1
|
Li J, Sun S, Li Y, Tian M, Li X, Ren S, Huang Z, Wang Y, Du S. Nrf2 signaling pathway studies in Drosophila melanogaster: parallel roles in human health and insect environmental responses. Xenobiotica 2025:1-14. [PMID: 39932394 DOI: 10.1080/00498254.2025.2465239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/29/2025] [Accepted: 02/05/2025] [Indexed: 02/25/2025]
Abstract
The Nrf2 signalling pathway is crucial for cellular defense against oxidative stress and xenobiotic toxicity, highlighting its importance in both human health and environmental responses.This review focuses on the dual role of Drosophila melanogaster in Nrf2 research: we utilised the PubMed database to collect and summarised research articles on fruit fly Nrf2 studies published in the past decade, using keywords such as 'Nrf2', 'CncC', and 'Drosophila'.We found that Drosophila melanogaster, as a classical model organism for studying human diseases such as neurodegenerative disorders, cancers, and diabetes, and as an insect model for investigating xenobiotic responses and pesticide resistance, is particularly well-suited for exploring the diverse and complex functions of Nrf2 pathway.Additionally, Natural products such as curcumin and quercetin can modulate Nrf2 activity for cytoprotection. Utilising D. melanogaster's genetic tools and short life cycles, researchers can discover new therapeutics and study their mechanisms.This twofold exploration not only advances our understanding of Nrf2 in human health but also provides insights into pest control strategies through enhanced insect resistance mechanisms. Continued research in this area is essential for developing innovative treatments and effective pest management approaches.
Collapse
Affiliation(s)
- Jingyi Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Shushen Sun
- Department of Gastroenterology, Tianjin University Jinnan Hospital (Tianjin Jinnan Hospital), Tianjin, China
| | - Ying Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Mengzhe Tian
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Xinyi Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Suxia Ren
- School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Zengyi Huang
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yiwen Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Shaoshan Du
- Department of Gastroenterology, Tianjin University Jinnan Hospital (Tianjin Jinnan Hospital), Tianjin, China
| |
Collapse
|
2
|
Álvarez-Rendón JP, Riesgo-Escovar JR. The S6 kinase gene in the fruit fly, Drosophila melanogaster, is essential for metabolic regulation. Gen Comp Endocrinol 2025; 362:114672. [PMID: 39914703 DOI: 10.1016/j.ygcen.2025.114672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 01/24/2025] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
The S6 kinase (S6K) enzyme phosphorylates the S6 ribosomal protein, promoting protein translation and growth. Here we investigated in flies whether hypomorphic conditions in S6K affect intermediate metabolism and oxidative homeostasis, besides carbohydrates and growth. We also employed partial activation of the nuclear factor 2 erythroid related factor 2 (Nrf2) in a S6K hypomorphic background and controls. S6K is activated by the target of rapamycin (TOR) kinase, a key kinase regulating metabolism, downstream of the insulin receptor in flies. The insulin pathway is a general anabolic pathway, and key regulator of glucose homeostasis. The Nrf2 counters pro-oxidative conditions, also involved in inflammatory responses and metabolism. The Nrf2 fly homolog is Cap'n'collar C (CncC). We quantified glucose, glycogen, and total lipids in control and different pro-oxidative conditions. We corroborated an accumulation of lipids and carbohydrates in the mutants, and document sexual differences. We document also metabolic and survival differences in the responses to "mild" pro-oxidative conditions in young flies (seven days old), with females being most affected. We compare 10 mM paraquat survival of virgin flies to mated mixed-sex flies housed together. We used females to study transcriptomic differences between wild type and S6k hypomorphs. Results highlight dysregulation of lipid and antioxidant enzymes and genes, in agreement with lipid and oxidative metabolism data. Our results are consistent with the insulin/TOR pathway acting as an integrator of intermediate metabolism and oxidative homeostasis (this last together with the CncC pathway).
Collapse
Affiliation(s)
- Jéssica Paloma Álvarez-Rendón
- Departamento de Neurobiología de Desarrollo y Neurofisiología Instituto de Neurobiología Universidad Nacional Autónoma de México, Mexico; Campus UNAM Juriquilla, Boulevard Juriquilla #3001, Juriquilla C.P. 76230 Querétaro, Mexico
| | - Juan Rafael Riesgo-Escovar
- Departamento de Neurobiología de Desarrollo y Neurofisiología Instituto de Neurobiología Universidad Nacional Autónoma de México, Mexico; Campus UNAM Juriquilla, Boulevard Juriquilla #3001, Juriquilla C.P. 76230 Querétaro, Mexico.
| |
Collapse
|
3
|
Rojo AI, Buttari B, Cadenas S, Carlos AR, Cuadrado A, Falcão AS, López MG, Georgiev MI, Grochot-Przeczek A, Gumeni S, Jimenez-Villegas J, Horbanczuk JO, Konu O, Lastres-Becker I, Levonen AL, Maksimova V, Michaeloudes C, Mihaylova LV, Mickael ME, Milisav I, Miova B, Rada P, Santos M, Seabra MC, Strac DS, Tenreiro S, Trougakos IP, Dinkova-Kostova AT. Model organisms for investigating the functional involvement of NRF2 in non-communicable diseases. Redox Biol 2025; 79:103464. [PMID: 39709790 PMCID: PMC11733061 DOI: 10.1016/j.redox.2024.103464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/26/2024] [Accepted: 12/08/2024] [Indexed: 12/24/2024] Open
Abstract
Non-communicable chronic diseases (NCDs) are most commonly characterized by age-related loss of homeostasis and/or by cumulative exposures to environmental factors, which lead to low-grade sustained generation of reactive oxygen species (ROS), chronic inflammation and metabolic imbalance. Nuclear factor erythroid 2-like 2 (NRF2) is a basic leucine-zipper transcription factor that regulates the cellular redox homeostasis. NRF2 controls the expression of more than 250 human genes that share in their regulatory regions a cis-acting enhancer termed the antioxidant response element (ARE). The products of these genes participate in numerous functions including biotransformation and redox homeostasis, lipid and iron metabolism, inflammation, proteostasis, as well as mitochondrial dynamics and energetics. Thus, it is possible that a single pharmacological NRF2 modulator might mitigate the effect of the main hallmarks of NCDs, including oxidative, proteostatic, inflammatory and/or metabolic stress. Research on model organisms has provided tremendous knowledge of the molecular mechanisms by which NRF2 affects NCDs pathogenesis. This review is a comprehensive summary of the most commonly used model organisms of NCDs in which NRF2 has been genetically or pharmacologically modulated, paving the way for drug development to combat NCDs. We discuss the validity and use of these models and identify future challenges.
Collapse
Affiliation(s)
- Ana I Rojo
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain.
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161, Rome, Italy
| | - Susana Cadenas
- Centro de Biología Molecular Severo Ochoa (CSIC/UAM), Cantoblanco, Madrid, Spain
| | - Ana Rita Carlos
- CE3C-CHANGE, Department of Animal Biology, Faculty of Sciences, University of Lisbon, 1749-016, Lisbon, Portugal
| | - Antonio Cuadrado
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain
| | - Ana Sofia Falcão
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Manuela G López
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, Hospital Universitario de la Princesa, Madrid, Spain
| | - Milen I Georgiev
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria; Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000, Plovdiv, Bulgaria
| | - Anna Grochot-Przeczek
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Sentiljana Gumeni
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, 15784, Greece
| | - José Jimenez-Villegas
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain
| | - Jarosław Olav Horbanczuk
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, 36A Postępu, Jastrzębiec, 05-552, Poland
| | - Ozlen Konu
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey; Department of Neuroscience, Bilkent University, Ankara, Turkey; UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
| | - Isabel Lastres-Becker
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Institute Teófilo Hernando for Drug Discovery, Universidad Autónoma de Madrid, 28029, Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain
| | - Anna-Liisa Levonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70210, Kuopio, Finland
| | - Viktorija Maksimova
- Department of Applied Pharmacy, Division of Pharmacy, Faculty of Medical Sciences, Goce Delcev University, Stip, Krste Misirkov Str., No. 10-A, P.O. Box 201, 2000, Stip, Macedonia
| | | | - Liliya V Mihaylova
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria; Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000, Plovdiv, Bulgaria
| | - Michel Edwar Mickael
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, 36A Postępu, Jastrzębiec, 05-552, Poland
| | - Irina Milisav
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000, Ljubljana, Slovenia; Laboratory of oxidative stress research, Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000, Ljubljana, Slovenia
| | - Biljana Miova
- Department of Experimental Physiology and Biochemistry, Institute of Biology, Faculty of Natural Sciences and Mathematics, University "St Cyril and Methodius", Skopje, Macedonia
| | - Patricia Rada
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Marlene Santos
- REQUIMTE/LAQV, Escola Superior de Saúde (E2S), Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072, Porto, Portugal; Molecular Oncology & Viral Pathology, IPO-Porto Research Center (CI-IPOP), Portuguese Institute of Oncology, 4200-072, Porto, Portugal
| | - Miguel C Seabra
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Dubravka Svob Strac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10 000, Zagreb, Croatia
| | - Sandra Tenreiro
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, 15784, Greece
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee, UK; Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
4
|
Buttari B, Tramutola A, Rojo AI, Chondrogianni N, Saha S, Berry A, Giona L, Miranda JP, Profumo E, Davinelli S, Daiber A, Cuadrado A, Di Domenico F. Proteostasis Decline and Redox Imbalance in Age-Related Diseases: The Therapeutic Potential of NRF2. Biomolecules 2025; 15:113. [PMID: 39858508 PMCID: PMC11764413 DOI: 10.3390/biom15010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/20/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2) is a master regulator of cellular homeostasis, overseeing the expression of a wide array of genes involved in cytoprotective processes such as antioxidant and proteostasis control, mitochondrial function, inflammation, and the metabolism of lipids and glucose. The accumulation of misfolded proteins triggers the release, stabilization, and nuclear translocation of NRF2, which in turn enhances the expression of critical components of both the proteasomal and lysosomal degradation pathways. This process facilitates the clearance of toxic protein aggregates, thereby actively maintaining cellular proteostasis. As we age, the efficiency of the NRF2 pathway declines due to several factors including increased activity of its repressors, impaired NRF2-mediated antioxidant and cytoprotective gene expression, and potential epigenetic changes, though the precise mechanisms remain unclear. This leads to diminished antioxidant defenses, increased oxidative damage, and exacerbated metabolic dysregulation and inflammation-key contributors to age-related diseases. Given NRF2's role in mitigating proteotoxic stress, the pharmacological modulation of NRF2 has emerged as a promising therapeutic strategy, even in aged preclinical models. By inducing NRF2, it is possible to mitigate the damaging effects of oxidative stress, metabolic dysfunction, and inflammation, thus reducing protein misfolding. The review highlights NRF2's therapeutic implications for neurodegenerative diseases and cardiovascular conditions, emphasizing its role in improving proteostasis and redox homeostasis Additionally, it summarizes current research into NRF2 as a therapeutic target, offering hope for innovative treatments to counteract the effects of aging and associated diseases.
Collapse
Affiliation(s)
- Brigitta Buttari
- Department of Cardiovascular and Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, 00161 Rome, Italy; (B.B.); (E.P.)
| | - Antonella Tramutola
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University, 00185 Rome, Italy;
| | - Ana I. Rojo
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), National Institute of Health Carlos III (ISCIII), Instituto de Investigación Sanitaria La Paz (IdiPaz), 28049 Madrid, Spain; (A.I.R.); (A.C.)
| | - Niki Chondrogianni
- Institute of Chemical Biology, National Hellenic Research Foundation, 116 35 Athens, Greece;
| | - Sarmistha Saha
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura 00185, Uttar Pradesh, India;
| | - Alessandra Berry
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.B.); (L.G.)
| | - Letizia Giona
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.B.); (L.G.)
