival curves. Moreover, Pyroptosis level was strongly indicative of a hot tumor immune microenvironment with high presence of CD8+ T cell and other T cell subtypes. Several oncogenic pathways, such as P53 pathway, DNA repair, KRAS signaling, epithelial-mesenchymal transition (EMT), IL6 JAK STAT3 signaling, IL2 STAT5 signaling, PI3K AKT MTOR signaling and angiogenesis, were enriched in pyroptosis-hi subgroups across cancers. Conclusions Genetic alterations in PRGs greatly influence the pyroptosis level and cancer prognosis. A relatively hot tumor immune microenvironment was associated with pyroptosis irrespective of the cancer prognosis. Overall, our study reveals the critical role of pyroptosis in cancer and highlights pyroptosis-based therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Muhammad Khan
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China,State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Meiling Ai
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China,State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Kunpeng Du
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China,State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Jingjing Song
- Department of Pathology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Baiyao Wang
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China,State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Jie Lin
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China,State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Anbang Ren
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China,State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Chengcong Chen
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China,State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Zhong Huang
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China,State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Wenze Qiu
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China,State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Jiangyu Zhang
- Department of Pathology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China,*Correspondence: Yawei Yuan, ; Yunhong Tian, ; Jiangyu Zhang,
| | - Yunhong Tian
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China,State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou Medical University, Guangzhou, China,*Correspondence: Yawei Yuan, ; Yunhong Tian, ; Jiangyu Zhang,
| | - Yawei Yuan
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China,State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou Medical University, Guangzhou, China,*Correspondence: Yawei Yuan, ; Yunhong Tian, ; Jiangyu Zhang,
| |
Collapse
|
18
|
Performance of circulating methylated Septin9 gene DNA in diagnosis and recurrence monitoring of colorectal cancer in Western China. Clin Chim Acta 2022; 537:118-126. [DOI: 10.1016/j.cca.2022.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/22/2022] [Accepted: 10/21/2022] [Indexed: 12/24/2022]
|
19
|
Volovat SR, Augustin I, Zob D, Boboc D, Amurariti F, Volovat C, Stefanescu C, Stolniceanu CR, Ciocoiu M, Dumitras EA, Danciu M, Apostol DGC, Drug V, Shurbaji SA, Coca LG, Leon F, Iftene A, Herghelegiu PC. Use of Personalized Biomarkers in Metastatic Colorectal Cancer and the Impact of AI. Cancers (Basel) 2022; 14:4834. [PMID: 36230757 PMCID: PMC9562853 DOI: 10.3390/cancers14194834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/18/2022] [Accepted: 09/29/2022] [Indexed: 12/09/2022] Open
Abstract
Colorectal cancer is a major cause of cancer-related death worldwide and is correlated with genetic and epigenetic alterations in the colonic epithelium. Genetic changes play a major role in the pathophysiology of colorectal cancer through the development of gene mutations, but recent research has shown an important role for epigenetic alterations. In this review, we try to describe the current knowledge about epigenetic alterations, including DNA methylation and histone modifications, as well as the role of non-coding RNAs as epigenetic regulators and the prognostic and predictive biomarkers in metastatic colorectal disease that can allow increases in the effectiveness of treatments. Additionally, the intestinal microbiota's composition can be an important biomarker for the response to strategies based on the immunotherapy of CRC. The identification of biomarkers in mCRC can be enhanced by developing artificial intelligence programs. We present the actual models that implement AI technology as a bridge connecting ncRNAs with tumors and conducted some experiments to improve the quality of the model used as well as the speed of the model that provides answers to users. In order to carry out this task, we implemented six algorithms: the naive Bayes classifier, the random forest classifier, the decision tree classifier, gradient boosted trees, logistic regression and SVM.
Collapse
Affiliation(s)
- Simona-Ruxandra Volovat
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania
| | - Iolanda Augustin
- Department of Medical Oncology, AI.Trestioreanu Institute of Oncology, 022328 Bucharest, Romania
| | - Daniela Zob
- Department of Medical Oncology, AI.Trestioreanu Institute of Oncology, 022328 Bucharest, Romania
| | - Diana Boboc
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania
| | - Florin Amurariti
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania
| | - Constantin Volovat
- Department of Medical Oncology, “Euroclinic” Center of Oncology, 2 Vasile Conta Str., 700106 Iasi, Romania
| | - Cipriana Stefanescu
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania
| | - Cati Raluca Stolniceanu
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania
| | - Manuela Ciocoiu
- Department of Pathophysiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Eduard Alexandru Dumitras
- Department of Pathophysiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Department of Anesthesiology and Intensive Care, Regional Institute of Oncology, 700115 Iasi, Romania
| | - Mihai Danciu
- Pathology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | | | - Vasile Drug
- Department of Gastroenterology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania
- Gastroenterology Clinic, Institute of Gastroenterology and Hepatology, ‘St. Spiridon’ Clinical Hospital, 700115 Iasi, Romania
| | - Sinziana Al Shurbaji
- Gastroenterology Clinic, Institute of Gastroenterology and Hepatology, ‘St. Spiridon’ Clinical Hospital, 700115 Iasi, Romania
| | - Lucia-Georgiana Coca
- Faculty of Computer Science, Alexandru Ioan Cuza University, 700115 Iasi, Romania
| | - Florin Leon
- Faculty of Automatic Control and Computer Engineering, Gheorghe Asachi Technical University, 700115 Iasi, Romania
| | - Adrian Iftene
- Faculty of Computer Science, Alexandru Ioan Cuza University, 700115 Iasi, Romania
| | - Paul-Corneliu Herghelegiu
- Faculty of Automatic Control and Computer Engineering, Gheorghe Asachi Technical University, 700115 Iasi, Romania
| |
Collapse
|
20
|
Pérez RF, Tejedor JR, Fernández AF, Fraga MF. Aging and cancer epigenetics: Where do the paths fork? Aging Cell 2022; 21:e13709. [PMID: 36103298 PMCID: PMC9577950 DOI: 10.1111/acel.13709] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/29/2022] [Indexed: 01/25/2023] Open
Abstract
Aging and cancer are clearly associated processes, at both the epidemiological and molecular level. Epigenetic mechanisms are good candidates to explain the molecular links between the two phenomena, but recent reports have also revealed considerable differences, particularly regarding the loss of DNA methylation in the two processes. The large-scale generation and availability of genome-wide epigenetic data now permits systematic studies to be undertaken which may help clarify the similarities and differences between aging and cancer epigenetic alterations. In addition, the development of epigenetic clocks provides a new dimension in which to investigate diseases at the molecular level. Here, we examine current and future questions about the roles of DNA methylation mechanisms as causal factors in the processes of aging and cancer so that we may better understand if and how aging-associated epigenetic alterations lead to tumorigenesis. It seems certain that comprehending the molecular mechanisms underlying epigenetic clocks, especially with regard to somatic stem cell aging, combined with applying single-cell epigenetic-age profiling technologies to aging and cancer cohorts, and the integration of existing and upcoming epigenetic evidence within the genetic damage models of aging will prove to be crucial to improving understanding of these two interrelated phenomena.
Collapse
Affiliation(s)
- Raúl Fernández Pérez
- Cancer Epigenetics and Nanomedicine LaboratoryNanomaterials and Nanotechnology Research Center (CINN‐CSIC)El EntregoSpain
- Health Research Institute of Asturias (ISPA‐FINBA)Institute of Oncology of Asturias (IUOPA) and Department of Organisms and Systems Biology (BOS)University of OviedoOviedoSpain
- Rare Diseases CIBER (CIBERER)Carlos III Health Institute (ISCIII)MadridSpain
| | - Juan Ramón Tejedor
- Cancer Epigenetics and Nanomedicine LaboratoryNanomaterials and Nanotechnology Research Center (CINN‐CSIC)El EntregoSpain
- Health Research Institute of Asturias (ISPA‐FINBA)Institute of Oncology of Asturias (IUOPA) and Department of Organisms and Systems Biology (BOS)University of OviedoOviedoSpain
- Rare Diseases CIBER (CIBERER)Carlos III Health Institute (ISCIII)MadridSpain
| | - Agustín Fernández Fernández
- Cancer Epigenetics and Nanomedicine LaboratoryNanomaterials and Nanotechnology Research Center (CINN‐CSIC)El EntregoSpain
- Health Research Institute of Asturias (ISPA‐FINBA)Institute of Oncology of Asturias (IUOPA) and Department of Organisms and Systems Biology (BOS)University of OviedoOviedoSpain
- Rare Diseases CIBER (CIBERER)Carlos III Health Institute (ISCIII)MadridSpain
| | - Mario Fernández Fraga
- Cancer Epigenetics and Nanomedicine LaboratoryNanomaterials and Nanotechnology Research Center (CINN‐CSIC)El EntregoSpain
- Health Research Institute of Asturias (ISPA‐FINBA)Institute of Oncology of Asturias (IUOPA) and Department of Organisms and Systems Biology (BOS)University of OviedoOviedoSpain
- Rare Diseases CIBER (CIBERER)Carlos III Health Institute (ISCIII)MadridSpain
| |
Collapse
|
21
|
Khayami R, Goltzman D, Rabbani SA, Kerachian MA. Epigenomic effects of vitamin D in colorectal cancer. Epigenomics 2022; 14:1213-1228. [PMID: 36325830 DOI: 10.2217/epi-2022-0288] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vitamin D regulates a plethora of physiological processes in the human body and has been proposed to exert several anticancer effects. Epigenetics plays an important role in regulating vitamin D actions. In this review, we highlight the recent advances in the understanding of different epigenetic factors such as lncRNAs, miRNAs, methylation and acetylation influenced by vitamin D and its downstream targets in colorectal cancer to find more potential therapeutic targets. We discuss how vitamin D exerts anticancer properties through interactions between the vitamin D receptor and genes (e.g., SLC30A10), the microenvironment, microbiota and other factors in colorectal cancer. Developing therapeutic approaches targeting the vitamin D signaling system will be aided by a better knowledge of the epigenetic impact of vitamin D.
