1
|
Qin Q, Haba D, Takizawa C, Tomida S, Horinouchi A, Katagiri M, Nomura S, Nakagami G. Candidate Biomarkers for Hard-to-Heal Wounds Revealed by Single-Cell RNA Sequencing of Wound Fluid in Murine Wound Models. Wound Repair Regen 2025; 33:e70038. [PMID: 40444294 PMCID: PMC12123480 DOI: 10.1111/wrr.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/30/2025] [Accepted: 04/23/2025] [Indexed: 06/02/2025]
Abstract
Wound healing is often hindered by hyperglycemia, chronic inflammation and ageing. Despite extensive research on the pathophysiology of hard-to-heal wounds, wound healing remains complex and poses challenges in treatment and management. Current wound treatments and care mostly target a single pathology, such as infection, while most hard-to-heal wounds are multifactorial. Therefore, exploring the factors that do not rely on a single pathology is crucial to fill the gap in current wound management. Despite containing more comprehensive information than commonly used wound tissue samples, cells in the wound fluid have not drawn much attention because of collection difficulties. This study aimed to use single-cell RNA sequencing (scRNA-seq) of cells from wound fluid to identify specific biomarkers for hard-to-heal wounds, with the hypothesis that common biomarkers among various wound models can be potentially applied to complex hard-to-heal wounds in clinical settings. Three representative delayed wound models, aged, diabetic and lipopolysaccharide-induced inflammatory wound models, were compared with normal young mice to explore commonly shared genes that exist in different pathological delayed wound healing models. The shared upregulation of cell cycle and cellular senescence-related genes such as Rpl11, Rpl26, Rps3, Rps15, Rps 20, Rps26, Ccl2, Cdk2ap2 and Ccnd3 and the downregulation of immune response regulation genes such as Tnfaip3, Junb, Il1r2, Plaur, Il1rn, Il1a, Cxcl2, Cd14, S100a8 and S100a9 in all delayed healing wound models were found in most immune cell subgroups, especially the macrophage subgroup. The results of this study suggested cellular senescence of cells in wound fluid could be related to hard-to-heal wounds.
Collapse
Affiliation(s)
- Qi Qin
- Department of Gerontological Nursing/Wound Care Management, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Daijiro Haba
- Global Nursing Research Center, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Chihiro Takizawa
- Department of Gerontological Nursing/Wound Care Management, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Sanai Tomida
- Department of Gerontological Nursing/Wound Care Management, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Ai Horinouchi
- Department of Gerontological Nursing/Wound Care Management, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Mikako Katagiri
- Department of Cardiovascular MedicineThe University of Tokyo HospitalTokyoJapan
| | - Seitaro Nomura
- Department of Cardiovascular MedicineThe University of Tokyo HospitalTokyoJapan
- Department of Frontier Cardiovascular Science, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Gojiro Nakagami
- Department of Gerontological Nursing/Wound Care Management, Graduate School of MedicineThe University of TokyoTokyoJapan
- Global Nursing Research Center, Graduate School of MedicineThe University of TokyoTokyoJapan
| |
Collapse
|
2
|
Yang H, Zhang X, Xue B. New insights into the role of cellular senescence and chronic wounds. Front Endocrinol (Lausanne) 2024; 15:1400462. [PMID: 39558972 PMCID: PMC11570929 DOI: 10.3389/fendo.2024.1400462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/16/2024] [Indexed: 11/20/2024] Open
Abstract
Chronic or non-healing wounds, such as diabetic foot ulcers (DFUs), venous leg ulcers (VLUs), pressure ulcers (PUs) and wounds in the elderly etc., impose significant biological, social, and financial burdens on patients and their families. Despite ongoing efforts, effective treatments for these wounds remain elusive, costing the United States over US$25 billion annually. The wound healing process is notably slower in the elderly, partly due to cellular senescence, which plays a complex role in wound repair. High glucose levels, reactive oxygen species, and persistent inflammation are key factors that induce cellular senescence, contributing to chronic wound failure. This suggests that cellular senescence may not only drive age-related phenotypes and pathology but also be a key mediator of the decreased capacity for trauma repair. This review analyzes four aspects: characteristics of cellular senescence; cytotoxic stressors and related signaling pathways; the relationship between cellular senescence and typical chronic non-healing wounds; and current and future treatment strategies. In theory, anti-aging therapy may influence the process of chronic wound healing. However, the underlying molecular mechanism is not well understood. This review summarizes the relationship between cellular senescence and chronic wound healing to contribute to a better understanding of the mechanisms of chronic wound healing.
Collapse
Affiliation(s)
- Huiqing Yang
- Institute of Evolution and Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xin Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Bo Xue
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| |
Collapse
|
3
|
Xi X, Zhang R, Chi Y, Zhu Z, Sun R, Gong W. TXNIP Regulates NLRP3 Inflammasome-Induced Pyroptosis Related to Aging via cAMP/PKA and PI3K/Akt Signaling Pathways. Mol Neurobiol 2024; 61:8051-8068. [PMID: 38460079 DOI: 10.1007/s12035-024-04089-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/02/2024] [Indexed: 03/11/2024]
Abstract
Aging is an inevitable natural process with time-dependent dysfunction and the occurrence of various diseases, which impose heavy burdens on individuals, families, and society. It has been reported that NLRP3 inflammasome-induced pyroptosis contributes significantly to age-related diseases and aging, while TXNIP is suggested to be involved in regulating pyroptosis mediated by NLRP3. However, the mechanism between TXNIP and NLRP3 inflammasome is still unclear. In this study, we used HT-22 cells to explore the effect of TXNIP on pyroptosis and its potential association with the aging. Also, we delved into the underlying mechanisms. Our findings revealed that TXNIP significantly augmented pyroptosis in HT-22 cells, primarily by enhancing the activation of the NLRP3 inflammasome and promoting the release of proinflammatory cytokines. Remarkably, as TXNIP levels increased, we observed a corresponding rise in the number of p16-positive cells, which is indicative of aging. Furthermore, we conducted experiments to modulate the improvement of TXNIP on NLRP3 inflammasome-induced pyroptosis, that is, the PI3K activator 740 Y-P and the PKA activator DC2797 inhibited the effect, while the PI3K inhibitor LY294002 and the PKA inhibitor H89 enhanced the effect. In conclusion, our study demonstrated that TXNIP regulates NLRP3 inflammasome-induced pyroptosis in HT-22 cells related to aging via the PI3K/Akt and cAMP/PKA pathways.
Collapse
Affiliation(s)
- Xiaoshuang Xi
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
- Beijing Rehabilitation Medicine Academy, Capital Medical University, Beijing, China
| | - Rong Zhang
- The Second Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yijia Chi
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
- Beijing Rehabilitation Medicine Academy, Capital Medical University, Beijing, China
| | - Ziman Zhu
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
- Beijing Rehabilitation Medicine Academy, Capital Medical University, Beijing, China
| | - Ruifeng Sun
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
- Beijing Rehabilitation Medicine Academy, Capital Medical University, Beijing, China
| | - Weijun Gong
- Department of Neurological Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Zhang ZY, Pan L, Dang S, Wang N, Zhao SY, Li F, Wu LD, Zhang L, Liu HH, Zhao N, Yang YJ, Qian LL, Liu T, Wang RX. Glucose fluctuations aggravate cardiomyocyte apoptosis by enhancing the interaction between Txnip and Akt. BMC Cardiovasc Disord 2024; 24:470. [PMID: 39223509 PMCID: PMC11370038 DOI: 10.1186/s12872-024-04134-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Glucose fluctuations may be involved in the pathophysiological process of cardiomyocyte apoptosis, but the exact mechanism remains elusive. This study focused on exploring the mechanisms related to glucose fluctuation-induced cardiomyocyte apoptosis. METHODS Diabetic rats established via an injection of streptozotocin were randomized to five groups: the controlled diabetic (CD) group, the uncontrolled diabetic (UD) group, the glucose fluctuated diabetic (GFD) group, the GFD group rats with the injection of 0.9% sodium chloride (NaCl) (GFD + NaCl) and the GFD group rats with the injection of N-acetyl-L-cysteine (NAC) (GFD + NAC). Twelve weeks later, cardiac function and apoptosis related protein expressions were tested. Proteomic analysis was performed to further analyze the differential protein expression pattern of CD and GFD. RESULTS The left ventricular ejection fraction levels and fractional shortening levels were decreased in the GFD group, compared with those in the CD and UD groups. Positive cells tested by DAB-TUNEL were increased in the GFD group, compared with those in the CD group. The expression of Bcl-2 was decreased, but the expressions of Bax, cleaved caspase-3 and cleaved caspase-9 were increased in response to glucose fluctuations. Compared with CD, there were 527 upregulated and 152 downregulated proteins in GFD group. Txnip was one of the differentially expressed proteins related to oxidative stress response. The Txnip expression was increased in the GFD group, while the Akt phosphorylation level was decreased. The interaction between Txnip and Akt was enhanced when blood glucose fluctuated. Moreover, the application of NAC partially reversed glucose fluctuations-induced cardiomyocyte apoptosis. CONCLUSIONS Glucose fluctuations lead to cardiomyocyte apoptosis by up-regulating Txnip expression and enhancing Txnip-Akt interaction.
Collapse
Affiliation(s)
- Zhen-Ye Zhang
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Lu Pan
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Shipeng Dang
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Ning Wang
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Shan-Ying Zhao
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Feng Li
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Li-Da Wu
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Lei Zhang
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Huan-Huan Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214023, China
| | - Ning Zhao
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214023, China
| | - Ya-Juan Yang
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Ling-Ling Qian
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China.
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China.
| | - Ru-Xing Wang
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China.
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214023, China.
| |
Collapse
|
5
|
García-Vega M, Llamas-Covarrubias MA, Loza M, Reséndiz-Sandoval M, Hinojosa-Trujillo D, Melgoza-González E, Valenzuela O, Mata-Haro V, Hernández-Oñate M, Soto-Gaxiola A, Chávez-Rueda K, Nakai K, Hernández J. Single-cell transcriptomic analysis of B cells reveals new insights into atypical memory B cells in COVID-19. J Med Virol 2024; 96:e29851. [PMID: 39132689 DOI: 10.1002/jmv.29851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/10/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024]
Abstract
Here, we performed single-cell RNA sequencing of S1 and receptor binding domain protein-specific B cells from convalescent COVID-19 patients with different clinical manifestations. This study aimed to evaluate the role and developmental pathway of atypical memory B cells (MBCs) in response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The results revealed a proinflammatory signature across B cell subsets associated with disease severity, as evidenced by the upregulation of genes such as GADD45B, MAP3K8, and NFKBIA in critical and severe individuals. Furthermore, the analysis of atypical MBCs suggested a developmental pathway similar to that of conventional MBCs through germinal centers, as indicated by the expression of several genes involved in germinal center processes, including CXCR4, CXCR5, BCL2, and MYC. Additionally, the upregulation of genes characteristic of the immune response in COVID-19, such as ZFP36 and DUSP1, suggested that the differentiation and activation of atypical MBCs may be influenced by exposure to SARS-CoV-2 and that these genes may contribute to the immune response for COVID-19 recovery. Our study contributes to a better understanding of atypical MBCs in COVID-19 and the role of other B cell subsets across different clinical manifestations.
