1
|
Raya Tonetti F, Eguileor A, Mrdjen M, Pathak V, Travers J, Nagy LE, Llorente C. Gut-liver axis: Recent concepts in pathophysiology in alcohol-associated liver disease. Hepatology 2024; 80:1342-1371. [PMID: 38691396 PMCID: PMC11801230 DOI: 10.1097/hep.0000000000000924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/20/2024] [Indexed: 05/03/2024]
Abstract
The growing recognition of the role of the gut microbiome's impact on alcohol-associated diseases, especially in alcohol-associated liver disease, emphasizes the need to understand molecular mechanisms involved in governing organ-organ communication to identify novel avenues to combat alcohol-associated diseases. The gut-liver axis refers to the bidirectional communication and interaction between the gut and the liver. Intestinal microbiota plays a pivotal role in maintaining homeostasis within the gut-liver axis, and this axis plays a significant role in alcohol-associated liver disease. The intricate communication between intestine and liver involves communication between multiple cellular components in each organ that enable them to carry out their physiological functions. In this review, we focus on novel approaches to understanding how chronic alcohol exposure impacts the microbiome and individual cells within the liver and intestine, as well as the impact of ethanol on the molecular machinery required for intraorgan and interorgan communication.
Collapse
Affiliation(s)
| | - Alvaro Eguileor
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Marko Mrdjen
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
| | - Vai Pathak
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jared Travers
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
- Department of Gastroenterology and Hepatology, University Hospital, Cleveland OH
| | - Laura E Nagy
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland OH
| | - Cristina Llorente
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
2
|
Thoudam T, Gao H, Jiang Y, Huda N, Yang Z, Ma J, Liangpunsakul S. Mitochondrial quality control in alcohol-associated liver disease. Hepatol Commun 2024; 8:e0534. [PMID: 39445886 PMCID: PMC11512632 DOI: 10.1097/hc9.0000000000000534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/31/2024] [Indexed: 10/25/2024] Open
Abstract
Excessive alcohol consumption is a leading cause of alcohol-associated liver disease (ALD), a significant global health concern with limited therapeutic options. Understanding the key factors contributing to ALD pathogenesis is crucial for identifying potential therapeutic targets. Central to ALD pathogenesis is the intricate interplay between alcohol metabolism and cellular processes, particularly involving mitochondria. Mitochondria are essential organelles in the liver, critical for energy production and metabolic functions. However, they are particularly vulnerable to alcohol-induced damage due to their involvement in alcohol metabolism. Alcohol disrupts mitochondrial function, impairing ATP production and triggering oxidative stress, which leads to cellular damage and inflammation. Mitochondrial quality control mechanisms, including biogenesis, dynamics, and mitophagy, are crucial for maintaining optimal mitochondrial function. Chronic alcohol consumption disrupts mitochondrial quality control checkpoints, leading to mitochondrial dysfunction that impairs fatty acid oxidation and contributes to hepatic steatosis in ALD. Moreover, alcohol promotes the accumulation of damaged mitochondria and the release of proinflammatory components, exacerbating liver damage and inflammation. Preserving mitochondrial health presents a promising therapeutic approach to mitigate ALD progression. In this review, we provide a comprehensive overview of the effects of alcohol on mitochondrial function and quality control mechanisms, highlighting their role in ALD pathogenesis. Understanding these mechanisms may pave the way for the development of novel therapeutic interventions for ALD.
Collapse
Affiliation(s)
- Themis Thoudam
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Hui Gao
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yanchao Jiang
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nazmul Huda
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Zhihong Yang
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jing Ma
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Suthat Liangpunsakul
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, USA
| |
Collapse
|
3
|
Saad M, Ibrahim W, Hasanin AH, Elyamany AM, Matboli M. Evaluating the therapeutic potential of genetically engineered probiotic Zbiotics (ZB183) for non-alcoholic steatohepatitis (NASH) management via modulation of the cGAS-STING pathway. RSC Med Chem 2024:d4md00477a. [PMID: 39290381 PMCID: PMC11403872 DOI: 10.1039/d4md00477a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024] Open
Abstract
NAFLD/NASH has emerged as a global health concern with no FDA-approved treatment, necessitating the exploration of novel therapeutic elements for NASH. Probiotics are known as an important adjunct therapy in NASH. Zbiotics (ZB183) is the first commercially available genetically engineered probiotic. Herein, we aimed to evaluate the potential therapeutic effects of Zbiotics administration on NASH management by modulating the cGAS-STING-signaling pathway-related RNA network. In silico data analysis was performed and three DEGs (MAPK3/EDN1/TNF) were selected with their epigenetic modulators (miR-6888-5p miRNA, and lncRNA RABGAP1L-DT-206). The experimental design included NASH induction with an HSHF diet in Wistar rats and Zbiotics administration in NASH rats in comparison to statin treatment. Liver functions and lipid profile were assessed. Additionally, the expression levels of the constructed molecular network were assessed using RT-PCR. Moreover, the Zbiotics effects in NASH were further validated with histopathological examination of liver and colon samples. Also, immunohistochemistry staining of hepatic TNF-α and colonic occludin was assessed. Oral administration of Zbiotics for four weeks downregulated the expression of the cGAS-STING-related network (MAPK3/EDN1/TNF/miR-6888-5p miRNA/lncRNA RABGAP1L-DT-206) in NASH models. Zbiotics also ameliorated hepatic inflammation and steatosis, as evidenced by a notable improvement in NAS score and decreased hepatic TNF-α levels. Furthermore, Zbiotics exhibited favorable effects on colon health, including increased crypt length, reduced inflammatory cell infiltration, and restoration of colonic mucosa occludin expression. In conclusion, our findings suggest that Zbiotics has potential therapeutic effects on NASH via modulating the gut-liver axis and the cGAS-STING signaling pathway.
Collapse
Affiliation(s)
- Maha Saad
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Modern University for Technology and Information Cairo Egypt
- Biomedical Research Department, Faculty of Medicine, Modern University for technology and information Cairo Egypt
- Medical Biochemistry and Molecular Biology, Faculty of Medicine Cairo University Cairo Egypt
| | - Walaa Ibrahim
- Medical Biochemistry and Molecular Biology, Faculty of Medicine Cairo University Cairo Egypt
| | - Amany Helmy Hasanin
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University Cairo 11566 Egypt
| | - Aya Magdy Elyamany
- Anatomic Pathology Department, Faculty of Medicine, Cairo University Cairo Egypt
| | - Marwa Matboli
- Departement of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University Cairo 11566 Egypt
| |
Collapse
|
4
|
AlMarzooqi SK, Almarzooqi F, Sadida HQ, Jerobin J, Ahmed I, Abou-Samra AB, Fakhro KA, Dhawan P, Bhat AA, Al-Shabeeb Akil AS. Deciphering the complex interplay of obesity, epithelial barrier dysfunction, and tight junction remodeling: Unraveling potential therapeutic avenues. Obes Rev 2024; 25:e13766. [PMID: 38745386 DOI: 10.1111/obr.13766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 03/11/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024]
Abstract
Obesity stands as a formidable global health challenge, predisposing individuals to a plethora of chronic illnesses such as cardiovascular disease, diabetes, and cancer. A confluence of genetic polymorphisms, suboptimal dietary choices, and sedentary lifestyles significantly contribute to the elevated incidence of obesity. This multifaceted health issue profoundly disrupts homeostatic equilibrium at both organismal and cellular levels, with marked alterations in gut permeability as a salient consequence. The intricate mechanisms underlying these alterations have yet to be fully elucidated. Still, evidence suggests that heightened inflammatory cytokine levels and the remodeling of tight junction (TJ) proteins, particularly claudins, play a pivotal role in the manifestation of epithelial barrier dysfunction in obesity. Strategic targeting of proteins implicated in these pathways and metabolites such as short-chain fatty acids presents a promising intervention for restoring barrier functionality among individuals with obesity. Nonetheless, recognizing the heterogeneity among affected individuals is paramount; personalized medical interventions or dietary regimens tailored to specific genetic backgrounds and allergy profiles may prove indispensable. This comprehensive review delves into the nexus of obesity, tight junction remodeling, and barrier dysfunction, offering a critical appraisal of potential therapeutic interventions.
Collapse
Affiliation(s)
- Sara K AlMarzooqi
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Fajr Almarzooqi
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Hana Q Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Jayakumar Jerobin
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ikhlak Ahmed
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Abdul-Badi Abou-Samra
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Khalid A Fakhro
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medicine, Doha, Qatar
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| |
Collapse
|
5
|
Kuo CH, Wu LL, Chen HP, Yu J, Wu CY. Direct effects of alcohol on gut-epithelial barrier: Unraveling the disruption of physical and chemical barrier of the gut-epithelial barrier that compromises the host-microbiota interface upon alcohol exposure. J Gastroenterol Hepatol 2024; 39:1247-1255. [PMID: 38509796 DOI: 10.1111/jgh.16539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024]
Abstract
The development of alcohol-associated diseases is multifactorial, mechanism of which involves metabolic alteration, dysregulated immune response, and a perturbed intestinal host-environment interface. Emerging evidence has pinpointed the critical role of the intestinal host-microbiota interaction in alcohol-induced injuries, suggesting its contribution to disease initiation and development. To maintain homeostasis in the gut, the intestinal mucosa serves as the first-line defense against exogenous factors in the gastrointestinal tract, including dietary contents and the commensal microbiota. The gut-epithelial barrier comprises a physical barrier lined with a single layer of intestinal epithelial cells and a chemical barrier with mucus trapping host regulatory factors and gut commensal bacteria. In this article, we review recent studies pertaining to the disrupted gut-epithelial barrier upon alcohol exposure and examine how alcohol and its metabolism can affect the regulatory ability of intestinal epithelium.