Collapse
Affiliation(s)
- Reza Khayami
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - David Goltzman
- Department of Medicine, McGill University Health Center, Montreal, QC, H3G 1A4, Canada
| | - Shafaat A Rabbani
- Department of Medicine, McGill University Health Center, Montreal, QC, H3G 1A4, Canada
| | - Mohammad Amin Kerachian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, On, H3A 1A4, Canada
| |
Collapse
|
22
|
Panov J, Kaphzan H. An Association Study of DNA Methylation and Gene Expression in Angelman Syndrome: A Bioinformatics Approach. Int J Mol Sci 2022; 23:ijms23169139. [PMID: 36012404 PMCID: PMC9409443 DOI: 10.3390/ijms23169139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 12/01/2022] Open
Abstract
Angelman syndrome (AS) is a neurodevelopmental disorder caused by the loss of function of the E3-ligase UBE3A. Despite multiple studies, AS pathophysiology is still obscure and has mostly been explored in rodent models of the disease. In recent years, a growing body of studies has utilized omics datasets in the attempt to focus research regarding the pathophysiology of AS. Here, for the first time, we utilized a multi-omics approach at the epigenomic level and the transcriptome level, for human-derived neurons. Using publicly available datasets for DNA methylation and gene expression, we found genome regions in proximity to gene promoters and intersecting with gene-body regions that were differentially methylated and differentially expressed in AS. We found that overall, the genome in AS postmortem brain tissue was hypo-methylated compared to healthy controls. We also found more upregulated genes than downregulated genes in AS. Many of these dysregulated genes in neurons obtained from AS patients are known to be critical for neuronal development and synaptic functioning. Taken together, our results suggest a list of dysregulated genes that may be involved in AS development and its pathological features. Moreover, these genes might also have a role in neurodevelopmental disorders similar to AS.
Collapse
|
23
|
Poznyak AV, Sadykhov NK, Kartuesov AG, Borisov EE, Sukhorukov VN, Orekhov AN. Aging of Vascular System Is a Complex Process: The Cornerstone Mechanisms. Int J Mol Sci 2022; 23:ijms23136926. [PMID: 35805936 PMCID: PMC9266404 DOI: 10.3390/ijms23136926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
Aging is one of the most intriguing processes of human ontogenesis. It is associated with the development of a wide variety of diseases affecting all organs and their systems. The victory over aging is the most desired goal of scientists; however, it is hardly achievable in the foreseeable future due to the complexity and ambiguity of the process itself. All body systems age, lose their performance, and structural disorders accumulate. The cardiovascular system is no exception. And it is cardiovascular diseases that occupy a leading position as a cause of death, especially among the elderly. The aging of the cardiovascular system is well described from a mechanical point of view. Moreover, it is known that at the cellular level, a huge number of mechanisms are involved in this process, from mitochondrial dysfunction to inflammation. It is on these mechanisms, as well as the potential for taking control of the aging of the cardiovascular system, that we focused on in this review.
Collapse
Affiliation(s)
- Anastasia V. Poznyak
- Institute for Atherosclerosis Research, Osennyaya 4-1-207, 121609 Moscow, Russia;
- Correspondence: (A.V.P.); (A.N.O.)
| | - Nikolay K. Sadykhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia; (N.K.S.); (A.G.K.)
| | - Andrey G. Kartuesov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia; (N.K.S.); (A.G.K.)
| | - Evgeny E. Borisov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Centre of Surgery, 2, Abrikosovsky Lane, 119991 Moscow, Russia;
| | - Vasily N. Sukhorukov
- Institute for Atherosclerosis Research, Osennyaya 4-1-207, 121609 Moscow, Russia;
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Centre of Surgery, 2, Abrikosovsky Lane, 119991 Moscow, Russia;
| | - Alexander N. Orekhov
- Institute for Atherosclerosis Research, Osennyaya 4-1-207, 121609 Moscow, Russia;
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia; (N.K.S.); (A.G.K.)
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Centre of Surgery, 2, Abrikosovsky Lane, 119991 Moscow, Russia;
- Correspondence: (A.V.P.); (A.N.O.)
| |
Collapse
|
24
|
Alagia A, Gullerova M. The Methylation Game: Epigenetic and Epitranscriptomic Dynamics of 5-Methylcytosine. Front Cell Dev Biol 2022; 10:915685. [PMID: 35721489 PMCID: PMC9204050 DOI: 10.3389/fcell.2022.915685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
DNA and RNA methylation dynamics have been linked to a variety of cellular processes such as development, differentiation, and the maintenance of genome integrity. The correct deposition and removal of methylated cytosine and its oxidized analogues is pivotal for cellular homeostasis, rapid responses to exogenous stimuli, and regulated gene expression. Uncoordinated expression of DNA/RNA methyltransferases and demethylase enzymes has been linked to genome instability and consequently to cancer progression. Furthermore, accumulating evidence indicates that post-transcriptional DNA/RNA modifications are important features in DNA/RNA function, regulating the timely recruitment of modification-specific reader proteins. Understanding the biological processes that lead to tumorigenesis or somatic reprogramming has attracted a lot of attention from the scientific community. This work has revealed extensive crosstalk between epigenetic and epitranscriptomic pathways, adding a new layer of complexity to our understanding of cellular programming and responses to environmental cues. One of the key modifications, m5C, has been identified as a contributor to regulation of the DNA damage response (DDR). However, the various mechanisms of dynamic m5C deposition and removal, and the role m5C plays within the cell, remains to be fully understood.
Collapse
Affiliation(s)
| | - Monika Gullerova
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
25
|
Seale K, Horvath S, Teschendorff A, Eynon N, Voisin S. Making sense of the ageing methylome. Nat Rev Genet 2022; 23:585-605. [PMID: 35501397 DOI: 10.1038/s41576-022-00477-6] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2022] [Indexed: 12/22/2022]
Abstract
Over time, the human DNA methylation landscape accrues substantial damage, which has been associated with a broad range of age-related diseases, including cardiovascular disease and cancer. Various age-related DNA methylation changes have been described, including at the level of individual CpGs, such as differential and variable methylation, and at the level of the whole methylome, including entropy and correlation networks. Here, we review these changes in the ageing methylome as well as the statistical tools that can be used to quantify them. We detail the evidence linking DNA methylation to ageing phenotypes and the longevity strategies aimed at altering both DNA methylation patterns and machinery to extend healthspan and lifespan. Lastly, we discuss theories on the mechanistic causes of epigenetic ageing.
Collapse
Affiliation(s)
- Kirsten Seale
- Institute for Health and Sport (iHeS), Victoria University, Footscray, Melbourne, Victoria, Australia
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.,Altos Labs, San Diego, CA, USA
| | - Andrew Teschendorff
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China.,UCL Cancer Institute, University College London, London, UK
| | - Nir Eynon
- Institute for Health and Sport (iHeS), Victoria University, Footscray, Melbourne, Victoria, Australia.
| | - Sarah Voisin
- Institute for Health and Sport (iHeS), Victoria University, Footscray, Melbourne, Victoria, Australia.
| |
Collapse
|
26
|
SENESCENCE-MEDIATED ANTI-CANCER EFFECTS OF QUERCETI. Nutr Res 2022; 104:82-90. [DOI: 10.1016/j.nutres.2022.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 02/07/2023]
|
27
|
Shared genetic and epigenetic changes link aging and cancer. Trends Cell Biol 2022; 32:338-350. [PMID: 35144882 DOI: 10.1016/j.tcb.2022.01.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/28/2021] [Accepted: 01/07/2022] [Indexed: 12/12/2022]
Abstract
Aging is a universal biological process that increases the risk of multiple diseases including cancer. Growing evidence shows that alterations in the genome and epigenome, driven by similar mechanisms, are found in both aged cells and cancer cells. In this review, we detail the genetic and epigenetic changes associated with normal aging and the mechanisms responsible for these changes. By highlighting genetic and epigenetic alterations in the context of tumorigenesis, cancer progression, and the aging tumor microenvironment, we examine the possible impacts of the normal aging process on malignant transformation. Finally, we examine the implications of age-related genetic and epigenetic alterations in both tumors and patients for the treatment of cancer.