Collapse
Affiliation(s)
- Melissa García-Vega
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, Sonora, Mexico
| | | | - Martin Loza
- The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Mónica Reséndiz-Sandoval
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, Sonora, Mexico
| | - Diana Hinojosa-Trujillo
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, Sonora, Mexico
| | - Edgar Melgoza-González
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, Sonora, Mexico
| | - Olivia Valenzuela
- Departamento de Ciencias Químico Biológicas, División de Ciencias Biológicas y de la Salud, Universidad de Sonora, Hermosillo, Sonora, Mexico
| | - Verónica Mata-Haro
- Laboratorio de Microbiología e Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, Sonora, Mexico
| | - Miguel Hernández-Oñate
- CONAHCYT-Laboratorio de Fisiología y Biología Molecular de Plantas, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, Sonora, Mexico
| | - Alan Soto-Gaxiola
- Hospital General del Estado de Sonora "Dr. Ernesto Ramos Bours", Secretaria de Salud del Estado de Sonora, Hermosillo, Sonora, Mexico
| | - Karina Chávez-Rueda
- Unidad de Investigación Médica en Inmunología, UMAE, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - Kenta Nakai
- The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Jesús Hernández
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, Sonora, Mexico
| |
Collapse
|
6
|
Kawakami S, Johmura Y, Nakanishi M. Intracellular acidification and glycolysis modulate inflammatory pathway in senescent cells. J Biochem 2024; 176:97-108. [PMID: 38564227 PMCID: PMC11289320 DOI: 10.1093/jb/mvae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Senescent cells accumulate in various organs with ageing, and its accumulation induces chronic inflammation and age-related physiological dysfunctions. Several remodelling of intracellular environments have been identified in senescent cells, including enlargement of cell/nuclear size and intracellular acidification. Although these alterations of intracellular environments were reported to be involved in the unique characteristics of senescent cells, the contribution of intracellular acidification to senescence-associated cellular phenotypes is poorly understood. Here, we identified that the upregulation of TXNIP and its paralog ARRDC4 as a hallmark of intracellular acidification in addition to KGA-type GLS1. These genes were also upregulated in response to senescence-associated intracellular acidification. Neutralization of the intracellular acidic environment ameliorated not only senescence-related upregulation of TXNIP, ARRDC4 and KGA but also inflammation-related genes, possibly through suppression of PDK-dependent anaerobic glycolysis. Furthermore, we found that expression of the intracellular acidification-induced genes, TXNIP and ARRDC4, correlated with inflammatory gene expression in heterogeneous senescent cell population in vitro and even in vivo, implying that the contribution of intracellular pH to senescence-associated cellular features, such as SASP.
Collapse
Affiliation(s)
- Satoshi Kawakami
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
- Department of Biological Sciences, School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoshikazu Johmura
- Division of Cancer and Senescence Biology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 Japan
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
7
|
Yang B, Lin Y, Huang Y, Shen YQ, Chen Q. Thioredoxin (Trx): A redox target and modulator of cellular senescence and aging-related diseases. Redox Biol 2024; 70:103032. [PMID: 38232457 PMCID: PMC10827563 DOI: 10.1016/j.redox.2024.103032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/03/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024] Open
Abstract
Thioredoxin (Trx) is a compact redox-regulatory protein that modulates cellular redox state by reducing oxidized proteins. Trx exhibits dual functionality as an antioxidant and a cofactor for diverse enzymes and transcription factors, thereby exerting influence over their activity and function. Trx has emerged as a pivotal biomarker for various diseases, particularly those associated with oxidative stress, inflammation, and aging. Recent clinical investigations have underscored the significance of Trx in disease diagnosis, treatment, and mechanistic elucidation. Despite its paramount importance, the intricate interplay between Trx and cellular senescence-a condition characterized by irreversible growth arrest induced by multiple aging stimuli-remains inadequately understood. In this review, our objective is to present a comprehensive and up-to-date overview of the structure and function of Trx, its involvement in redox signaling pathways and cellular senescence, its association with aging and age-related diseases, as well as its potential as a therapeutic target. Our review aims to elucidate the novel and extensive role of Trx in senescence while highlighting its implications for aging and age-related diseases.
Collapse
Affiliation(s)
- Bowen Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yumeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yibo Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Ying-Qiang Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
8
|
Kwak S, Song CL, Cho YS, Choi I, Byun JE, Jung H, Lee J. Txnip regulates the Oct4-mediated pluripotency circuitry via metabolic changes upon differentiation. Cell Mol Life Sci 2024; 81:142. [PMID: 38485770 PMCID: PMC10940461 DOI: 10.1007/s00018-024-05161-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/16/2024] [Accepted: 02/06/2024] [Indexed: 03/18/2024]
Abstract
Thioredoxin interacting protein (Txnip) is a stress-responsive factor regulating Trx1 for redox balance and involved in diverse cellular processes including proliferation, differentiation, apoptosis, inflammation, and metabolism. However, the biological role of Txnip function in stem cell pluripotency has yet to be investigated. Here, we reveal the novel functions of mouse Txnip in cellular reprogramming and differentiation onset by involving in glucose-mediated histone acetylation and the regulation of Oct4, which is a fundamental component of the molecular circuitry underlying pluripotency. During reprogramming or PSC differentiation process, cellular metabolic and chromatin remodeling occur in order to change its cellular fate. Txnip knockout promotes induced pluripotency but hinders initial differentiation by activating pluripotency factors and promoting glycolysis. This alteration affects the intracellular levels of acetyl-coA, a final product of enhanced glycolysis, resulting in sustained histone acetylation on active PSC gene regions. Moreover, Txnip directly interacts with Oct4, thereby repressing its activity and consequently deregulating Oct4 target gene transcriptions. Our work suggests that control of Txnip expression is crucial for cell fate transitions by modulating the entry and exit of pluripotency.
Collapse
Affiliation(s)
- Sojung Kwak
- Developmental Biology Laboratory, Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Cho Lok Song
- Developmental Biology Laboratory, Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Yee Sook Cho
- Stem Cell Research Laboratory, Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
- Department of Bioscience, KRIBB School, University of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Inpyo Choi
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Jae-Eun Byun
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
- Department of Biochemistry, School of Life Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Haiyoung Jung
- Department of Bioscience, KRIBB School, University of Science and Technology, Daejeon, 34141, Republic of Korea.
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
| | - Jungwoon Lee
- Developmental Biology Laboratory, Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
- Department of Bioscience, KRIBB School, University of Science and Technology, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
9
|
Shin E, Park C, Park T, Chung H, Hwang H, Bak SH, Chung KS, Yoon SR, Kim TD, Choi I, Lee CH, Jung H, Noh JY. Deficiency of thioredoxin-interacting protein results in age-related thrombocytopenia due to megakaryocyte oxidative stress. J Thromb Haemost 2024; 22:834-850. [PMID: 38072375 DOI: 10.1016/j.jtha.2023.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Platelets are generated from megakaryocytes (MKs), mainly located in the bone marrow (BM). Megakaryopoiesis can be affected by genetic disorders, metabolic diseases, and aging. The molecular mechanisms underlying platelet count regulation have not been fully elucidated. OBJECTIVES In the present study, we investigated the role of thioredoxin-interacting protein (TXNIP), a protein that regulates cellular metabolism in megakaryopoiesis, using a Txnip-/- mouse model. METHODS Wild-type (WT) and Txnip-/- mice (2-27-month-old) were studied. BM-derived MKs were analyzed to investigate the role of TXNIP in megakaryopoiesis with age. The global transcriptome of BM-derived CD41+ megakaryocyte precursors (MkPs) of WT and Txnip-/- mice were compared. The CD34+ hematopoietic stem cells isolated from human cord blood were differentiated into MKs. RESULTS Txnip-/- mice developed thrombocytopenia at 4 to 5 months that worsened with age. During ex vivo megakaryopoiesis, Txnip-/- MkPs remained small, with decreased levels of MK-specific markers. Critically, Txnip-/- MkPs exhibited reduced mitochondrial reactive oxygen species, which was related to AKT activity. Txnip-/- MkPs also showed elevated glycolysis alongside increased glucose uptake for ATP production. Total RNA sequencing revealed enrichment for oxidative stress- and apoptosis-related genes in differentially expressed genes between Txnip-/- and WT MkPs. The effects of TXNIP on MKs were recapitulated during the differentiation of human cord blood-derived CD34+ hematopoietic stem cells. CONCLUSION We provide evidence that the megakaryopoiesis pathway becomes exhausted with age in Txnip-/- mice with a decrease in terminal, mature MKs that response to thrombocytopenic challenge. Overall, this study demonstrates the role of TXNIP in megakaryopoiesis, regulating mitochondrial metabolism.
Collapse
Affiliation(s)
- Eunju Shin
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Korea; College of Pharmacy, Chungnam National University, Yuseong-gu, Daejeon, Korea
| | - Charny Park
- Bioinformatics Team, Research Institute, National Cancer Center, Ilsandong-gu, Gyeonggi-do, Korea
| | - Taeho Park
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Korea; Department of Functional Genomics, Korea University of Science and Technology, Yuseong-gu, Daejeon, Korea
| | - Hyunmin Chung
- College of Pharmacy, Chungnam National University, Yuseong-gu, Daejeon, Korea; Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Korea
| | - Hyeyeong Hwang
- Bioinformatics Team, Research Institute, National Cancer Center, Ilsandong-gu, Gyeonggi-do, Korea
| | - Seong Ho Bak
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Korea; Department of Functional Genomics, Korea University of Science and Technology, Yuseong-gu, Daejeon, Korea
| | - Kyung-Sook Chung
- Department of Functional Genomics, Korea University of Science and Technology, Yuseong-gu, Daejeon, Korea; Stem Cell Convergence Research Center and Biomedical Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Korea
| | - Suk Ran Yoon
- Department of Functional Genomics, Korea University of Science and Technology, Yuseong-gu, Daejeon, Korea; Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Korea
| | - Tae-Don Kim
- Department of Functional Genomics, Korea University of Science and Technology, Yuseong-gu, Daejeon, Korea; Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Korea
| | - Inpyo Choi
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Korea
| | - Chang Hoon Lee
- R&D Center, SCBIO Co, Ltd, Munji-ro, Yuseong-gu, Daejeon, Korea; Therapeutics and Biotechnology Division, Drug Discovery Platform Research Center, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, Korea
| | - Haiyoung Jung
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Korea; Department of Functional Genomics, Korea University of Science and Technology, Yuseong-gu, Daejeon, Korea
| | - Ji-Yoon Noh
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Korea; Department of Functional Genomics, Korea University of Science and Technology, Yuseong-gu, Daejeon, Korea.
| |
Collapse
|
10
|
Damba T, Zhang M, Serna Salas SA, Wu Z, van Goor H, Arenas AF, Muñoz-Ortega MH, Ventura-Juárez J, Buist-Homan M, Moshage H. Inhibition of endogenous hydrogen sulfide production reduces activation of hepatic stellate cells via the induction of cellular senescence. Cell Cycle 2024; 23:629-644. [PMID: 38836592 PMCID: PMC11229775 DOI: 10.1080/15384101.2024.2345477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/04/2024] [Indexed: 06/06/2024] Open
Abstract
In chronic liver injury, quiescent hepatic stellate cells (HSCs) transdifferentiate into activated myofibroblast-like cells and produce large amounts of extracellular matrix components, e.g. collagen type 1. Cellular senescence is characterized by irreversible cell-cycle arrest, arrested cell proliferation and the acquisition of the senescence-associated secretory phenotype (SASP) and reversal of HSCs activation. Previous studies reported that H2S prevents induction of senescence via its antioxidant activity. We hypothesized that inhibition of endogenous H2S production induces cellular senescence and reduces activation of HSCs. Rat HSCs were isolated and culture-activated for 7 days. After activation, HSCs treated with H2S slow-releasing donor GYY4137 and/or DL-propargylglycine (DL-PAG), an inhibitor of the H2S-producing enzyme cystathionine γ-lyase (CTH), as well as the PI3K inhibitor LY294002. In our result, CTH expression was significantly increased in fully activated HSCs compared to quiescent HSCs and was also observed in activated stellate cells in a in vivo model of cirrhosis. Inhibition of CTH reduced proliferation and expression of fibrotic markers Col1a1 and Acta2 in HSCs. Concomitantly, DL-PAG increased the cell-cycle arrest markers Cdkn1a (p21), p53 and the SASP marker Il6. Additionally, the number of β-galactosidase positive senescent HSCs was increased. GYY4137 partially restored the proliferation of senescent HSCs and attenuated the DL-PAG-induced senescent phenotype. Inhibition of PI3K partially reversed the senescence phenotype of HSCs induced by DL-PAG. Inhibition of endogenous H2S production reduces HSCs activation via induction of cellular senescence in a PI3K-Akt dependent manner. Our results show that cell-specific inhibition of H2S could be a novel target for anti-fibrotic therapy via induced cell senescence.