- PhD Program in Science of Nutrition, Metabolism, Aging and Gender-Related Diseases, Faculty of Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Joana P. Miranda
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| | - Elisabetta Profumo
- Department of Cardiovascular and Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, 00161 Rome, Italy; (B.B.); (E.P.)
| | - Sergio Davinelli
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Andreas Daiber
- Department for Cardiology 1, University Medical Center Mainz, Molecular Cardiology, Johannes Gutenberg University, 55131 Mainz, Germany;
| | - Antonio Cuadrado
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), National Institute of Health Carlos III (ISCIII), Instituto de Investigación Sanitaria La Paz (IdiPaz), 28049 Madrid, Spain; (A.I.R.); (A.C.)
| | - Fabio Di Domenico
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University, 00185 Rome, Italy;
| |
Collapse
|
5
|
Yang H, Chen YX, Linghu KG, Ren PY, Yao YT, Jiang F, Wu GP, Chen TT, Ji YP, Tao L, Sun QY, Li Y, Shen XC. 1,8-Cineole alleviates Nrf2-mediated redox imbalance and mitochondrial dysfunction in diabetes mellitus by targeting Sirt1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156099. [PMID: 39437685 DOI: 10.1016/j.phymed.2024.156099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/30/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is primarily attributed to impaired insulin secretion caused by β cell dysfunction. 1,8-Cineole is a key bioactive compound in the essential oil extracted from Fructus Alpiniae Zerumbet, which possesses anti-inflammatory and antioxidant properties. Nevertheless, it remains elusive about the protective effect and precise mechanisms of 1,8-Cineole against the β cell deterioration in T2DM. PURPOSE To investigate the effect of 1,8-Cineole on β cell dysfunction in T2DM and the potential mechanism of its action. METHODS A mouse model of T2DM and a β cell model of high glucose induction were generated to analyze the pharmacological properties of 1,8-Cineole. Proteomic and network pharmacological analyses were conducted to identify the crucial pathways involved in T2DM. Resveratrol [a Sirtuin1 (Sirt1) agonist] and Sirt1 knockdown were used to ascertain the mechanism of 1,8-Cineole in T2DM. The binding affinity of 1,8-Cineole to Sirt1 was assessed with molecular docking, surface plasmon resonance, immunoprecipitation assay, and cellular thermal shift assay. RESULTS Firstly, dysregulated crucial pathways in T2DM were screened out, including redox imbalance and mitochondrial dysfunction. Subsequently, 1,8-Cineole was found to activate Sirt1 and nuclear factor E2-related factor 2 (Nrf2) to repress oxidative stress in both T2DM mice and high glucose-induced β cells, thereby relieving mitochondrial dysfunction and apoptosis. Furthermore, 1,8-Cineole specifically targeted Sirt1 and favored the direct interaction between Sirt1 and Nrf2, ultimately restoring β cell function. CONCLUSIONS Our findings provide the first evidence that 1,8-Cineole directly binds to Sirt1 and enhances its stability, therefore rectifying impaired oxidative homeostasis, and then suppressing mitochondrial dysfunction and apoptosis in T2DM, indicating that 1,8-Cineole may be a potential candidate drug for T2DM treatment.
Collapse
Affiliation(s)
- Hong Yang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guizhou 561113, China; Clinical College of Maternal and Child Health Care, Guizhou Medical University, Guiyang 550003, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Yong-Xin Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China
| | - Ke-Gang Linghu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China
| | - Peng-Yan Ren
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China
| | - Yu-Ting Yao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China
| | - Feng Jiang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China
| | - Guo-Ping Wu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China
| | - Ting-Ting Chen
- Clinical College of Maternal and Child Health Care, Guizhou Medical University, Guiyang 550003, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China
| | - Yun-Peng Ji
- Department of Pharmacy, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Ling Tao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China
| | - Qian-Yun Sun
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guizhou 561113, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China.
| | - Yue Li
- Clinical College of Maternal and Child Health Care, Guizhou Medical University, Guiyang 550003, China.
| | - Xiang-Chun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China.
| |
Collapse
|
6
|
Hayashi M, Okazaki K, Papgiannakopoulos T, Motohashi H. The Complex Roles of Redox and Antioxidant Biology in Cancer. Cold Spring Harb Perspect Med 2024; 14:a041546. [PMID: 38772703 PMCID: PMC11529857 DOI: 10.1101/cshperspect.a041546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Redox reactions control fundamental biochemical processes, including energy production, metabolism, respiration, detoxification, and signal transduction. Cancer cells, due to their generally active metabolism for sustained proliferation, produce high levels of reactive oxygen species (ROS) compared to normal cells and are equipped with antioxidant defense systems to counteract the detrimental effects of ROS to maintain redox homeostasis. The KEAP1-NRF2 system plays a major role in sensing and regulating endogenous antioxidant defenses in both normal and cancer cells, creating a bivalent contribution of NRF2 to cancer prevention and therapy. Cancer cells hijack the NRF2-dependent antioxidant program and exploit a very unique metabolism as a trade-off for enhanced antioxidant capacity. This work provides an overview of redox metabolism in cancer cells, highlighting the role of the KEAP1-NRF2 system, selenoproteins, sulfur metabolism, heme/iron metabolism, and antioxidants. Finally, we describe therapeutic approaches that can be leveraged to target redox metabolism in cancer.
Collapse
Affiliation(s)
- Makiko Hayashi
- Department of Pathology, New York University School of Medicine, New York, New York 10016, USA
| | - Keito Okazaki
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | | | - Hozumi Motohashi
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| |
Collapse
|
7
|
Protti G, Rubbi L, Gören T, Sabirli R, Civlan S, Kurt Ö, Türkçüer İ, Köseler A, Pellegrini M. The methylome of buccal epithelial cells is influenced by age, sex, and physiological properties. Physiol Genomics 2023; 55:618-633. [PMID: 37781740 DOI: 10.1152/physiolgenomics.00063.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/05/2023] [Accepted: 09/27/2023] [Indexed: 10/03/2023] Open
Abstract
Epigenetic modifications, particularly DNA methylation, have emerged as regulators of gene expression and are implicated in various biological processes and disease states. Understanding the factors influencing the epigenome is essential for unraveling its complexity. In this study, we aimed to identify how the methylome of buccal epithelial cells, a noninvasive and easily accessible tissue, is associated with demographic and health-related variables commonly used in clinical settings, such as age, sex, blood immune composition, hemoglobin levels, and others. We developed a model to assess the association of multiple factors with the human methylome and identify the genomic loci significantly impacted by each trait. We demonstrated that DNA methylation variation is accurately modeled by several factors. We confirmed the well-known impact of age and sex and unveiled novel clinical factors associated with DNA methylation, such as blood neutrophils, hemoglobin, red blood cell distribution width, high-density lipoprotein cholesterol, and urea. Genomic regions significantly associated with these traits were enriched in relevant transcription factors, drugs, and diseases. Among our findings, we showed that neutrophil-impacted loci were involved in neutrophil functionality and maturation. Similarly, hemoglobin-influenced sites were associated with several diseases, including aplastic anemia, and the genomic loci affected by urea were related to congenital anomalies of the kidney and urinary tract. Our findings contribute to a better understanding of the human methylome plasticity and provide insights into novel factors shaping DNA methylation patterns, highlighting their potential clinical implications as biomarkers and the importance of considering these physiological traits in future medical epigenomic investigations.NEW & NOTEWORTHY We have developed a quantitative model to assess how the human methylome is associated with several factors and to identify the genomic loci significantly impacted by each trait. We reported novel health-related factors driving DNA methylation patterns and new site-specific regulations that further elucidate methylome dynamics. Our study contributes to a better understanding of the plasticity of the human methylome and unveils novel physiological traits with a potential role in future medical epigenomic investigations.
Collapse
Affiliation(s)
- Giulia Protti
- Molecular, Cell and Developmental Biology, University of California, Los Angeles, California, United States
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Liudmilla Rubbi
- Molecular, Cell and Developmental Biology, University of California, Los Angeles, California, United States
| | - Tarik Gören
- Emergency Department, Pamukkale University Medical Faculty, Denizli, Turkey
| | - Ramazan Sabirli
- Emergency Department, Bakircay University Faculty of Medicine Cigli Training and Research Hospital, Izmir, Turkey
| | - Serkan Civlan
- Department of Neurosurgery, Pamukkale University Faculty of Medicine, Denizli, Turkey
| | - Özgür Kurt
- Department of Microbiology, Acibadem Mehmet Ali Aydinlar University School of Medicine, Istanbul, Turkey
| | - İbrahim Türkçüer
- Emergency Department, Pamukkale University Medical Faculty, Denizli, Turkey
| | - Aylin Köseler
- Department of Biophysics, Pamukkale University Faculty of Medicine, Denizli, Turkey
| | - Matteo Pellegrini
- Molecular, Cell and Developmental Biology, University of California, Los Angeles, California, United States
| |
Collapse
|
8
|
Gumeni S, Lamprou M, Evangelakou Z, Manola MS, Trougakos IP. Sustained Nrf2 Overexpression-Induced Metabolic Deregulation Can Be Attenuated by Modulating Insulin/Insulin-like Growth Factor Signaling. Cells 2023; 12:2650. [PMID: 37998385 PMCID: PMC10670064 DOI: 10.3390/cells12222650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023] Open
Abstract
The modulation of insulin/insulin-like growth factor signaling (IIS) is associated with altered nutritional and metabolic states. The Drosophila genome encodes eight insulin-like peptides, whose activity is regulated by a group of secreted factors, including Ecdysone-inducible gene L2 (ImpL2), which acts as a potent IIS inhibitor. We recently reported that cncC (cncC/Nrf2), the fly ortholog of Nrf2, is a positive transcriptional regulator of ImpL2, as part of a negative feedback loop aiming to suppress cncC/Nrf2 activity. This finding correlated with our observation that sustained cncC/Nrf2 overexpression/activation (cncCOE; a condition that signals organismal stress) deregulates IIS, causing hyperglycemia, the exhaustion of energy stores in flies' tissues, and accelerated aging. Here, we extend these studies in Drosophila by assaying the functional implication of ImpL2 in cncCOE-mediated metabolic deregulation. We found that ImpL2 knockdown (KD) in cncCOE flies partially reactivated IIS, attenuated hyperglycemia and restored tissue energetics. Moreover, ImpL2 KD largely suppressed cncCOE-mediated premature aging. In support, pharmacological treatment of cncCOE flies with Metformin, a first-line medication for type 2 diabetes, restored (dose-dependently) IIS functionality and extended cncCOE flies' longevity. These findings exemplify the effect of chronic stress in predisposition to diabetic phenotypes, indicating the potential prophylactic role of maintaining normal IIS functionality.
Collapse
Affiliation(s)
| | | | | | | | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece; (S.G.); (M.L.); (Z.E.); (M.S.M.)
| |
Collapse
|
9
|
Papadaki V, Erpapazoglou Z, Kokkori M, Rogalska M, Potiri M, Birladeanu A, Tsakiri E, Ashktorab H, Smoot D, Papanikolopoulou K, Samiotaki M, Kafasla P. IQGAP1 mediates the communication between the nucleus and the mitochondria via NDUFS4 alternative splicing. NAR Cancer 2023; 5:zcad046. [PMID: 37636315 PMCID: PMC10448856 DOI: 10.1093/narcan/zcad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 08/29/2023] Open
Abstract
Constant communication between mitochondria and nucleus ensures cellular homeostasis and adaptation to mitochondrial stress. Anterograde regulatory pathways involving a large number of nuclear-encoded proteins control mitochondrial biogenesis and functions. Such functions are deregulated in cancer cells, resulting in proliferative advantages, aggressive disease and therapeutic resistance. Transcriptional networks controlling the nuclear-encoded mitochondrial genes are known, however alternative splicing (AS) regulation has not been implicated in this communication. Here, we show that IQGAP1, a scaffold protein regulating AS of distinct gene subsets in gastric cancer cells, participates in AS regulation that strongly affects mitochondrial respiration. Combined proteomic and RNA-seq analyses of IQGAP1KO and parental cells show that IQGAP1KO alters an AS event of the mitochondrial respiratory chain complex I (CI) subunit NDUFS4 and downregulates a subset of CI subunits. In IQGAP1KO cells, CI intermediates accumulate, resembling assembly deficiencies observed in patients with Leigh syndrome bearing NDUFS4 mutations. Mitochondrial CI activity is significantly lower in KO compared to parental cells, while exogenous expression of IQGAP1 reverses mitochondrial defects of IQGAP1KO cells. Our work sheds light to a novel facet of IQGAP1 in mitochondrial quality control that involves fine-tuning of CI activity through AS regulation in gastric cancer cells relying highly on mitochondrial respiration.