Collapse
Affiliation(s)
- Cheng-Hao Kuo
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Li-Ling Wu
- Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Health Innovation Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Microbiota Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsiao-Ping Chen
- Institute of Biomedical Informatics, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Translational Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jun Yu
- Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
| | - Chun-Ying Wu
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Health Innovation Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Microbiota Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Biomedical Informatics, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Translational Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
6
|
Ray B, Rungratanawanich W, LeFort KR, Chidambaram SB, Song BJ. Mitochondrial Aldehyde Dehydrogenase 2 (ALDH2) Protects against Binge Alcohol-Mediated Gut and Brain Injury. Cells 2024; 13:927. [PMID: 38891060 PMCID: PMC11171926 DOI: 10.3390/cells13110927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Mitochondrial aldehyde dehydrogenase-2 (ALDH2) metabolizes acetaldehyde to acetate. People with ALDH2 deficiency and Aldh2-knockout (KO) mice are more susceptible to alcohol-induced tissue damage. However, the underlying mechanisms behind ALDH2-related gut-associated brain damage remain unclear. Age-matched young female Aldh2-KO and C57BL/6J wild-type (WT) mice were gavaged with binge alcohol (4 g/kg/dose, three doses) or dextrose (control) at 12 h intervals. Tissues and sera were collected 1 h after the last ethanol dose and evaluated by histological and biochemical analyses of the gut and hippocampus and their extracts. For the mechanistic study, mouse neuroblast Neuro2A cells were exposed to ethanol with or without an Aldh2 inhibitor (Daidzin). Binge alcohol decreased intestinal tight/adherens junction proteins but increased oxidative stress-mediated post-translational modifications (PTMs) and enterocyte apoptosis, leading to elevated gut leakiness and endotoxemia in Aldh2-KO mice compared to corresponding WT mice. Alcohol-exposed Aldh2-KO mice also showed higher levels of hippocampal brain injury, oxidative stress-related PTMs, and neuronal apoptosis than the WT mice. Additionally, alcohol exposure reduced Neuro2A cell viability with elevated oxidative stress-related PTMs and apoptosis, all of which were exacerbated by Aldh2 inhibition. Our results show for the first time that ALDH2 plays a protective role in binge alcohol-induced brain injury partly through the gut-brain axis, suggesting that ALDH2 is a potential target for attenuating alcohol-induced tissue injury.
Collapse
Affiliation(s)
- Bipul Ray
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA; (B.R.); (W.R.); (K.R.L.)
| | - Wiramon Rungratanawanich
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA; (B.R.); (W.R.); (K.R.L.)
| | - Karli R. LeFort
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA; (B.R.); (W.R.); (K.R.L.)
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, and Center for Experimental Pharmacology and Toxicology, JSS Academy of Higher Education & Research, Mysuru 570015, India;
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA; (B.R.); (W.R.); (K.R.L.)
| |
Collapse
|
7
|
LeFort KR, Rungratanawanich W, Song BJ. Contributing roles of mitochondrial dysfunction and hepatocyte apoptosis in liver diseases through oxidative stress, post-translational modifications, inflammation, and intestinal barrier dysfunction. Cell Mol Life Sci 2024; 81:34. [PMID: 38214802 PMCID: PMC10786752 DOI: 10.1007/s00018-023-05061-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 01/13/2024]
Abstract
This review provides an update on recent findings from basic, translational, and clinical studies on the molecular mechanisms of mitochondrial dysfunction and apoptosis of hepatocytes in multiple liver diseases, including but not limited to alcohol-associated liver disease (ALD), metabolic dysfunction-associated steatotic liver disease (MASLD), and drug-induced liver injury (DILI). While the ethanol-inducible cytochrome P450-2E1 (CYP2E1) is mainly responsible for oxidizing binge alcohol via the microsomal ethanol oxidizing system, it is also responsible for metabolizing many xenobiotics, including pollutants, chemicals, drugs, and specific diets abundant in n-6 fatty acids, into toxic metabolites in many organs, including the liver, causing pathological insults through organelles such as mitochondria and endoplasmic reticula. Oxidative imbalances (oxidative stress) in mitochondria promote the covalent modifications of lipids, proteins, and nucleic acids through enzymatic and non-enzymatic mechanisms. Excessive changes stimulate various post-translational modifications (PTMs) of mitochondrial proteins, transcription factors, and histones. Increased PTMs of mitochondrial proteins inactivate many enzymes involved in the reduction of oxidative species, fatty acid metabolism, and mitophagy pathways, leading to mitochondrial dysfunction, energy depletion, and apoptosis. Unique from other organelles, mitochondria control many signaling cascades involved in bioenergetics (fat metabolism), inflammation, and apoptosis/necrosis of hepatocytes. When mitochondrial homeostasis is shifted, these pathways become altered or shut down, likely contributing to the death of hepatocytes with activation of inflammation and hepatic stellate cells, causing liver fibrosis and cirrhosis. This review will encapsulate how mitochondrial dysfunction contributes to hepatocyte apoptosis in several types of liver diseases in order to provide recommendations for targeted therapeutics.
Collapse
Affiliation(s)
- Karli R LeFort
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| | - Wiramon Rungratanawanich
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| |
Collapse
|
8
|
LeFort KR, Rungratanawanich W, Song BJ. Melatonin Prevents Alcohol- and Metabolic Dysfunction- Associated Steatotic Liver Disease by Mitigating Gut Dysbiosis, Intestinal Barrier Dysfunction, and Endotoxemia. Antioxidants (Basel) 2023; 13:43. [PMID: 38247468 PMCID: PMC10812487 DOI: 10.3390/antiox13010043] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Melatonin (MT) has often been used to support good sleep quality, especially during the COVID-19 pandemic, as many have suffered from stress-related disrupted sleep patterns. It is less known that MT is an antioxidant, anti-inflammatory compound, and modulator of gut barrier dysfunction, which plays a significant role in many disease states. Furthermore, MT is produced at 400-500 times greater concentrations in intestinal enterochromaffin cells, supporting the role of MT in maintaining the functions of the intestines and gut-organ axes. Given this information, the focus of this article is to review the functions of MT and the molecular mechanisms by which it prevents alcohol-associated liver disease (ALD) and metabolic dysfunction-associated steatotic liver disease (MASLD), including its metabolism and interactions with mitochondria to exert its antioxidant and anti-inflammatory activities in the gut-liver axis. We detail various mechanisms by which MT acts as an antioxidant, anti-inflammatory compound, and modulator of intestinal barrier function to prevent the progression of ALD and MASLD via the gut-liver axis, with a focus on how these conditions are modeled in animal studies. Using the mechanisms of MT prevention and animal studies described, we suggest behavioral modifications and several exogenous sources of MT, including food and supplements. Further clinical research should be performed to develop the field of MT in preventing the progression of liver diseases via the gut-liver axis, so we mention a few considerations regarding MT supplementation in the context of clinical trials in order to advance this field of research.
Collapse
Affiliation(s)
- Karli R. LeFort
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892, USA;
| | | | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892, USA;
| |
Collapse
|
9
|
Li ZM, Kong CY, Mao YQ, Chen HL, Zhang SL, Huang JT, Yao JQ, Cai PR, Xie N, Han B, Wang LS. Host ALDH2 deficiency aggravates nonalcoholic steatohepatitis through gut-liver axis. Pharmacol Res 2023; 196:106902. [PMID: 37657657 DOI: 10.1016/j.phrs.2023.106902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is the major cause of liver dysfunction. Animal and population studies have shown that mitochondrial aldehyde dehydrogenase (ALDH2) is implicated in fatty liver disease. However, the role of ALDH2 in NASH and the underlying mechanisms remains unclear. To address this issue, ALDH2 knockout (ALDH2-/-) mice and wild-type littermate mice were fed a methionine-and choline-deficient (MCD) diet to induce a NASH model. Fecal, serum, and liver samples were collected and analyzed to investigate the impact of the gut microbiota and bile acids on this process. We found that MCD-fed ALDH2-/- mice exhibited increased serum pro-inflammation cytokines, hepatic inflammation and fat accumulation than their wild-type littermates. MCD-fed ALDH2-/- mice exhibited worsened MCD-induced intestinal inflammation and barrier damage, and gut microbiota disorder. Furthermore, mice receiving microbiota from MCD-fed ALDH2-/- mice had increased severity of NASH compared to those receiving microbiota from MCD-fed wild-type mice. Notably, the intestinal Lactobacillus was significantly reduced in MCD-fed ALDH2-/- mice, and gavage with Lactobacillus cocktail significantly improved MCD-induced NASH. Finally, we found that ALDH2-/- mice had reduced levels of bile salt hydrolase and specific bile acids, especially lithocholic acid (LCA), accompanied by downregulated expression of the intestinal FXR-FGF15 pathway. Supplementation of LCA in ALDH2-/- mice upregulated intestinal FXR-FGF15 pathway and alleviated NASH. In summary, ALDH2 plays a critical role in the development of NASH through modulation of gut microbiota and bile acid. The findings suggest that supplementing with Lactobacillus or LCA could be a promising therapeutic approach for treating NASH exacerbated by ALDH2 deficiency.