Collapse
|
28
|
Qi C, Lei L, Hu J, Wang G, Liu J, Ou S. Identification of a five-gene signature deriving from the vacuolar ATPase (V-ATPase) sub-classifies gliomas and decides prognoses and immune microenvironment alterations. Cell Cycle 2022; 21:1294-1315. [PMID: 35266851 PMCID: PMC9132400 DOI: 10.1080/15384101.2022.2049157] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aberrant expression of coding genes of the V-ATPase subunits has been reported in glioma patients that can activate oncogenic pathways and result in worse prognosis. However, the predictive effect of a single gene is not specific or sensitive enough. In this study, by using a series of bioinformatics analyses, we identified five coding genes (ATP6V1C2, ATP6V1G2, TCIRG1, ATP6AP1 and ATP6AP2) of the V-ATPase that were related to glioma patient prognosis. Based on the expression of these genes, glioma patients were sub-classified into different prognosis clusters, of which C1 cluster performed better prognosis; however, C2 cluster showed more malignant phenotypes with oncogenic and immune-related pathway activation. The single-cell RNA-seq data revealed that ATP6AP1, ATP6AP2, ATP6V1G2 and TCIRG1 might be cell-type potential markers. Copy number variation and DNA promoter methylation potentially regulate these five gene expressions. A risk score model consisted of these five genes effectively predicted glioma prognosis and was fully validated by six independent datasets. The risk scores also showed a positive correlation with immune checkpoint expression. Importantly, glioma patients with high-risk scores presented resistance to traditional treatment. We also revealed that more inhibitory immune cells infiltration and higher rates of “non-response” to immune checkpoint blockade (ICB) treatment in the high-risk score group. In conclusion, our study identified a five-gene signature from the V-ATPase that could sub-classify gliomas into different phenotypes and their abnormal expression was regulated by distinct mechanisms and accompanied with immune microenvironment alterations potentially act as a biomarker for ICB treatment.
Collapse
Affiliation(s)
- Chunxiao Qi
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China.,Department of Neurosurgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Lei Lei
- Department of Rheumatology and Immunology, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, Liaoning, China
| | - Jinqu Hu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Gang Wang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jiyuan Liu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shaowu Ou
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
29
|
Soda K. Overview of Polyamines as Nutrients for Human Healthy Long Life and Effect of Increased Polyamine Intake on DNA Methylation. Cells 2022; 11:cells11010164. [PMID: 35011727 PMCID: PMC8750749 DOI: 10.3390/cells11010164] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 02/04/2023] Open
Abstract
Polyamines, spermidine and spermine, are synthesized in every living cell and are therefore contained in foods, especially in those that are thought to contribute to health and longevity. They have many physiological activities similar to those of antioxidant and anti-inflammatory substances such as polyphenols. These include antioxidant and anti-inflammatory properties, cell and gene protection, and autophagy activation. We have first reported that increased polyamine intake (spermidine much more so than spermine) over a long period increased blood spermine levels and inhibited aging-associated pathologies and pro-inflammatory status in humans and mice and extended life span of mice. However, it is unlikely that the life-extending effect of polyamines is exerted by the same bioactivity as polyphenols because most studies using polyphenols and antioxidants have failed to demonstrate their life-extending effects. Recent investigations revealed that aging-associated pathologies and lifespan are closely associated with DNA methylation, a regulatory mechanism of gene expression. There is a close relationship between polyamine metabolism and DNA methylation. We have shown that the changes in polyamine metabolism affect the concentrations of substances and enzyme activities involved in DNA methylation. I consider that the increased capability of regulation of DNA methylation by spermine is a key of healthy long life of humans.
Collapse
Affiliation(s)
- Kuniyasu Soda
- Department Cardiovascular Institute for Medical Research, Saitama Medical Center, Jichi Medical University, 1-847, Amanuma, Saitama-City 330-0834, Saitama, Japan
| |
Collapse
|
30
|
Li M, Qiao R, Zhong R, Wei Y, Wang J, Zhang Z, Wang L, Xu T, Wang Y, Dai L, Gu W, Han B, Yang R. FYB methylation in peripheral blood as a potential marker for the early-stage lung cancer: a case-control study in Chinese population. Biomarkers 2021; 27:79-85. [PMID: 34882057 DOI: 10.1080/1354750x.2021.2016970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Lung cancer (LC) is the leading cause of cancer-related morbidity and mortality in China. Exploring novel biomarkers for the early detection of LC is important. MATERIALS AND METHODS We quantified DNA methylation levels of three CpG sites of FYB gene in peripheral blood in 163 early-stage LC cases (88.3% at stage I) and 187 age- and gender-matched healthy controls. Covariates-adjusted odds ratios (ORs) for -10% methylation were calculated by binary logistic regression. RESULTS With multiple testing corrections, hypomethylation of FYB_CpG_4 was significantly associated with LC (OR = 2.04, p = 4.50E-04) even with LC at stage I (OR = 1.41, p = 0.003) without obvious bias between genders, but it mainly affected the subjects older than 55 years (OR = 2.04, p = 0.015). Hypomethylation of FYB_CpG_2 was also associated with LC, but only for the males (OR = 1.76, p = 0.018). FYB_CpG_3 methylation had no association with LC, but interestingly its methylation level in the males was only half of that in the females. DISCUSSION AND CONCLUSIONS We proposed a novel association between blood-based abnormal FYB methylation and very early-stage LC. The age- and gender-related DNA methylation patterns also revealed the diversity and precision of epigenetic regulations.
Collapse
Affiliation(s)
- Mengxia Li
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Rong Qiao
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Runbo Zhong
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yujie Wei
- Nanjing TANTICA Biotechnology Co. Ltd, Nanjing, China
| | - Jun Wang
- Nanjing TANTICA Biotechnology Co. Ltd, Nanjing, China
| | - Zheng Zhang
- Nanjing TANTICA Biotechnology Co. Ltd, Nanjing, China
| | - Ling Wang
- Nanjing TANTICA Biotechnology Co. Ltd, Nanjing, China
| | - Tian Xu
- Department of Clinical Laboratory, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Yue Wang
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Liping Dai
- Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Wanjian Gu
- Department of Clinical Laboratory, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Baohui Han
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Rongxi Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China.,Nanjing TANTICA Biotechnology Co. Ltd, Nanjing, China
| |
Collapse
|
31
|
Psychological intervention to treat distress: An emerging frontier in cancer prevention and therapy. Biochim Biophys Acta Rev Cancer 2021; 1877:188665. [PMID: 34896258 DOI: 10.1016/j.bbcan.2021.188665] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/27/2021] [Accepted: 12/01/2021] [Indexed: 02/05/2023]
Abstract
Psychological distress, such as chronic depression and anxiety, is a topical problem. In the context of cancer patients, prevalence rates of psychological distress are four-times higher than in the general population and often confer worse outcomes. In addition to evidence from epidemiological studies confirming the links between psychological distress and cancer progression, a growing body of cellular and molecular studies have also revealed the complex signaling networks which are modulated by psychological distress-derived chronic stress during cancer progression. In this review, aiming to uncover the intertwined networks of chronic stress-driven oncogenesis and progression, we summarize physiological stress response pathways, like the HPA, SNS, and MGB axes, that modulate the release of stress hormones with potential carcinogenic properties. Furthermore, we discuss in detail the mechanisms behind these chronic stimulations contributing to the initiation and progression of cancer through direct regulation of cancer hallmarks-related signaling or indirect promotion of cancer risk factors (including obesity, disordered circadian rhythms, and premature senescence), suggesting a novel research direction into cancer prevention and therapy on the basis of psychological interventions.
Collapse
|
32
|
Voisin S, Jacques M, Landen S, Harvey NR, Haupt LM, Griffiths LR, Gancheva S, Ouni M, Jähnert M, Ashton KJ, Coffey VG, Thompson JM, Doering TM, Gabory A, Junien C, Caiazzo R, Verkindt H, Raverdy V, Pattou F, Froguel P, Craig JM, Blocquiaux S, Thomis M, Sharples AP, Schürmann A, Roden M, Horvath S, Eynon N. Meta-analysis of genome-wide DNA methylation and integrative omics of age in human skeletal muscle. J Cachexia Sarcopenia Muscle 2021; 12:1064-1078. [PMID: 34196129 PMCID: PMC8350206 DOI: 10.1002/jcsm.12741] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/19/2021] [Accepted: 05/21/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Knowledge of age-related DNA methylation changes in skeletal muscle is limited, yet this tissue is severely affected by ageing in humans. METHODS We conducted a large-scale epigenome-wide association study meta-analysis of age in human skeletal muscle from 10 studies (total n = 908 muscle methylomes from men and women aged 18-89 years old). We explored the genomic context of age-related DNA methylation changes in chromatin states, CpG islands, and transcription factor binding sites and performed gene set enrichment analysis. We then integrated the DNA methylation data with known transcriptomic and proteomic age-related changes in skeletal muscle. Finally, we updated our recently developed muscle epigenetic clock (https://bioconductor.org/packages/release/bioc/html/MEAT.html). RESULTS We identified 6710 differentially methylated regions at a stringent false discovery rate <0.005, spanning 6367 unique genes, many of which related to skeletal muscle structure and development. We found a strong increase in DNA methylation at Polycomb target genes and bivalent chromatin domains and a concomitant decrease in DNA methylation at enhancers. Most differentially methylated genes were not altered at the mRNA or protein level, but they were nonetheless strongly enriched for genes showing age-related differential mRNA and protein expression. After adding a substantial number of samples from five datasets (+371), the updated version of the muscle clock (MEAT 2.0, total n = 1053 samples) performed similarly to the original version of the muscle clock (median of 4.4 vs. 4.6 years in age prediction error), suggesting that the original version of the muscle clock was very accurate. CONCLUSIONS We provide here the most comprehensive picture of DNA methylation ageing in human skeletal muscle and reveal widespread alterations of genes involved in skeletal muscle structure, development, and differentiation. We have made our results available as an open-access, user-friendly, web-based tool called MetaMeth (https://sarah-voisin.shinyapps.io/MetaMeth/).