Collapse
Affiliation(s)
- Vasiliki Papadaki
- Institute for Fundamental Biomedical Research, BSRC “Al. Fleming”, Vari 16672, Greece
| | - Zoi Erpapazoglou
- Institute for Fundamental Biomedical Research, BSRC “Al. Fleming”, Vari 16672, Greece
| | - Maria Kokkori
- Institute for Fundamental Biomedical Research, BSRC “Al. Fleming”, Vari 16672, Greece
| | - Malgorzata Ewa Rogalska
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Myrto Potiri
- Institute for Fundamental Biomedical Research, BSRC “Al. Fleming”, Vari 16672, Greece
| | - Andrada Birladeanu
- Institute for Fundamental Biomedical Research, BSRC “Al. Fleming”, Vari 16672, Greece
| | - Eleni N Tsakiri
- Institute for Fundamental Biomedical Research, BSRC “Al. Fleming”, Vari 16672, Greece
| | - Hassan Ashktorab
- Department of Medicine and Cancer Center, Howard University, Washington, DC, USA
| | - Duane T Smoot
- Department of Medicine, Meharry Medical Center, Nashville, TN, USA
| | | | | | - Panagiota Kafasla
- Institute for Fundamental Biomedical Research, BSRC “Al. Fleming”, Vari 16672, Greece
| |
Collapse
|
10
|
Wu Y, Hu Q, Wang X, Cheng H, Yu J, Li Y, Luo J, Zhang Q, Wu J, Zhang G. Pterostilbene attenuates microglial inflammation and brain injury after intracerebral hemorrhage in an OPA1-dependent manner. Front Immunol 2023; 14:1172334. [PMID: 37614235 PMCID: PMC10442819 DOI: 10.3389/fimmu.2023.1172334] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/21/2023] [Indexed: 08/25/2023] Open
Abstract
Microglial activation and subsequent inflammatory responses are critical processes in aggravating secondary brain injury after intracerebral hemorrhage (ICH). Pterostilbene (3', 5'-dimethoxy-resveratrol) features antioxidant and anti-inflammation properties and has been proven neuroprotective. In this study, we aimed to explore whether Pterostilbene could attenuate neuroinflammation after experimental ICH, as well as underlying molecular mechanisms. Here, a collagenase-induced ICH in mice was followed by intraperitoneal injection of Pterostilbene (10 mg/kg) or vehicle once daily. PTE-treated mice performed significantly better than vehicle-treated controls in the neurological behavior test after ICH. Furthermore, our results showed that Pterostilbene reduced lesion volume and neural apoptosis, and alleviated blood-brain barrier (BBB) damage and brain edema. RNA sequencing and subsequent experiments showed that ICH-induced neuroinflammation and microglial proinflammatory activities were markedly suppressed by Pterostilbene treatment. With regard to the mechanisms, we identified that the anti-inflammatory effects of Pterostilbene relied on remodeling mitochondrial dynamics in microglia. Concretely, Pterostilbene reversed the downregulation of OPA1, promoted mitochondrial fusion, restored normal mitochondrial morphology, and reduced mitochondrial fragmentation and superoxide in microglia after OxyHb treatment. Moreover, conditionally deleting microglial OPA1 in mice largely countered the effects of Pterostilbene on alleviating microglial inflammation, BBB damage, brain edema and neurological impairment following ICH. In summary, we provided the first evidence that Pterostilbene is a promising agent for alleviating neuroinflammation and brain injury after ICH in mice, and uncovered a novel regulatory relationship between Pterostilbene and OPA1-mediated mitochondrial fusion.
Collapse
Affiliation(s)
- Yang Wu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qing Hu
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Xiaoliang Wang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hongbo Cheng
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jiegang Yu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yang Li
- Department of Neurosurgery, The General Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jianing Luo
- Department of Neurosurgery, West Theater General Hospital, Chengdu, Sichuan, China
| | - Qingjiu Zhang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jianliang Wu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Gengshen Zhang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
11
|
Zhao Z, Dong R, You Q, Jiang Z. Medicinal Chemistry Insights into the Development of Small-Molecule Kelch-Like ECH-Associated Protein 1-Nuclear Factor Erythroid 2-Related Factor 2 (Keap1-Nrf2) Protein-Protein Interaction Inhibitors. J Med Chem 2023. [PMID: 37441735 DOI: 10.1021/acs.jmedchem.3c00712] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Oxidative stress has been implicated in a wide range of pathological conditions. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) exerts a central role in regulating the cellular defense system against oxidative and electrophilic insults. Nonelectrophilic inhibition of the protein-protein interaction (PPI) between Kelch-like ECH-associated protein 1 (Keap1) and Nrf2 has become a promising approach to activate Nrf2. Recently, multiple drug discovery strategies have facilitated the development of small-molecule Keap1-Nrf2 PPI inhibitors with potent activity and favorable drug-like properties. In this Perspective, we summarize the latest progress of small-molecule Keap1-Nrf2 PPI inhibitors from medicinal chemistry insights and discuss future prospects and challenges in this field.
Collapse
Affiliation(s)
- Ziquan Zhao
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ruitian Dong
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhengyu Jiang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
12
|
Rahman SO, Khan T, Iqubal A, Agarwal S, Akhtar M, Parvez S, Shah ZA, Najmi AK. Association between insulin and Nrf2 signalling pathway in Alzheimer's disease: A molecular landscape. Life Sci 2023:121899. [PMID: 37394097 DOI: 10.1016/j.lfs.2023.121899] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/17/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2023]
Abstract
Insulin, a well-known hormone, has been implicated as a regulator of blood glucose levels for almost a century now. Over the past few decades, the non-glycemic actions of insulin i.e. neuronal growth and proliferation have been extensively studied. In 2005, Dr. Suzanne de La Monte and her team reported that insulin might be involved in the pathogenesis of Alzheimer's Disease (AD) and thus coined a term "Type-3 diabetes" This hypothesis was supported by several subsequent studies. The nuclear factor erythroid 2- related factor 2 (Nrf2) triggers a cascade of events under the regulation of distinct mechanisms including protein stability, phosphorylation and nuclear cytoplasmic shuttling, finally leading to the protection against oxidative damage. The Nrf2 pathway has been investigated extensively in relevance to neurodegenerative disorders, particularly AD. Many studies have indicated a strong correlation between insulin and Nrf2 signalling pathways both in the periphery and the brainbut merely few of them have focused on elucidating their inter-connective role in AD. The present review emphasizes key molecular pathways that correlate the role of insulin with Nrf2 during AD. The review has also identified key unexplored areas that could be investigated in future to further establish the insulin and Nrf2 influence in AD.
Collapse
Affiliation(s)
- Syed Obaidur Rahman
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Tahira Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Shivani Agarwal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohd Akhtar
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Suhel Parvez
- Neurobehavioral Pharmacology Laboratory, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Zahoor Ahmad Shah
- Department of Medicinal and Biological Chemistry, University of Toledo, 3000 Arlington Avenue, Toledo, OH 43614, USA
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
13
|
Leonard ER, Marques ES, Roy MA, Conlin SM, Ranjan R, Timme-Laragy AR. Dietary exposure to the food preservative tert-Butylhydroquinone (tBHQ) impairs zebrafish (Danio rerio) survival, growth, organ development, and gene expression in Nrf2a-dependent and independent ways. Food Chem Toxicol 2023; 176:113788. [PMID: 37075880 PMCID: PMC10213143 DOI: 10.1016/j.fct.2023.113788] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/04/2023] [Accepted: 04/15/2023] [Indexed: 04/21/2023]
Abstract
Tert-Butylhydroquinone (tBHQ), a preservative used to prevent oxidative deterioration of oil, fat, and meat products, has been linked to both chemoprotective and adverse effects. This study investigates the impact of dietary tBHQ consumption on survival, growth parameters, organ development, and gene expression in zebrafish (Danio rerio). As tBHQ activates the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2a), a zebrafish line with a mutation in the DNA-binding domain of Nrf2a was used to identify Nrf2a-dependent vs independent effects. Homozygous Nrf2a wildtype (wt) and mutant (m) larvae were fed a diet containing 5% tBHQ or a control diet. Survival and growth parameters were assessed at 15 days and at 5 months, and samples were collected for RNA sequencing at 5 months. Dietary exposure to tBHQ throughout the larval and juvenile periods negatively impacted growth and survival. RNA-seq analysis found differentially expressed genes related to growth and development and upregulation of several immune system-related pathways. The findings herein demonstrate that dietary tBHQ exposure may impair growth and survival in both Nrf2a dependent and independent manners.
Collapse
Affiliation(s)
- Emily R Leonard
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Emily S Marques
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Monika A Roy
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA; Biotechnology Training Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Sarah M Conlin
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Ravi Ranjan
- Genomics Resource Laboratory, Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Alicia R Timme-Laragy
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| |
Collapse
|
14
|
Zerbato B, Gobbi M, Ludwig T, Brancato V, Pessina A, Brambilla L, Wegner A, Chiaradonna F. PGM3 inhibition shows cooperative effects with erastin inducing pancreatic cancer cell death via activation of the unfolded protein response. Front Oncol 2023; 13:1125855. [PMID: 37260977 PMCID: PMC10227458 DOI: 10.3389/fonc.2023.1125855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/26/2023] [Indexed: 06/02/2023] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with a poor patient prognosis. Remarkably, PDAC is one of the most aggressive and deadly tumor types and is notorious for its resistance to all types of treatment. PDAC resistance is frequently associated with a wide metabolic rewiring and in particular of the glycolytic branch named Hexosamine Biosynthetic Pathway (HBP). Methods Transcriptional and bioinformatics analysis were performed to obtain information about the effect of the HBP inhibition in two cell models of PDAC. Cell count, western blot, HPLC and metabolomics analyses were used to determine the impact of the combined treatment between an HBP's Phosphoglucomutase 3 (PGM3) enzyme inhibitor, named FR054, and erastin (ERA), a recognized ferroptosis inducer, on PDAC cell growth and survival. Results Here we show that the combined treatment applied to different PDAC cell lines induces a significant decrease in cell proliferation and a concurrent enhancement of cell death. Furthermore, we show that this combined treatment induces Unfolded Protein Response (UPR), NFE2 Like BZIP Transcription Factor 2 (NRF2) activation, a change in cellular redox state, a greater sensitivity to oxidative stress, a major dependence on glutamine metabolism, and finally ferroptosis cell death. Conclusion Our study discloses that HBP inhibition enhances, via UPR activation, the ERA effect and therefore might be a novel anticancer mechanism to be exploited as PDAC therapy.
Collapse
Affiliation(s)
- Barbara Zerbato
- Tumor Biochemistry, Biotechnology and Biosciences, University of Milano Bicocca, Milan, Italy
| | - Maximilian Gobbi
- Tumor Biochemistry, Biotechnology and Biosciences, University of Milano Bicocca, Milan, Italy
| | - Tobias Ludwig
- Pathometabolism, Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Virginia Brancato
- Tumor Biochemistry, Biotechnology and Biosciences, University of Milano Bicocca, Milan, Italy
- Center for Genomic Science IIT@SEMM, Italian Institute of Technology, Milan, Italy
| | - Alex Pessina
- Tumor Biochemistry, Biotechnology and Biosciences, University of Milano Bicocca, Milan, Italy
| | - Luca Brambilla
- Tumor Biochemistry, Biotechnology and Biosciences, University of Milano Bicocca, Milan, Italy
| | - Andre Wegner
- Pathometabolism, Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Ferdinando Chiaradonna
- Tumor Biochemistry, Biotechnology and Biosciences, University of Milano Bicocca, Milan, Italy
| |
Collapse
|
15
|
Jéssica Paloma ÁR, Juan Rafael RE. Activation of the Cap'n'collar C pathway (Nrf2 pathway in vertebrates) signaling in insulin pathway compromised Drosophila melanogaster flies ameliorates the diabetic state upon pro-oxidant conditions. Gen Comp Endocrinol 2023; 335:114229. [PMID: 36781022 DOI: 10.1016/j.ygcen.2023.114229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
The insulin pathway is a crucial central system for metabolism and growth. The Nrf2 signaling pathway functions to counteract oxidative stress. Here we sought to study the consequences of an oxidative stress challenge to insulin compromised and control adult flies of different ages, varying the activation state of the Nrf2 pathway in flies, the Cap'n'collar C pathway. For this, we employed two different pro-oxidative conditions: 3 % hydrogen peroxide or 20 mM paraquat laced in the food. In both cases, wild type (control) flies die within a few days, yet there are significant differences between males and females, and also within flies of different ages (seven versus thirty days old flies). We repeated the same conditions with young (seven days old) flies that were heterozygous for a loss-of-function mutation in Keap1. There were no significant differences. We then tested two hypomorphic viable conditions of the insulin pathway (heteroallelic combination for the insulin receptor and the S6 Kinase), challenged in the same way: Whereas they also die in the pro-oxidant conditions, they fare significantly better when heterozygous for Keap1, in contrast to controls. We also monitored locomotion in all of these conditions, and, in general, found significant differences between flies without and with a mutant allele (heterozygous) for Keap1. Our results point to altered oxidative stress conditions in diabetic flies. These findings suggest that modest activation of the Cap'n'collar C pathway may be a treatment for diabetic symptoms.