Collapse
Affiliation(s)
- Turtushikh Damba
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- School of Pharmacy, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Mengfan Zhang
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Interventional Radiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Sandra A Serna Salas
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Zongmei Wu
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Aaron Fierro Arenas
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Javier Ventura-Juárez
- Chemistry Department, Basic Sciences Center, Autonomous University of Aguascalientes, Aguascalientes, Mexico
| | - Manon Buist-Homan
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Han Moshage
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
11
|
Li X, Hu S, Cai Y, Liu X, Luo J, Wu T. Revving the engine: PKB/AKT as a key regulator of cellular glucose metabolism. Front Physiol 2024; 14:1320964. [PMID: 38264327 PMCID: PMC10804622 DOI: 10.3389/fphys.2023.1320964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024] Open
Abstract
Glucose metabolism is of critical importance for cell growth and proliferation, the disorders of which have been widely implicated in cancer progression. Glucose uptake is achieved differently by normal cells and cancer cells. Even in an aerobic environment, cancer cells tend to undergo metabolism through glycolysis rather than the oxidative phosphorylation pathway. Disordered metabolic syndrome is characterized by elevated levels of metabolites that can cause changes in the tumor microenvironment, thereby promoting tumor recurrence and metastasis. The activation of glycolysis-related proteins and transcription factors is involved in the regulation of cellular glucose metabolism. Changes in glucose metabolism activity are closely related to activation of protein kinase B (PKB/AKT). This review discusses recent findings on the regulation of glucose metabolism by AKT in tumors. Furthermore, the review summarizes the potential importance of AKT in the regulation of each process throughout glucose metabolism to provide a theoretical basis for AKT as a target for cancers.
Collapse
Affiliation(s)
- Xia Li
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Shuying Hu
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yaoting Cai
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelian Liu
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Luo
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Wu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Jin T, You Y, Fan W, Wang J, Chen Y, Li S, Hong S, Wang Y, Cao R, Yodoi J, Tian H. Geranylgeranylacetone Ameliorates Skin Inflammation by Regulating and Inducing Thioredoxin via the Thioredoxin Redox System. Antioxidants (Basel) 2023; 12:1701. [PMID: 37760004 PMCID: PMC10525896 DOI: 10.3390/antiox12091701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Geranylgeranylacetone (GGA) exerts cytoprotective activity against various toxic stressors via the thioredoxin (TRX) redox system; however, its effect on skin inflammation and molecular mechanism on inducing the TRX of GGA is still unknown. We investigated the effects of GGA in a murine irritant contact dermatitis (ICD) model induced by croton oil. Both a topical application and oral administration of GGA induced TRX production and Nrf2 activation. GGA ameliorated ear swelling, neutrophil infiltration, and inhibited the expression of TNF-α, IL-1β, GM-CSF, and 8-OHdG. GGA's cytoprotective effect was stronger orally than topically in mice. In vitro studies also showed that GGA suppressed the expression of NLRP3, TNF-α, IL-1β, and GM-CSF and scavenged ROS in PAM212 cells after phorbol myristate acetate stimulation. Moreover, GGA induced endogenous TRX production and Nrf2 nuclear translocation in PAM212 cells (dependent on the presence of ROS) and activated the PI3K-Akt signaling pathway. GGA significantly downregulated thioredoxin-interacting protein (TXNIP) levels in PAM212 cells treated with or without Nrf2 siRNA. After knocking down Nrf2 in PAM212 cells, the effect of GGA on TRX induction was significantly inhibited. This suggests that GGA suppress ICD by inducing endogenous TRX, which may be regulated by PI3K/Akt/Nrf2 mediation of the TRX redox system.
Collapse
Affiliation(s)
- Tiancheng Jin
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing 312000, China
| | - Yitong You
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing 312000, China
| | - Wenjie Fan
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing 312000, China
| | - Junyang Wang
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing 312000, China
| | - Yuhao Chen
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing 312000, China
| | - Shujing Li
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing 312000, China
| | - Siyuan Hong
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing 312000, China
| | - Yaxuan Wang
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing 312000, China
| | - Ruijie Cao
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing 312000, China
| | - Junji Yodoi
- Laboratory of Infection and Prevention, Department of Biological Response, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Hai Tian
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing 312000, China
- Jiaozhimei Biotechnology (Shaoxing) Co., Ltd., Shaoxing 312000, China
| |
Collapse
|
13
|
Wang B, Yu X, Chen T, Qiu C, Lu W, Zheng X, Wu Z. CircRNA-SCAF8 promotes vascular endothelial cell pyroptosis by regulating the miR-93-5p/TXNIP axis. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:473-484. [PMID: 37643981 PMCID: PMC10495250 DOI: 10.3724/zdxbyxb-2023-0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023]
Abstract
OBJECTIVES To investigate the role and mechanism of circRNA-SR-related CTD associated factor 8 (SCAF8) in regulating endothelial cell pyroptosis in high glucose environment. METHODS Human umbilical vein endothelial cells (HUVECs) were cultured and divided into six groups. The normal control group and high glucose control group were cultured in cell culture medium with 5 and 33 mmol/L glucose, respectively. The RNA control group, circRNA-SCAF8 inhibition group, miR-93-5p overexpression group and miR-93-5p inhibition group were added with non-functional siRNA, circRNA-SCAF8 inhibitor, miR-93-5p overexpression molecule and miR-93-5p inhibitor in high glucose environment, respectively. Cell viability and pyroptosis were detected by cell counting kit-8 (CCK-8) assay, flow cytometry and Hoechst 33342/propidium iodide fluorescence double staining. Western blotting and enzyme-linked immunosorbent assay were used to detect the expression of pyroptosis-related factors including apoptosis-associated speck-like protein containing a CARD (ASC), cysteine aspartic acid specific protease-1 (caspase-1) and Gasdermin D (GSDMD), NOD like receptor protein 3 (NLRP-3), thioredoxin interacting proteins (TXNIP), IL-18 and IL-1β. The expression of circRNA-SCAF8, miR-93-5p and TXNIP was detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Fluorescence in situ hybridization (FISH) was used to locate circRNA-SCAF8 and miR-93-5p. Dual luciferase assay was used to verify the targeted regulatory relationship between miR-93-5p and upstream and downstream molecules. RESULTS Compared with the RNA control group, the cell survival rate of circRNA-SCAF8 inhibition group and miR-93-5p overexpression group increased (both P<0.01), the pyroptosis decreased (both P<0.01), and the expressions of pyroptosis-related factors such as TXNIP, NLRP-3, caspase-1, GSDMD, ASC, IL-18 and IL-1β were significantly decreased (all P<0.05). The expression of miR-93-5p was significantly increased after inhibition of circRNA-SCAF8 (P<0.01), and the expression of circRNA-SCAF8 tended to decrease after overexpression of miR-93-5p, but with no statistical significance (P>0.05). Dual luciferase assay showed that miR-93-5p downre-gulated circRNA-SCAF8 expression by binding to the 3 ´ UTR region of circRNA-SCAF8, and miR-93-5p downregulated TXNIP expression by binding to the 3 ´ UTR region of TXNIP. FISH showed that circRNA-SCAF8 and miR-93-5p were both located in the cytoplasm and were highly associated in the cells. qRT-PCR showed that the relative expression of TXNIP increased or decreased after overexpression or inhibition of miR-93-5p compared with the RNA control group, respectively (both P<0.05), suggesting that miR-93-5p could regulate TXNIP gene expression. CONCLUSIONS CircRNA-SCAF8/miR-93-5p/TXNIP axis is involved in the regulation of pyroptosis in HUVECs under high glucose.
Collapse
Affiliation(s)
- Bing Wang
- Department of Vascular Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Xinyu Yu
- Department of Vascular Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Tianchi Chen
- Department of Vascular Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Chenyang Qiu
- Department of Vascular Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Wei Lu
- Department of Vascular Surgery, Quzhou Hospital Affiliated to Wenzhou Medical University, Quzhou 324000, Zhejiang Province, China
| | - Xiangtao Zheng
- Department of Vascular Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China.
| | - Ziheng Wu
- Department of Vascular Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
14
|
Kuai Z, Hu Y. Integration single-cell and bulk RNA-sequencing data to reveal senescence gene expression profiles in heart failure. Heliyon 2023; 9:e16214. [PMID: 37332931 PMCID: PMC10275773 DOI: 10.1016/j.heliyon.2023.e16214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 06/20/2023] Open
Abstract
Background Heart failure (HF) represents one of healthcare's biggest challenges. Although rarely noticed, aging is a crucial risk factor for cardiovascular disease. Our study aims to reveal aging's role in HF by integrating single-cell RNA-sequencing (scRNA-seq) and bulk RNA-sequencing databases. Methods We collected HF heart sample data from the Gene Expression Omnibus database and senescence gene data from CellAge. The FindCluster () package was used for cell cluster analysis. Differentially expressed genes (DEG) were identified operating the FindMarkers function. Cell activity score calculation was performed using the AUCell package. UpSetR plotted the intersection between DEGs of active cell types, bulk data DEGs, and genes associated with aging. Using the DGIdb database gene-drug interaction data, we search for potential targeted therapeutics based on common senescence genes. Results The scRNA-seq data revealed myocardial heterogeneity in HF tissues. A series of crucial common senescence genes were found. The senescence gene expression profile hints at an intriguing connection between monocytes and HF. After analyzing the DEGs in the bulk dataset, the DEGs in scRNA-seq, the DEGs in each active cell type, and senescence genes, we identified ten genes as common senescence genes present in HF. Correlation analysis of transcriptomics, proteomics, and ceRNA was performed to provide ideas for future studies individually. Moreover, we discovered that common senescence genes and potential therapeutic drugs interact among different cell types. Further research is needed on the expression pattern of senescence genes and molecular regulation in HF. Conclusions In summary, we identified the functional significance of the senescence gene in HF using integrated data. It is possible that this more profound understanding of how senescence contributes to the development of HF will aid in unraveling the mechanisms that promote the disease and provide hints for developing therapeutics.
Collapse
Affiliation(s)
- Zheng Kuai
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of Geriatrics, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
| | - Yu Hu
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of Geriatrics, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
- Center for Evidence Based Medicine and Clinical Epidemiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| |
Collapse
|
15
|
Sa R, Ma J, Yang J, Li DF, Du J, Jia JC, Li ZY, Huang N, A L, Sha R, Nai G, Hexig B, Meng JQ, Yu L. High TXNIP expression accelerates the migration and invasion of the GDM placenta trophoblast. BMC Pregnancy Childbirth 2023; 23:235. [PMID: 37038114 PMCID: PMC10084645 DOI: 10.1186/s12884-023-05524-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 03/15/2023] [Indexed: 04/12/2023] Open
Abstract
INTRODUCTION Our previous study has proofed the glucose sensitive gene-thioredoxin-interacting protein (TXNIP) expression was up in the placenta of the patients with gestational diabetes mellitus (GDM), but the pathological mechanisms underlying abnormal TXNIP expression in the placenta of patients with GDM is completely unclear and additional investigations are required to explain the findings we have observed. In the present study, we simulated the high TXNIP expression via introducing the Tet-On "switch" in vitro, approximate to its expression level in the real world, to explore the following consequence of the abnormal TXNIP. METHODS The expression and localization of TXNIP in the placenta of GDM patients and the health control was investigated via immunofluorescent staining, western blot and RT-qPCR. Overexpression of TXNIP was achieved through transfecting Tet-on system to the human trophoblastic cell line-HTR-8/Svneo cell. TXNIP knockout was obtained via CRISPR-Cas9 method. The cell phenotype was observed via IncuCyte Imaging System and flow cytometry. The mechanism was explored via western blot and RT-qPCR. RESULTS The expression level of TXNIP in the GDM placenta was nearly 2-3 times higher than that in the control. The TXNIP located at trophoblastic cells of the placenta. When the expression of TXNIP was upregulated, the migration and invasion of the cells accelerated, but cell apoptosis and proliferation did not changed compared with the control group. Furthermore, the size of the TetTXNIP cells became larger, and the expression level of Vimentin and p-STAT3 increased in the TetTXNIP cells. All the changes mentioned above were opposite in the TXNIP-KO cells. CONCLUSIONS Abnormal expression of TXNIP might be related to the impairment of the GDM placental function, affecting the migration and invasion of the placental trophoblast cells through STAT3 and Vimentin related pathway; thus, TXNIP might be the potential therapeutic target for repairing the placental dysfunction deficient in GDM patients.