Collapse
Affiliation(s)
- Sarah Voisin
- Institute for Health and Sport (iHeS)Victoria University, FootscrayMelbourneVic.Australia
| | - Macsue Jacques
- Institute for Health and Sport (iHeS)Victoria University, FootscrayMelbourneVic.Australia
| | - Shanie Landen
- Institute for Health and Sport (iHeS)Victoria University, FootscrayMelbourneVic.Australia
| | - Nicholas R. Harvey
- Faculty of Health Sciences & MedicineBond UniversityGold CoastQldAustralia
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical InnovationQueensland University of Technology (QUT)Kelvin GroveQldAustralia
| | - Larisa M. Haupt
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical InnovationQueensland University of Technology (QUT)Kelvin GroveQldAustralia
| | - Lyn R. Griffiths
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical InnovationQueensland University of Technology (QUT)Kelvin GroveQldAustralia
| | - Sofiya Gancheva
- German Center for Diabetes Research (DZD)München‐NeuherbergGermany
- Division of Endocrinology and Diabetology, Medical FacultyHeinrich Heine UniversityDüsseldorfGermany
| | - Meriem Ouni
- German Center for Diabetes Research (DZD)München‐NeuherbergGermany
- Department of Experimental DiabetologyGerman Institute of Human Nutrition Potsdam‐Rehbruecke (DIfE)NuthetalGermany
| | - Markus Jähnert
- German Center for Diabetes Research (DZD)München‐NeuherbergGermany
- Department of Experimental DiabetologyGerman Institute of Human Nutrition Potsdam‐Rehbruecke (DIfE)NuthetalGermany
| | - Kevin J. Ashton
- Faculty of Health Sciences & MedicineBond UniversityGold CoastQldAustralia
| | - Vernon G. Coffey
- Faculty of Health Sciences & MedicineBond UniversityGold CoastQldAustralia
| | | | - Thomas M. Doering
- School of Health, Medical and Applied SciencesCentral Queensland UniversityRockhamptonQldAustralia
| | - Anne Gabory
- Université Paris‐Saclay, UVSQ, INRAE, BREEDJouy‐en‐JosasFrance
- Ecole Nationale Vétérinaire d'Alfort, BREEDMaisons‐AlfortFrance
| | - Claudine Junien
- Université Paris‐Saclay, UVSQ, INRAE, BREEDJouy‐en‐JosasFrance
- Ecole Nationale Vétérinaire d'Alfort, BREEDMaisons‐AlfortFrance
| | - Robert Caiazzo
- Univ Lille, Inserm, CHU Lille, Pasteur Institute Lille, U1190 Translational Research for Diabetes, European Genomic Institute of DiabetesLilleFrance
| | - Hélène Verkindt
- Univ Lille, Inserm, CHU Lille, Pasteur Institute Lille, U1190 Translational Research for Diabetes, European Genomic Institute of DiabetesLilleFrance
| | - Violetta Raverdy
- Univ Lille, Inserm, CHU Lille, Pasteur Institute Lille, U1190 Translational Research for Diabetes, European Genomic Institute of DiabetesLilleFrance
| | - François Pattou
- Univ Lille, Inserm, CHU Lille, Pasteur Institute Lille, U1190 Translational Research for Diabetes, European Genomic Institute of DiabetesLilleFrance
| | - Philippe Froguel
- Univ Lille, Inserm, CHU Lille, Pasteur Institute Lille, U1190 Translational Research for Diabetes, European Genomic Institute of DiabetesLilleFrance
- Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
| | - Jeffrey M. Craig
- IMPACT InstituteDeakin University, Geelong Waurn Ponds CampusGeelongVic.Australia
- Epigenetics, Murdoch Children's Research InstituteRoyal Children's HospitalParkvilleVic.Australia
| | - Sara Blocquiaux
- Physical Activity, Sport & Health Research Group, Department of Movement SciencesKU LeuvenLeuvenBelgium
| | - Martine Thomis
- Physical Activity, Sport & Health Research Group, Department of Movement SciencesKU LeuvenLeuvenBelgium
| | - Adam P. Sharples
- Institute for Physical PerformanceNorwegian School of Sport SciencesOsloNorway
| | - Annette Schürmann
- German Center for Diabetes Research (DZD)München‐NeuherbergGermany
- Department of Experimental DiabetologyGerman Institute of Human Nutrition Potsdam‐Rehbruecke (DIfE)NuthetalGermany
| | - Michael Roden
- German Center for Diabetes Research (DZD)München‐NeuherbergGermany
- Division of Endocrinology and Diabetology, Medical FacultyHeinrich Heine UniversityDüsseldorfGermany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes ResearchHeinrich Heine UniversityDüsseldorfGermany
| | - Steve Horvath
- Department of Human Genetics and Biostatistics, David Geffen School of MedicineUniversity of California Los AngelesLos AngelesCAUSA
| | - Nir Eynon
- Institute for Health and Sport (iHeS)Victoria University, FootscrayMelbourneVic.Australia
| |
Collapse
|
33
|
DNA methylation and histone variants in aging and cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 364:1-110. [PMID: 34507780 DOI: 10.1016/bs.ircmb.2021.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aging-related diseases such as cancer can be traced to the accumulation of molecular disorder including increased DNA mutations and epigenetic drift. We provide a comprehensive review of recent results in mice and humans on modifications of DNA methylation and histone variants during aging and in cancer. Accumulated errors in DNA methylation maintenance lead to global decreases in DNA methylation with relaxed repression of repeated DNA and focal hypermethylation blocking the expression of tumor suppressor genes. Epigenetic clocks based on quantifying levels of DNA methylation at specific genomic sites is proving to be a valuable metric for estimating the biological age of individuals. Histone variants have specialized functions in transcriptional regulation and genome stability. Their concentration tends to increase in aged post-mitotic chromatin, but their effects in cancer are mainly determined by their specialized functions. Our increased understanding of epigenetic regulation and their modifications during aging has motivated interventions to delay or reverse epigenetic modifications using the epigenetic clocks as a rapid readout for efficacity. Similarly, the knowledge of epigenetic modifications in cancer is suggesting new approaches to target these modifications for cancer therapy.
Collapse
|
34
|
Willscher E, Hopp L, Kreuz M, Schmidt M, Hakobyan S, Arakelyan A, Hentschel B, Jones DTW, Pfister SM, Loeffler M, Loeffler-Wirth H, Binder H. High-Resolution Cartography of the Transcriptome and Methylome Landscapes of Diffuse Gliomas. Cancers (Basel) 2021; 13:3198. [PMID: 34206856 PMCID: PMC8268631 DOI: 10.3390/cancers13133198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 02/01/2023] Open
Abstract
Molecular mechanisms of lower-grade (II-III) diffuse gliomas (LGG) are still poorly understood, mainly because of their heterogeneity. They split into astrocytoma- (IDH-A) and oligodendroglioma-like (IDH-O) tumors both carrying mutations(s) at the isocitrate dehydrogenase (IDH) gene and into IDH wild type (IDH-wt) gliomas of glioblastoma resemblance. We generated detailed maps of the transcriptomes and DNA methylomes, revealing that cell functions divided into three major archetypic hallmarks: (i) increased proliferation in IDH-wt and, to a lesser degree, IDH-O; (ii) increased inflammation in IDH-A and IDH-wt; and (iii) the loss of synaptic transmission in all subtypes. Immunogenic properties of IDH-A are diverse, partly resembling signatures observed in grade IV mesenchymal glioblastomas or in grade I pilocytic astrocytomas. We analyzed details of coregulation between gene expression and DNA methylation and of the immunogenic micro-environment presumably driving tumor development and treatment resistance. Our transcriptome and methylome maps support personalized, case-by-case views to decipher the heterogeneity of glioma states in terms of data portraits. Thereby, molecular cartography provides a graphical coordinate system that links gene-level information with glioma subtypes, their phenotypes, and clinical context.
Collapse
Affiliation(s)
- Edith Willscher
- IZBI, Interdisciplinary Centre for Bioinformatics, Universität Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany; (E.W.); (L.H.); (M.S.)
| | - Lydia Hopp
- IZBI, Interdisciplinary Centre for Bioinformatics, Universität Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany; (E.W.); (L.H.); (M.S.)
| | - Markus Kreuz
- IMISE, Institute for Medical Informatics, Statistics and Epidemiology, Universität of Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany; (M.K.); (B.H.); (M.L.)
| | - Maria Schmidt
- IZBI, Interdisciplinary Centre for Bioinformatics, Universität Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany; (E.W.); (L.H.); (M.S.)
| | - Siras Hakobyan
- Research Group of Bioinformatics, Institute of Molecular Biology of the National Academy of Sciences of the Republic of Armenia, 7 Hasratyan Str., Yerevan 0014, Armenia; (S.H.); (A.A.)
- Armenian Bioinformatics Institute (ABI), 7 Hasratyan Str., Yerevan 0014, Armenia; (D.T.W.J.); (S.M.P.)
| | - Arsen Arakelyan
- Research Group of Bioinformatics, Institute of Molecular Biology of the National Academy of Sciences of the Republic of Armenia, 7 Hasratyan Str., Yerevan 0014, Armenia; (S.H.); (A.A.)