Collapse
Affiliation(s)
- Álvarez-Rendón Jéssica Paloma
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Programa de posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Mexico
| | - Riesgo-Escovar Juan Rafael
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Programa de posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Mexico.
| |
Collapse
|
16
|
Roberts JA, Rainbow RD, Sharma P. Mitigation of Cardiovascular Disease and Toxicity through NRF2 Signalling. Int J Mol Sci 2023; 24:ijms24076723. [PMID: 37047696 PMCID: PMC10094784 DOI: 10.3390/ijms24076723] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Cardiovascular toxicity and diseases are phenomena that have a vastly detrimental impact on morbidity and mortality. The pathophysiology driving the development of these conditions is multifactorial but commonly includes the perturbance of reactive oxygen species (ROS) signalling, iron homeostasis and mitochondrial bioenergetics. The transcription factor nuclear factor erythroid 2 (NFE2)-related factor 2 (NRF2), a master regulator of cytoprotective responses, drives the expression of genes that provide resistance to oxidative, electrophilic and xenobiotic stresses. Recent research has suggested that stimulation of the NRF2 signalling pathway can alleviate cardiotoxicity and hallmarks of cardiovascular disease progression. However, dysregulation of NRF2 dynamic responses can be severely impacted by ageing processes and off-target toxicity from clinical medicines including anthracycline chemotherapeutics, rendering cells of the cardiovascular system susceptible to toxicity and subsequent tissue dysfunction. This review addresses the current understanding of NRF2 mechanisms under homeostatic and cardiovascular pathophysiological conditions within the context of wider implications for this diverse transcription factor.
Collapse
Affiliation(s)
- James A. Roberts
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Richard D. Rainbow
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
- Liverpool Centre for Cardiovascular Science, Liverpool L7 8TX, UK
| | - Parveen Sharma
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
- Liverpool Centre for Cardiovascular Science, Liverpool L7 8TX, UK
| |
Collapse
|
17
|
Simigdala N, Chalari A, Sklirou AD, Chavdoula E, Papafotiou G, Melissa P, Kafalidou A, Paschalidis N, Pateras IS, Athanasiadis E, Konstantopoulos D, Trougakos IP, Klinakis A. Loss of Kmt2c in vivo leads to EMT, mitochondrial dysfunction and improved response to lapatinib in breast cancer. Cell Mol Life Sci 2023; 80:100. [PMID: 36933062 PMCID: PMC10024673 DOI: 10.1007/s00018-023-04734-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 01/22/2023] [Accepted: 02/22/2023] [Indexed: 03/19/2023]
Abstract
Deep sequencing of human tumours has uncovered a previously unappreciated role for epigenetic regulators in tumorigenesis. H3K4 methyltransferase KMT2C/MLL3 is mutated in several solid malignancies, including more than 10% of breast tumours. To study the tumour suppressor role of KMT2C in breast cancer, we generated mouse models of Erbb2/Neu, Myc or PIK3CA-driven tumorigenesis, in which the Kmt2c locus is knocked out specifically in the luminal lineage of mouse mammary glands using the Cre recombinase. Kmt2c knock out mice develop tumours earlier, irrespective of the oncogene, assigning a bona fide tumour suppressor role for KMT2C in mammary tumorigenesis. Loss of Kmt2c induces extensive epigenetic and transcriptional changes, which lead to increased ERK1/2 activity, extracellular matrix re-organization, epithelial-to-mesenchymal transition and mitochondrial dysfunction, the latter associated with increased reactive oxygen species production. Loss of Kmt2c renders the Erbb2/Neu-driven tumours more responsive to lapatinib. Publicly available clinical datasets revealed an association of low Kmt2c gene expression and better long-term outcome. Collectively, our findings solidify the role of KMT2C as a tumour suppressor in breast cancer and identify dependencies that could be therapeutically amenable.
Collapse
Affiliation(s)
- Nikiana Simigdala
- Present Address: Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Anna Chalari
- Present Address: Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Aimilia D. Sklirou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelia Chavdoula
- Present Address: Biomedical Research Foundation Academy of Athens, Athens, Greece
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH USA
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH USA
| | - George Papafotiou
- Present Address: Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Pelagia Melissa
- Present Address: Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Aimilia Kafalidou
- Present Address: Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Nikolaos Paschalidis
- Present Address: Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Ioannis S. Pateras
- 2nd Department of Pathology, Medical School, “Attikon” University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Apostolos Klinakis
- Present Address: Biomedical Research Foundation Academy of Athens, Athens, Greece
| |
Collapse
|
18
|
The Regulatory Effect of Phytochemicals on Chronic Diseases by Targeting Nrf2-ARE Signaling Pathway. Antioxidants (Basel) 2023; 12:antiox12020236. [PMID: 36829795 PMCID: PMC9952802 DOI: 10.3390/antiox12020236] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
Redox balance is essential to maintain the body's normal metabolism. Once disrupted, it may lead to various chronic diseases, such as diabetes, neurodegenerative diseases, cardiovascular diseases, inflammatory diseases, cancer, aging, etc. Oxidative stress can cause or aggravate a series of pathological processes. Inhibition of oxidative stress and related pathological processes can help to ameliorate these chronic diseases, which have been found to be associated with Nrf2 activation. Nrf2 activation can not only regulate the expression of a series of antioxidant genes that reduce oxidative stress and its damage, but also directly regulate genes related to the above-mentioned pathological processes to counter the corresponding changes. Therefore, targeting Nrf2 has great potential for the prevention or treatment of chronic diseases, and many natural phytochemicals have been reported as Nrf2 activators although the defined mechanisms remain to be elucidated. This review article focuses on the possible mechanism of Nrf2 activation by natural phytochemicals in the prevention or treatment of chronic diseases and the regulation of oxidative stress. Moreover, the current clinical trials of phytochemical-originated drug discovery by targeting the Nrf2-ARE pathway were also summarized; the outcomes or the relationship between phytochemicals and chronic diseases prevention are finally analyzed to propose the future research strategies and prospective.
Collapse
|
19
|
Crisman E, Duarte P, Dauden E, Cuadrado A, Rodríguez-Franco MI, López MG, León R. KEAP1-NRF2 protein-protein interaction inhibitors: Design, pharmacological properties and therapeutic potential. Med Res Rev 2023; 43:237-287. [PMID: 36086898 PMCID: PMC10087726 DOI: 10.1002/med.21925] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 06/27/2022] [Accepted: 08/18/2022] [Indexed: 02/04/2023]
Abstract
The transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) is considered the master regulator of the phase II antioxidant response. It controls a plethora of cytoprotective genes related to oxidative stress, inflammation, and protein homeostasis, among other processes. Activation of these pathways has been described in numerous pathologies including cancer, cardiovascular, respiratory, renal, digestive, metabolic, autoimmune, and neurodegenerative diseases. Considering the increasing interest of discovering novel NRF2 activators due to its clinical application, initial efforts were devoted to the development of electrophilic drugs able to induce NRF2 nuclear accumulation by targeting its natural repressor protein Kelch-like ECH-associated protein 1 (KEAP1) through covalent modifications on cysteine residues. However, off-target effects of these drugs prompted the development of an innovative strategy, the search of KEAP1-NRF2 protein-protein interaction (PPI) inhibitors. These innovative activators are proposed to target NRF2 in a more selective way, leading to potentially improved drugs with the application for a variety of diseases that are currently under investigation. In this review, we summarize known KEAP1-NRF2 PPI inhibitors to date and the bases of their design highlighting the most important features of their respective interactions. We also discuss the preclinical pharmacological properties described for the most promising compounds.
Collapse
Affiliation(s)
- Enrique Crisman
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid, Spain.,Instituto de Investigación Sanitaria La Princesa, Hospital Universitario de la Princesa, Madrid, Spain.,Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Pablo Duarte
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid, Spain.,Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Esteban Dauden
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Antonio Cuadrado
- Departmento de Bioquímica, Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Instituto de Investigaciones Biomédicas 'Alberto Sols' UAM-CSIC, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Manuela G López
- Instituto de Investigación Sanitaria La Princesa, Hospital Universitario de la Princesa, Madrid, Spain.,Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Rafael León
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid, Spain
| |
Collapse
|
20
|
Hiebert P, Martyts A, Schwestermann J, Janke K, Hafner J, Boukamp P, Mazza E, Werner S. Activation of Nrf2 in fibroblasts promotes a skin aging phenotype via an Nrf2-miRNA-collagen axis. Matrix Biol 2022; 113:39-60. [PMID: 36367485 DOI: 10.1016/j.matbio.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 12/30/2022]
Abstract
Aging is associated with progressive skin fragility and a tendency to tear, which can lead to severe clinical complications. The transcription factor NRF2 is a key regulator of the cellular antioxidant response, and pharmacological NRF2 activation is a promising strategy for the prevention of age-related diseases. Using a combination of molecular and cellular biology, histology, imaging and biomechanical studies we show, however, that constitutive genetic activation of Nrf2 in fibroblasts of mice suppresses collagen and elastin expression, resulting in reduced skin strength as seen in aged mice. Mechanistically, the "aging matrisome" results in part from direct Nrf2-mediated overexpression of a network of microRNAs that target mRNAs of major skin collagens and other matrix components. Bioinformatics and functional studies revealed high NRF2 activity in aged human fibroblasts in 3D skin equivalents and human skin biopsies, highlighting the translational relevance of the functional mouse data. Together, these results identify activated NRF2 as a promoter of age-related molecular and biomechanical skin features.
Collapse
Affiliation(s)
- Paul Hiebert
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich 8093, Switzerland.
| | - Anastasiya Martyts
- Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zurich, Zurich 8092, Switzerland
| | - Jonas Schwestermann
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich 8093, Switzerland
| | - Katharina Janke
- Department of Environmentally-Induced Skin and Lung Aging, IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf 40225, Germany
| | - Jürg Hafner
- Department of Dermatology, University Hospital Zurich, Zurich 8091, Switzerland
| | - Petra Boukamp
- Department of Environmentally-Induced Skin and Lung Aging, IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf 40225, Germany
| | - Edoardo Mazza
- Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zurich, Zurich 8092, Switzerland
| | - Sabine Werner
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich 8093, Switzerland
| |
Collapse
|
21
|
Papanagnou E, Gumeni S, Sklirou AD, Rafeletou A, Terpos E, Keklikoglou K, Kastritis E, Stamatelopoulos K, Sykiotis GP, Dimopoulos MA, Trougakos IP. Autophagy activation can partially rescue proteasome dysfunction-mediated cardiac toxicity. Aging Cell 2022; 21:e13715. [PMID: 36259256 PMCID: PMC9649605 DOI: 10.1111/acel.13715] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/01/2022] [Accepted: 08/31/2022] [Indexed: 01/25/2023] Open
Abstract
The ubiquitin-proteasome pathway and its functional interplay with other proteostatic and/or mitostatic modules are crucial for cell viability, especially in post-mitotic cells like cardiomyocytes, which are constantly exposed to proteotoxic, metabolic, and mechanical stress. Consistently, treatment of multiple myeloma patients with therapeutic proteasome inhibitors may induce cardiac failure; yet the effects promoted by heart-targeted proteasome dysfunction are not completely understood. We report here that heart-targeted proteasome knockdown in the fly experimental model results in increased proteome instability and defective mitostasis, leading to disrupted cardiac activity, systemic toxicity, and reduced longevity. These phenotypes were partially rescued by either heart targeted- or by dietary restriction-mediated activation of autophagy. Supportively, activation of autophagy by Rapamycin or Metformin administration in flies treated with proteasome inhibitors reduced proteome instability, partially restored mitochondrial function, mitigated cardiotoxicity, and improved flies' longevity. These findings suggest that autophagic inducers represent a novel promising intervention against proteasome inhibitor-induced cardiovascular complications.
Collapse
Affiliation(s)
- Eleni‐Dimitra Papanagnou
- Department of Cell Biology and Biophysics, Faculty of BiologyNational and Kapodistrian University of AthensAthensGreece
| | - Sentiljana Gumeni
- Department of Cell Biology and Biophysics, Faculty of BiologyNational and Kapodistrian University of AthensAthensGreece
| | - Aimilia D. Sklirou
- Department of Cell Biology and Biophysics, Faculty of BiologyNational and Kapodistrian University of AthensAthensGreece
| | - Alexandra Rafeletou
- Department of Cell Biology and Biophysics, Faculty of BiologyNational and Kapodistrian University of AthensAthensGreece
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of MedicineNational and Kapodistrian University of AthensAthensGreece
| | - Kleoniki Keklikoglou
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research (HCMR)CreteGreece,Biology DepartmentUniversity of CreteHeraklionGreece
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, School of MedicineNational and Kapodistrian University of AthensAthensGreece
| | - Kimon Stamatelopoulos
- Department of Clinical Therapeutics, School of MedicineNational and Kapodistrian University of AthensAthensGreece
| | - Gerasimos P. Sykiotis
- Service of Endocrinology, Diabetology and MetabolismLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Meletios A. Dimopoulos
- Department of Clinical Therapeutics, School of MedicineNational and Kapodistrian University of AthensAthensGreece
| | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics, Faculty of BiologyNational and Kapodistrian University of AthensAthensGreece
| |
Collapse
|
22
|
Esteras N, Abramov AY. Nrf2 as a regulator of mitochondrial function: Energy metabolism and beyond. Free Radic Biol Med 2022; 189:136-153. [PMID: 35918014 DOI: 10.1016/j.freeradbiomed.2022.07.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/20/2022] [Accepted: 07/19/2022] [Indexed: 12/14/2022]
Abstract
Mitochondria are unique and essential organelles that mediate many vital cellular processes including energy metabolism and cell death. The transcription factor Nrf2 (NF-E2 p45-related factor 2) has emerged in the last few years as an important modulator of multiple aspects of mitochondrial function. Well-known for controlling cellular redox homeostasis, the cytoprotective effects of Nrf2 extend beyond its ability to regulate a diverse network of antioxidant and detoxification enzymes. Here, we review the role of Nrf2 in the regulation of mitochondrial function and structure. We focus on Nrf2 involvement in promoting mitochondrial quality control and regulation of basic aspects of mitochondrial function, including energy production, reactive oxygen species generation, calcium signalling, and cell death induction. Given the importance of mitochondria in the development of multiple diseases, these findings reinforce the pharmacological activation of Nrf2 as an attractive strategy to counteract mitochondrial dysfunction.