Collapse
Affiliation(s)
- Rina Sa
- Department of Clinical Medical Research Center, Inner Mongolia People's Hospital, Hohhot, 010010, China
| | - Jing Ma
- Department of Clinical Lab, Mongolia Maternity And Child Health Care Hospital, Hohhot, 010000, China
| | - Jie Yang
- Department of Clinical Medical Research Center, Inner Mongolia People's Hospital, Hohhot, 010010, China
| | - Dong Fang Li
- Department of Clinical Medical Research Center, Inner Mongolia People's Hospital, Hohhot, 010010, China
| | - Jie Du
- Department of Gynecology and Obstetrics, Inner Mongolia People's Hospital, Hohhot, 010010, China
| | - Jian Chao Jia
- Department of Clinical Medical Research Center, Inner Mongolia People's Hospital, Hohhot, 010010, China
| | - Zhi Ying Li
- Department of Clinical Medical Research Center, Inner Mongolia People's Hospital, Hohhot, 010010, China
| | - Na Huang
- Department of Clinical Medical Research Center, Inner Mongolia People's Hospital, Hohhot, 010010, China
| | - Lamusi A
- Department of Ophthalmology, Inner Mongolia International Mongolian Hospital, Hohhot, 010000, China
| | - Rula Sha
- Department of Gynecology and Obstetrics, Inner Mongolia People's Hospital, Hohhot, 010010, China
| | - Gal Nai
- Department of Genetics 、 Development and Cell Biology, School of Life Sciences, Inner Mongolia University, Hohhot, 010000, China
| | - Bayar Hexig
- Department of Genetics 、 Development and Cell Biology, School of Life Sciences, Inner Mongolia University, Hohhot, 010000, China
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010000, China
| | - Ji Qing Meng
- Department of Pharmacology, Inner Mongolia People's Hospital, Hohhot, 010000, China
| | - Lan Yu
- Department of Clinical Medical Research Center, Inner Mongolia People's Hospital, Hohhot, 010010, China.
- Department of Endocrine and Metabolic Diseases, Inner Mongolia People's Hospital, Hohhot, 010010, China.
| |
Collapse
|
16
|
Liu Y, Shi H, Hu Y, Yao R, Liu P, Yang Y, Li S. RNA binding motif protein 3 (RBM3) promotes protein kinase B (AKT) activation to enhance glucose metabolism and reduce apoptosis in skeletal muscle of mice under acute cold exposure. Cell Stress Chaperones 2022; 27:603-618. [PMID: 36149580 PMCID: PMC9672220 DOI: 10.1007/s12192-022-01297-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/01/2022] [Accepted: 09/09/2022] [Indexed: 01/25/2023] Open
Abstract
The main danger of cold stress to animals in cold regions is systemic metabolic changes and protein synthesis inhibition. RBM3, an exceptional cold shock protein, is rapidly upregulated in response to hypothermia to resist the adverse effects of cold stress. However, the mechanism of the protective effect and the rapid upregulation of RBM3 remains unclear. O-GlcNAcylation, an atypical O-glycosylation, is precisely regulated only by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) and participates in the signal transduction of multiple cellular stress responses as a "stress and nutrition receptor." Therefore, our study aimed to explore the mechanism of RBM3 regulating glucose metabolism and promoting survival in skeletal muscle under acute cold exposure. Meanwhile, our study verifies whether O-GlcNAcylation mediated by OGT rapidly upregulates RBM3. The blood and skeletal muscle of mice were collected at the end of cold exposure treatment for 0, 2, and 4 h. Changes in levels of RBM3, AKT, glycolysis apoptosis, and OGT were measured. The results show that acute cold exposure upregulated RBM3, OGT, and AKT phosphorylation and increased energy consumption, which enhanced glycolysis and prevent apoptosis. In the 32 °C mild hypothermia model in vitro, overexpression of RBM3 enhanced AKT phosphorylation. Meanwhile, inactivation of AKT by wortmannin resulted in increased apoptosis and decreased glucose metabolism in skeletal muscle under acute cold exposure. In addition, OGT-mediated O-GlcNAcylation of p65 was confirmed in mouse myoblast cell line (C2C12) cells at mild hypothermia. O-GlcNAcylation level affected p65 activity and nuclear translocation. Compared with wild type (WT) mice, RBM3 and p65 phosphorylation were decreased in specific skeletal muscle Ogt (KO) mice, whereas AKT phosphorylation, glycolysis, and apoptosis were increased. Taken together, O-GlcNAcylation of p65 upregulates RBM3 to promote AKT phosphorylation, enhance glucose metabolism, and reduce apoptosis in skeletal muscle of mice under acute cold exposure.
Collapse
Affiliation(s)
- Yang Liu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Hongzhao Shi
- Department of Animal Engineering, Yangling Vocational & Technical College, Xianyang, 712199, People's Republic of China
| | - Yajie Hu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Ruizhi Yao
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, 028000, People's Republic of China
| | - Peng Liu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Yuying Yang
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Shize Li
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China.
| |
Collapse
|
17
|
Ren H, Guo Z, Liu Y, Song C. Stem Cell-derived Exosomal MicroRNA as Therapy for Vascular Age-related Diseases. Aging Dis 2022; 13:852-867. [PMID: 35656114 PMCID: PMC9116915 DOI: 10.14336/ad.2021.1110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/10/2021] [Indexed: 12/20/2022] Open
Abstract
Vascular age-related diseases describe a group of age-related chronic diseases that result in a considerable healthcare burden to society. Vascular aging includes structural changes and dysfunctions of endothelial cells (ECs) and smooth muscle cells (SMCs) in blood vessels. Compared with conventional treatment for vascular age-related diseases, stem cell (SC) therapy elicits better anti-aging effects viathe inhibition/delay ECs and SMCs from entering senescence. Exosomal noncoding RNA (ncRNAs) in vascular aging and stem cell-derived exosomal microRNAs (SCEV-miRNAs), especially in mesenchymal stem cells, have an important role in the development of age-related diseases. This review summarizes SCEV-miRNAs of diverse origins that may play a vital role in treating subclinical and clinical stages of vascular age-related disorders. We further explored possible age-related pathways and molecular targets of SCEV-miRNA, which are associated with dysfunctions of ECs and SMCs in the senescent stage. Moreover, the perspectives and difficulties of SCEV-miRNA clinical translation are discussed. This review aims to provide greater understanding of the biology of vascular aging and to identify critical therapeutic targets for SCEV-miRNAs. Though still in its infancy, the potential value of SCEV-miRNAs for vascular age-related diseases is clear.
Collapse
Affiliation(s)
- Hang Ren
- Department of Cardiovascular Internal Medicine, the Second Hospital of Jilin University, Changchun, China
| | - Ziyuan Guo
- Department of Cardiovascular Internal Medicine, the Second Hospital of Jilin University, Changchun, China
| | - Yang Liu
- Department of Cardiovascular Internal Medicine, the Second Hospital of Jilin University, Changchun, China
| | - Chunli Song
- Department of Cardiovascular Internal Medicine, the Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
18
|
Endothelial thioredoxin interacting protein (TXNIP) modulates endothelium-dependent vasorelaxation in hyperglycemia. Microvasc Res 2022; 143:104396. [PMID: 35644243 DOI: 10.1016/j.mvr.2022.104396] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/24/2022]
Abstract
Endothelial dysfunction, hallmarked by an imbalance between vasoconstriction and vasorelaxation, is associated with diabetes. Thioredoxin Interacting protein (TXNIP), controlled by an exquisitely glucose sensitive gene, is increasingly recognized for its role in diabetes. However, the role of TXNIP in modulating diabetes-related endothelial dysfunction remains unclear. To elucidate the role of TXNIP, we generated two novel mouse strains; endothelial-specific TXNIP knockout (EKO) and a Tet-O inducible, endothelial-specific TXNIP overexpression (EKI). Hyperglycemia was induced by streptozotocin (STZ) treatment in floxed control (fl/fl) and EKO mice. Doxycycline (DOX) was given to EKI mice to induce endothelial TXNIP overexpression. The ablation of endothelial TXNIP improved glucose tolerance in EKO mice. Acetylcholine-induced, endothelium-dependent vasorelaxation was impaired in STZ-treated fl/fl mice while this STZ impaired vasorelaxation was attenuated in EKO mice. Hyperglycemia induction of NLRP3 and reductions in Akt and eNOS phosphorylation were also mitigated in EKO mice. Overexpression of endothelial TXNIP did not impair glucose tolerance in DOX-treated EKI mice, however induction of endothelial TXNIP led to impaired vasorelaxation in EKI mice. This was associated with increased NLRP3 and reduced Akt and eNOS activation. In conclusion, deletion of endothelial TXNIP is protective against and overexpression of endothelial TXNIP induces endothelial dysfunction; thus, endothelial TXNIP plays a critical role in modulating endothelial dysfunction.
Collapse
|
19
|
Xiao Q. Cinnamaldehyde attenuates kidney senescence and injury through PI3K/Akt pathway-mediated autophagy via downregulating miR-155. Ren Fail 2022; 44:601-614. [PMID: 35361048 PMCID: PMC8979530 DOI: 10.1080/0886022x.2022.2056485] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background To prove the internal connection, we deciphered the effect of cinnamaldehyde on kidney senescence through establishing animal and cell models. Methods In vivo, a rat senescence model was constructed using D-galactose (D-gal), and the modeled rats were further treated with cinnamaldehyde. In vitro, rat renal tubular epithelial cells (NRK-52E) were transfected with miR-155 mimic or inhibitor and then treated with cinnamaldehyde, D-gal or PI3K inhibitor (LY294002). The serum levels of blood urea nitrogen (BUN) and serum creatinine (Scr) of the rats were measured by an automatic biochemical analyzer. Pathological changes of kidney were determined by hematoxylin-eosin staining. The senescence and viability of NRK-52E cells were assessed by SA-β-gal staining and CCK-8 assay, respectively. The levels of miR-155, p-PI3K/PI3K, p-Akt/Akt, LC3B (LC3-II and LC3-I) and Beclin1 were detected by qRT-PCR, immunohistochemistry, or western blot. Results D-gal elevated the levels of BUN, Scr and miR-155 in the kidney, induced the renal pathological damage, inhibited the cell viability, increased the numbers of SA-β-gal-, LC3B- and Beclin1-positive cells and upregulated the levels of LC3-II/LC3-I and Beclin1 both in the kidney and cells. Cinnamaldehyde reversed D-gal-induced effects on the kidney and cells, and moreover, the cinnamaldehyde-induced anti-D-gal effects on cells could be suppressed by miR-155 mimic but promoted by miR-155 inhibitor. LY294002 potentiated D-gal-induced effects, and reversed cinnamaldehyde- and miR-155 inhibitor-caused impacts on the PI3K/Akt pathway and LC3-II/LC3-I level in D-gal-induced cells. Conclusion Cinnamaldehyde attenuates kidney senescence and injury through PI3K/Akt pathway-mediated autophagy via downregulating miR-155.