- Armenian Bioinformatics Institute (ABI), 7 Hasratyan Str., Yerevan 0014, Armenia; (D.T.W.J.); (S.M.P.)
| | - Bettina Hentschel
- IMISE, Institute for Medical Informatics, Statistics and Epidemiology, Universität of Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany; (M.K.); (B.H.); (M.L.)
| | - David T. W. Jones
- Armenian Bioinformatics Institute (ABI), 7 Hasratyan Str., Yerevan 0014, Armenia; (D.T.W.J.); (S.M.P.)
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| | - Stefan M. Pfister
- Armenian Bioinformatics Institute (ABI), 7 Hasratyan Str., Yerevan 0014, Armenia; (D.T.W.J.); (S.M.P.)
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| | - Markus Loeffler
- IMISE, Institute for Medical Informatics, Statistics and Epidemiology, Universität of Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany; (M.K.); (B.H.); (M.L.)
| | - Henry Loeffler-Wirth
- IZBI, Interdisciplinary Centre for Bioinformatics, Universität Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany; (E.W.); (L.H.); (M.S.)
| | - Hans Binder
- IZBI, Interdisciplinary Centre for Bioinformatics, Universität Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany; (E.W.); (L.H.); (M.S.)
- Armenian Bioinformatics Institute (ABI), 7 Hasratyan Str., Yerevan 0014, Armenia; (D.T.W.J.); (S.M.P.)
| |
Collapse
|
35
|
Knight P, Gauthier MPL, Pardo CE, Darst RP, Kapadia K, Browder H, Morton E, Riva A, Kladde MP, Bacher R. Methylscaper: an R/shiny app for joint visualization of DNA methylation and nucleosome occupancy in single-molecule and single-cell data. Bioinformatics 2021; 37:4857-4859. [PMID: 34125875 PMCID: PMC8665741 DOI: 10.1093/bioinformatics/btab438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/19/2021] [Accepted: 06/11/2021] [Indexed: 11/13/2022] Open
Abstract
SUMMARY Differential DNA methylation and chromatin accessibility are associated with disease development, particularly cancer. Methods that allow profiling of these epigenetic mechanisms in the same reaction and at the single-molecule or single-cell level continue to emerge. However, a challenge lies in jointly visualizing and analyzing the heterogeneous nature of the data and extracting regulatory insight. Here, we present methylscaper, a visualization framework for simultaneous analysis of DNA methylation and chromatin accessibility landscapes. Methylscaper implements a weighted principal component analysis that orders DNA molecules, each providing a record of the chromatin state of one epiallele, and reveals patterns of nucleosome positioning, transcription factor occupancy, and DNA methylation. We demonstrate methylscaper's utility on a long-read, single-molecule methyltransferase accessibility protocol for individual templates (MAPit-BGS) dataset and a single-cell nucleosome, methylation, and transcription sequencing (scNMT-seq) dataset. In comparison to other procedures, methylscaper is able to readily identify chromatin features that are biologically relevant to transcriptional status while scaling to larger datasets. AVAILABILITY AND IMPLEMENTATION Methylscaper, is implemented in R (version > 4.1) and available on Bioconductor: https://bioconductor.org/packages/methylscaper/, GitHub: https://github.com/rhondabacher/methylscaper/, and Web: https://methylscaper.com. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Parker Knight
- Department of Biostatistics, University of Florida, Gainesville, FL
| | | | - Carolina E Pardo
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL
| | - Russell P Darst
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL
| | - Kevin Kapadia
- Department of Statistics, University of Florida, Gainesville, FL
| | - Hadley Browder
- Department of Statistics, University of Florida, Gainesville, FL
| | - Eliza Morton
- Department of Statistics, University of Florida, Gainesville, FL
| | - Alberto Riva
- Bioinformatics Core, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida
| | - Michael P Kladde
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL
| | - Rhonda Bacher
- Department of Biostatistics, University of Florida, Gainesville, FL
| |
Collapse
|
36
|
Yang Y, Yuan L, Yang M, Du X, Qin L, Wang L, Zhou K, Wu M, He R, Feng J, Xiang Y, Qu X, Liu H, Qin X, Liu C. Aberrant Methylation of Aging-Related Genes in Asthma. Front Mol Biosci 2021; 8:655285. [PMID: 34136532 PMCID: PMC8203316 DOI: 10.3389/fmolb.2021.655285] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/04/2021] [Indexed: 12/18/2022] Open
Abstract
Background: Asthma is a complex pulmonary inflammatory disease which is common among older adults. Aging-related alterations have also been found in structural cells and immune cells of asthma patients. Nonetheless, the underlying mechanism by which differenced aging-related gene contributes to asthma pathology remains unclear. Of note, DNA methylation (DNAm) has been proven to play a critical mechanism for age-related gene expression changes. However, the methylation changes of aging-related genes in asthma patients are still obscure. Methods: First, changes in DNAm and gene expression were detected with multiple targeted bisulfite enrichment sequencing (MethTarget) and qPCR in peripheral blood of 51 healthy controls (HCs) and 55 asthmatic patients. Second, the correlation between the DNAm levels of specific altered CpG sites and the pulmonary function indicators of asthma patients was evaluated. Last, the receiver operator characteristic (ROC) curve and principal component analysis (PCA) were used to identify the feasibility of the candidate CpG sites as biomarkers for asthma. Results: Compared with HCs, there was a differential mRNA expression for nine aging-related genes in peripheral blood of asthma patients. Besides, the methylation levels of the nine aging-related genes were also altered in asthma patients, and a total of 68 CpG sites were associated with the severity of asthma. Notably, 9 of the 68 CpG sites were significantly associated with pulmonary function parameters. Moreover, ROC curve and PCA analysis showed that the candidate differential methylation sites (DMSs) can be used as potential biomarkers for asthma. Conclusions: In summary, this study confirmed the differentially expressed mRNA and aberrant DNAm level of aging-related genes in asthma patients. DMSs are associated with the clinical evaluation indicators of asthma, which indicate the involvement of aging-related genes in the pathogenesis of asthma and provide some new possible biomarkers for asthma.
Collapse
Affiliation(s)
- Yu Yang
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China.,Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China.,Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, China
| | - Lin Yuan
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Ming Yang
- Centre for Asthma and Respiratory Disease, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW, Australia
| | - Xizi Du
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Ling Qin
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China.,Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, China
| | - Leyuan Wang
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Kai Zhou
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Mengping Wu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Ruoxi He
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China.,Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, China
| | - Juntao Feng
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China.,Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, China
| | - Yang Xiang
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Xiangping Qu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Huijun Liu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Xiaoqun Qin
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Chi Liu
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China.,Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China.,Research Center of China-Africa Infectious Diseases, Xiangya School of Medicine Central South University, Changsha, China
| |
Collapse
|
37
|
Li WX, Dai SX, An SQ, Sun T, Liu J, Wang J, Liu LG, Xun Y, Yang H, Fan LX, Zhang XL, Liao WQ, You H, Tamagnone L, Liu F, Huang JF, Liu D. Transcriptome integration analysis and specific diagnosis model construction for Hodgkin's lymphoma, diffuse large B-cell lymphoma, and mantle cell lymphoma. Aging (Albany NY) 2021; 13:11833-11859. [PMID: 33885377 PMCID: PMC8109084 DOI: 10.18632/aging.202882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/02/2021] [Indexed: 01/20/2023]
Abstract
Transcriptome differences between Hodgkin's lymphoma (HL), diffuse large B-cell lymphoma (DLBCL), and mantle cell lymphoma (MCL), which are all derived from B cell, remained unclear. This study aimed to construct lymphoma-specific diagnostic models by screening lymphoma marker genes. Transcriptome data of HL, DLBCL, and MCL were obtained from public databases. Lymphoma marker genes were screened by comparing cases and controls as well as the intergroup differences among lymphomas. A total of 9 HL marker genes, 7 DLBCL marker genes, and 4 MCL marker genes were screened in this study. Most HL marker genes were upregulated, whereas DLBCL and MCL marker genes were downregulated compared to controls. The optimal HL-specific diagnostic model contains one marker gene (MYH2) with an AUC of 0.901. The optimal DLBCL-specific diagnostic model contains 7 marker genes (LIPF, CCDC144B, PRO2964, PHF1, SFTPA2, NTS, and HP) with an AUC of 0.951. The optimal MCL-specific diagnostic model contains 3 marker genes (IGLV3-19, IGKV4-1, and PRB3) with an AUC of 0.843. The present study reveals the transcriptome data-based differences between HL, DLBCL, and MCL, when combined with other clinical markers, may help the clinical diagnosis and prognosis.