Collapse
Affiliation(s)
- Noemí Esteras
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, UK.
| | - Andrey Y Abramov
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, UK.
| |
Collapse
|
23
|
Kitamura H, Takeda H, Motohashi H. Genetic, Metabolic and Immunological Features of Cancers with NRF2 Addiction. FEBS Lett 2022; 596:1981-1993. [PMID: 35899372 DOI: 10.1002/1873-3468.14458] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/18/2022] [Indexed: 11/10/2022]
Abstract
Nuclear factor erythroid-derived 2-like 2 (NRF2) is a master transcription factor that coordinately regulates the expression of many cytoprotective genes and plays a central role in defense mechanisms against oxidative and electrophilic insults. Although increased NRF2 activity is principally beneficial for our health, NRF2 activation in cancer cells is detrimental. Many human cancers exhibit persistent NRF2 activation and such cancer cells rely on NRF2 for most of their malignant characteristics, such as therapeutic resistance and aggressive tumorigenesis, and thus fall into NRF2 addiction. The persistent activation of NRF2 confers great advantages on cancer cells, whereas it is not tolerated by normal cells, suggesting that certain requirements are necessary for a cell to exploit NRF2 and evolve into malignant a cancer cell. In this review, recent reports and data on the genetic, metabolic and immunological features of NRF2-activated cancer cells are summarized, and prerequisites for NRF2 addiction in cancer cells and their therapeutic applications are discussed.
Collapse
Affiliation(s)
- Hiroshi Kitamura
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Haruna Takeda
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Hozumi Motohashi
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| |
Collapse
|
24
|
Manola MS, Gumeni S, Trougakos IP. Differential Dose- and Tissue-Dependent Effects of foxo on Aging, Metabolic and Proteostatic Pathways. Cells 2021; 10:3577. [PMID: 34944088 PMCID: PMC8700554 DOI: 10.3390/cells10123577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 02/07/2023] Open
Abstract
Aging is the gradual deterioration of physiological functions that culminates in death. Several studies across a wide range of model organisms have revealed the involvement of FOXO (forkhead box, class O) transcription factors in orchestrating metabolic homeostasis, as well as in regulating longevity. To study possible dose- or tissue-dependent effects of sustained foxo overexpression, we utilized two different Drosophila transgenic lines expressing high and relatively low foxo levels and overexpressed foxo, either ubiquitously or in a tissue-specific manner. We found that ubiquitous foxo overexpression (OE) accelerated aging, induced the early onset of age-related phenotypes, increased sensitivity to thermal stress, and deregulated metabolic and proteostatic pathways; these phenotypes were more intense in transgenic flies expressing high levels of foxo. Interestingly, there is a defined dosage of foxo OE in muscles and cardiomyocytes that shifts energy resources into longevity pathways and thus ameliorates not only tissue but also organismal age-related defects. Further, we found that foxo OE stimulates in an Nrf2/cncC dependent-manner, counteracting proteostatic pathways, e.g., the ubiquitin-proteasome pathway, which is central in ameliorating the aberrant foxo OE-mediated toxicity. These findings highlight the differential dose- and tissue-dependent effects of foxo on aging, metabolic and proteostatic pathways, along with the foxo-Nrf2/cncC functional crosstalk.
Collapse
Affiliation(s)
| | | | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece; (M.S.M.); (S.G.)
| |
Collapse
|
25
|
Dina E, Sklirou AD, Chatzigeorgiou S, Manola MS, Cheilari A, Louka XP, Argyropoulou A, Xynos N, Skaltsounis AL, Aligiannis N, Trougakos IP. An enriched polyphenolic extract obtained from the by-product of Rosa damascena hydrodistillation activates antioxidant and proteostatic modules. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 93:153757. [PMID: 34619431 DOI: 10.1016/j.phymed.2021.153757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 07/14/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Prolonged maintenance of proteome stability and functionality (proteostasis) is of emerging significance in aging retardation and healthspan. PURPOSE An enriched polyphenolic extract obtained from the hydrodistillation of rose petals was tested for its capacity to activate the proteostasis network modules, and thus modulate health- and/or lifespan at the cellular and whole organism level. METHODS The aqueous extract that remained after the hydrodistillation of Rosa damascena petals, was processed with a polystyrene-FPX66 adsorption resin and sequentially fractionated by FCPC. NMR and UHPLC-HRMS analyses revealed the presence of 28 metabolites, mainly glycosides of kaempferol and quercetin. RESULTS The extract showed high in vitro antioxidant activity and was not toxic in normal human skin fibroblasts, while it promoted the upregulation of NRF2-induced antioxidant genes and main proteostatic modules. Consistently, supplementation of this extract in Drosophila flies' culture medium induced a cncC/NRF2-mediated upregulation of antioxidant and proteostatic modules. Prolonged administration of the extract in flies' culture medium was not toxic and did not affect food intake rate or fecundity; also, it delayed the age-related decline of stress tolerance and locomotion performance (neuromuscular functionality) and dose-dependently extended flies' lifespan. CONCLUSION Our findings indicate that the enriched polyphenolic extract obtained from the residue of R. damascena hydrodistillation activates cytoprotective cellular modules that, likely, contribute to its potential anti-aging properties.
Collapse
Affiliation(s)
- Evanthia Dina
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece
| | - Aimilia D Sklirou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15784, Greece
| | - Sofia Chatzigeorgiou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15784, Greece
| | - Maria S Manola
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15784, Greece
| | - Antigoni Cheilari
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece
| | - Xanthippi P Louka
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15784, Greece
| | - Aikaterini Argyropoulou
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece
| | - Nikos Xynos
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece
| | - Alexios-Leandros Skaltsounis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece
| | - Nektarios Aligiannis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece.
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15784, Greece.
| |
Collapse
|
26
|
The KEAP1-NRF2 System in Healthy Aging and Longevity. Antioxidants (Basel) 2021; 10:antiox10121929. [PMID: 34943032 PMCID: PMC8750203 DOI: 10.3390/antiox10121929] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 12/25/2022] Open
Abstract
Aging is inevitable, but the inherently and genetically programmed aging process is markedly influenced by environmental factors. All organisms are constantly exposed to various stresses, either exogenous or endogenous, throughout their lives, and the quality and quantity of the stresses generate diverse impacts on the organismal aging process. In the current oxygenic atmosphere on earth, oxidative stress caused by reactive oxygen species is one of the most common and critical environmental factors for life. The Kelch-like ECH-associated protein 1-NFE2-related factor 2 (KEAP1-NRF2) system is a critical defense mechanism of cells and organisms in response to redox perturbations. In the presence of oxidative and electrophilic insults, the thiol moieties of cysteine in KEAP1 are modified, and consequently NRF2 activates its target genes for detoxification and cytoprotection. A number of studies have clarified the contributions of the KEAP1-NRF2 system to the prevention and attenuation of physiological aging and aging-related diseases. Accumulating knowledge to control stress-induced damage may provide a clue for extending healthspan and treating aging-related diseases. In this review, we focus on the relationships between oxidative stress and aging-related alterations in the sensory, glandular, muscular, and central nervous systems and the roles of the KEAP1-NRF2 system in aging processes.
Collapse
|
27
|
Gunderson JT, Peppriell AE, Krout IN, Vorojeikina D, Rand MD. Neuroligin-1 Is a Mediator of Methylmercury Neuromuscular Toxicity. Toxicol Sci 2021; 184:236-251. [PMID: 34546366 DOI: 10.1093/toxsci/kfab114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Methylmercury (MeHg) is a developmental toxicant capable of eliciting neurocognitive and neuromuscular deficits in children with in utero exposure. Previous research in Drosophila melanogaster uncovered that developmental MeHg exposure simultaneously targets the developing musculature and innervating motor neuron in the embryo, along with identifying Drosophila neuroligin 1 (nlg1) as a gene associated with developmental MeHg sensitivity. Nlg1 and its transsynaptic partner neurexin 1 (Nrx1) are critical for axonal arborization and NMJ maturation. We investigated the effects of MeHg exposure on indirect flight muscle (IFM) morphogenesis, innervation, and function via flight assays and monitored the expression of NMJ-associated genes to characterize the role of Nlg1 mediating the neuromuscular toxicity of MeHg. Developmental MeHg exposure reduced the innervation of the IFMs, which corresponded with reduced flight ability. In addition, nlg1 expression was selectively reduced during early metamorphosis, whereas a subsequent increase was observed in other NMJ-associated genes, including nrx1, in late metamorphosis. Developmental MeHg exposure also resulted in persistent reduced expression of most nlg and nrx genes during the first 11 days of adulthood. Transgenic modulation of nlg1 and nrx1 revealed that developing muscle is particularly sensitive to nlg1 levels, especially during the 20-36-h window of metamorphosis with reduced nlg1 expression resulting in adult flight deficits. Muscle-specific overexpression of nlg1 partially rescued MeHg-induced deficits in eclosion and flight. We identified Nlg1 as a muscle-specific, NMJ structural component that can mediate MeHg neuromuscular toxicity resulting from early life exposure.
Collapse
Affiliation(s)
- Jakob T Gunderson
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | - Ashley E Peppriell
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | - Ian N Krout
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | - Daria Vorojeikina
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | - Matthew D Rand
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| |
Collapse
|
28
|
A Role of Stress Sensor Nrf2 in Stimulating Thermogenesis and Energy Expenditure. Biomedicines 2021; 9:biomedicines9091196. [PMID: 34572382 PMCID: PMC8472024 DOI: 10.3390/biomedicines9091196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/01/2021] [Accepted: 09/08/2021] [Indexed: 12/11/2022] Open
Abstract
During chronic cold stress, thermogenic adipocytes generate heat through uncoupling of mitochondrial respiration from ATP synthesis. Recent discovery of various dietary phytochemicals, endogenous metabolites, synthetic compounds, and their molecular targets for stimulating thermogenesis has provided promising strategies to treat or prevent obesity and its associated metabolic diseases. Nuclear factor E2 p45-related factor 2 (Nrf2) is a stress response protein that plays an important role in obesity and metabolisms. However, both Nrf2 activation and Nrf2 inhibition can suppress obesity and metabolic diseases. Here, we summarized and discussed conflicting findings of Nrf2 activities accounting for part of the variance in thermogenesis and energy metabolism. We also discussed the utility of Nrf2-activating mechanisms for their potential applications in stimulating energy expenditure to prevent obesity and improve metabolic deficits.
Collapse
|
29
|
Sukhorukov VS, Mudzhiri NM, Voronkova AS, Baranich TI, Glinkina VV, Illarioshkin SN. Mitochondrial Disorders in Alzheimer's Disease. BIOCHEMISTRY (MOSCOW) 2021; 86:667-679. [PMID: 34225590 DOI: 10.1134/s0006297921060055] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Alzheimer's disease is the most common age-related neurodegenerative disease. Understanding of its etiology and pathogenesis is constantly expanding. Thus, the increasing attention of researchers is directed to the study of the role of mitochondrial disorders. In addition, in recent years, the concept of Alzheimer's disease as a stress-induced disease has begun to form more and more actively. The stress-induced damage to the neuronal system can trigger a vicious circle of pathological processes, among which mitochondrial dysfunctions have a significant place, since mitochondria represent a substantial component in the anti-stress activity of the cell. The study of mitochondrial disorders in Alzheimer's disease is relevant for at least two reasons: first, as important pathogenetic component in this disease; second, due to vital role of mitochondria in formation of the body resistance to various conditions, including stressful ones, throughout the life. This literature review analyzes the results of a number of recent studies assessing potential significance of the mitochondrial disorders in Alzheimer's disease. The probable mechanisms of mitochondrial disorders associated with the development of this disease are considered: bioenergetic dysfunctions, changes in mitochondrial DNA (including assessment of the significance of its haplogroup features), disorders in the dynamics of these organelles, oxidative damage to calcium channels, damage to MAM complexes (membranes associated with mitochondria; mitochondria-associated membranes), disruptions of the mitochondrial quality control system, mitochondrial permeability, etc. The issues of the "primary" or "secondary" mitochondrial damage in Alzheimer's disease are discussed. Potentials for the development of new methods for diagnosis and therapy of mitochondrial disorders in Alzheimer's disease are considered.