Collapse
Affiliation(s)
- Zhan-Ming Li
- Center for traditional Chinese medicine and gut microbiota, Minhang Hospital, Fudan University, 201199 Shanghai, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 201199 Shanghai, China.
| | - Chao-Yue Kong
- Center for traditional Chinese medicine and gut microbiota, Minhang Hospital, Fudan University, 201199 Shanghai, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 201199 Shanghai, China.
| | - Yu-Qin Mao
- Center for traditional Chinese medicine and gut microbiota, Minhang Hospital, Fudan University, 201199 Shanghai, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 201199 Shanghai, China.
| | - Hui-Ling Chen
- Center for traditional Chinese medicine and gut microbiota, Minhang Hospital, Fudan University, 201199 Shanghai, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 201199 Shanghai, China.
| | - Shi-Long Zhang
- Center for traditional Chinese medicine and gut microbiota, Minhang Hospital, Fudan University, 201199 Shanghai, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 201199 Shanghai, China.
| | - Jia-Ting Huang
- Center for traditional Chinese medicine and gut microbiota, Minhang Hospital, Fudan University, 201199 Shanghai, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 201199 Shanghai, China.
| | - Jin-Qing Yao
- Center for traditional Chinese medicine and gut microbiota, Minhang Hospital, Fudan University, 201199 Shanghai, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 201199 Shanghai, China.
| | - Pei-Ran Cai
- Center for traditional Chinese medicine and gut microbiota, Minhang Hospital, Fudan University, 201199 Shanghai, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 201199 Shanghai, China.
| | - Nuo Xie
- Center for traditional Chinese medicine and gut microbiota, Minhang Hospital, Fudan University, 201199 Shanghai, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 201199 Shanghai, China.
| | - Bing Han
- Center for traditional Chinese medicine and gut microbiota, Minhang Hospital, Fudan University, 201199 Shanghai, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 201199 Shanghai, China.
| | - Li-Shun Wang
- Center for traditional Chinese medicine and gut microbiota, Minhang Hospital, Fudan University, 201199 Shanghai, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 201199 Shanghai, China.
| |
Collapse
|
10
|
Xiao Q, Chen YH, Chen YL, Chien YS, Hsieh LH, Shirakawa H, Yang SC. Potential Benefits of Epidermal Growth Factor for Inhibiting Muscle Degrative Markers in Rats with Alcoholic Liver Damage. Int J Mol Sci 2023; 24:ijms24108845. [PMID: 37240190 DOI: 10.3390/ijms24108845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/29/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
This study investigated the beneficial effects of epidermal growth factor (EGF) on muscle loss in rats with chronic ethanol feeding. Six-week-old male Wistar rats were fed either a control liquid diet without EGF (C group, n = 12) or EGF (EGF-C group, n = 18) for two weeks. From the 3rd to 8th week, the C group was divided into two groups. One was continually fed with a control liquid diet (C group), and the other one was fed with an ethanol-containing liquid diet (E group); moreover, the EGF-C group was divided into three groups, such as the AEGF-C (continually fed with the same diet), PEGF-E (fed with the ethanol-containing liquid diet without EGF), and AEGF-E (fed with the ethanol-containing liquid diet with EGF). As a result, the E group had significantly higher plasma ALT and AST, endotoxin, ammonia, and interleukin 1b (IL-1b) levels, along with liver injuries, such as hepatic fatty changes and inflammatory cell infiltration. However, plasma endotoxin and IL-1b levels were significantly decreased in the PEGF-E and AEGF-E groups. In addition, the protein level of muscular myostatin and the mRNA levels of forkhead box transcription factors (FOXO), muscle RING-finger protein-1 (MURF-1) and atorgin-1 was increased considerably in the E group but inhibited in the PEGF-E and AEGF-E groups. According to the principal coordinate analysis findings, the gut microbiota composition differed between the control and ethanol liquid diet groups. In conclusion, although there was no noticeable improvement in muscle loss, EGF supplementation inhibited muscular protein degradation in rats fed with an ethanol-containing liquid diet for six weeks. The mechanisms might be related to endotoxin translocation inhibition, microbiota composition alteration as well as the amelioration of liver injury. However, the reproducibility of the results must be confirmed in future studies.
Collapse
Affiliation(s)
- Qian Xiao
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan
| | - Yi-Hsiu Chen
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan
| | - Ya-Ling Chen
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Shan Chien
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan
| | - Li-Hsuan Hsieh
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan
| | - Hitoshi Shirakawa
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8857, Japan
| | - Suh-Ching Yang
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan
- Research Center of Geriatric Nutrition, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- School of Gerontology and Long-Term Care, College of Nursing, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
11
|
Yao P, Zhang Z, Liu H, Jiang P, Li W, Du W. p53 protects against alcoholic fatty liver disease via ALDH2 inhibition. EMBO J 2023; 42:e112304. [PMID: 36825429 PMCID: PMC10106987 DOI: 10.15252/embj.2022112304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
The tumor suppressor p53 is critical for tumor suppression, but the regulatory role of p53 in alcohol-induced fatty liver remains unclear. Here, we show a role for p53 in regulating ethanol metabolism via acetaldehyde dehydrogenase 2 (ALDH2), a key enzyme responsible for the oxidization of alcohol. By repressing ethanol oxidization, p53 suppresses intracellular levels of acetyl-CoA and histone acetylation, leading to the inhibition of the stearoyl-CoA desaturase-1 (SCD1) gene expression. Mechanistically, p53 directly binds to ALDH2 and prevents the formation of its active tetramer and indirectly limits the production of pyruvate that promotes the activity of ALDH2. Notably, p53-deficient mice exhibit increased lipid accumulation, which can be reversed by ALDH2 depletion. Moreover, liver-specific knockdown of SCD1 alleviates ethanol-induced hepatic steatosis caused by p53 loss. By contrast, overexpression of SCD1 in liver promotes ethanol-induced fatty liver development in wild-type mice, while it has a mild effect on p53-/- or ALDH2-/- mice. Overall, our findings reveal a previously unrecognized function of p53 in alcohol-induced fatty liver and uncover pyruvate as a natural regulator of ALDH2.
Collapse
Affiliation(s)
- Pengbo Yao
- State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Cell Biology, School of Basic Medicine Peking Union Medical CollegeInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesBeijingChina
- School of Life SciencesTsinghua UniversityBeijingChina
| | - Zhenxi Zhang
- State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Cell Biology, School of Basic Medicine Peking Union Medical CollegeInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesBeijingChina
| | - Hongchao Liu
- Department of Laboratory MedicinePeking University Third HospitalBeijingChina
| | - Peng Jiang
- School of Life SciencesTsinghua UniversityBeijingChina
| | - Wei Li
- State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Cell Biology, School of Basic Medicine Peking Union Medical CollegeInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesBeijingChina
| | - Wenjing Du
- State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Cell Biology, School of Basic Medicine Peking Union Medical CollegeInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
12
|
Akinluyi ET, Edem EE, Dakoru KM, Nnodim CJ, Oladipupo MA, Adeoluwa OA, Obisesan AO, Ben-Azu B, Adebayo OG. Psychobiotic interventions attenuate chronic alcohol use-mediated exacerbation of posttraumatic stress disorder in rats: the role of gut-liver axis response. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2023; 20:92-105. [PMID: 36537043 DOI: 10.1515/jcim-2022-0353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
OBJECTIVES The incidence of co-occurring alcohol-use disorder (AUD) and post-traumatic stress disorder (PTSD) is high, and the presence of one disorder aggravates the severity of the other. Emerging evidence shows the neuroprotective and anti-inflammation functions of psychobiotics. Hence, the study explored the effects of probiotics and synbiotic inulin on the gut- and liver-oxidative and inflammatory biomarkers in chronic alcohol exacerbation of PTSD symptoms in rats. METHODS Young adult rats were administered 10% ethanol in a two-bottle choice test for six weeks and were subjected to single prolonged stress. Probiotics and synbiotic intervention followed this. Markers of oxido-inflammatory stress, liver functions, intestinal (faecal) metabolites, occludin expression, and histopathology of the ileum and liver were evaluated. RESULTS Chronic alcohol drinking and PTSD increased oxido-inflammatory stress, markers of hepatic damage, and reduced faecal metabolites, which were attenuated by probiotic and synbiotic interventions. Furthermore, reduced immunoexpression of gut and liver occludin, with loss of barrier integrity, viable hepatocytes, congestive portal area, and shortened villi and crypt depth, were observed. Probiotic and synbiotic interventions mitigated these effects. CONCLUSIONS The study demonstrates that psychobiotics mitigate the detrimental effects of co-occurring chronic alcohol intake in the context of PTSD.
Collapse
Affiliation(s)
- Elizabeth T Akinluyi
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Afe Babalola University, Ado- Ekiti, Nigeria
| | - Edem E Edem
- Neuroscience Unit, Department of Human Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado- Ekiti, Nigeria
| | - Kelvin M Dakoru
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Afe Babalola University, Ado- Ekiti, Nigeria
| | - Chinaza J Nnodim
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Afe Babalola University, Ado- Ekiti, Nigeria
| | - Michael A Oladipupo
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Afe Babalola University, Ado- Ekiti, Nigeria
| | - Olusegun A Adeoluwa
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Afe Babalola University, Ado- Ekiti, Nigeria
| | - Abiola O Obisesan
- Department of Pharmaceutical Microbiology, College of Pharmacy, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Benneth Ben-Azu
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Olusegun G Adebayo
- Neurophysiology Unit, Department of Physiology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port Harcourt, Rivers State, Nigeria
| |
Collapse
|
13
|
Qiang S, Gu L, Kuang Y, Zhao M, You Y, Han Q. Changes in the content of Puerarin-PLGA nanoparticles in mice under the influence of alcohol and analysis of their antialcoholism. J Appl Biomater Funct Mater 2023; 21:22808000221148100. [PMID: 36708246 DOI: 10.1177/22808000221148100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
To observe the metabolic changes and antialcoholic effect of Puerarin-PLGA nanoparticles (PUE-NP) in mice. PUE-NP was prepared and characterized by particle size distribution and morphology. The mouse models with acute alcoholism were established to observe their behavioral changes after alcohol poisoning. The expressions of biologically active enzymes such as CRE, BUN, AST, ALT in serum and SOD and TLR4 in liver of mice in each group were detected, and the pathological changes in liver and kidney tissues were observed by HE staining. The PUE-NP metabolism in mice was determined by in vitro release assay and HPLC. PUE-NP nanoparticles had good morphology and structure, and the mouse models with alcohol poisoning were established successfully. Compared with alcohol group, puerarin and PUE-NP increased the disappearance latency time of righting reflex, and the recovery time of righting reflex was significantly shortened. Water maze results showed that Puerarin and PUE-NP had inhibitory effect on impaired memory. HPLC results showed that PUE-NP reached its peak in mice after 1 h, and the content percentage was twice that of puerarin preparation alone, and the distribution time of puerarin concentration in vivo was prolonged, indicating that PLGA nanoparticles had a loading and slow-release effect on puerarin and increased the bioavailability of puerarin in mice. In addition, compared with the alcohol group, Puerarin and PUE-NP improved serum ALT, AST, CRE, and BUN levels in mice, enhanced SOD activity in liver, and inhibited TLR4 expression. The effect was better in the PUE-NP group than in the Puerarin group. PUE-NP delayed the release and metabolism of Puerarin and had better effect in the treatment of the alcoholic liver and kidney injury.