Collapse
Affiliation(s)
- Wen-Xing Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, Guangdong, China
| | - Shao-Xing Dai
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - San-Qi An
- Biosafety Level-3 Laboratory, Life Sciences Institute & Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Tingting Sun
- National School of Development, Peking University, Beijing 100871, China
| | - Justin Liu
- Department of Statistics, University of California, Riverside, CA 92521, USA
| | - Jun Wang
- Foshan Stomatology Hospital, School of Medicine, Foshan University, Foshan, Guangdong, China
| | | | - Yang Xun
- Foshan Stomatology Hospital, School of Medicine, Foshan University, Foshan, Guangdong, China
| | - Hua Yang
- Foshan Stomatology Hospital, School of Medicine, Foshan University, Foshan, Guangdong, China
| | - Li-Xia Fan
- Foshan Stomatology Hospital, School of Medicine, Foshan University, Foshan, Guangdong, China
| | - Xiao-Li Zhang
- Foshan Stomatology Hospital, School of Medicine, Foshan University, Foshan, Guangdong, China
| | - Wan-Qin Liao
- Foshan Stomatology Hospital, School of Medicine, Foshan University, Foshan, Guangdong, China
| | - Hua You
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Luca Tamagnone
- Istituto di Istologia ed Embriologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Fang Liu
- Foshan Stomatology Hospital, School of Medicine, Foshan University, Foshan, Guangdong, China
| | - Jing-Fei Huang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Dahai Liu
- Foshan Stomatology Hospital, School of Medicine, Foshan University, Foshan, Guangdong, China
| |
Collapse
|
38
|
Chatsirisupachai K, Lesluyes T, Paraoan L, Van Loo P, de Magalhães JP. An integrative analysis of the age-associated multi-omic landscape across cancers. Nat Commun 2021; 12:2345. [PMID: 33879792 PMCID: PMC8058097 DOI: 10.1038/s41467-021-22560-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 03/17/2021] [Indexed: 02/07/2023] Open
Abstract
Age is the most important risk factor for cancer, as cancer incidence and mortality increase with age. However, how molecular alterations in tumours differ among patients of different age remains largely unexplored. Here, using data from The Cancer Genome Atlas, we comprehensively characterise genomic, transcriptomic and epigenetic alterations in relation to patients' age across cancer types. We show that tumours from older patients present an overall increase in genomic instability, somatic copy-number alterations (SCNAs) and somatic mutations. Age-associated SCNAs and mutations are identified in several cancer-driver genes across different cancer types. The largest age-related genomic differences are found in gliomas and endometrial cancer. We identify age-related global transcriptomic changes and demonstrate that these genes are in part regulated by age-associated DNA methylation changes. This study provides a comprehensive, multi-omics view of age-associated alterations in cancer and underscores age as an important factor to consider in cancer research and clinical practice.
Collapse
Affiliation(s)
- Kasit Chatsirisupachai
- Integrative Genomics of Ageing Group, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | | | - Luminita Paraoan
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | | | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK.
| |
Collapse
|
39
|
Pérez RF, Tejedor JR, Santamarina-Ojeda P, Martínez VL, Urdinguio RG, Villamañán L, Candiota AP, Sarró NMV, Barradas M, Fernandez-Marcos PJ, Serrano M, Fernández AF, Fraga MF. Conservation of Aging and Cancer Epigenetic Signatures across Human and Mouse. Mol Biol Evol 2021; 38:3415-3435. [PMID: 33871658 PMCID: PMC8321527 DOI: 10.1093/molbev/msab112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aging and cancer are two interrelated processes, with aging being a major risk factor for the development of cancer. Parallel epigenetic alterations have been described for both, although differences, especially within the DNA hypomethylation scenario, have also been recently reported. Although many of these observations arise from the use of mouse models, there is a lack of systematic comparisons of human and mouse epigenetic patterns in the context of disease. However, such comparisons are significant as they allow to establish the extent to which some of the observed similarities or differences arise from pre-existing species-specific epigenetic traits. Here, we have used reduced representation bisulfite sequencing to profile the brain methylomes of young and old, tumoral and nontumoral brain samples from human and mouse. We first characterized the baseline epigenomic patterns of the species and subsequently focused on the DNA methylation alterations associated with cancer and aging. Next, we described the functional genomic and epigenomic context associated with the alterations, and finally, we integrated our data to study interspecies DNA methylation levels at orthologous CpG sites. Globally, we found considerable differences between the characteristics of DNA methylation alterations in cancer and aging in both species. Moreover, we describe robust evidence for the conservation of the specific cancer and aging epigenomic signatures in human and mouse. Our observations point toward the preservation of the functional consequences of these alterations at multiple levels of genomic regulation. Finally, our analyses reveal a role for the genomic context in explaining disease- and species-specific epigenetic traits.
Collapse
Affiliation(s)
- Raúl F Pérez
- Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), University of Oviedo, Oviedo, Spain.,Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain.,Health Research Institute of Asturias (ISPA), University of Oviedo, Oviedo, Spain.,Department of Organisms and Systems Biology (B.O.S.), University of Oviedo, Oviedo, Spain.,Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII), Madrid, Spain
| | - Juan Ramón Tejedor
- Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), University of Oviedo, Oviedo, Spain.,Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain.,Health Research Institute of Asturias (ISPA), University of Oviedo, Oviedo, Spain.,Department of Organisms and Systems Biology (B.O.S.), University of Oviedo, Oviedo, Spain.,Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII), Madrid, Spain
| | - Pablo Santamarina-Ojeda
- Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), University of Oviedo, Oviedo, Spain.,Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain.,Health Research Institute of Asturias (ISPA), University of Oviedo, Oviedo, Spain.,Department of Organisms and Systems Biology (B.O.S.), University of Oviedo, Oviedo, Spain.,Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII), Madrid, Spain
| | - Virginia López Martínez
- Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), University of Oviedo, Oviedo, Spain.,Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain.,Health Research Institute of Asturias (ISPA), University of Oviedo, Oviedo, Spain.,Department of Organisms and Systems Biology (B.O.S.), University of Oviedo, Oviedo, Spain.,Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII), Madrid, Spain
| | - Rocío G Urdinguio
- Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), University of Oviedo, Oviedo, Spain.,Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain.,Health Research Institute of Asturias (ISPA), University of Oviedo, Oviedo, Spain.,Department of Organisms and Systems Biology (B.O.S.), University of Oviedo, Oviedo, Spain.,Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII), Madrid, Spain
| | - Lucía Villamañán
- Unitat de Bioquímica de Biociències, Departament de Bioquímica i Biologia Molecular, Edifici Cs, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Ana Paula Candiota
- Unitat de Bioquímica de Biociències, Departament de Bioquímica i Biologia Molecular, Edifici Cs, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - N Mí Vidal Sarró
- Servicio Anatomía Patológica, Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, Spain
| | - Marta Barradas
- Metabolic Syndrome Group-BIOPROMET, Madrid Institute for Advanced Studies-IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | - Pablo Jose Fernandez-Marcos
- Metabolic Syndrome Group-BIOPROMET, Madrid Institute for Advanced Studies-IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | - Manuel Serrano
- Tumour Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,Cellular Plasticity and Disease Group, Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Agusín F Fernández
- Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), University of Oviedo, Oviedo, Spain.,Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain.,Health Research Institute of Asturias (ISPA), University of Oviedo, Oviedo, Spain.,Department of Organisms and Systems Biology (B.O.S.), University of Oviedo, Oviedo, Spain.,Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII), Madrid, Spain
| | - Mario F Fraga
- Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), University of Oviedo, Oviedo, Spain.,Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain.,Health Research Institute of Asturias (ISPA), University of Oviedo, Oviedo, Spain.,Department of Organisms and Systems Biology (B.O.S.), University of Oviedo, Oviedo, Spain.,Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII), Madrid, Spain
| |
Collapse
|
40
|
Guo CG, Ma W, Drew DA, Cao Y, Nguyen LH, Joshi AD, Ng K, Ogino S, Meyerhardt JA, Song M, Leung WK, Giovannucci EL, Chan AT. Aspirin Use and Risk of Colorectal Cancer Among Older Adults. JAMA Oncol 2021; 7:428-435. [PMID: 33475710 DOI: 10.1001/jamaoncol.2020.7338] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Importance Although aspirin is recommended for the prevention of colorectal cancer (CRC) among adults aged 50 to 59 years, recent data from a randomized clinical trial suggest a lack of benefit and even possible harm among older adults. Objective To examine the association between aspirin use and the risk of incident CRC among older adults. Design, Setting, and Participants A pooled analysis was conducted of 2 large US cohort studies, the Nurses' Health Study (June 1, 1980-June 30, 2014) and Health Professionals Follow-up Study (January 1, 1986-January 31, 2014). A total of 94 540 participants aged 70 years or older were included and followed up to June 30, 2014, for women or January 31, 2014, for men. Participants with a diagnosis of any cancer, except nonmelanoma skin cancer, or inflammatory bowel disease were excluded. Statistical analyses were conducted from December 2019 to October 2020. Main Outcomes and Measures Cox proportional hazards models were used to calculate multivariable adjusted hazard ratios (HRs) and 95% CIs for incident CRC. Results Among the 94 540 participants (mean [SD] age, 76.4 [4.9] years for women, 77.7 [5.6] years for men; 67 223 women [71.1%]; 65 259 White women [97.1%], 24 915 White men [96.0%]) aged 70 years or older, 1431 incident cases of CRC were documented over 996 463 person-years of follow-up. After adjustment for other risk factors, regular use of aspirin was associated with a significantly lower risk of CRC at or after age 70 years compared with nonregular use (HR, 0.80; 95% CI, 0.72-0.90). However, the inverse association was evident only among aspirin users who initiated aspirin use before age 70 years (HR, 0.80; 95% CI, 0.67-0.95). In contrast, initiating aspirin use at or after 70 years was not significantly associated with a lower risk of CRC (HR, 0.92; 95% CI, 0.76-1.11). Conclusions and Relevance Initiating aspirin at an older age was not associated with a lower risk of CRC in this pooled analysis of 2 cohort studies. In contrast, those who used aspirin before age 70 years and continued into their 70s or later had a reduced risk of CRC.