Collapse
Affiliation(s)
| | | | | | - Tatiana I Baranich
- Research Center of Neurology, Moscow, 125367, Russia.,Pirogov Russian National Research Medical University (Pirogov Medical University), Moscow, 117997, Russia
| | - Valeria V Glinkina
- Pirogov Russian National Research Medical University (Pirogov Medical University), Moscow, 117997, Russia
| | | |
Collapse
|
30
|
Zhi D, Yang W, Yue J, Xu S, Ma W, Zhao C, Wang X, Wang D. HSF-1 mediated combined ginsenosides ameliorating Alzheimer's disease like symptoms in Caernorhabditis elegans. Nutr Neurosci 2021; 25:2136-2148. [PMID: 34263695 DOI: 10.1080/1028415x.2021.1949791] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
There are few effective medications to treat Alzheimer's disease (AD). It has been suggested that several ginsenosides possess mild or moderate anti-AD activity. In our present work, a preferred combined ginsenosides was shown to have a more significant benefit effect on AD-like symptoms of worm paralysis and hypersensitivity to exogenous 5-HT in C. elegans. The combined ginsenosides can suppress Aβ deposits and Aβ oligomers, alleviating the toxicity induced by Aβ overexpression more effectively than used alone. Its anti-AD effect was partially abolished by hsf-1 RNAi knocked down or hsf-1 inactivation by point mutation, but not by daf-16 or skn-1 RNAi knocked down. Furthermore, it markedly activated hsp-16.2 gene expression downstream of HSF-1. Our results demonstrated that HSF-1 signaling pathway exerts an important role in mediating the therapeutic effect of combined ginsenosides on AD worms. These results provided powerful evidences and theoretical foundation for reshaping medicinal products of ginsenosides and ginseng on prevention of neurodegenerative diseases.
Collapse
Affiliation(s)
- Dejuan Zhi
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - Wenqi Yang
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - Juan Yue
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - Shuaishuai Xu
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - Wenjuan Ma
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - Chengmu Zhao
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - Xin Wang
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - Dongsheng Wang
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| |
Collapse
|
31
|
Saito Y, Kimura W. Roles of Phase Separation for Cellular Redox Maintenance. Front Genet 2021; 12:691946. [PMID: 34306032 PMCID: PMC8299301 DOI: 10.3389/fgene.2021.691946] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022] Open
Abstract
The oxidation reaction greatly alters characteristics of various cellular components. In exchange for efficient energy production, mitochondrial aerobic respiration substantially increases the risk of excess oxidation of cellular biomolecules such as lipids, proteins, nucleic acids, and numerous small molecules. To maintain a physiologically balanced cellular reduction-oxidation (redox) state, cells utilize a variety of molecular machineries including cellular antioxidants and protein degradation complexes such as the ubiquitin-proteasome system or autophagy. In the past decade, biomolecular liquid-liquid phase separation (LLPS) has emerged as a subject of great interest in the biomedical field, as it plays versatile roles in the maintenance of cellular homeostasis. With regard to redox homeostasis, LLPS arose as a major player in both well-characterized and newly emerging redox pathways. LLPS is involved in direct redox imbalance sensing, signal transduction, and transcriptional regulation. Also, LLPS is at play when cells resist redox imbalance through metabolic switching, translational remodeling, activating the DNA damage response, and segregation of vulnerable lipids and proteins. On the other hand, chronic accumulation of phase-separated molecular condensates such as lipid droplets and amyloid causes neurotoxic outcomes. In this review we enumerate recent progress on understanding how cells utilize LLPS to deal with oxidative stress, especially related to cell survival or pathogenesis, and we discuss future research directions for understanding biological phase separation in cellular redox regulation.
Collapse
Affiliation(s)
| | - Wataru Kimura
- Laboratory for Heart Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| |
Collapse
|
32
|
Nrf2 activation induces mitophagy and reverses Parkin/Pink1 knock down-mediated neuronal and muscle degeneration phenotypes. Cell Death Dis 2021; 12:671. [PMID: 34218254 PMCID: PMC8254809 DOI: 10.1038/s41419-021-03952-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 12/15/2022]
Abstract
The balanced functionality of cellular proteostatic modules is central to both proteome stability and mitochondrial physiology; thus, the age-related decline of proteostasis also triggers mitochondrial dysfunction, which marks multiple degenerative disorders. Non-functional mitochondria are removed by mitophagy, including Parkin/Pink1-mediated mitophagy. A common feature of neuronal or muscle degenerative diseases, is the accumulation of damaged mitochondria due to disrupted mitophagy rates. Here, we exploit Drosophila as a model organism to investigate the functional role of Parkin/Pink1 in regulating mitophagy and proteostatic responses, as well as in suppressing degenerative phenotypes at the whole organism level. We found that Parkin or Pink1 knock down in young flies modulated proteostatic components in a tissue-dependent manner, increased cell oxidative load, and suppressed mitophagy in neuronal and muscle tissues, causing mitochondrial aggregation and neuromuscular degeneration. Concomitant to Parkin or Pink1 knock down cncC/Nrf2 overexpression, induced the proteostasis network, suppressed oxidative stress, restored mitochondrial function, and elevated mitophagy rates in flies' tissues; it also, largely rescued Parkin or Pink1 knock down-mediated neuromuscular degenerative phenotypes. Our in vivo findings highlight the critical role of the Parkin/Pink1 pathway in mitophagy, and support the therapeutic potency of Nrf2 (a druggable pathway) activation in age-related degenerative diseases.
Collapse
|
33
|
Dodson M, Anandhan A, Zhang DD, Madhavan L. An NRF2 Perspective on Stem Cells and Ageing. FRONTIERS IN AGING 2021; 2:690686. [PMID: 36213179 PMCID: PMC9536878 DOI: 10.3389/fragi.2021.690686] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/03/2021] [Indexed: 04/24/2023]
Abstract
Redox and metabolic mechanisms lie at the heart of stem cell survival and regenerative activity. NRF2 is a major transcriptional controller of cellular redox and metabolic homeostasis, which has also been implicated in ageing and lifespan regulation. However, NRF2's role in stem cells and their functioning with age is only just emerging. Here, focusing mainly on neural stem cells, which are core to adult brain plasticity and function, we review recent findings that identify NRF2 as a fundamental player in stem cell biology and ageing. We also discuss NRF2-based molecular programs that may govern stem cell state and function with age, and implications of this for age-related pathologies.
Collapse
Affiliation(s)
- Matthew Dodson
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, United States
| | - Annadurai Anandhan
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, United States
- Department of Neurology, University of Arizona, Tucson, AZ, United States
| | - Donna D. Zhang
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, United States
| | - Lalitha Madhavan
- Department of Neurology, University of Arizona, Tucson, AZ, United States
- Evelyn F. McKnight Brain Institute and Bio5 Institute, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
34
|
Burbridge K, Holcombe J, Weavers H. Metabolically active and polyploid renal tissues rely on graded cytoprotection to drive developmental and homeostatic stress resilience. Development 2021; 148:dev197343. [PMID: 33913484 PMCID: PMC8214761 DOI: 10.1242/dev.197343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/29/2021] [Indexed: 12/26/2022]
Abstract
Body tissues are frequently exposed to stress, from toxic byproducts generated during cellular metabolism through to infection or wounding. Although it is well-established that tissues respond to exogenous injury by rapidly upregulating cytoprotective machinery, how energetically demanding tissues - vulnerable to persistent endogenous insult - withstand stress is poorly understood. Here, we show that the cytoprotective factors Nrf2 and Gadd45 act within a specific renal cell subtype, the energetically and biosynthetically active 'principal' cells, to drive stress resilience during Drosophila renal development and homeostasis. Renal tubules lacking Gadd45 exhibit striking morphogenetic defects (with cell death, inflammatory infiltration and reduced ploidy) and accumulate significant DNA damage in post-embryonic life. In parallel, the transcription factor Nrf2 is active during periods of intense renal physiological activity, where it protects metabolically active renal cells from oxidative damage. Despite its constitutive nature, renal cytoprotective activity must be precisely balanced and sustained at modest sub-injury levels; indeed, further experimental elevation dramatically perturbs renal development and function. We suggest that tissues requiring long-term protection must employ restrained cytoprotective activity, whereas higher levels might only be beneficial if activated transiently pre-emptive to exogenous insult.
Collapse
Affiliation(s)
| | | | - Helen Weavers
- School of Biochemistry, Biomedical Sciences, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
35
|
Fan E, Xu Z, Yan J, Wang F, Sun S, Zhang Y, Zheng S, Wang X, Rao Y. Acute exposure to N-Ethylpentylone induces developmental toxicity and dopaminergic receptor-regulated aberrances in zebrafish larvae. Toxicol Appl Pharmacol 2021; 417:115477. [PMID: 33667508 DOI: 10.1016/j.taap.2021.115477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 11/20/2022]
Abstract
N-Ethylpentylone (NEP) is one of the most recent novel stimulants, and there is limited understanding of its toxicity. Here we employed zebrafish model for analyzing the effects of NEP on early embryos and cardiovascular and nervous systems at late developmental stages. We first observed multi-malformations in early embryos and larvae after NEP administration, together with significant deregulations of brain and heart development-associated genes (neurog1, her6, elavl3, nkx2.5, nppa, nppb, tnnt2a) at transcriptional level. Low-dosed NEP treatment induced an anxiety-like phenotype in zebrafish larvae, while higher doses of NEP exerted an inhibitory effect on locomotion and heart rate. Besides, the expression of th (tyrosine hydroxylase) and th2 (tyrosine hydroxylase 2), identifying dopamine (DA) release, were significantly increased during one-hour free swimming after effective low-dosed NEP administration, along with the upregulation of gene fosab and fosb related to stress and anxiety response. D1R antagonist SCH23390 and D2R antagonist sulpiride partially alleviated the aberrances of locomotion and heart rate, indicating dopaminergic receptors were involved in the bidirectional dosage-dependent pattern of NEP-induced performance. Meanwhile, sulpiride offset the upregulated expression of th, th2 and fosab in the group of 1.5 μM NEP, which highlighted the significant role of D2R in NEP-induced locomotive effects. This study systematically described the developmental, neuronal and cardiac toxicity of NEP in zebrafish, and identified the dopaminergic receptors as one of the downstream effectors of NEP administration.
Collapse
Affiliation(s)
- Enshan Fan
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China
| | - Zhiru Xu
- State Key Lab. of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, PR China
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan, PR China
| | - Fanglin Wang
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, PR China
| | - Shaoyang Sun
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, PR China
| | - Yurong Zhang
- Shanghai Institute of Forensic Science, Shanghai Key Laboratory of Crime Scene Evidence, PR China
| | - Shuiqing Zheng
- Shanghai Institute of Forensic Science, Shanghai Key Laboratory of Crime Scene Evidence, PR China
| | - Xu Wang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, PR China; Cancer Institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, PR China.
| | - Yulan Rao
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China.
| |
Collapse
|
36
|
Li S, Shi M, Wang Y, Xiao Y, Cai D, Xiao F. Keap1-Nrf2 pathway up-regulation via hydrogen sulfide mitigates polystyrene microplastics induced-hepatotoxic effects. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123933. [PMID: 33254827 DOI: 10.1016/j.jhazmat.2020.123933] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 05/23/2023]
Abstract
Microplastics, which are new types of environmental pollutants, are recently receiving widespread attention worldwide. Hydrogen sulfide (H2S) as the third endogenous gaseous mediator had protective effects in multiple physiological and pathological conditions. However, the protective role of H2S in microplastics-induced hepatotoxocity remain unclear. In this study, our data showed that H2S significantly suppressed inflammation, apoptosis and oxidative stress induced by polystyrene microplastics (mic-PS) (20 mg/kg b.w.) in the liver. Strikingly, although mic-PS exposure increased the expression of nuclear factor-E2-related factor (Nrf2), it did not influence the levels of heme oxygenase-1 (HO-1) and NAD(P)H: quinone oxidoreductase 1 (NQOl) in the L02 hepatocytes. Immunofluorescence assay showed that sodium hydrosulfide (NaHS) reduced micro-Ps-induced hepatic apoptosis by facilitating nuclear accumulation of Nrf2. Simultaneously, flow cytometry also showed that NaHS could prevent mic-PS-induced accumulation of reactive oxygen species (ROS) by increasing the expression of HO-1 and NQO1. Furthermore, inhibition of HO-1 could reverse the hepatic protective effects of NaHS during mic-PS exposure. Mechanistically, H2S elevating the HO-1 and NQO1 expression by facilitating nuclear accumulation of Nrf2, and consequently reducing mic-PS-induced hepatic apoptosis and inflammation. This study unveils the hepatotoxic effects of MPs and suggest NaHS have protective effects on mic-PS-induced liver damage.