Collapse
Affiliation(s)
- Qi Xiao
- Department of Pediatrics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, People's Republic of China
| |
Collapse
|
20
|
Abstract
Obesity is a major risk factor for the development of comorbidities such as type 2 diabetes, neurodegenerative disorders, osteoarthritis, cancer, cardiovascular and renal diseases. The onset of obesity is linked to an increase of senescent cells within adipose tissue and other organs. Cellular senescence is a stress response that has been shown to be causally linked to aging and development of various age-related diseases such as obesity. The senescence-associated-secretory phenotype of senescent cells creates a chronic inflammatory milieu that leads to local and systemic dysfunction. The elimination of senescent cells using pharmacological approaches (i.e., senolytics) has been shown to delay, prevent, or alleviate obesity-related organ dysfunction.
Collapse
Affiliation(s)
- Selim Chaib
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
21
|
Zhu QQ, Lai MC, Chen TC, Wang X, Tian L, Li DL, Wu ZH, Wang XH, He YY, He YY, Shang T, Xiang YL, Zhang HK. LncRNA SNHG15 relieves hyperglycemia-induced endothelial dysfunction via increased ubiquitination of thioredoxin-interacting protein. J Transl Med 2021; 101:1142-1152. [PMID: 34103662 DOI: 10.1038/s41374-021-00614-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/06/2021] [Accepted: 04/26/2021] [Indexed: 11/09/2022] Open
Abstract
Numerous studies have revealed that hyperglycemia is a pivotal driver of diabetic vascular complications. However, the mechanisms of hyperglycemia-induced endothelial dysfunction in diabetes remain incompletely understood. This study aims to expound on the underlying mechanism of the endothelial dysfunction induced by hyperglycemia from the perspective of long non-coding RNAs (lncRNA). In this study, a downregulation of SNHG15 was observed in the ischemic hind limb of diabetic mice and high glucose (HG)-treated HUVECs. Functionally, the overexpression of SNHG15 promoted cell proliferation, migration, and tube formation, and suppressed cell apoptosis in HG-treated HUVECs. Mechanistically, SNHG15 reduced thioredoxin-interacting protein (TXNIP) expression by enhancing ITCH-mediated ubiquitination of TXNIP. TXNIP overexpression abrogated the protective effect of lncRNA SNHG15 overexpression on HG-induced endothelial dysfunction. The following experiment further confirmed that SNHG15 overexpression promoted angiogenesis of the ischemic hind limb in diabetic mice. In conclusion, SNHG15 is a novel protector for hyperglycemia-induced endothelial dysfunction via decreasing TXNIP expression.
Collapse
Affiliation(s)
- Qian-Qian Zhu
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ming-Chun Lai
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tian-Chi Chen
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xun Wang
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lu Tian
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Dong-Lin Li
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Zi-Heng Wu
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiao-Hui Wang
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yun-Yun He
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yang-Yan He
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tao Shang
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yi-Lang Xiang
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hong-Kun Zhang
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
22
|
Ismael S, Nasoohi S, Li L, Aslam KS, Khan MM, El-Remessy AB, McDonald MP, Liao FF, Ishrat T. Thioredoxin interacting protein regulates age-associated neuroinflammation. Neurobiol Dis 2021; 156:105399. [PMID: 34029695 PMCID: PMC8277763 DOI: 10.1016/j.nbd.2021.105399] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/07/2021] [Accepted: 05/16/2021] [Indexed: 12/15/2022] Open
Abstract
Immune system hypersensitivity is believed to contribute to mental frailty in the elderly. Solid evidence indicates NOD-like receptor pyrin domain containing-3 (NLRP3)-inflammasome activation intimately connects aging-associated chronic inflammation (inflammaging) to senile cognitive decline. Thioredoxin interacting protein (TXNIP), an inducible protein involved in oxidative stress, is essential for NLRP3 inflammasome activity. This study aims to find whether TXNIP/NLRP3 inflammasome pathway is involved in senile dementia. According to our studies on sex-matched mice, TXNIP was significantly upregulated in aged animals, paralleled by the NLRP3-inflammasome over-activity leading to enhanced caspase-1 cleavage and IL-1β maturation, in both sexes. This was closely associated with depletion of the anti-aging and cognition enhancing protein klotho, in aged males. Txnip knockout reversed age-related NLRP3-hyperactivity and enhanced thioredoxin (TRX) levels. Further, TXNIP inhibition along with verapamil replicated TXNIP/NLRP3-inflammasome downregulation in aged animals, with FOXO-1 and mTOR upregulation. These alterations concurred with substantial improvements in both cognitive and sensorimotor abilities. Together, these findings substantiate the pivotal role of TXNIP to drive inflammaging in parallel with klotho depletion and functional decline, and delineate thioredoxin system as a potential target to decelerate senile dementia.
Collapse
Affiliation(s)
- Saifudeen Ismael
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA.
| | - Sanaz Nasoohi
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA; Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Lexiao Li
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA; Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States of America.
| | - Khurram S Aslam
- Center for Earthquake Research and Information, University of Memphis, Memphis, TN, United States of America
| | - Mohammad Moshahid Khan
- Department of Neurology, The University of Tennessee Health Science Center, Memphis, TN, United States of America; Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Azza B El-Remessy
- Department of Pharmacy, Doctors Hospital of Augusta, GA, United States of America.
| | - Michael P McDonald
- Department of Neurology, The University of Tennessee Health Science Center, Memphis, TN, United States of America; Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Francesca-Fang Liao
- Department of Pharmacology, The University of Tennessee Health Science Center, Memphis, TN, United States of America; Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Tauheed Ishrat
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA; Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States of America; Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
23
|
Uribe ML, Dahlhoff M, Batra RN, Nataraj NB, Haga Y, Drago-Garcia D, Marrocco I, Sekar A, Ghosh S, Vaknin I, Lebon S, Kramarski L, Tsutsumi Y, Choi I, Rueda OM, Caldas C, Yarden Y. TSHZ2 is an EGF-regulated tumor suppressor that binds to the cytokinesis regulator PRC1 and inhibits metastasis. Sci Signal 2021; 14:eabe6156. [PMID: 34158398 PMCID: PMC7614343 DOI: 10.1126/scisignal.abe6156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Unlike early transcriptional responses to mitogens, later events are less well-characterized. Here, we identified delayed down-regulated genes (DDGs) in mammary cells after prolonged treatment with epidermal growth factor (EGF). The expression of these DDGs was low in mammary tumors and correlated with prognosis. The proteins encoded by several DDGs directly bind to and inactivate oncoproteins and might therefore act as tumor suppressors. The transcription factor teashirt zinc finger homeobox 2 (TSHZ2) is encoded by a DDG, and we found that overexpression of TSHZ2 inhibited tumor growth and metastasis and accelerated mammary gland development in mice. Although the gene TSHZ2 localizes to a locus (20q13.2) that is frequently amplified in breast cancer, we found that hypermethylation of its promoter correlated with down-regulation of TSHZ2 expression in patients. Yeast two-hybrid screens and protein-fragment complementation assays in mammalian cells indicated that TSHZ2 nucleated a multiprotein complex containing PRC1/Ase1, cyclin B1, and additional proteins that regulate cytokinesis. TSHZ2 increased the inhibitory phosphorylation of PRC1, a key driver of mitosis, mediated by cyclin-dependent kinases. Furthermore, similar to the tumor suppressive transcription factor p53, TSHZ2 inhibited transcription from the PRC1 promoter. By recognizing DDGs as a distinct group in the transcriptional response to EGF, our findings uncover a group of tumor suppressors and reveal a role for TSHZ2 in cell cycle regulation.
Collapse
Affiliation(s)
- Mary L Uribe
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Maik Dahlhoff
- Institute of in vivo and in vitro Models, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Rajbir N Batra
- Department of Oncology and Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, UK
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Nishanth B Nataraj
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yuya Haga
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Diana Drago-Garcia
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ilaria Marrocco
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Arunachalam Sekar
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Soma Ghosh
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Itay Vaknin
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sacha Lebon
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Lior Kramarski
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yasuo Tsutsumi
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka 565-0871, Japan
| | - Inpyo Choi
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 306-809, South Korea
| | - Oscar M Rueda
- Department of Oncology and Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, UK
- MRC Biostatistics Unit, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0RE, UK
| | - Carlos Caldas
- Department of Oncology and Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, UK
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
24
|
Holzscheck N, Falckenhayn C, Söhle J, Kristof B, Siegner R, Werner A, Schössow J, Jürgens C, Völzke H, Wenck H, Winnefeld M, Grönniger E, Kaderali L. Modeling transcriptomic age using knowledge-primed artificial neural networks. NPJ Aging Mech Dis 2021; 7:15. [PMID: 34075044 PMCID: PMC8169742 DOI: 10.1038/s41514-021-00068-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 04/26/2021] [Indexed: 02/04/2023] Open
Abstract
The development of 'age clocks', machine learning models predicting age from biological data, has been a major milestone in the search for reliable markers of biological age and has since become an invaluable tool in aging research. However, beyond their unquestionable utility, current clocks offer little insight into the molecular biological processes driving aging, and their inner workings often remain non-transparent. Here we propose a new type of age clock, one that couples predictivity with interpretability of the underlying biology, achieved through the incorporation of prior knowledge into the model design. The clock, an artificial neural network constructed according to well-described biological pathways, allows the prediction of age from gene expression data of skin tissue with high accuracy, while at the same time capturing and revealing aging states of the pathways driving the prediction. The model recapitulates known associations of aging gene knockdowns in simulation experiments and demonstrates its utility in deciphering the main pathways by which accelerated aging conditions such as Hutchinson-Gilford progeria syndrome, as well as pro-longevity interventions like caloric restriction, exert their effects.
Collapse
Affiliation(s)
- Nicholas Holzscheck
- Front End Innovation, Beiersdorf AG, Hamburg, Germany.
- Institute for Bioinformatics, University Medicine Greifswald, Greifswald, Germany.
| | | | - Jörn Söhle
- Front End Innovation, Beiersdorf AG, Hamburg, Germany
| | - Boris Kristof
- Front End Innovation, Beiersdorf AG, Hamburg, Germany
| | - Ralf Siegner
- Front End Innovation, Beiersdorf AG, Hamburg, Germany
| | - André Werner
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Janka Schössow
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Clemens Jürgens
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Horst Wenck
- Front End Innovation, Beiersdorf AG, Hamburg, Germany
| | | | | | - Lars Kaderali
- Institute for Bioinformatics, University Medicine Greifswald, Greifswald, Germany.
| |
Collapse
|
25
|
Pi C, Ma C, Wang H, Sun H, Yu X, Gao X, Yang Y, Sun Y, Zhang H, Shi Y, Li Y, Li Y, He X. MiR-34a suppression targets Nampt to ameliorate bone marrow mesenchymal stem cell senescence by regulating NAD +-Sirt1 pathway. Stem Cell Res Ther 2021; 12:271. [PMID: 33957971 PMCID: PMC8101138 DOI: 10.1186/s13287-021-02339-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Expansion-mediated replicative senescence and age-related natural senescence have adverse effects on mesenchymal stem cell (MSC) regenerative capability and functionality, thus severely impairing the extensive applications of MSC-based therapies. Emerging evidences suggest that microRNA-34a (miR-34a) has been implicated in the process of MSC senescence; however, the molecular mechanisms with regard to how miR-34a influencing MSC senescence remain largely undetermined. METHODS MiR-34a expression in MSCs was evaluated utilizing RT-qPCR. The functional effects of miR-34a exerting on MSC senescence were investigated via gene manipulation. Relevant gene and protein expression levels were analyzed by RT-qPCR and western blot. Luciferase reporter assays were applied to confirm that Nampt is a direct target of miR-34a. The underlying regulatory mechanism of miR-34a targeting Nampt in MSC senescence was further explored by measuring intracellular NAD+ content, NAD+/NADH ratio and Sirt1 activity. RESULTS In contrast to Nampt expression, miR-34a expression incremented in senescent MSCs. MiR-34a overexpression in young MSCs resulted in senescence-associated characteristics as displayed by senescence-like morphology, prolonged cell proliferation, declined osteogenic differentiation potency, heightened senescence-associated-β-galactosidase activity, and upregulated expression levels of the senescence-associated factors. Conversely, miR-34a suppression in replicative senescent and natural senescent MSCs contributed to diminished senescence-related phenotypic features. We identified Nampt as a direct target gene of miR-34a. In addition, miR-34a repletion resulted in prominent reductions in Nampt expression levels, NAD+ content, NAD+/NADH ratio, and Sirt1 activity, whereas anti-miR-34a treatment exerted the opposite effects. Furthermore, miR-34a-mediated MSC senescence was evidently rescued following the co-treatment with Nampt overexpression. CONCLUSION This study identifies a significant role of miR-34a playing in MSC replicative senescence and natural senescence via targeting Nampt and further mediating by NAD+-Sirt1 pathway, carrying great implications for optimal strategies for MSC therapeutic applications.