Collapse
Affiliation(s)
- Siyu Qiang
- School of Public Health, Chengdu Medical College, Chengdu, PR China
| | - Lixiang Gu
- School of Public Health, Chengdu Medical College, Chengdu, PR China
| | - Yu Kuang
- School of Public Health, Chengdu Medical College, Chengdu, PR China
| | - Minyao Zhao
- School of Public Health, Chengdu Medical College, Chengdu, PR China
| | - Yu You
- School of Public Health, Chengdu Medical College, Chengdu, PR China
| | - Qin Han
- School of Public Health, Chengdu Medical College, Chengdu, PR China
| |
Collapse
|
14
|
ALDH2 deficiency increases susceptibility to binge alcohol-induced gut leakiness, endotoxemia, and acute liver injury in mice through the gut-liver axis. Redox Biol 2022; 59:102577. [PMID: 36528936 PMCID: PMC9792909 DOI: 10.1016/j.redox.2022.102577] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial aldehyde dehydrogenase 2 (ALDH2) is the major enzyme responsible for metabolizing toxic acetaldehyde to acetate and acts as a protective or defensive protein against various disease states associated with alcohol use disorder (AUD), including alcohol-related liver disease (ARLD). We hypothesized that Aldh2-knockout (KO) mice are more susceptible to binge alcohol-mediated liver injury than wild-type (WT) mice through increased oxidative stress, gut leakiness and endotoxemia. Therefore, this study aimed to investigate the protective role of ALDH2 in binge alcohol-induced gut permeability, endotoxemia, and acute inflammatory liver injury by exposing Aldh2-KO or WT mice to a single oral dose of binge alcohol 3.5, 4.0, or 5.0 g/kg. Our findings showed for the first time that ALDH2 deficiency in Aldh2-KO mice increases their sensitivity to binge alcohol-induced oxidative and nitrative stress, enterocyte apoptosis, and nitration of gut tight junction (TJ) and adherent junction (AJ) proteins, leading to their degradation. These resulted in gut leakiness and endotoxemia in Aldh2-KO mice after exposure to a single dose of ethanol even at 3.5 g/kg, while no changes were observed in the corresponding WT mice. The elevated serum endotoxin (lipopolysaccharide, LPS) and bacterial translocation contributed to systemic inflammation, hepatocyte apoptosis, and subsequently acute liver injury through the gut-liver axis. Treatment with Daidzin, an ALDH2 inhibitor, exacerbated ethanol-induced cell permeability and reduced TJ/AJ proteins in T84 human colon cells. These changes were reversed by Alda-1, an ALDH2 activator. Furthermore, CRISPR/Cas9-mediated knockout of ALDH2 in T84 cells increased alcohol-mediated cell damage and paracellular permeability. All these findings demonstrate the critical role of ALDH2 in alcohol-induced epithelial barrier dysfunction and suggest that ALDH2 deficiency or gene mutation in humans is a risk factor for alcohol-mediated gut and liver injury, and that ALDH2 could be an important therapeutic target against alcohol-associated tissue or organ damage.
Collapse
|
15
|
Ma L, Jiang Y, Lu F, Wang S, Liu M, Liu F, Huang L, Li Y, Jiao N, Jiang S, Yuan X, Yang W. Quantitative Proteomic Analysis of Zearalenone-Induced Intestinal Damage in Weaned Piglets. Toxins (Basel) 2022; 14:toxins14100702. [PMID: 36287972 PMCID: PMC9609629 DOI: 10.3390/toxins14100702] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Zearalenone (ZEN), also known as the F-2 toxin, is a common contaminant in cereal crops and livestock products. This experiment aimed to reveal the changes in the proteomics of ZEN-induced intestinal damage in weaned piglets by tandem mass spectrometry tags. Sixteen weaned piglets either received a basal diet or a basal diet supplemented with 3.0 mg/kg ZEN in a 32 d study. The results showed that the serum levels of ZEN, α-zearalenol, and β-zearalenol were increased in weaned piglets exposed to ZEN (p < 0.05). Zearalenone exposure reduced apparent nutrient digestibility, increased intestinal permeability, and caused intestinal damage in weaned piglets. Meanwhile, a total of 174 differential proteins (DEPs) were identified between control and ZEN groups, with 60 up-regulated DEPs and 114 down-regulated DEPs (FC > 1.20 or <0.83, p < 0.05). Gene ontology analysis revealed that DEPs were mainly involved in substance transport and metabolism, gene expression, inflammatory, and oxidative stress. The Kyoto Encyclopedia of Genes and Genomes analysis revealed that DEPs were significantly enriched in 25 signaling pathways (p < 0.05), most of which were related to inflammation and amino acid metabolism. Our study provides valuable clues to elucidate the possible mechanism of ZEN-induced intestinal injury.
Collapse
Affiliation(s)
- Lulu Ma
- College of Animal Sciences and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
| | - Yanping Jiang
- Zhongcheng Feed Technology Co., Ltd., Feicheng 271600, China
| | - Fuguang Lu
- Shandong Yucheng Animal Husbandry Development Center Co., Ltd., Yucheng 251200, China
| | - Shujing Wang
- College of Animal Sciences and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
| | - Mei Liu
- College of Animal Sciences and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
| | - Faxiao Liu
- College of Animal Sciences and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
| | - Libo Huang
- College of Animal Sciences and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
| | - Yang Li
- College of Animal Sciences and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
| | - Ning Jiao
- College of Animal Sciences and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
| | - Shuzhen Jiang
- College of Animal Sciences and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
| | - Xuejun Yuan
- College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
- Correspondence: (X.Y.); (W.Y.)
| | - Weiren Yang
- College of Animal Sciences and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
- Correspondence: (X.Y.); (W.Y.)
| |
Collapse
|
16
|
Li T, Shi H, Zhao Y. Acetaldehyde induces tau phosphorylation via activation of p38 MAPK/JNK and ROS production. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-021-00193-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
17
|
Chen Y, Liu H, Yu Z, Yang Y, Huang Q, Deng C, Rao H, Wu H. ALDH2 Polymorphism rs671 *1/*2 Genotype is a Risk Factor for the Development of Alcoholic Liver Cirrhosis in Hakka Alcoholics. Int J Gen Med 2022; 15:4067-4077. [PMID: 35450031 PMCID: PMC9017692 DOI: 10.2147/ijgm.s356761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 04/05/2022] [Indexed: 01/19/2023] Open
Abstract
Background Alcoholics are prone to alcoholic cirrhosis (ALC). Aldehyde dehydrogenase 2 (ALDH2) is involved in alcohol metabolism. Herein, the relationship between ALDH2 genotypes and ALC was analyzed among Hakka alcoholics in southern China. Methods A total of 213 alcoholics and 214 non-alcoholics were included in the study. The ALDH2 gene rs671 polymorphism was analyzed, life history, disease history, and auxiliary examination results of these participants were collected. Results The alcoholics had higher level of total serum protein, and serum globulin, lower level of serum albumin, serum albumin/globulin ratio, serum prealbumin, neutrophil-to-lymphocyte ratio (NLR), lymphocyte-to-monocyte ratio (LMR), and platelet-to-lymphocyte ratio (PLR) than non-alcoholics. In the 213 alcoholics, 180 developed ALC. There were 206 non-ALC persons in the 214 non-alcoholics. The proportion of the ALDH2 rs671 G/G homozygous (*1/*1) was significantly lower in ALC patients (83.3%) than that of other groups (100.0% in non-ALC in alcoholics, 95.6% in non-ALC in non-alcoholics), while the proportion of the G/A heterozygous (*1/*2) was significantly higher in ALC patients (16.7%) than that of other groups (0% in non-ALC in alcoholics, 4.4% in non-ALC in non-alcoholics). Logistic regression analysis indicated that participants with low level of NLR (adjusted OR 5.543, 95% CI 2.964–10.368, P<0.001), LMR (adjusted OR 9.256, 95% CI 4.740–18.076, P<0.001), and PLR (adjusted OR 6.047, 95% CI 3.372–10.845, P<0.001), and ALDH2 G/A genotype (adjusted OR 6.323, 95% CI 2.477–16.140, P<0.001) had a significantly higher risk of ALC. Conclusion ALDH2 polymorphism rs671 *1/*2 genotype is a potential risk factor for the development of ALC among Hakka alcoholics.