Collapse
Affiliation(s)
- Chuan-Guo Guo
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston.,Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston.,Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Wenjie Ma
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston.,Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston.,Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - David A Drew
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston.,Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Yin Cao
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St Louis, Missouri.,Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
| | - Long H Nguyen
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston.,Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston.,Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Amit D Joshi
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston.,Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Kimmie Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Shuji Ogino
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts.,Program in Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Cancer Immunology and Cancer Epidemiology Programs, Dana-Farber Harvard Cancer Center, Boston, Massachusetts
| | - Jeffrey A Meyerhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Mingyang Song
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston.,Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston.,Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts.,Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Wai K Leung
- Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Edward L Giovannucci
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts.,Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, Massachusetts.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston.,Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston.,Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
41
|
Abstract
High-quality evidence indicates that regular use of aspirin is effective in reducing the risk for precancerous colorectal neoplasia and colorectal cancer (CRC). This has led to US and international guidelines recommending aspirin for the primary prevention of CRC in specific populations. In this review, we summarize key questions that require addressing prior to broader adoption of aspirin-based chemoprevention, review recent evidence related to the benefits and harms of aspirin use among specific populations, and offer a rationale for precision prevention approaches. We specifically consider the mechanistic implications of evidence showing differences in aspirin's effects according to age, the potential role of modifiable mechanistic biomarkers for personalizing prevention, and emerging evidence that the gut microbiota may offer novel aspirin-associated preventive targets to reduce high-risk neoplasia.
Collapse
Affiliation(s)
- David A Drew
- Clinical and Translational Epidemiology Unit and Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA; ,
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit and Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA; ,
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02114, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
42
|
Dietrich P, Wormser L, Fritz V, Seitz T, De Maria M, Schambony A, Kremer AE, Günther C, Itzel T, Thasler WE, Teufel A, Trebicka J, Hartmann A, Neurath MF, von Hörsten S, Bosserhoff AK, Hellerbrand C. Molecular crosstalk between Y5 receptor and neuropeptide Y drives liver cancer. J Clin Invest 2021; 130:2509-2526. [PMID: 31999643 DOI: 10.1172/jci131919] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 01/23/2020] [Indexed: 12/30/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is clearly age-related and represents one of the deadliest cancer types worldwide. As a result of globally increasing risk factors including metabolic disorders, the incidence rates of HCC are still rising. However, the molecular hallmarks of HCC remain poorly understood. Neuropeptide Y (NPY) and NPY receptors represent a highly conserved, stress-activated system involved in diverse cancer-related hallmarks including aging and metabolic alterations, but its impact on liver cancer had been unclear. Here, we observed increased expression of NPY5 receptor (Y5R) in HCC, which correlated with tumor growth and survival. Furthermore, we found that its ligand NPY was secreted by peritumorous hepatocytes. Hepatocyte-derived NPY promoted HCC progression by Y5R activation. TGF-β1 was identified as a regulator of NPY in hepatocytes and induced Y5R in invasive cancer cells. Moreover, NPY conversion by dipeptidylpeptidase 4 (DPP4) augmented Y5R activation and function in liver cancer. The TGF-β/NPY/Y5R axis and DPP4 represent attractive therapeutic targets for controlling liver cancer progression.
Collapse
Affiliation(s)
- Peter Dietrich
- Institute of Biochemistry, Emil-Fischer-Zentrum.,Department of Medicine 1, University Hospital Erlangen, and
| | | | | | | | - Monica De Maria
- Biology Department, Developmental Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Alexandra Schambony
- Biology Department, Developmental Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | | | | | - Timo Itzel
- Department of Internal Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Andreas Teufel
- Department of Internal Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jonel Trebicka
- Department of Medicine I, University Hospital Bonn, Bonn, Germany
| | - Arndt Hartmann
- Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-European Metropolitan Region of Nuremberg, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, University Hospital Erlangen, and.,Comprehensive Cancer Center Erlangen-European Metropolitan Region of Nuremberg, Erlangen, Germany
| | - Stephan von Hörsten
- Department of Experimental Therapy, Franz Penzoldt Center, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Anja K Bosserhoff
- Institute of Biochemistry, Emil-Fischer-Zentrum.,Comprehensive Cancer Center Erlangen-European Metropolitan Region of Nuremberg, Erlangen, Germany
| | - Claus Hellerbrand
- Institute of Biochemistry, Emil-Fischer-Zentrum.,Comprehensive Cancer Center Erlangen-European Metropolitan Region of Nuremberg, Erlangen, Germany
| |
Collapse
|
43
|
Maugeri A, Barchitta M, Magnano San Lio R, Li Destri G, Agodi A, Basile G. Epigenetic Aging and Colorectal Cancer: State of the Art and Perspectives for Future Research. Int J Mol Sci 2020; 22:ijms22010200. [PMID: 33379143 PMCID: PMC7795459 DOI: 10.3390/ijms22010200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
Although translational research has identified a large number of potential biomarkers involved in colorectal cancer (CRC) carcinogenesis, a better understanding of the molecular pathways associated with biological aging in colorectal cells and tissues is needed. Here, we aim to summarize the state of the art about the role of age acceleration, defined as the difference between epigenetic age and chronological age, in the development and progression of CRC. Some studies have shown that accelerated biological aging is positively associated with the risk of cancer and death in general. In line with these findings, other studies have shown how the assessment of epigenetic age in people at risk for CRC could be helpful for monitoring the molecular response to preventive interventions. Moreover, it would be interesting to investigate whether aberrant epigenetic aging could help identify CRC patients with a high risk of recurrence and a worst prognosis, as well as those who respond poorly to treatment. Yet, the application of this novel concept is still in its infancy, and further research should be encouraged in anticipation of future applications in clinical practice.
Collapse
Affiliation(s)
- Andrea Maugeri
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, via S. Sofia, 87, 95123 Catania, Italy; (A.M.); (R.M.S.L.); (G.L.D.); (A.A.)
| | - Martina Barchitta
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, via S. Sofia, 87, 95123 Catania, Italy; (A.M.); (R.M.S.L.); (G.L.D.); (A.A.)
- Correspondence:
| | - Roberta Magnano San Lio
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, via S. Sofia, 87, 95123 Catania, Italy; (A.M.); (R.M.S.L.); (G.L.D.); (A.A.)
| | - Giovanni Li Destri
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, via S. Sofia, 87, 95123 Catania, Italy; (A.M.); (R.M.S.L.); (G.L.D.); (A.A.)
| | - Antonella Agodi
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, via S. Sofia, 87, 95123 Catania, Italy; (A.M.); (R.M.S.L.); (G.L.D.); (A.A.)
| | - Guido Basile
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, via S. Sofia, 78, 95123 Catania, Italy;
| |
Collapse
|
44
|
Ye ZQ, Chen HB, Zhang TY, Chen Z, Tian L, Gu DN. MicroRNA-7 modulates cellular senescence to relieve gemcitabine resistance by targeting PARP1/NF-κB signaling in pancreatic cancer cells. Oncol Lett 2020; 21:139. [PMID: 33552258 PMCID: PMC7798037 DOI: 10.3892/ol.2020.12400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 11/11/2020] [Indexed: 11/28/2022] Open
Abstract
Senescence is activated in response to gemcitabine to prevent the propagation of cancer cells. However, there is little evidence on whether senescence is involved in gemcitabine resistance in pancreatic cancer. Increasing evidence has demonstrated that microRNAs (miRs) are potential regulators of cellular senescence. The present study aimed to investigate whether aberrant miR-7 expression modulated senescence to influence pancreatic cancer resistance to chemotherapy. In the present study, cell senescence assay, ALDEFLUOR™ assay, luciferase reporter assay, flow cytometry, quantitative PCR, immunohistochemistry and western blot analysis were performed to explore the association between senescence and gemcitabine therapy response, and to clarify the underlying mechanisms. The present study revealed that gemcitabine-induced chronically existing senescent pancreatic cells possessed stemness markers. Therapy-induced senescence led to gemcitabine resistance. Additionally, it was found that miR-7 expression was decreased in gemcitabine-resistant pancreatic cancer cells, and that miR-7 acted as an important regulator of cellular senescence by targeting poly (ADP-ribose) polymerase 1 (PARP1)/NF-κB signaling. When miR-7 expression was restored, it was able to sensitize pancreatic cancer cells to gemcitabine. In conclusion, the present study demonstrated that miR-7 regulated cellular senescence and relieved gemcitabine resistance by targeting the PARP1/NF-κB axis in pancreatic cancer cells.
Collapse
Affiliation(s)
- Zhi-Qiang Ye
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Han-Bin Chen
- Department of Chemoradiotherapy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Tai-Yu Zhang
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, P.R. China
| | - Zhi Chen
- Department of Chemoradiotherapy, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Ling Tian
- Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P.R. China
| | - Dian-Na Gu
- Department of Chemoradiotherapy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
45
|
Zhang P, Xia Q, Liu L, Li S, Dong L. Current Opinion on Molecular Characterization for GBM Classification in Guiding Clinical Diagnosis, Prognosis, and Therapy. Front Mol Biosci 2020; 7:562798. [PMID: 33102518 PMCID: PMC7506064 DOI: 10.3389/fmolb.2020.562798] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma (GBM) is highly invasive and the deadliest brain tumor in adults. It is characterized by inter-tumor and intra-tumor heterogeneity, short patient survival, and lack of effective treatment. Prognosis and therapy selection is driven by molecular data from gene transcription, genetic alterations and DNA methylation. The four GBM molecular subtypes are proneural, neural, classical, and mesenchymal. More effective personalized therapy heavily depends on higher resolution molecular subtype signatures, combined with gene therapy, immunotherapy and organoid technology. In this review, we summarize the principal GBM molecular classifications that guide diagnosis, prognosis, and therapeutic recommendations.