Collapse
Affiliation(s)
- Siwen Li
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, 410078, PR China; College of Basic Medical Sciences, Southwest Medical University, Sichuan Province, Luzhou, 646000, PR China.
| | - Mei Shi
- College of Basic Medical Sciences, Southwest Medical University, Sichuan Province, Luzhou, 646000, PR China
| | - Yanling Wang
- College of Basic Medical Sciences, Southwest Medical University, Sichuan Province, Luzhou, 646000, PR China
| | - Yanxin Xiao
- College of Basic Medical Sciences, Southwest Medical University, Sichuan Province, Luzhou, 646000, PR China
| | - Daihong Cai
- College of Basic Medical Sciences, Southwest Medical University, Sichuan Province, Luzhou, 646000, PR China
| | - Fang Xiao
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, 410078, PR China.
| |
Collapse
|
37
|
Yu G, Hyun S. Proteostasis-associated aging: lessons from a Drosophila model. Genes Genomics 2020; 43:1-9. [PMID: 33111208 DOI: 10.1007/s13258-020-01012-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/13/2020] [Indexed: 12/25/2022]
Abstract
As cells age, they lose their ability to properly fold proteins, maintain protein folding, and eliminate misfolded proteins, which leads to the accumulation of abnormal protein aggregates and loss of protein homeostasis (proteostasis). Loss of proteostasis can accelerate aging and the onset of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Mechanisms exist to prevent the detrimental effects of abnormal proteins that incorporate chaperones, autophagy, and the ubiquitin-proteasome system. These mechanisms are evolutionarily conserved across various species. Therefore, the effect of impaired proteostasis on aging has been studied using model organisms that are appropriate for aging studies. In this review, we focus on the relationship between proteostasis and aging, and factors that affect proteostasis in Drosophila. The manipulation of proteostasis can alter lifespan, modulate neurotoxicity, and delay the onset of neurodegeneration, indicating that proteostasis may be a novel pharmacological target for the development of treatments for various age-associated diseases.
Collapse
Affiliation(s)
- Garbin Yu
- Department of Life Science, Chung-Ang University, 156-756, Seoul, South Korea
| | - Seogang Hyun
- Department of Life Science, Chung-Ang University, 156-756, Seoul, South Korea.
| |
Collapse
|
38
|
Kopacz A, Kloska D, Forman HJ, Jozkowicz A, Grochot-Przeczek A. Beyond repression of Nrf2: An update on Keap1. Free Radic Biol Med 2020; 157:63-74. [PMID: 32234331 PMCID: PMC7732858 DOI: 10.1016/j.freeradbiomed.2020.03.023] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/04/2020] [Accepted: 03/24/2020] [Indexed: 12/14/2022]
Abstract
Nrf2 (NFE2L2 - nuclear factor (erythroid-derived 2)-like 2) is a transcription factor, which is repressed by interaction with a redox-sensitive protein Keap1 (Kelch-like ECH-associated protein 1). Deregulation of Nrf2 transcriptional activity has been described in the pathogenesis of multiple diseases, and the Nrf2/Keap1 axis has emerged as a crucial modulator of cellular homeostasis. Whereas the significance of Nrf2 in the modulation of biological processes has been well established and broadly discussed in detail, the focus on Keap1 rarely goes beyond the regulation of Nrf2 activity and redox sensing. However, recent studies and scrutinized analysis of available data point to Keap1 as an intriguing and potent regulator of cellular function. This review aims to shed more light on Keap1 structure, interactome, regulation and non-canonical functions, thereby enhancing its significance in cell biology. We also intend to highlight the impact of balance between Keap1 and Nrf2 in the maintenance of cellular homeostasis.
Collapse
Affiliation(s)
- Aleksandra Kopacz
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Damian Kloska
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Henry Jay Forman
- Andrus Gerontology Center of the Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Anna Grochot-Przeczek
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland.
| |
Collapse
|
39
|
Wati SM, Matsumaru D, Motohashi H. NRF2 pathway activation by KEAP1 inhibition attenuates the manifestation of aging phenotypes in salivary glands. Redox Biol 2020; 36:101603. [PMID: 32590331 PMCID: PMC7322188 DOI: 10.1016/j.redox.2020.101603] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/26/2020] [Accepted: 06/01/2020] [Indexed: 12/20/2022] Open
Abstract
Saliva plays an essential role in the maintenance of oral health. The oral cavity environment changes during aging mainly due to alterations in the secretion and composition of saliva. In particular, unstimulated basal salivary flow decreases with age. The functional decline of the salivary glands impairs chewing and swallowing abilities and often becomes one of the predispositions for aging-related disorders, including aspiration pneumonia. The KEAP1-NRF2 system plays a central role in the regulation of the oxidative stress response. NRF2 is a transcription factor that coordinately regulates cytoprotective genes, and KEAP1 is a negative regulator of NRF2. Although NRF2 activation has been suggested to be advantageous for the prevention of aging-related diseases, its role in the course of physiological aging is not well understood. To investigate the impact of NRF2 activation on salivary gland aging, we compared the submandibular glands of Keap1-knockdown (KD) (Keap1FA/FA) mice in which NRF2 is activated with those of wild-type mice. Young mice did not show any apparent differences between the two genotypes, whereas in old mice, clear differences were observed. Aged wild-type submandibular glands exhibited iron and collagen depositions, immune cell infiltration and increased DNA damage and apoptosis accompanied by elevated oxidative stress, which were all markedly attenuated in Keap1-KD mice, suggesting that NRF2 activation has antiaging effects on salivary glands. We propose that appropriate activation of NRF2 is effective for the maintenance of healthy salivary gland conditions and for the prevention of hyposalivation in the elderly.
Collapse
Affiliation(s)
- Sisca Meida Wati
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Japan
| | - Daisuke Matsumaru
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Japan
| | - Hozumi Motohashi
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Japan.
| |
Collapse
|
40
|
Gunderson JT, Peppriell AE, Vorojeikina D, Rand MD. Tissue-specific Nrf2 signaling protects against methylmercury toxicity in Drosophila neuromuscular development. Arch Toxicol 2020; 94:4007-4022. [PMID: 32816092 DOI: 10.1007/s00204-020-02879-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023]
Abstract
Methylmercury (MeHg) can elicit cognitive and motor deficits due to its developmental neuro- and myotoxic properties. While previous work has demonstrated that Nrf2 antioxidant signaling protects from MeHg toxicity, in vivo tissue-specific studies are lacking. In Drosophila, MeHg exposure shows greatest developmental toxicity in the pupal stage resulting in failed eclosion (emergence of adults) and an accompanying 'myosphere' phenotype in indirect flight muscles (IFMs). To delineate tissue-specific contributions to MeHg-induced motor deficits, we investigated the potential of Nrf2 signaling in either muscles or neurons to moderate MeHg toxicity. Larva were exposed to various concentrations of MeHg (0-20 µM in food) in combination with genetic modulation of the Nrf2 homolog cap-n-collar C (CncC), or its negative regulator Keap1. Eclosion behavior was evaluated in parallel with the morphology of two muscle groups, the thoracic IFMs and the abdominal dorsal internal oblique muscles (DIOMs). CncC signaling activity was reported with an antioxidant response element construct (ARE-GFP). We observed that DIOMs are distinguished by elevated endogenous ARE-GFP expression, which is only transiently seen in the IFMs. Dose-dependent MeHg reductions in eclosion behavior parallel formation of myospheres in the DIOMs and IFMs, while also increasing ARE-GFP expression in the DIOMs. Modulating CncC signaling via muscle-specific Keap1 knockdown and upregulation gives a rescue and exacerbation, respectively, of MeHg effects on eclosion and myospheres. Interestingly, muscle-specific CncC upregulation and knockdown both induce lethality. In contrast, neuron-specific upregulation of CncC, as well as Keap1 knockdown, rescued MeHg effects on eclosion and myospheres. Our findings indicate that enhanced CncC signaling localized to either muscles or neurons is sufficient to rescue muscle development and neuromuscular function from a MeHg insult. Additionally, there may be distinct roles for CncC signaling in myo-morphogenesis.
Collapse
Affiliation(s)
- Jakob T Gunderson
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Ashley E Peppriell
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Daria Vorojeikina
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Matthew D Rand
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|
41
|
Tamir TY, Bowman BM, Agajanian MJ, Goldfarb D, Schrank TP, Stohrer T, Hale AE, Siesser PF, Weir SJ, Murphy RM, LaPak KM, Weissman BE, Moorman NJ, Major MB. Gain-of-function genetic screen of the kinome reveals BRSK2 as an inhibitor of the NRF2 transcription factor. J Cell Sci 2020; 133:jcs241356. [PMID: 32546533 PMCID: PMC7375482 DOI: 10.1242/jcs.241356] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 06/03/2020] [Indexed: 12/24/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (NFE2L2, also known as NRF2) is a transcription factor and master regulator of cellular antioxidant response. Aberrantly high NRF2-dependent transcription is recurrent in human cancer, but conversely NRF2 activity diminishes with age and in neurodegenerative and metabolic disorders. Although NRF2-activating drugs are clinically beneficial, NRF2 inhibitors do not yet exist. Here, we describe use of a gain-of-function genetic screen of the kinome to identify new druggable regulators of NRF2 signaling. We found that the under-studied protein kinase brain-specific kinase 2 (BRSK2) and the related BRSK1 kinases suppress NRF2-dependent transcription and NRF2 protein levels in an activity-dependent manner. Integrated phosphoproteomics and RNAseq studies revealed that BRSK2 drives 5'-AMP-activated protein kinase α2 (AMPK) signaling and suppresses the mTOR pathway. As a result, BRSK2 kinase activation suppresses ribosome-RNA complexes, global protein synthesis and NRF2 protein levels. Collectively, our data illuminate the BRSK2 and BRSK1 kinases, in part by functionally connecting them to NRF2 signaling and mTOR. This signaling axis might prove useful for therapeutically targeting NRF2 in human disease.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Tigist Y Tamir
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Brittany M Bowman
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Megan J Agajanian
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dennis Goldfarb
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO 63110, USA
- Institute for Informatics, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Travis P Schrank
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Trent Stohrer
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Andrew E Hale
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Priscila F Siesser
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Seth J Weir
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ryan M Murphy
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kyle M LaPak
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Bernard E Weissman
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nathaniel J Moorman
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - M Ben Major
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Otolaryngology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
42
|
Martínez Corrales G, Alic N. Evolutionary Conservation of Transcription Factors Affecting Longevity. Trends Genet 2020; 36:373-382. [PMID: 32294417 DOI: 10.1016/j.tig.2020.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/12/2020] [Accepted: 02/18/2020] [Indexed: 12/29/2022]
Abstract
The increasing number of older people is resulting in an increased prevalence of age-related diseases. Research has shown that the ageing process itself is a potential point of intervention. Indeed, gene expression can be optimised for health in older ages through manipulation of transcription factor (TF) activity. This review is focused on the ever-growing number of TFs whose effects on ageing are evolutionarily conserved. These regulate a plethora of functions, including stress resistance, metabolism, and growth. They are engaged in complex interactions within and between different cell types, impacting the physiology of the entire organism. Since ageing is not programmed, the conservation of their effects on lifespan is most likely a reflection of the conservation of their functions in youth.
Collapse
|
43
|
Okazaki K, Papagiannakopoulos T, Motohashi H. Metabolic features of cancer cells in NRF2 addiction status. Biophys Rev 2020; 12:435-441. [PMID: 32112372 PMCID: PMC7242251 DOI: 10.1007/s12551-020-00659-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 02/19/2020] [Indexed: 12/26/2022] Open
Abstract
The KEAP1-NRF2 system is a sulfur-employing defense mechanism against oxidative and electrophilic stress. NRF2 is a potent transcription activator for genes mediating sulfur-involving redox reactions, and KEAP1 controls the NRF2 activity in response to the stimuli by utilizing reactivity of sulfur atoms. In many human cancer cells, the KEAP1-mediated regulation of NRF2 activity is abrogated, resulting in the persistent activation of NRF2. Persistently activated NRF2 drives malignant progression of cancers by increasing therapeutic resistance and promoting aggressive tumorigenesis, a state termed as NRF2 addiction. In NRF2-addicted cancer cell, NRF2 contributes to metabolic reprogramming in cooperation with other oncogenic pathways. In particular, NRF2 strongly activates cystine uptake coupled with glutamate excretion and glutathione synthesis, which increases consumption of intracellular glutamate. Decreased availability of glutamate limits anaplerosis of the TCA cycle, resulting in low mitochondrial respiration, and nitrogen source, resulting in the high dependency on exogenous non-essential amino acids. The highly enhanced glutathione synthesis is also likely to alter sulfur metabolism, which can contribute to the maintenance of the mitochondrial membrane potential in normal cells. The potent antioxidant and detoxification capacity supported by abundant production of glutathione is achieved at the expense of central carbon metabolism and requires skewed metabolic flow of sulfur. These metabolic features of NRF2 addiction status provide clues for novel therapeutic strategies to target NRF2-addicted cancer cells.