Collapse
Affiliation(s)
- Chenchen Pi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xin Min Street, Changchun, Jilin Province, People's Republic of China.,The First Hospital, and Institute of Immunology, Jilin University, Changchun, 130021, China
| | - Cao Ma
- Department of Pathology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Huan Wang
- Department of Pathology, The First Affiliated Hospital, Henan University of Chinese Medicine, Henan, 450000, China
| | - Hui Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xin Min Street, Changchun, Jilin Province, People's Republic of China
| | - Xiao Yu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xin Min Street, Changchun, Jilin Province, People's Republic of China
| | - Xingyu Gao
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xin Min Street, Changchun, Jilin Province, People's Republic of China
| | - Yue Yang
- Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, 610072, China
| | - Yanan Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xin Min Street, Changchun, Jilin Province, People's Republic of China
| | - Haiying Zhang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xin Min Street, Changchun, Jilin Province, People's Republic of China
| | - Yingai Shi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xin Min Street, Changchun, Jilin Province, People's Republic of China
| | - Yan Li
- Division of Orthopedics and Biotechnology, Department for Clinical Intervention and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden
| | - Yulin Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xin Min Street, Changchun, Jilin Province, People's Republic of China
| | - Xu He
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xin Min Street, Changchun, Jilin Province, People's Republic of China.
| |
Collapse
|
26
|
Zhu QQ, Lai MC, Chen TC, Wang X, Tian L, Li DL, Wu ZH, Wang XH, He YY, He YY, Shang T, Xiang YL, Zhang HK. LncRNA SNHG15 relieves hyperglycemia-induced endothelial dysfunction via increasing ubiquitination of thioredoxin-interacting protein. Life Sci 2021:119255. [PMID: 33636173 DOI: 10.1016/j.lfs.2021.119255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/11/2021] [Accepted: 01/27/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Numerous evidence indicates that hyperglycemia is a pivotal driver of the vascular complications of diabetes. However, the mechanisms of hyperglycemia-induced endothelial dysfunction in diabetes remain incompletely understood. This study aims to expound on the underlying mechanism of the endothelial dysfunction induced by hyperglycemia from the perspective of long non-coding RNAs (lncRNA). MATERIALS AND METHODS Cell proliferation, migration, apoptosis, and tube formation were measured by cell counting kit-8 assay, transwell assay, flow cytometry, and tube formation assay, respectively. RNA pull-down and RNA-binding protein immunoprecipitation were used to detect the interaction between lncRNA SNHG15 and thioredoxin-interacting protein (TXNIP). Co-immunoprecipitation was used to detect the ubiquitination level of TXNIP and the interaction between TXNIP and E3 ubiquitin ligase ITCH. RESULTS A downregulation of SNHG15 was observed in the ischemic hind limb of diabetic mice and high glucose (HG)-treated HUVECs. Functionally, the overexpression of SNHG15 promoted cell proliferation, migration, and tube formation, and suppressed cell apoptosis in HG-treated HUVECs. Mechanically, SNHG15 reduced TXNIP expression by enhancing ITCH-mediated ubiquitination of TXNIP. TXNIP overexpression abrogated the protective effect of LncRNA SNHG15 overexpression on HG-induced endothelial dysfunction. The following experiment further confirmed that SNHG15 overexpression promoted angiogenesis of the ischemic hind limb in diabetic mice. CONCLUSION SNHG15 is a novel protector for hyperglycemia-induced endothelial dysfunction via decreasing TXNIP expression.
Collapse
Affiliation(s)
- Qian-Qian Zhu
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Ming-Chun Lai
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Tian-Chi Chen
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xun Wang
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Lu Tian
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Dong-Lin Li
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.
| | - Zi-Heng Wu
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xiao-Hui Wang
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yun-Yun He
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yang-Yan He
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Tao Shang
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yi-Lang Xiang
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Hong-Kun Zhang
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
27
|
Zhong L, Liu Q, Liu Q, Zhang S, Cao Y, Yang D, Wang MW. W2476 represses TXNIP transcription via dephosphorylation of FOXO1 at Ser319. Chem Biol Drug Des 2021; 97:1089-1099. [PMID: 33560565 DOI: 10.1111/cbdd.13828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/27/2021] [Accepted: 01/31/2021] [Indexed: 12/20/2022]
Abstract
Thioredoxin-interacting protein (TXNIP) overexpression is implicated in the pathogenesis of type 2 diabetes. Previous studies have shown that a small molecule compound (W2476) was able to improve β-cell dysfunction and exert therapeutic effects in diabetic mice via repression of TXNIP signaling pathway. The impact of W2476 on TXNIP transcription was thus investigated using the chromatin immunoprecipitation method. It was found that W2476 promotes competitive binding of forkhead box O1 transcription factor (FOXO1) to the carbohydrate response element (ChoRE) sequence associated with ChoRE-binding protein (ChREBP)/Mlx interacting protein-like(Mlx) complexes. This interaction hinders the attachment of histone acetyltransferase p300 and reduces histone H4 acetylation on the TXNIP promoter, leading to decreasing TXNIP transcription.
Collapse
Affiliation(s)
- Li Zhong
- The National Center for Drug Screening, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qing Liu
- The National Center for Drug Screening, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Qiaofeng Liu
- School of Pharmacy, Fudan University, Shanghai, China
| | - Shikai Zhang
- Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongbing Cao
- Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dehua Yang
- The National Center for Drug Screening, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Ming-Wei Wang
- The National Center for Drug Screening, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
28
|
Kim DO, Byun JE, Kim WS, Kim MJ, Choi JH, Kim H, Choi E, Kim TD, Yoon SR, Noh JY, Park YJ, Lee J, Cho HJ, Lee HG, Min SH, Choi I, Jung H. TXNIP Regulates Natural Killer Cell-Mediated Innate Immunity by Inhibiting IFN-γ Production during Bacterial Infection. Int J Mol Sci 2020; 21:ijms21249499. [PMID: 33327533 PMCID: PMC7765025 DOI: 10.3390/ijms21249499] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
The function of natural killer (NK) cell-derived interferon-γ (IFN-γ) expands to remove pathogens by increasing the ability of innate immune cells. Here, we identified the critical role of thioredoxin-interacting protein (TXNIP) in the production of IFN-γ in NK cells during bacterial infection. TXNIP inhibited the production of IFN-γ and the activation of transforming growth factor β-activated kinase 1 (TAK1) activity in primary mouse and human NK cells. TXNIP directly interacted with TAK1 and inhibited TAK1 activity by interfering with the complex formation between TAK1 and TAK1 binding protein 1 (TAB1). Txnip−/− (KO) NK cells enhanced the activation of macrophages by inducing IFN-γ production during Pam3CSK4 stimulation or Staphylococcus aureus (S. aureus) infection and contributed to expedite the bacterial clearance. Our findings suggest that NK cell-derived IFN-γ is critical for host defense and that TXNIP plays an important role as an inhibitor of NK cell-mediated macrophage activation by inhibiting the production of IFN-γ during bacterial infection.
Collapse
Affiliation(s)
- Dong Oh Kim
- Department of Innovative Toxicology Research, Korea Institute of Toxicology, Yuseong-gu, Daejeon 34114, Korea;
| | - Jae-Eun Byun
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Korea; (J.-E.B.); (W.S.K.); (J.H.C.); (H.K.); (E.C.); (T.-D.K.); (S.R.Y.); (J.-Y.N.); (H.J.C.); (H.G.L.)
- Department of Biochemistry, School of Life Sciences, Chungbuk National University, Cheongju 28644, Korea
| | - Won Sam Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Korea; (J.-E.B.); (W.S.K.); (J.H.C.); (H.K.); (E.C.); (T.-D.K.); (S.R.Y.); (J.-Y.N.); (H.J.C.); (H.G.L.)
| | - Mi Jeong Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Korea;
| | - Jung Ha Choi
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Korea; (J.-E.B.); (W.S.K.); (J.H.C.); (H.K.); (E.C.); (T.-D.K.); (S.R.Y.); (J.-Y.N.); (H.J.C.); (H.G.L.)
| | - Hanna Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Korea; (J.-E.B.); (W.S.K.); (J.H.C.); (H.K.); (E.C.); (T.-D.K.); (S.R.Y.); (J.-Y.N.); (H.J.C.); (H.G.L.)
| | - Eunji Choi
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Korea; (J.-E.B.); (W.S.K.); (J.H.C.); (H.K.); (E.C.); (T.-D.K.); (S.R.Y.); (J.-Y.N.); (H.J.C.); (H.G.L.)
| | - Tae-Don Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Korea; (J.-E.B.); (W.S.K.); (J.H.C.); (H.K.); (E.C.); (T.-D.K.); (S.R.Y.); (J.-Y.N.); (H.J.C.); (H.G.L.)
- Department of Functional Genomics, Korea University of Science and Technology (UST), Yuseong-gu, Daejeon 34113, Korea
| | - Suk Ran Yoon
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Korea; (J.-E.B.); (W.S.K.); (J.H.C.); (H.K.); (E.C.); (T.-D.K.); (S.R.Y.); (J.-Y.N.); (H.J.C.); (H.G.L.)
- Department of Functional Genomics, Korea University of Science and Technology (UST), Yuseong-gu, Daejeon 34113, Korea
| | - Ji-Yoon Noh
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Korea; (J.-E.B.); (W.S.K.); (J.H.C.); (H.K.); (E.C.); (T.-D.K.); (S.R.Y.); (J.-Y.N.); (H.J.C.); (H.G.L.)
| | - Young-Jun Park
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Korea; (Y.-J.P.); (J.L.)
| | - Jungwoon Lee
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Korea; (Y.-J.P.); (J.L.)
| | - Hee Jun Cho
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Korea; (J.-E.B.); (W.S.K.); (J.H.C.); (H.K.); (E.C.); (T.-D.K.); (S.R.Y.); (J.-Y.N.); (H.J.C.); (H.G.L.)
| | - Hee Gu Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Korea; (J.-E.B.); (W.S.K.); (J.H.C.); (H.K.); (E.C.); (T.-D.K.); (S.R.Y.); (J.-Y.N.); (H.J.C.); (H.G.L.)
- Department of Biomolecular Science, Korea University of Science and Technology (UST), Yuseong-gu, Daejeon 34113, Korea
| | - Sang-Hyun Min
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), 80 Chumbokro Dong-gu, Daegu 41061, Korea;
| | - Inpyo Choi
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Korea; (J.-E.B.); (W.S.K.); (J.H.C.); (H.K.); (E.C.); (T.-D.K.); (S.R.Y.); (J.-Y.N.); (H.J.C.); (H.G.L.)