Collapse
Affiliation(s)
- Pei Zhang
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Qin Xia
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Liqun Liu
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Shouwei Li
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Lei Dong
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
46
|
Colemon A, Harris TM, Ramanathan S. DNA hypomethylation drives changes in MAGE-A gene expression resulting in alteration of proliferative status of cells. Genes Environ 2020; 42:24. [PMID: 32760472 PMCID: PMC7392716 DOI: 10.1186/s41021-020-00162-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/04/2020] [Indexed: 12/20/2022] Open
Abstract
Melanoma Antigen Genes (MAGEs) are a family of genes that have piqued the interest of scientists for their unique expression pattern. A subset of MAGEs (Type I) are expressed in spermatogonial cells and in no other somatic tissue, and then re-expressed in many cancers. Type I MAGEs are often referred to as cancer-testis antigens due to this expression pattern, while Type II MAGEs are more ubiquitous in expression. This study determines the cause and consequence of the aberrant expression of the MAGE-A subfamily of cancer-testis antigens. We have discovered that MAGE-A genes are regulated by DNA methylation, as revealed by treatment with 5-azacytidine, an inhibitor of DNA methyltransferases. Furthermore, bioinformatics analysis of existing methylome sequencing data also corroborates our findings. The consequence of expressing certain MAGE-A genes is an increase in cell proliferation and colony formation and resistance to chemo-therapeutic agent 5-fluorouracil and DNA damaging agent sodium arsenite. Taken together, these data indicate that DNA methylation plays a crucial role in regulating the expression of MAGE-A genes which then act as drivers of cell proliferation, anchorage-independent growth and chemo-resistance that is critical for cancer-cell survival.
Collapse
Affiliation(s)
- Ashley Colemon
- Fisk-Vanderbilt Masters-to-PhD Bridge Program, Fisk University, Nashville, TN USA
| | - Taylor M Harris
- Department of Life and Physical Sciences, Fisk University, Nashville, TN USA
| | - Saumya Ramanathan
- Department of Life and Physical Sciences, Fisk University, Nashville, TN USA.,Department of Pharmacology, Vanderbilt University, Nashville, TN USA
| |
Collapse
|
47
|
The Epigenetic Progenitor Origin of Cancer Reassessed: DNA Methylation Brings Balance to the Stem Force. EPIGENOMES 2020; 4:epigenomes4020008. [PMID: 34968242 PMCID: PMC8594692 DOI: 10.3390/epigenomes4020008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/21/2020] [Accepted: 05/27/2020] [Indexed: 12/17/2022] Open
Abstract
Cancer initiation and progression toward malignant stages occur as the results of accumulating genetic alterations and epigenetic dysregulation. During the last decade, the development of next generation sequencing (NGS) technologies and the increasing pan-genomic knowledge have revolutionized how we consider the evolving epigenetic landscapes during homeostasis and tumor progression. DNA methylation represents the best studied mark and is considered as a common mechanism of epigenetic regulation in normal homeostasis and cancer. A remarkable amount of work has recently started clarifying the central role played by DNA methylation dynamics on the maintenance of cell identity and on cell fate decisions during the different steps of normal development and tumor evolution. Importantly, a growing number of studies show that DNA methylation is key in the maintenance of adult stemness and in orchestrating commitment in multiple ways. Perturbations of the normal DNA methylation patterns impair the homeostatic balance and can lead to tumor initiation. Therefore, DNA methylation represents an interesting therapeutic target to recover homeostasis in tumor stem cells.
Collapse
|
48
|
TET1 promotes growth of T-cell acute lymphoblastic leukemia and can be antagonized via PARP inhibition. Leukemia 2020; 35:389-403. [PMID: 32409690 DOI: 10.1038/s41375-020-0864-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/28/2020] [Accepted: 05/01/2020] [Indexed: 12/15/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological cancer characterized by skewed epigenetic patterns, raising the possibility of therapeutically targeting epigenetic factors in this disease. Here we report that among different cancer types, epigenetic factor TET1 is highly expressed in T-ALL and is crucial for human T-ALL cell growth in vivo. Knockout of TET1 in mice and knockdown in human T cell did not perturb normal T-cell proliferation, indicating that TET1 expression is dispensable for normal T-cell growth. The promotion of leukemic growth by TET1 was dependent on its catalytic property to maintain global 5-hydroxymethylcytosine (5hmC) marks, thereby regulate cell cycle, DNA repair genes, and T-ALL associated oncogenes. Furthermore, overexpression of the Tet1-catalytic domain was sufficient to augment global 5hmC levels and leukemic growth of T-ALL cells in vivo. We demonstrate that PARP enzymes, which are highly expressed in T-ALL patients, participate in establishing H3K4me3 marks at the TET1 promoter and that PARP1 interacts with the TET1 protein. Importantly, the growth related role of TET1 in T-ALL could be antagonized by the clinically approved PARP inhibitor Olaparib, which abrogated TET1 expression, induced loss of 5hmC marks, and antagonized leukemic growth of T-ALL cells, opening a therapeutic avenue for this disease.
Collapse
|
49
|
Lian M, Cao H, Baranova A, Kural KC, Hou L, He S, Shao Q, Fang J. Aging-associated genes TNFRSF12A and CHI3L1 contribute to thyroid cancer: An evidence for the involvement of hypoxia as a driver. Oncol Lett 2020; 19:3634-3642. [PMID: 32391089 PMCID: PMC7204633 DOI: 10.3892/ol.2020.11530] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/16/2019] [Indexed: 12/25/2022] Open
Abstract
The prevalence of thyroid cancer (TC) is high in the elderly. The present study was based on the hypothesis that genes, which have increased activity with aging, may play a role in the development of TC. A large-scale literature-based data analysis was conducted to explore the genes that are implicated in both TC and aging. Subsequently, a mega-analysis of 16 RNA expression datasets (1,222 samples: 439 healthy controls, and 783 patients with TC) was conducted to test a set of genes associated with aging but not TC. To uncover a possible link between these genes and TC, a functional pathway analysis was conducted, and the results were validated by analysis of gene co-expression. A multiple linear regression (MLR) model was employed to study the possible influence of sample size, population region and study age on the gene expression levels in TC. A total of 262 and 816 genes were identified to have increased activity with aging and TC, respectively; with a significant overlap of 63 genes (P<3.82×10−35). The mega-analysis revealed two aging-associated genes (CHI3L1 and TNFRSF12A) to be significantly associated with TC (P<2.05×10−8), and identified the association with multiple hypoxia-driven pathways through functional pathway analysis, also confirmed by the co-expression analysis. The MLR analysis identified population region as a significant factor contributing to the expression levels of CHI3L1 and TNFRSF12A in TC samples (P<3.24×10−4). The determination of genes that promote aging was warranted due to their possible involvement in TC. The present study suggests CHI3L1 and TNFRSF12A as novel common risk genes associated with both aging and TC.
Collapse
Affiliation(s)
- Meng Lian
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Hongbao Cao
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China.,Department of Genomics Research, R&D Solutions, Elsevier Inc., Rockville, MD 20852, USA.,School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
| | - Ancha Baranova
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA.,Research Centre for Medical Genetics, Moscow 115478, Russia
| | - Kamil Can Kural
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
| | - Lizhen Hou
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Shizhi He
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Qing Shao
- Department of Breast and Thyroid Surgery, Jiangyin People's Hospital, Jiangyin, Jiangsu 214400, P.R. China
| | - Jugao Fang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| |
Collapse
|
50
|
Wagner MA, Erickson KI, Bender CM, Conley YP. The Influence of Physical Activity and Epigenomics On Cognitive Function and Brain Health in Breast Cancer. Front Aging Neurosci 2020; 12:123. [PMID: 32457596 PMCID: PMC7225270 DOI: 10.3389/fnagi.2020.00123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/14/2020] [Indexed: 12/17/2022] Open
Abstract
The risk of breast cancer increases with age, with the majority of women diagnosed with breast cancer being postmenopausal. It has been estimated that 25-75% of women with breast cancer experience changes in cognitive function (CF) related to disease and treatment, which compromises psychological well-being, decision making, ability to perform daily activities, and adherence to cancer therapy. Unfortunately, the mechanisms that underlie neurocognitive changes in women with breast cancer remain poorly understood, which in turn limits the development of effective treatments and prevention strategies. Exercise has great potential as a non-pharmaceutical intervention to mitigate the decline in CF in women with breast cancer. Evidence suggests that DNA methylation, an epigenetic mechanism for gene regulation, impacts CF and brain health (BH), that exercise influences DNA methylation, and that exercise impacts CF and BH. Although investigating DNA methylation has the potential to uncover the biologic foundations for understanding neurocognitive changes within the context of breast cancer and its treatment as well as the ability to understand how exercise mitigates these changes, there is a dearth of research on this topic. The purpose of this review article is to compile the research in these areas and to recommend potential areas of opportunity for investigation.
Collapse
Affiliation(s)
- Monica A. Wagner
- School of Nursing, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kirk I. Erickson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
- Discipline of Exercise Science, College of Science, Health, Engineering and Education, Murdoch University, Perth Campus, Murdoch, WA, Australia
| | | | - Yvette P. Conley
- School of Nursing, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|