Collapse
Affiliation(s)
- Yijin Chen
- Department of Gastroenterology, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, People's Republic of China
| | - Hongtao Liu
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, People's Republic of China.,Department of Gastrointestinal Surgery, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, People's Republic of China
| | - Zhikang Yu
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, People's Republic of China.,Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, People's Republic of China
| | - Yang Yang
- Department of Gastroenterology, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, People's Republic of China
| | - Qingyan Huang
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, People's Republic of China.,Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, People's Republic of China
| | - Changqing Deng
- Department of Gastroenterology, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, People's Republic of China
| | - Hui Rao
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, People's Republic of China.,Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, People's Republic of China
| | - Heming Wu
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, People's Republic of China.,Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, People's Republic of China
| |
Collapse
|
18
|
The interplay of pineal hormones and socioeconomic status leading to colorectal cancer disparity. Transl Oncol 2022; 16:101330. [PMID: 34990909 PMCID: PMC8741600 DOI: 10.1016/j.tranon.2021.101330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related deaths in the United States. Despite increased screening options and state-of-art treatments offered in clinics, racial differences remain in CRC. African Americans (AAs) are disproportionately affected by the disease; the incidence and mortality are higher in AAs than Caucasian Americans (CAs). At the time of diagnosis, AAs more often present with advanced stages and aggressive CRCs, primarily accounting for the racial differences in therapeutic outcomes and mortality. The early incidence of CRC in AAs could be attributed to race-specific gene polymorphisms and lifestyle choices associated with socioeconomic status (SES). Altered melatonin-serotonin signaling, besides the established CRC risk factors (age, diet, obesity, alcoholism, and tobacco use), steered by SES, glucocorticoid, and Vitamin D status in AAs could also account for the early incidence in this racial group. This review focuses on how the lifestyle factors, diet, allelic variants, and altered expression of specific genes could lead to atypical serotonin and melatonin signaling by modulating the synthesis, secretion, and signaling of these pineal hormones in AAs and predisposing them to develop more aggressive CRC earlier than CAs. Crosstalk between gut microbiota and pineal hormones and its impact on CRC pathobiology is addressed from a race-specific perspective. Lastly, the status of melatonin-focused CRC treatments, the need to better understand the perturbed melatonin signaling, and the potential of pineal hormone-directed therapeutic interventions to reduce CRC-associated disparity are discussed.
Collapse
|
19
|
Chen YH, Chiu WC, Xiao Q, Chen YL, Shirakawa H, Yang SC. Synbiotics Alleviate Hepatic Damage, Intestinal Injury and Muscular Beclin-1 Elevation in Rats after Chronic Ethanol Administration. Int J Mol Sci 2021; 22:ijms222212547. [PMID: 34830430 PMCID: PMC8622351 DOI: 10.3390/ijms222212547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/15/2021] [Accepted: 11/20/2021] [Indexed: 02/07/2023] Open
Abstract
The purpose of this study was to investigate the beneficial effects of synbiotics on liver damage, intestinal health, and muscle loss, and their relevance in rats with chronic ethanol feeding. Thirty Wistar rats fed with a control liquid diet were divided into control and synbiotics groups, which were respectively provided with water or synbiotics solution (1.5 g/kg body weight/day) for 2 weeks. From the 3rd to 8th week, the control group was divided into a C group (control liquid diet + water) and an E group (ethanol liquid diet + water). The synbiotics group was separated in to three groups, SC, ASE, and PSE. The SC group was given a control liquid diet with synbiotics solution; the ASE group was given ethanol liquid diet with synbiotics solution, and the PSE group was given ethanol liquid diet and water. As the results, the E group exhibited liver damage, including increased AST and ALT activities, hepatic fatty changes, and higher CYP2E1 expression. Intestinal mRNA expressions of occludin and claudin-1 were significantly decreased and the plasma endotoxin level was significantly higher in the E group. In muscles, beclin-1 was significantly increased in the E group. Compared to the E group, the PSE and ASE groups had lower plasma ALT activities, hepatic fatty changes, and CYP2E1 expression. The PSE and ASE groups had significantly higher intestinal occludin and claudin-1 mRNA expressions and lower muscular beclin-1 expression when compared to the E group. In conclusion, synbiotics supplementation might reduce protein expression of muscle protein degradation biomarkers such as beclin-1 in rats with chronic ethanol feeding, which is speculated to be linked to the improvement of intestinal tight junction and the reduction of liver damage.
Collapse
Affiliation(s)
- Yi-Hsiu Chen
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan; (Y.-H.C.); (W.-C.C.); (Q.X.); (Y.-L.C.)
| | - Wan-Chun Chiu
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan; (Y.-H.C.); (W.-C.C.); (Q.X.); (Y.-L.C.)
- Research Center of Geriatric Nutrition, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Qian Xiao
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan; (Y.-H.C.); (W.-C.C.); (Q.X.); (Y.-L.C.)
| | - Ya-Ling Chen
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan; (Y.-H.C.); (W.-C.C.); (Q.X.); (Y.-L.C.)
| | - Hitoshi Shirakawa
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8857, Japan;
| | - Suh-Ching Yang
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan; (Y.-H.C.); (W.-C.C.); (Q.X.); (Y.-L.C.)
- Research Center of Geriatric Nutrition, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Correspondence: ; Tel.: +886-2-27361661 (ext. 6553); Fax: +886-2-27373112
| |
Collapse
|
20
|
Birková A, Hubková B, Čižmárová B, Bolerázska B. Current View on the Mechanisms of Alcohol-Mediated Toxicity. Int J Mol Sci 2021; 22:9686. [PMID: 34575850 PMCID: PMC8472195 DOI: 10.3390/ijms22189686] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 02/07/2023] Open
Abstract
Alcohol is a psychoactive substance that is widely used and, unfortunately, often abused. In addition to acute effects such as intoxication, it may cause many chronic pathological conditions. Some of the effects are very well described and explained, but there are still gaps in the explanation of empirically co-founded dysfunction in many alcohol-related conditions. This work focuses on reviewing actual knowledge about the toxic effects of ethanol and its degradation products.
Collapse
Affiliation(s)
- Anna Birková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, 04011 Kosice, Slovakia
| | - Beáta Hubková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, 04011 Kosice, Slovakia
| | - Beáta Čižmárová
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, 04011 Kosice, Slovakia
| | - Beáta Bolerázska
- 1st Department of Stomatology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, 04011 Kosice, Slovakia
| |
Collapse
|
21
|
Acetaldehyde exposure underlies functional defects in monocytes induced by excessive alcohol consumption. Sci Rep 2021; 11:13690. [PMID: 34211048 PMCID: PMC8249592 DOI: 10.1038/s41598-021-93086-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/18/2021] [Indexed: 12/19/2022] Open
Abstract
Increased intestinal permeability and hepatic macrophage activation by endotoxins are involved in alcohol-induced liver injury pathogenesis. Long-term alcohol exposure conversely induces endotoxin immune tolerance; however, the precise mechanism and reversibility are unclear. Seventy-two alcohol-dependent patients with alcohol dehydrogenase-1B (ADH1B, rs1229984) and aldehyde dehydrogenase-2 (ALDH2, rs671) gene polymorphisms admitted for alcohol abstinence were enrolled. Blood and fecal samples were collected on admission and 4 weeks after alcohol cessation and were sequentially analyzed. Wild-type and ALDH2*2 transgenic mice were used to examine the effect of acetaldehyde exposure on liver immune responses. The productivity of inflammatory cytokines of peripheral CD14+ monocytes in response to LPS stimulation was significantly suppressed in alcohol dependent patients on admission relative to that in healthy controls, which was partially restored by alcohol abstinence with little impact on the gut microbiota composition. Notably, immune suppression was associated with ALDH2/ADH1B gene polymorphisms, and patients with a combination of ALDH2*1/*2 and ADH1B*2 genotypes, the most acetaldehyde-exposed group, demonstrated a deeply suppressed phenotype, suggesting a direct role of acetaldehyde. In vitro LPS and malondialdehyde-acetaldehyde adducted protein stimulation induced direct cytotoxicity on monocytes derived from healthy controls, and a second LPS stimulation suppressed the inflammatory cytokines production. Consistently, hepatic macrophages of ethanol-administered ALDH2*2 transgenic mice exhibited suppressed inflammatory cytokines production in response to LPS compared to that in wild-type mice, reinforcing the contribution of acetaldehyde to liver macrophage function. These results collectively provide new perspectives on the systemic influence of excessive alcohol consumption based on alcohol-metabolizing enzyme genetic polymorphisms.
Collapse
|
22
|
Hyun J, Han J, Lee C, Yoon M, Jung Y. Pathophysiological Aspects of Alcohol Metabolism in the Liver. Int J Mol Sci 2021; 22:5717. [PMID: 34071962 PMCID: PMC8197869 DOI: 10.3390/ijms22115717] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
Alcoholic liver disease (ALD) is a globally prevalent chronic liver disease caused by chronic or binge consumption of alcohol. The liver is the major organ that metabolizes alcohol; therefore, it is particularly sensitive to alcohol intake. Metabolites and byproducts generated during alcohol metabolism cause liver damage, leading to ALD via several mechanisms, such as impairing lipid metabolism, intensifying inflammatory reactions, and inducing fibrosis. Despite the severity of ALD, the development of novel treatments has been hampered by the lack of animal models that fully mimic human ALD. To overcome the current limitations of ALD studies and therapy development, it is necessary to understand the molecular mechanisms underlying alcohol-induced liver injury. Hence, to provide insights into the progression of ALD, this review examines previous studies conducted on alcohol metabolism in the liver. There is a particular focus on the occurrence of ALD caused by hepatotoxicity originating from alcohol metabolism.