- Department of Functional Genomics, Korea University of Science and Technology (UST), Yuseong-gu, Daejeon 34113, Korea
- Correspondence: (I.C.); (H.J.)
| | - Haiyoung Jung
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Korea; (J.-E.B.); (W.S.K.); (J.H.C.); (H.K.); (E.C.); (T.-D.K.); (S.R.Y.); (J.-Y.N.); (H.J.C.); (H.G.L.)
- Department of Functional Genomics, Korea University of Science and Technology (UST), Yuseong-gu, Daejeon 34113, Korea
- Correspondence: (I.C.); (H.J.)
| |
Collapse
|
29
|
Metabolic Deregulation of the Blood-Outer Retinal Barrier in Retinitis Pigmentosa. Cell Rep 2020; 28:1323-1334.e4. [PMID: 31365873 PMCID: PMC6693665 DOI: 10.1016/j.celrep.2019.06.093] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/31/2019] [Accepted: 06/26/2019] [Indexed: 02/07/2023] Open
Abstract
Retinitis pigmentosa (RP) initiates with diminished rod photoreceptor function, causing peripheral and nighttime vision loss. However, subsequent loss of cone function and high-resolution daylight and color vision is most debilitating. Visual pigment-rich photoreceptor outer segments (OS) undergo phagocytosis by the retinal pigment epithelium (RPE), and the RPE also acts as a blood-outer retinal barrier transporting nutrients, including glucose, to photoreceptors. We provide evidence that contact between externalized phosphatidylserine (PS) on OS tips and apical RPE receptors activates Akt, linking phagocytosis with glucose transport to photoreceptors for new OS synthesis. As abundant mutant rod OS tips shorten in RP, Akt activation is lost, and onset of glucose metabolism in the RPE and diminished glucose transport combine to cause photoreceptor starvation and accompanying retinal metabolome changes. Subretinal injection of OS tip mimetics displaying PS restores Akt activation, glucose transport, and cone function in end-stage RP after rods are lost. Wang et al. show that onset of glucose metabolism in the retinal pigment epithelium (RPE), which acts as the blood-outer retinal barrier, and inhibition of RPE glucose transport to photoreceptors combine to cause photoreceptor starvation and vision loss in retinitis pigmentosa.
Collapse
|
30
|
Yoshihara E. TXNIP/TBP-2: A Master Regulator for Glucose Homeostasis. Antioxidants (Basel) 2020; 9:E765. [PMID: 32824669 PMCID: PMC7464905 DOI: 10.3390/antiox9080765] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023] Open
Abstract
Identification of thioredoxin binding protein-2 (TBP-2), which is currently known as thioredoxin interacting protein (TXNIP), as an important binding partner for thioredoxin (TRX) revealed that an evolutionarily conserved reduction-oxidation (redox) signal complex plays an important role for pathophysiology. Due to the reducing activity of TRX, the TRX/TXNIP signal complex has been shown to be an important regulator for redox-related signal transduction in many types of cells in various species. In addition to its role in redox-dependent regulation, TXNIP has cellular functions that are performed in a redox-independent manner, which largely rely on their scaffolding function as an ancestral α-Arrestin family. Both the redox-dependent and -independent TXNIP functions serve as regulatory pathways in glucose metabolism. This review highlights the key advances in understanding TXNIP function as a master regulator for whole-body glucose homeostasis. The potential for therapeutic advantages of targeting TXNIP in diabetes and the future direction of the study are also discussed.
Collapse
Affiliation(s)
- Eiji Yoshihara
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA;
- David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
31
|
Keshavarz-Bahaghighat H, Darwesh AM, Sosnowski DK, Seubert JM. Mitochondrial Dysfunction and Inflammaging in Heart Failure: Novel Roles of CYP-Derived Epoxylipids. Cells 2020; 9:E1565. [PMID: 32604981 PMCID: PMC7408578 DOI: 10.3390/cells9071565] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023] Open
Abstract
Age-associated changes leading to a decline in cardiac structure and function contribute to the increased susceptibility and incidence of cardiovascular diseases (CVD) in elderly individuals. Indeed, age is considered a risk factor for heart failure and serves as an important predictor for poor prognosis in elderly individuals. Effects stemming from chronic, low-grade inflammation, inflammaging, are considered important determinants in cardiac health; however, our understanding of the mechanisms involved remains unresolved. A steady decline in mitochondrial function is recognized as an important biological consequence found in the aging heart which contributes to the development of heart failure. Dysfunctional mitochondria contribute to increased cellular stress and an innate immune response by activating the NLRP-3 inflammasomes, which have a role in inflammaging and age-related CVD pathogenesis. Emerging evidence suggests a protective role for CYP450 epoxygenase metabolites of N-3 and N-6 polyunsaturated fatty acids (PUFA), epoxylipids, which modulate various aspects of the immune system and protect mitochondria. In this article, we provide insight into the potential roles N-3 and N-6 PUFA have modulating mitochondria, inflammaging and heart failure.
Collapse
Affiliation(s)
- Hedieh Keshavarz-Bahaghighat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (H.K.-B.); (A.M.D.); (D.K.S.)
| | - Ahmed M. Darwesh
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (H.K.-B.); (A.M.D.); (D.K.S.)
| | - Deanna K. Sosnowski
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (H.K.-B.); (A.M.D.); (D.K.S.)
| | - John M. Seubert
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (H.K.-B.); (A.M.D.); (D.K.S.)
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta 2020-M Katz Group Centre for Pharmacy and Health Research 11361-87 Avenue, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
32
|
Blasiak J. Senescence in the pathogenesis of age-related macular degeneration. Cell Mol Life Sci 2020; 77:789-805. [PMID: 31897543 PMCID: PMC11105088 DOI: 10.1007/s00018-019-03420-x] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 01/07/2023]
Abstract
Age-related macular degeneration (AMD) is a complex eye disease underlined by the death of photoreceptors and degeneration of retinal pigment epithelium (RPE) and choriocapillaris (CC). The mechanism(s) responsible for massive and progressive retinal degeneration is not completely known. Senescence, a state of permanent inhibition of cell growth, may be induced by many factors important for AMD pathogenesis and results in senescence-associated secretory phenotype (SASP) that releases growth factors, cytokines, chemokines, proteases and other molecules inducing inflammation and other AMD-related effects. These effects can be induced in the affected cell and neighboring cells, leading to progression of AMD phenotype. Senescent cells also release reactive oxygen species that increase SASP propagation. Many other pathways of senescence-related AMD pathogenesis, including autophagy, the cGAS-STING signaling, degeneration of CC by membrane attack complex, can be considered. A2E, a fluorophore present in lipofuscin, amyloid-beta peptide and humanin, a mitochondria-derived peptide, may link AMD with senescence. Further studies on senescence in AMD pathogenesis to check the possibility of opening a perspective of the use of drugs killing senescent cells (senolytics) and terminating SASP bystander effects (senostatics) might be beneficial for AMD that at present is an incurable disease.
Collapse
Affiliation(s)
- Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, Lodz, Poland.
| |
Collapse
|
33
|
Jiang X, Pang Y, Zhao S, Hao H, Zhao X, Du W, Wang Y, Zhu H. Thioredoxin-interacting protein regulates glucose metabolism and improves the intracellular redox state in bovine oocytes during in vitro maturation. Am J Physiol Endocrinol Metab 2020; 318:E405-E416. [PMID: 31935112 DOI: 10.1152/ajpendo.00057.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The extent of glucose metabolism during oocyte maturation is closely related to oocyte developmental potential. Thioredoxin-interacting protein (TXNIP) is an α-arrestin family protein that negatively regulates glucose uptake into cells. However, little information is available regarding the function of TXNIP in bovine oocytes. Accordingly, the present study was performed to investigate the influence of TXNIP on glucose metabolism in bovine oocytes during in vitro maturation. Pharmacological inhibition of TXNIP by azaserine enhanced glucose uptake and imparted a specific metabolic effect on glycolysis and pentose phosphate pathway (PPP). RNA interference (RNAi) was adopted to further determine the biological significance of TXNIP in regulating glucose metabolism. The maturation rate and the developmental competence of TXNIP siRNA-treated oocytes were significantly improved. Knockdown of TXNIP in bovine oocytes significantly increased glycolysis by increasing the activities of phosphofructokinase (PFK), pyruvate kinase, and lactate dehydrogenase; pyruvate and lactate production; and intracellular ATP level, as well as mitochondrial activity. Furthermore, glucose metabolism through PPP was also enhanced by TXNIP depletion, as TXNIP siRNA treatment promoted glucose-6-phosphate dehydrogenase (G6PDH) activity and NADPH content, and helped maintain a high level of glutathione and a low level of reactive oxygen species within the oocytes. Further studies revealed that inhibition of TXNIP resulted increases in glucose transporter 1 (GLUT1) expression, as well as PFK1 platelet isoform (PFKP) and G6PDH mRNA levels. These results reveal that TXNIP depletion promotes oocyte maturation by enhancing both glycolysis and the PPP. During in vitro maturation of bovine oocytes, TXNIP serves as a key regulator of glucose uptake by controlling GLUT1 expression.
Collapse
Affiliation(s)
- XiaoLong Jiang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- Key Laboratory of Agricultural Animal and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China
| | - YunWei Pang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - ShanJiang Zhao
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - HaiSheng Hao
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - XueMing Zhao
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - WeiHua Du
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - YaChun Wang
- Key Laboratory of Agricultural Animal and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China
| | - HuaBin Zhu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| |
Collapse
|
34
|
Li YH, Tong KL, Lu JL, Lin JB, Li ZY, Sang Y, Ghodbane A, Gao XJ, Tam MS, Hu CD, Zhang HT, Zha ZG. PRMT5-TRIM21 interaction regulates the senescence of osteosarcoma cells by targeting the TXNIP/p21 axis. Aging (Albany NY) 2020; 12:2507-2529. [PMID: 32023548 PMCID: PMC7041745 DOI: 10.18632/aging.102760] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 01/10/2020] [Indexed: 01/10/2023]
Abstract
Osteosarcoma (OS) is the most common bone malignancy in adolescents and has poor clinical outcomes. Protein arginine methyltransferase 5 (PRMT5) has recently been shown to be aberrantly expressed in various cancers, yet its role in OS remains elusive. Here, we found that PRMT5 was overexpressed in OS and its overexpression predicted poor clinical outcomes. PRMT5 knockdown significantly triggered pronounced senescence in OS cells, as evidenced by the increase in senescence-associated β-galactosidase (SA-β-gal)-stained cells, induction of p21 expression, and upregulation of senescence-associated secretory phenotype (SASP) gene expression. In addition, we found that PRMT5 plays a key role in regulating DNA damaging agents-induced OS cell senescence, possibly, via affecting the repair of DNA damage. Furthermore, we found that TXNIP acts as a key factor mediating PRMT5 depletion-induced DNA damage and cellular senescence. Mechanistically, TRIM21, which interacts with PRMT5, was essential for the regulation of TXNIP/p21 expression. In summary, we propose a model in which PRMT5, by interaction with TRIM21, plays a key role in regulating the TXNIP/p21 axis during senescence in OS cells. The present findings suggest that PRMT5 overexpression in OS cells might confer resistance to chemotherapy and that targeting the PRMT5/TRIM21/TXNIP signaling may enhance the therapeutic efficacy in OS.