Collapse
Affiliation(s)
- Keito Okazaki
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan
| | - Thales Papagiannakopoulos
- Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| | - Hozumi Motohashi
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan.
| |
Collapse
|
44
|
Georgousaki K, Tsafantakis N, Gumeni S, Lambrinidis G, González-Menéndez V, Tormo JR, Genilloud O, Trougakos IP, Fokialakis N. Biological Evaluation and In Silico Study of Benzoic Acid Derivatives from Bjerkandera adusta Targeting Proteostasis Network Modules. Molecules 2020; 25:molecules25030666. [PMID: 32033190 PMCID: PMC7036779 DOI: 10.3390/molecules25030666] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 01/17/2023] Open
Abstract
A main cellular functional module that becomes dysfunctional during aging is the proteostasis network. In the present study, we show that benzoic acid derivatives isolated from Bjerkandera adusta promote the activity of the two main protein degradation systems, namely the ubiquitin-proteasome (UPP) and especially the autophagy-lysosome pathway (ALP) in human foreskin fibroblasts. Our findings were further supported by in silico studies, where all compounds were found to be putative binders of both cathepsins B and L. Among them, compound 3 (3-chloro-4-methoxybenzoic acid) showed the most potent interaction with both enzymes, which justifies the strong activation of cathepsins B and L (467.3 ± 3.9%) on cell-based assays. Considering that the activity of both the UPP and ALP pathways decreases with aging, our results suggest that the hydroxybenzoic acid scaffold could be considered as a promising candidate for the development of novel modulators of the proteostasis network, and likely of anti-aging agents.
Collapse
Affiliation(s)
- Katerina Georgousaki
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 157 71 Athens, Greece; (K.G.); (N.T.)
| | - Nikolaos Tsafantakis
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 157 71 Athens, Greece; (K.G.); (N.T.)
| | - Sentiljana Gumeni
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 157 72 Athens, Greece; (S.G.); (I.P.T.)
| | - George Lambrinidis
- Division of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 157 84 Athens, Greece;
| | - Victor González-Menéndez
- Fundacion MEDINA, Health Sciences Technology Park, 18016 Granada, Spain; (V.G.-M.); (J.R.T.); (O.G.)
| | - Jose R. Tormo
- Fundacion MEDINA, Health Sciences Technology Park, 18016 Granada, Spain; (V.G.-M.); (J.R.T.); (O.G.)
| | - Olga Genilloud
- Fundacion MEDINA, Health Sciences Technology Park, 18016 Granada, Spain; (V.G.-M.); (J.R.T.); (O.G.)
| | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 157 72 Athens, Greece; (S.G.); (I.P.T.)
| | - Nikolas Fokialakis
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 157 71 Athens, Greece; (K.G.); (N.T.)
- Correspondence: ; Tel.:+30-210-727-4727
| |
Collapse
|
45
|
Abstract
Following tissue injury, cells produce reactive molecules that fight off invading pathogens, but these factors might also damage the host tissue. A new study has characterized a network of defense pathways that synergize to protect cells from collateral damage and drive repair.
Collapse
Affiliation(s)
- Paul Hiebert
- Institute of Molecular Health Sciences, ETH Zurich, Switzerland.
| | - Sabine Werner
- Institute of Molecular Health Sciences, ETH Zurich, Switzerland.
| |
Collapse
|
46
|
Sarmento-Ribeiro AB, Scorilas A, Gonçalves AC, Efferth T, Trougakos IP. The emergence of drug resistance to targeted cancer therapies: Clinical evidence. Drug Resist Updat 2019; 47:100646. [PMID: 31733611 DOI: 10.1016/j.drup.2019.100646] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 12/14/2022]
Abstract
For many decades classical anti-tumor therapies included chemotherapy, radiation and surgery; however, in the last two decades, following the identification of the genomic drivers and main hallmarks of cancer, the introduction of therapies that target specific tumor-promoting oncogenic or non-oncogenic pathways, has revolutionized cancer therapeutics. Despite the significant progress in cancer therapy, clinical oncologists are often facing the primary impediment of anticancer drug resistance, as many cancer patients display either intrinsic chemoresistance from the very beginning of the therapy or after initial responses and upon repeated drug treatment cycles, acquired drug resistance develops and thus relapse emerges, resulting in increased mortality. Our attempts to understand the molecular basis underlying these drug resistance phenotypes in pre-clinical models and patient specimens revealed the extreme plasticity and adaptive pathways employed by tumor cells, being under sustained stress and extensive genomic/proteomic instability due to the applied therapeutic regimens. Subsequent efforts have yielded more effective inhibitors and combinatorial approaches (e.g. the use of specific pharmacologic inhibitors with immunotherapy) that exhibit synergistic effects against tumor cells, hence enhancing therapeutic indices. Furthermore, new advanced methodologies that allow for the early detection of genetic/epigenetic alterations that lead to drug chemoresistance and prospective validation of biomarkers which identify patients that will benefit from certain drug classes, have started to improve the clinical outcome. This review discusses emerging principles of drug resistance to cancer therapies targeting a wide array of oncogenic kinases, along with hedgehog pathway and the proteasome and apoptotic inducers, as well as epigenetic and metabolic modulators. We further discuss mechanisms of resistance to monoclonal antibodies, immunomodulators and immune checkpoint inhibitors, potential biomarkers of drug response/drug resistance, along with possible new therapeutic avenues for the clinicians to combat devastating drug resistant malignancies. It is foreseen that these topics will be major areas of focused multidisciplinary translational research in the years to come.
Collapse
Affiliation(s)
- Ana Bela Sarmento-Ribeiro
- Laboratory of Oncobiology and Hematology and University Clinic of Hematology and Coimbra Institute for Clinical and Biomedical Research - Group of Environment Genetics and Oncobiology (iCBR/CIMAGO), Faculty of Medicine, University of Coimbra (FMUC), Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Hematology Department, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal.
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Ana Cristina Gonçalves
- Laboratory of Oncobiology and Hematology and University Clinic of Hematology and Coimbra Institute for Clinical and Biomedical Research - Group of Environment Genetics and Oncobiology (iCBR/CIMAGO), Faculty of Medicine, University of Coimbra (FMUC), Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Greece.
| |
Collapse
|
47
|
What sustains the multidrug resistance phenotype beyond ABC efflux transporters? Looking beyond the tip of the iceberg. Drug Resist Updat 2019; 46:100643. [PMID: 31493711 DOI: 10.1016/j.drup.2019.100643] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/18/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022]
Abstract
Identification of multidrug (MDR) efflux transporters that belong to the ATP-Binding Cassette (ABC) superfamily, represented an important breakthrough for understanding cancer multidrug resistance (MDR) and its possible overcoming. However, recent data indicate that drug resistant cells have a complex intracellular physiology that involves constant changes in energetic and oxidative-reductive metabolic pathways, as well as in the molecular circuitries connecting mitochondria, endoplasmic reticulum (ER) and lysosomes. The aim of this review is to discuss the key molecular mechanisms of cellular reprogramming that induce and maintain MDR, beyond the presence of MDR efflux transporters. We specifically highlight how cancer cells characterized by high metabolic plasticity - i.e. cells able to shift the energy metabolism between glycolysis and oxidative phosphorylation, to survive both the normoxic and hypoxic conditions, to modify the cytosolic and mitochondrial oxidative-reductive metabolism, are more prone to adapt to exogenous stressors such as anti-cancer drugs and acquire a MDR phenotype. Similarly, we discuss how changes in mitochondria dynamics and mitophagy rates, changes in proteome stability ensuring non-oncogenic proteostatic mechanisms, changes in ubiquitin/proteasome- and autophagy/lysosome-related pathways, promote the cellular survival under stress conditions, along with the acquisition or maintenance of MDR. After dissecting the complex intracellular crosstalk that takes place during the development of MDR, we suggest that mapping the specific adaptation pathways underlying cell survival in response to stress and targeting these pathways with potent pharmacologic agents may be a new approach to enhance therapeutic efficacy against MDR tumors.
Collapse
|
48
|
Affiliation(s)
- Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15784, Greece
| |
Collapse
|
49
|
Alterations in Organismal Physiology, Impaired Stress Resistance, and Accelerated Aging in Drosophila Flies Adapted to Multigenerational Proteome Instability. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7823285. [PMID: 31320986 PMCID: PMC6610734 DOI: 10.1155/2019/7823285] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/17/2019] [Accepted: 02/19/2019] [Indexed: 12/31/2022]
Abstract
Being an assembly of highly sophisticated protein machines, cells depend heavily on proteostatic modules functionality and on adequate supply of energetic molecules for maintaining proteome stability. Yet, our understanding of the adaptations induced by multigenerational proteotoxic stress is limited. We report here that multigenerational (>80 generations) proteotoxic stress in OregonR flies induced by constant exposure to developmentally nonlethal doses of the proteasome inhibitor bortezomib (BTZ) (G80-BTZ flies) increased proteome instability and redox imbalance, reduced fecundity and body size, and caused neuromuscular defects; it also accelerated aging. G80-BTZ flies were mildly resistant to increased doses of BTZ and showed no age-related loss of proteasome activity; these adaptations correlated with sustained upregulation of proteostatic modules, which however occurred at the cost of minimal responses to increased BTZ doses and increased susceptibility to various types of additional proteotoxic stress, namely, autophagy inhibition or thermal stress. Multigenerational proteome instability and redox imbalance also caused metabolic reprogramming being evidenced by altered mitochondrial biogenesis and suppressed insulin/IGF-like signaling (IIS) in G80-BTZ flies. The toxic effects of multigenerational proteome instability could be partially mitigated by a low-protein diet that extended G80-BTZ flies' longevity. Overall, persistent proteotoxic stress triggers a highly conserved adaptive metabolic response mediated by the IIS pathway, which reallocates resources from growth and longevity to somatic preservation and stress tolerance. Yet, these trade-off adaptations occur at the cost of accelerated aging and/or reduced tolerance to additional stress, illustrating the limited buffering capacity of survival pathways.
Collapse
|
50
|
Gumeni S, Evangelakou Z, Tsakiri EN, Scorrano L, Trougakos IP. Functional wiring of proteostatic and mitostatic modules ensures transient organismal survival during imbalanced mitochondrial dynamics. Redox Biol 2019; 24:101219. [PMID: 31132524 PMCID: PMC6536731 DOI: 10.1016/j.redox.2019.101219] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/04/2019] [Accepted: 05/13/2019] [Indexed: 12/18/2022] Open
Abstract
Being an assembly of protein machines, cells depend on adequate supply of energetic molecules for retaining their homeodynamics. Consequently, mitochondria functionality is ensured by quality control systems and mitochondrial dynamics (fusion/fission). Similarly, proteome stability is maintained by the machineries of the proteostasis network. We report here that reduced mitochondrial fusion rates in Drosophila caused developmental lethality or if induced in the adult accelerated aging. Imbalanced mitochondrial dynamics were tolerable for various periods in young flies, where they caused oxidative stress and proteome instability that mobilized Nrf2 and foxo to upregulate cytoprotective antioxidant/proteostatic modules. Consistently, proteasome inhibition or Nrf2, foxo knock down in young flies exaggerated perturbed mitochondrial dynamics toxicity. Neither Nrf2 overexpression (with concomitant proteasome activation) nor Atg8a upregulation suppressed the deregulated mitochondrial dynamics toxicity, which was mildly mitigated by antioxidants. Thus, despite extensive functional wiring of mitostatic and antioxidant/proteostatic modules, sustained loss-of mitostasis exhausts adaptation responses triggering premature aging. Reduced mitochondrial fusion rates cause severe organismal toxicity and progeria. Perturbed mitostasis activates cytoprotective antioxidant and proteostatic modules. Nrf2 or Foxo KD exaggerates the imbalanced mitochondrial dynamics induced toxicity. Antioxidants mildly alleviate loss-of mitochondrial dynamics-mediated progeria.
Collapse
Affiliation(s)
- Sentiljana Gumeni
- Department of Cell Biology and Biophysics, Faculty of Biology, National & Kapodistrian University of Athens, 15784, Greece
| | - Zoi Evangelakou
- Department of Cell Biology and Biophysics, Faculty of Biology, National & Kapodistrian University of Athens, 15784, Greece
| | - Eleni N Tsakiri
- Department of Cell Biology and Biophysics, Faculty of Biology, National & Kapodistrian University of Athens, 15784, Greece
| | - Luca Scorrano
- Dulbecco-Telethon Institute, Venetian Institute of Molecular Medicine and Department of Biology, University of Padua, Padova, 35129, Italy
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National & Kapodistrian University of Athens, 15784, Greece.
| |
Collapse
|