Collapse
Affiliation(s)
- Jeongeun Hyun
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea;
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan 31116, Korea
| | - Jinsol Han
- Department of Integrated Biological Science, Pusan National University, Pusan 46241, Korea; (J.H.); (C.L.)
| | - Chanbin Lee
- Department of Integrated Biological Science, Pusan National University, Pusan 46241, Korea; (J.H.); (C.L.)
| | - Myunghee Yoon
- Department of Surgery, Division of Hepatobiliary and Pancreas Surgery, Biomedical Research Institute, Pusan National University, Pusan 46241, Korea;
| | - Youngmi Jung
- Department of Integrated Biological Science, Pusan National University, Pusan 46241, Korea; (J.H.); (C.L.)
- Department of Biological Sciences, Pusan National University, Pusan 46241, Korea
| |
Collapse
|
23
|
Li J, Yang X, Zhou X, Cai J. The Role and Mechanism of Intestinal Flora in Blood Pressure Regulation and Hypertension Development. Antioxid Redox Signal 2021; 34:811-830. [PMID: 32316741 DOI: 10.1089/ars.2020.8104] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Hypertension (HTN) has a complex etiology that is characterized by genetic and environmental factors. It has become a global health burden leading to cardiovascular diseases and kidney diseases, ultimately progressing to premature death. Accumulating evidence indicated that gut microbiome was associated with metabolic disorders and inflammation, which were closely linked to HTN. Recent Advances: Recent studies using bacterial genomic analysis and fecal microbiota transplantation as well as many lines of seminal evidence demonstrated that aberrant gut microbiome was significantly associated with HTN. The intestinal microbiome of both patients and animals with HTN had decreased bacterial diversity, disordered microbial structure and functions, and altered end products of fermentation. Gut dysbiosis and metabolites of the gut microbiota play an important role in blood pressure (BP) control, and they are therefore responsible for developing HTN. Critical Issues: This study aimed at focusing on the recent advances in understanding the role played by gut bacteria and the mechanisms underlying the pathological milieu that induced elevated BP and led to HTN pathogenesis. Potential intervention strategies targeting the correction of gut dysbiosis to improve HTN development were summarized. Future Directions: Larger numbers of fecal transplants from participants with HTN should be carried out to examine the magnitude of BP changes with the replacement of the gut microbiome. The proposed mechanisms for the gut in regulating BP remain to be verified. Whether intervention strategies using probiotics, dietary interventions, bacteriophages, and fecal transplants are feasible for individuals with HTN remains to be explored. Antioxid. Redox Signal. 34, 811-830.
Collapse
Affiliation(s)
- Jing Li
- Heart Center, Beijing ChaoYang Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypertension, Beijing, China
| | - Xinchun Yang
- Heart Center, Beijing ChaoYang Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypertension, Beijing, China
| | - Xin Zhou
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jun Cai
- State Key Laboratory of Cardiovascular Disease of China, Hypertension Center, National Center for Cardiovascular Diseases of China, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
24
|
Translational Approaches with Antioxidant Phytochemicals against Alcohol-Mediated Oxidative Stress, Gut Dysbiosis, Intestinal Barrier Dysfunction, and Fatty Liver Disease. Antioxidants (Basel) 2021; 10:antiox10030384. [PMID: 33806556 PMCID: PMC8000766 DOI: 10.3390/antiox10030384] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
Emerging data demonstrate the important roles of altered gut microbiomes (dysbiosis) in many disease states in the peripheral tissues and the central nervous system. Gut dysbiosis with decreased ratios of Bacteroidetes/Firmicutes and other changes are reported to be caused by many disease states and various environmental factors, such as ethanol (e.g., alcohol drinking), Western-style high-fat diets, high fructose, etc. It is also caused by genetic factors, including genetic polymorphisms and epigenetic changes in different individuals. Gut dysbiosis, impaired intestinal barrier function, and elevated serum endotoxin levels can be observed in human patients and/or experimental rodent models exposed to these factors or with certain disease states. However, gut dysbiosis and leaky gut can be normalized through lifestyle alterations such as increased consumption of healthy diets with various fruits and vegetables containing many different kinds of antioxidant phytochemicals. In this review, we describe the mechanisms of gut dysbiosis, leaky gut, endotoxemia, and fatty liver disease with a specific focus on the alcohol-associated pathways. We also mention translational approaches by discussing the benefits of many antioxidant phytochemicals and/or their metabolites against alcohol-mediated oxidative stress, gut dysbiosis, intestinal barrier dysfunction, and fatty liver disease.
Collapse
|
25
|
Wang Q, Chang B, Li X, Zou Z. Role of ALDH2 in Hepatic Disorders: Gene Polymorphism and Disease Pathogenesis. J Clin Transl Hepatol 2021; 9:90-98. [PMID: 33604259 PMCID: PMC7868706 DOI: 10.14218/jcth.2020.00104] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
Aldehyde dehydrogenase 2 (ALDH2) is a key enzyme of alcohol metabolism and it is involved in the cellular mechanism of alcohol liver disease. ALDH2 gene mutations exist in about 8% of the world's population, with the incidence reaching 45% in East Asia. The mutations will result in impairment of enzyme activity and accumulation of acetaldehyde, facilitating the progression of other liver diseases, including non-alcoholic fatty liver diseases, viral hepatitis and hepatocellular carcinoma, through adduct formation and inflammatory responses. In this review, we seek to summarize recent research progress on the correlation between ALDH2 gene polymorphism and multiple liver diseases, with an attempt to provide clues for better understanding of the disease mechanism and for strategy making.
Collapse
Affiliation(s)
- Qiaoling Wang
- Peking University, 302 Clinical Medical School, Beijing, China
- Diagnosis and Treatment Center for Non-Infectious Liver Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Binxia Chang
- Diagnosis and Treatment Center for Non-Infectious Liver Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaoyan Li
- Anhui Medical University, Hefei, Anhui, China
| | - Zhengsheng Zou
- Peking University, 302 Clinical Medical School, Beijing, China
- Diagnosis and Treatment Center for Non-Infectious Liver Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Correspondence to: Zhengsheng Zou, The Center for Diagnosis and Treatment of Non-Infectious Liver Disease, The General Hospital of Chinese People’s Liberation Army No. 5 Medical Science Center, No. 100 Xisihuan Middle Road, Beijing 100039, China. E-mail:
| |
Collapse
|
26
|
Chronic stress and corticosterone exacerbate alcohol-induced tissue injury in the gut-liver-brain axis. Sci Rep 2021; 11:826. [PMID: 33436875 PMCID: PMC7804442 DOI: 10.1038/s41598-020-80637-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
Alcohol use disorders are associated with altered stress responses, but the impact of stress or stress hormones on alcohol-associated tissue injury remain unknown. We evaluated the effects of chronic restraint stress on alcohol-induced gut barrier dysfunction and liver damage in mice. To determine whether corticosterone is the stress hormone associated with the stress-induced effects, we evaluated the effect of chronic corticosterone treatment on alcoholic tissue injury at the Gut-Liver-Brain (GLB) axis. Chronic restraint stress synergized alcohol-induced epithelial tight junction disruption and mucosal barrier dysfunction in the mouse intestine. These effects of stress on the gut were reproduced by corticosterone treatment. Corticosterone synergized alcohol-induced expression of inflammatory cytokines and chemokines in the colonic mucosa, and it potentiated the alcohol-induced endotoxemia and systemic inflammation. Corticosterone also potentiated alcohol-induced liver damage and neuroinflammation. Metagenomic analyses of 16S RNA from fecal samples indicated that corticosterone modulates alcohol-induced changes in the diversity and abundance of gut microbiota. In Caco-2 cell monolayers, corticosterone dose-dependently potentiated ethanol and acetaldehyde-induced tight junction disruption and barrier dysfunction. These data indicate that chronic stress and corticosterone exacerbate alcohol-induced mucosal barrier dysfunction, endotoxemia, and systemic alcohol responses. Corticosterone-mediated promotion of alcohol-induced intestinal epithelial barrier dysfunction and modulation of gut microbiota may play a crucial role in the mechanism of stress-induced promotion of alcohol-associated tissue injury at the GLB axis.
Collapse
|
27
|
Prasun P, Ginevic I, Oishi K. Mitochondrial dysfunction in nonalcoholic fatty liver disease and alcohol related liver disease. Transl Gastroenterol Hepatol 2021; 6:4. [PMID: 33437892 DOI: 10.21037/tgh-20-125] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/28/2020] [Indexed: 12/11/2022] Open
Abstract
Fatty liver disease constitutes a spectrum of liver diseases which begin with simple steatosis and may progress to advance stages of steatohepatitis, cirrhosis, and hepatocellular carcinoma (HCC). The two main etiologies are-alcohol related fatty liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD). NAFLD is a global health epidemic strongly associated with modern dietary habits and life-style. It is the second most common cause of chronic liver disease in the US after chronic hepatitis C virus (HCV) infection. Approximately 100 million people are affected with this condition in the US alone. Excessive intakes of calories, saturated fat and refined carbohydrates, and sedentary life style have led to explosion of this health epidemic in developing nations as well. ALD is the third most common cause of chronic liver disease in the US. Even though the predominant trigger for onset of steatosis is different in these two conditions, they share common themes in progression from steatosis to the advance stages. Oxidative stress (OS) is considered a very significant contributor to hepatocyte injury in these conditions. Mitochondrial dysfunction contributes to this OS. Role of mitochondrial dysfunction in pathogenesis of fatty liver diseases is emerging but far from completely understood. A better understanding is essential for more effective preventive and therapeutic interventions. Here, we discuss the pathogenesis and therapeutic approaches of NAFLD and ALD from a mitochondrial perspective.