Collapse
Affiliation(s)
- Yu-Hang Li
- Institute of Orthopedic Diseases and Department of Bone and Joint Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510630, Guangdong, China
| | - Kui-Leung Tong
- Institute of Orthopedic Diseases and Department of Bone and Joint Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510630, Guangdong, China
| | - Jun-Lei Lu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, China
| | - Jie-Bin Lin
- Department of Orthopedics, The Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Zhen-Yan Li
- Institute of Orthopedic Diseases and Department of Bone and Joint Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510630, Guangdong, China
| | - Yuan Sang
- Department of Orthopaedic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong, China
| | - Abdelmoumin Ghodbane
- Institute of Orthopedic Diseases and Department of Bone and Joint Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510630, Guangdong, China
| | - Xue-Juan Gao
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, China
| | - Man-Seng Tam
- IAN WO Medical Center, Macao Special Administrative Region, Macao 999078, China
| | - Chang-Deng Hu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Huan-Tian Zhang
- Institute of Orthopedic Diseases and Department of Bone and Joint Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510630, Guangdong, China
| | - Zhen-Gang Zha
- Institute of Orthopedic Diseases and Department of Bone and Joint Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510630, Guangdong, China
| |
Collapse
|
35
|
Huang PP, Fu J, Liu LH, Wu KF, Liu HX, Qi BM, Liu Y, Qi BL. Honokiol antagonizes doxorubicin‑induced cardiomyocyte senescence by inhibiting TXNIP‑mediated NLRP3 inflammasome activation. Int J Mol Med 2019; 45:186-194. [PMID: 31746354 PMCID: PMC6889937 DOI: 10.3892/ijmm.2019.4393] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 10/09/2019] [Indexed: 02/07/2023] Open
Abstract
Senescence of cardiomyocytes is considered a key factor for the occurrence of doxorubicin (Dox)‑associated cardiomyopathy. The NOD‑like receptor family pyrin domain‑containing 3 (NLRP3) inflammasome is reported to be involved in the process of cellular senescence. Furthermore, thioredoxin‑interactive protein (TXNIP) is required for NLRP3 inflammasome activation and is considered to be a key component in the regulation of the pathogenesis of senescence. Studies have demonstrated that pretreatment with honokiol (Hnk) can alleviate Dox‑induced cardiotoxicity. However, the impact of Hnk on cardiomyocyte senescence elicited by Dox and the underlying mechanisms remain unclear. The present study demonstrated that Hnk was able to prevent Dox‑induced senescence of H9c2 cardiomyocytes, indicated by decreased senescence‑associated β‑galactosidase (SA‑β‑gal) staining, as well as decreased expression of p16INK4A and p21. Hnk also inhibited TXNIP expression and NLRP3 inflammasome activation in Dox‑stimulated H9c2 cardiomyocytes. When TXNIP expression was enforced by adenovirus‑mediated gene overexpression, the NLRP3 inflammasome was activated, which led to inhibition of the anti‑inflammation and anti‑senescence effects of Hnk on H9c2 cardiomyocytes under Dox treatment. Furthermore, adenovirus‑mediated TXNIP‑silencing inhibited the NLRP3 inflammasome. Consistently, TXNIP knockdown enhanced the anti‑inflammation and anti‑senescence effects of Hnk on H9c2 cardiomyocytes under Dox stimulation. In summary, Hnk was found to be effective in protecting cardiomyocytes against Dox‑stimulated senescence. This protective effect was mediated via the inhibition of TXNIP expression and the subsequent suppression of the NLRP3 inflammasome. These results demonstrated that Hnk may be of value as a cardioprotective drug by inhibiting cardiomyocyte senescence.
Collapse
Affiliation(s)
- Pian-Pian Huang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jun Fu
- Department of Radiology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Li-Hua Liu
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Ke-Fei Wu
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Hong-Xia Liu
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Ben-Ming Qi
- Department of Otorhinolaryngology, First People's Hospital of Yunnan Province, Kunming, Yunnan 650000, P.R. China
| | - Yun Liu
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Ben-Ling Qi
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
36
|
Effect of 6-Shogaol on the Glucose Uptake and Survival of HT1080 Fibrosarcoma Cells. Pharmaceuticals (Basel) 2019; 12:ph12030131. [PMID: 31505728 PMCID: PMC6789756 DOI: 10.3390/ph12030131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/10/2019] [Accepted: 09/03/2019] [Indexed: 12/29/2022] Open
Abstract
Ginger is a plant that is native to southern China. In the last decade and research on the components of ginger has significantly increased; of these components, 6-shogaol exhibits the greatest potential antitumor capacity. However, the molecular mechanism through which 6-shogaol exerts its effects has not yet been elucidated. In this study, the effect of 6-shogaol on tumor cells that were derived from human fibrosarcoma (HT1080) was evaluated. Cell viability was determined by a (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) MTT assay testing different concentrations of 6-shogaol (2.5–150 μM). Subsequently, the effect of 6-shogaol on reactive oxygen species (ROS) production, glucose uptake, and protein expression of the signaling pathway phosphatase and tensin homolog/ protein kinase B /mammalian target of rapamycin (PTEN/Akt/mTOR) was measured. 6-Shogaol reduced the viability of the tumor cells and caused an increase in ROS production, which was attenuated with the addition of N-acetylcysteine, and the recovery of cell viability was observed. The increase in ROS production in response to 6-shogaol was associated with cell death. Similarly, glucose uptake decreased with incremental concentrations of 6-shogaol, and an increase in the expression of mTOR-p and Akt-p proteins was observed; PTEN was active in all the treatments with 6-shogaol. Thus, the results suggest that cells activate uncontrolled signaling pathways, such as phosphoinositide 3-kinase (PI3K)/Akt/mTOR, among other alternative mechanisms of metabolic modulation and of survival in order to counteract the pro-oxidant effect of 6-shogaol and the decrease in glucose uptake. Interestingly, a differential response was observed when non-cancerous cells were treated with 6-shogaol.
Collapse
|
37
|
Genome-Wide Profiling of Laron Syndrome Patients Identifies Novel Cancer Protection Pathways. Cells 2019; 8:cells8060596. [PMID: 31208077 PMCID: PMC6627189 DOI: 10.3390/cells8060596] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 12/30/2022] Open
Abstract
Laron syndrome (LS), or primary growth hormone resistance, is a prototypical congenital insulin-like growth factor 1 (IGF1) deficiency. The recent epidemiological finding that LS patients do not develop cancer is of major scientific and clinical relevance. Epidemiological data suggest that congenital IGF1 deficiency confers protection against the development of malignancies. This ‘experiment of nature’ reflects the critical role of IGF1 in tumor biology. The present review article provides an overview of recently conducted genome-wide profiling analyses aimed at identifying mechanisms and signaling pathways that are directly responsible for the link between life-time low IGF1 levels and protection from tumor development. The review underscores the concept that ‘data mining’ an orphan disease might translate into new developments in oncology.
Collapse
|
38
|
Kim DO, Byun JE, Seong HA, Yoon SR, Choi I, Jung H. Thioredoxin-interacting protein-derived peptide (TN13) inhibits LPS-induced inflammation by inhibiting p38 MAPK signaling. Biochem Biophys Res Commun 2018; 507:489-495. [DOI: 10.1016/j.bbrc.2018.11.069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 11/12/2018] [Indexed: 12/13/2022]
|
39
|
Huy H, Song HY, Kim MJ, Kim WS, Kim DO, Byun JE, Lee J, Park YJ, Kim TD, Yoon SR, Choi EJ, Lee CH, Noh JY, Jung H, Choi I. TXNIP regulates AKT-mediated cellular senescence by direct interaction under glucose-mediated metabolic stress. Aging Cell 2018; 17:e12836. [PMID: 30168649 PMCID: PMC6260918 DOI: 10.1111/acel.12836] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 07/16/2018] [Accepted: 08/02/2018] [Indexed: 12/11/2022] Open
Abstract
Aging is associated with an inevitable and universal loss of cell homeostasis and restricts an organism's lifespan by an increased susceptibility to diseases and tissue degeneration. The glucose uptake associated with producing energy for cell survival is one of the major causes of ROS production under physiological conditions. However, the overall mechanisms by which glucose uptake results in cellular senescence remain mysterious. In this study, we found that TXNIP deficiency accelerated the senescent phenotypes of MEF cells under high glucose condition. TXNIP‐/‐ MEF cells showed greater induced glucose uptake and ROS levels than wild‐type cells, and N‐acetylcysteine (NAC) treatment rescued the cellular senescence of TXNIP‐/‐ MEF cells. Interestingly, TXNIP‐/‐ MEF cells showed continuous activation of AKT during long‐term subculture, and AKT signaling inhibition completely blocked the cellular senescence of TXNIP‐/‐ MEF cells. In addition, we found that TXNIP interacted with AKT via the PH domain of AKT, and their interaction was increased by high glucose or H2O2 treatment. The inhibition of AKT activity by TXNIP was confirmed using western blotting and an in vitro kinase assay. TXNIP deficiency in type 1 diabetes mice (Akita) efficiently decreased the blood glucose levels and finally increased mouse survival. However, in normal mice, TXNIP deficiency induced metabolic aging of mice and cellular senescence of kidney cells by inducing AKT activity and aging‐associated gene expression. Altogether, these results suggest that TXNIP regulates cellular senescence by inhibiting AKT pathways via a direct interaction under conditions of glucose‐derived metabolic stress.
Collapse
Affiliation(s)
- Hangsak Huy
- Immunotherapy Convergence Research Center; Korea Research Institute of Bioscience and Biotechnology (KRIBB); Daejeon Korea
- Department of Functional Genomics; University of Science and Technology (UST); Daejeon Korea
| | - Hae Young Song
- Immunotherapy Convergence Research Center; Korea Research Institute of Bioscience and Biotechnology (KRIBB); Daejeon Korea
| | - Mi Jeong Kim
- Immunotherapy Convergence Research Center; Korea Research Institute of Bioscience and Biotechnology (KRIBB); Daejeon Korea
| | - Won Sam Kim
- Immunotherapy Convergence Research Center; Korea Research Institute of Bioscience and Biotechnology (KRIBB); Daejeon Korea
| | - Dong Oh Kim
- Immunotherapy Convergence Research Center; Korea Research Institute of Bioscience and Biotechnology (KRIBB); Daejeon Korea
| | - Jae-Eun Byun
- Immunotherapy Convergence Research Center; Korea Research Institute of Bioscience and Biotechnology (KRIBB); Daejeon Korea
- Department of Biochemistry, School of Life Sciences; Chungbuk National University; Cheongju Korea
| | - Jungwoon Lee
- Immunotherapy Convergence Research Center; Korea Research Institute of Bioscience and Biotechnology (KRIBB); Daejeon Korea
| | - Young-Jun Park
- Immunotherapy Convergence Research Center; Korea Research Institute of Bioscience and Biotechnology (KRIBB); Daejeon Korea
- Department of Functional Genomics; University of Science and Technology (UST); Daejeon Korea
| | - Tae-Don Kim
- Immunotherapy Convergence Research Center; Korea Research Institute of Bioscience and Biotechnology (KRIBB); Daejeon Korea
- Department of Functional Genomics; University of Science and Technology (UST); Daejeon Korea
| | - Suk Ran Yoon
- Immunotherapy Convergence Research Center; Korea Research Institute of Bioscience and Biotechnology (KRIBB); Daejeon Korea
- Department of Functional Genomics; University of Science and Technology (UST); Daejeon Korea
| | - Eun-Ji Choi
- Department of Hematology, Asan Medical Center; University of Ulsan College of Medicine; Seoul Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center; Korea Research Institute of Bioscience and Biotechnology (KRIBB); Daejeon Korea
| | - Ji-Yoon Noh
- Immunotherapy Convergence Research Center; Korea Research Institute of Bioscience and Biotechnology (KRIBB); Daejeon Korea
| | - Haiyoung Jung
- Immunotherapy Convergence Research Center; Korea Research Institute of Bioscience and Biotechnology (KRIBB); Daejeon Korea
- Department of Functional Genomics; University of Science and Technology (UST); Daejeon Korea
| | - Inpyo Choi
- Immunotherapy Convergence Research Center; Korea Research Institute of Bioscience and Biotechnology (KRIBB); Daejeon Korea
- Department of Functional Genomics; University of Science and Technology (UST); Daejeon Korea
| |
Collapse
|