Collapse
Affiliation(s)
- Pankaj Prasun
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ilona Ginevic
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kimihiko Oishi
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
28
|
Wang W, Wang C, Xu H, Gao Y. Aldehyde Dehydrogenase, Liver Disease and Cancer. Int J Biol Sci 2020; 16:921-934. [PMID: 32140062 PMCID: PMC7053332 DOI: 10.7150/ijbs.42300] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/03/2020] [Indexed: 12/19/2022] Open
Abstract
Acetaldehyde dehydrogenase 2 (ALDH2) is the key enzyme responsible for metabolism of the alcohol metabolite acetaldehyde in the liver. In addition to conversion of the acetaldehyde molecule, ALDH is also involved in other cellular functions. Recently, many studies have investigated the involvement of ALDH expression in viral hepatitis, alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), liver fibrosis, and liver cancer. Notably, ALDH2 expression has been linked with liver cancer risk, as well as pathogenesis and prognosis, and has emerged as a promising therapeutic target. Of note, approximately 8% of the world's population, and approximately 30-40% of the population in East Asia carry an inactive ALDH2 gene. This review summarizes new progress in understanding tissue-specific acetaldehyde metabolism by ALDH2 as well as the association of ALDH2 gene polymorphisms with liver disease and cancer. New research directions emerging in the field are also briefly discussed.
Collapse
Affiliation(s)
- Wenjun Wang
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130021, China
| | - Chunguang Wang
- Department of Thoracic & Cardiovascular Surgery, Second Clinical College, Jilin University, Changchun, 130041, China
| | - Hongxin Xu
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130021, China
| | - Yanhang Gao
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130021, China
| |
Collapse
|
29
|
Fish oil up-regulates hepatic autophagy in rats with chronic ethanol consumption. J Nutr Biochem 2019; 77:108314. [PMID: 31884243 DOI: 10.1016/j.jnutbio.2019.108314] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/12/2019] [Accepted: 11/27/2019] [Indexed: 12/12/2022]
Abstract
In this study, we examined the regulation of autophagy by fish oil in rats under ethanol-containing diets. Thirty male Wistar rats (8-week-old) were divided into six groups and fed a control diet or an ethanol-containing diet, which was adjusted with fish oil to replace 25% or 57% of the olive oil. After 8 weeks, rats in the E (ethanol diet) group showed the significantly higher plasma aspartate transaminase (AST) and alanine transaminase (ALT) activities, protein expression of cytochrome P450 2E1 (CYP2E1), and levels of hepatic inflammatory cytokines. However, all of those items had significantly decreased in the EF25 (ethanol with 25% fish oil) and EF57 (ethanol with 57% fish oil) groups. As to autophagic indicators, protein expressions of mammalian target of rapamycin (mTOR), Unc-51-like autophagy activating kinase 1 (ULK1) and p62 were significantly increased in the E group. Conversely, the protein expressions of light chain 3II (LC3II)/LC3I and Beclin1 were significantly decreased in the E group. On the other hand, protein expressions of phosphorylated Akt, mTOR, ULK1, and p62 were down-regulated, protein expressions of LC3II/LC3I and Beclin1 were conversely up-regulated in the EF25 and EF57 groups. Fish oil activated hepatic autophagy via inhibiting the Akt signaling pathway, which exerted protective effects against ethanol-induced liver injury in rats.
Collapse
|
30
|
Waris S, Habib S, Khan S, Kausar T, Naeem SM, Siddiqui SA, Moinuddin, Ali A. Molecular docking explores heightened immunogenicity and structural dynamics of acetaldehyde human immunoglobulin G adduct. IUBMB Life 2019; 71:1522-1536. [PMID: 31185142 DOI: 10.1002/iub.2078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 05/08/2019] [Indexed: 12/19/2022]
Abstract
Acetaldehyde is a metabolite of ethanol, an important constituent of tobacco pyrolysis and the aldehydic product of lipid peroxidation. Acetaldehyde induced toxicity is mainly due to its binding to cellular macromolecules resulting in the formation of stable adducts accompanied by oxidative stress. The aim of this study was to characterize structural and immunological alterations in human immunoglobulin G (IgG) modified with acetaldehyde in the presence of sodium borohydride, a reducing agent. The IgG modifications were studied by various physicochemical techniques such as fluorescence and CD spectroscopy, free amino group estimation, 2,2-azobis 2-amidinopropane (AAPH) induced red blood cell hemolysis as well as transmission electron microscopy. Molecular docking was also employed to predict the preferential binding of acetaldehyde to IgG. The immunogenicity of native and acetaldehyde-modified IgG was investigated by immunizing female New Zealand white rabbits using native and modified IgG as antigens. Binding specificity and cross reactivity of rabbit antibodies was screened by competitive inhibition ELISA and band shift assays. The modification of human IgG with acetaldehyde results in quenching of the fluorescence of tyrosine residues, decrease in free amino group content, a change in the antioxidant property as well as formation of cross-linked structures in human IgG. Molecular docking reveals strong binding of IgG to acetaldehyde. Moreover, acetaldehyde modified IgG induced high titer antibodies (>1:12800) in the experimental animals. The antibodies exhibited high specificity in competitive binding assay toward acetaldehyde modified human IgG. The results indicate that acetaldehyde induces alterations in secondary and tertiary structure of IgG molecule that leads to formation of neo-epitopes on IgG that enhances its immunogenicity.
Collapse
Affiliation(s)
- Sana Waris
- Department of Biochemistry, Faculty of Medicine, J. N. Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Safia Habib
- Department of Biochemistry, Faculty of Medicine, J. N. Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Shifa Khan
- Department of Biochemistry, Faculty of Medicine, J. N. Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Tasneem Kausar
- Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Shahid M Naeem
- Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Shahid A Siddiqui
- Department of Radiotherapy, Faculty of Medicine, J. N. Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Moinuddin
- Department of Biochemistry, Faculty of Medicine, J. N. Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Asif Ali
- Department of Biochemistry, Faculty of Medicine, J. N. Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
31
|
Connection between gut microbiome and the development of obesity. Eur J Clin Microbiol Infect Dis 2019; 38:1987-1998. [PMID: 31367997 DOI: 10.1007/s10096-019-03623-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 06/26/2019] [Indexed: 02/08/2023]
Abstract
The potential role of the gut microbiota in various human diseases has attracted considerable attention worldwide. Here, we discuss the vital role of the intestinal microbiota in the development of obesity. First, we describe how the gut microbiota promotes fat accumulation. Additionally, a high-fat diet leads to structural instability among in the gut microbiota, further leading to an increase in endotoxins, which aggravates obesity. We then discuss how gut microbiota metabolites, including short-chain fatty acids and lipopolysaccharides, affect the host. Finally, we review several strategies for regulating the intestinal flora.
Collapse
|
32
|
Marshall S, Chen Y, Singh S, Berrios-Carcamo P, Heit C, Apostolopoulos N, Golla JP, Thompson DC, Vasiliou V. Engineered Animal Models Designed for Investigating Ethanol Metabolism, Toxicity and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1032:203-221. [PMID: 30362100 PMCID: PMC6743736 DOI: 10.1007/978-3-319-98788-0_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Excessive consumption of alcohol is a leading cause of lifestyle-induced morbidity and mortality worldwide. Although long-term alcohol abuse has been shown to be detrimental to the liver, brain and many other organs, our understanding of the exact molecular mechanisms by which this occurs is still limited. In tissues, ethanol is metabolized to acetaldehyde (mainly by alcohol dehydrogenase and cytochrome p450 2E1) and subsequently to acetic acid by aldehyde dehydrogenases. Intracellular generation of free radicals and depletion of the antioxidant glutathione (GSH) are believed to be key steps involved in the cellular pathogenic events caused by ethanol. With continued excessive alcohol consumption, further tissue damage can result from the production of cellular protein and DNA adducts caused by accumulating ethanol-derived aldehydes. Much of our understanding about the pathophysiological consequences of ethanol metabolism comes from genetically-engineered mouse models of ethanol-induced tissue injury. In this review, we provide an update on the current understanding of important mouse models in which ethanol-metabolizing and GSH-synthesizing enzymes have been manipulated to investigate alcohol-induced disease.
Collapse
Affiliation(s)
- Stephanie Marshall
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Ying Chen
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Surendra Singh
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Pablo Berrios-Carcamo
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
- Program of Molecular and Clinical Pharmacology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Claire Heit
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, CO, USA
| | - Nicholas Apostolopoulos
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Jaya Prakash Golla
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - David C Thompson
- Department of Clinical Pharmacy, Skaggs School of Pharmacy, University of Colorado, Aurora, CO, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA.
| |
Collapse
|
33
|
Shukla PK, Meena AS, Rao R, Rao R. Deletion of TLR-4 attenuates fetal alcohol exposure-induced gene expression and social interaction deficits. Alcohol 2018; 73:73-78. [PMID: 30312858 DOI: 10.1016/j.alcohol.2018.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/30/2018] [Accepted: 04/12/2018] [Indexed: 12/12/2022]
Abstract
Fetal alcohol spectrum disorders (FASD) are associated with social interaction behavior and gastrointestinal (GI) abnormalities. These abnormal behaviors and GI abnormalities overlap with autism spectrum disorder (ASD). We investigated the effect of fetal alcohol exposure (FAE) on social interaction deficits (hallmark of autism) in mice. Evidence indicates that exogenous lipopolysaccharide (LPS) administration during gestation induces autism-like behavior in the offspring. LPS regulates the expression of genes underlying differentiation, immune function, myelination, and synaptogenesis in fetal brain by the LPS receptor, TLR-4-dependent mechanism. In this study, we evaluated the role of TLR-4 in FAE-induced social behavior deficit. WT and TLR4-/- pregnant mice were fed Lieber-DeCarli liquid diet with or without ethanol. The control group was pair-fed with an isocaloric diet. Social behavior was tested in the adult offspring at postnatal day 60. Frontal cortex mRNA expression of autistic candidate genes (Ube3a, Gabrb3, Mecp2) and inflammatory cytokine genes (IL-1β, IL-6, TNF-α) were measured by RT-qPCR. Adult male offspring of ethanol-fed WT dams showed low birth weight compared to offspring of pair-fed WT dams. However, their body weights at adulthood were greater compared to the body weights of offspring of pair-fed WT dams. There were no body weight differences in offspring of TLR4-/- dams. Social interaction deficit was observed only in male offspring of ethanol-fed WT dams, but it was not observed in both male and female offspring of ethanol-fed TLR4-/- dams. Expressions of autism candidate genes, Gabrb3 and Ube3a, were elevated, while that of the Mecp2 gene was suppressed in the frontal cortex of male, but not female, offspring of ethanol-fed WT mice. The expressions of inflammatory cytokine genes, IL-1β, IL-6, and TNF-α, were also significantly increased in the frontal cortex of male, but not female, offspring of ethanol-fed dams. The changes in the expression of autistic and cytokine genes were unaffected in the offspring of ethanol-fed TLR4-/- dams. These data also indicate that TLR4 mediates FAE-induced changes in social interactions and gene expression in brain, suggesting that ethanol-induced LPS absorption from the maternal gut may be involved in gene expression changes in the fetal brain.
Collapse
Affiliation(s)
- Pradeep K Shukla
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Avtar S Meena
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Rupa Rao
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - RadhaKrishna Rao
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
34
|
Guo F, Zheng K, Benedé-Ubieto R, Cubero FJ, Nevzorova YA. The Lieber-DeCarli Diet-A Flagship Model for Experimental Alcoholic Liver Disease. Alcohol Clin Exp Res 2018; 42:1828-1840. [DOI: 10.1111/acer.13840] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/09/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Feifei Guo
- Department of Genetics, Physiology and Microbiology; Faculty of Biology; Complutense University of Madrid; Madrid Spain
| | - Kang Zheng
- Department of Immunology, Ophthalmology & ORL; School of Medicine; Complutense University of Madrid; Madrid Spain
- 12 de Octubre Health Research Institute (imas12); Madrid Spain
| | - Raquel Benedé-Ubieto
- Department of Genetics, Physiology and Microbiology; Faculty of Biology; Complutense University of Madrid; Madrid Spain
| | - Francisco Javier Cubero
- Department of Immunology, Ophthalmology & ORL; School of Medicine; Complutense University of Madrid; Madrid Spain
- 12 de Octubre Health Research Institute (imas12); Madrid Spain
| | - Yulia A. Nevzorova
- Department of Genetics, Physiology and Microbiology; Faculty of Biology; Complutense University of Madrid; Madrid Spain
- Department of Internal Medicine III; University Hospital RWTH Aachen; Aachen Germany
| |
Collapse
|
35
|
Yokoyama A, Taniki N, Hara S, Haysashi E, Nakamoto N, Mizukami T, Maruyama K, Yokoyama T. Slow-metabolizing ADH1B and inactive heterozygous ALDH2 increase vulnerability to fatty liver in Japanese men with alcohol dependence. J Gastroenterol 2018; 53:660-669. [PMID: 29063269 DOI: 10.1007/s00535-017-1402-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/10/2017] [Indexed: 02/04/2023]
Abstract
BACKGROUND Genetic polymorphisms of alcohol dehydrogenase-1B (ADH1B; rs1229984, His48Arg) and aldehyde dehydrogenase-2 (ALDH2; rs671, Glu504Lys) affect body weight, body fat, and lipid metabolism in individuals with alcohol dependence, and the aim of this study was to identify their determinants in relation to the development of fatty liver. METHODS We evaluated associations between the presence of fatty liver and ADH1B and ALDH2 genotypes and other factors in 1604 Japanese men who had been admitted for treatment of alcohol dependence. RESULTS Fatty liver was diagnosed when ultrasonography showed both hepatorenal contrast and liver brightness. Age-adjusted usual alcohol intake did not differ according to ADH1B or ALDH2 genotypes. A multivariate analysis showed that the adjusted odds ratio (OR, 95% confidence interval) of slow-metabolizing ADH1B Arg/Arg carriers was 1.61 (1.27-2.03) for fatty liver and 1.82 (1.37-2.41) for fatty liver with deep attenuation in comparison with the ADH1B His/Arg or His/His carriers, and that the OR of inactive heterozygous ALDH2 Glu/Lys carriers was 1.43 (1.08-1.91) for fatty liver and 1.84 (1.31-2.59) for fatty liver with deep attenuation in comparison with the ALDH2 Glu/Glu carriers. Younger age, shorter interval between the last drink and the ultrasound examination, larger body mass index, and absence of cirrhosis were identified as other positive determinants for fatty liver. CONCLUSIONS The ADH1B Arg/Arg genotype and the ALDH2 Glu/Lys genotype were positive determinants of fatty liver in the subjects. These results suggest that slow ethanol and acetaldehyde metabolism accelerates the development of alcoholic fatty liver in heavy drinkers.
Collapse
Affiliation(s)
- Akira Yokoyama
- National Hospital Organization Kurihama Medical and Addiction Center, 5-3-1 Nobi, Yokosuka, Kanagawa, 239-0841, Japan.
| | - Nobuhito Taniki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Sachiko Hara
- National Hospital Organization Kurihama Medical and Addiction Center, 5-3-1 Nobi, Yokosuka, Kanagawa, 239-0841, Japan
| | - Emiko Haysashi
- National Hospital Organization Kurihama Medical and Addiction Center, 5-3-1 Nobi, Yokosuka, Kanagawa, 239-0841, Japan
| | - Nobuhiro Nakamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Takeshi Mizukami
- National Hospital Organization Kurihama Medical and Addiction Center, 5-3-1 Nobi, Yokosuka, Kanagawa, 239-0841, Japan
| | - Katsuya Maruyama
- National Hospital Organization Kurihama Medical and Addiction Center, 5-3-1 Nobi, Yokosuka, Kanagawa, 239-0841, Japan
| | - Tetsuji Yokoyama
- Department of Health Promotion, National Institute of Public Health, 2-3-6 Minami, Wako, Saitama, 351-0104, Japan
| |
Collapse
|
36
|
Different Dietary Proportions of Fish Oil Regulate Inflammatory Factors but Do Not Change Intestinal Tight Junction ZO-1 Expression in Ethanol-Fed Rats. Mediators Inflamm 2017; 2017:5801768. [PMID: 29386752 PMCID: PMC5745723 DOI: 10.1155/2017/5801768] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/30/2017] [Accepted: 10/15/2017] [Indexed: 12/18/2022] Open
Abstract
Sixty male Wistar rats were fed a control or an ethanol-containing diet in groups C or E. The fat compositions were adjusted with 25% or 57% fish oil substituted for olive oil in groups CF25, CF57, EF25, and EF57. Hepatic thiobarbituric acid-reactive substance (TBARS) levels, cytochrome P450 2E1 protein expression, and tumor necrosis factor- (TNF-) α, interleukin- (IL-) 1β, IL-6, and IL-10 levels, as well as intracellular adhesion molecule (ICAM)-1 levels were significantly elevated, whereas plasma adiponectin level was significantly reduced in group E (p < 0.05). Hepatic histopathological scores of fatty change and inflammation, in group E were significantly higher than those of group C (p < 0.05). Hepatic TBARS, plasma ICAM-1, and hepatic TNF-α, IL-1β, and IL-10 levels were significantly lower, and plasma adiponectin levels were significantly higher in groups EF25 and EF57 than those in group E (p < 0.05). The immunoreactive area of the intestinal tight junction protein, ZO-1, showed no change between groups C and E. Only group CF57 displayed a significantly higher ZO-1 immunoreactive area compared to group C (p = 0.0415). 25% or 57% fish oil substituted for dietary olive oil could prevent ethanol-induced liver damage in rats, but the mechanism might not be related to intestinal tight junction ZO-1 expression.
Collapse
|
37
|
Zhou Z, Zhong W. Targeting the gut barrier for the treatment of alcoholic liver disease. LIVER RESEARCH 2017; 1:197-207. [PMID: 30034913 PMCID: PMC6051712 DOI: 10.1016/j.livres.2017.12.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alcohol consumption remains one of the predominant causes of liver disease and liver-related death worldwide. Intriguingly, dysregulation of the gut barrier is a key factor promoting the pathogenesis of alcoholic liver disease (ALD). A functional gut barrier, which consists of a mucus layer, an intact epithelial monolayer and mucosal immune cells, supports nutrient absorption and prevents bacterial penetration. Compromised gut barrier function is associated with the progression of ALD. Indeed, alcohol consumption disrupts the gut barrier, increases gut permeability, and induces bacterial translocation both in ALD patients and in experimental models with ALD. Moreover, alcohol consumption also causes enteric dysbiosis with both numerical and proportional perturbations. Here, we review and discuss mechanisms of alcohol-induced gut barrier dysfunction to better understand the contribution of the gut-liver axis to the pathogenesis of ALD. Unfortunately, there is no effectual Food and Drug Administration-approved treatment for any stage of ALD. Therefore, we conclude with a discussion of potential strategies aimed at restoring the gut barrier in ALD. The principle behind antibiotics, prebiotics, probiotics and fecal microbiota transplants is to restore microbial symbiosis and subsequently gut barrier function. Nutrient-based treatments, such as dietary supplementation with zinc, niacin or fatty acids, have been shown to regulate tight junction expression, reduce intestinal inflammation, and prevent endotoxemia as well as liver injury caused by alcohol in experimental settings. Interestingly, saturated fatty acids may also directly control the gut microbiome. In summary, clinical and experimental studies highlight the significance and efficacy of the gut barrier in treating ALD.
Collapse
Affiliation(s)
- Zhanxiang Zhou
- Center for Translational Biomedical Research, School of Health and Human Sciences, University of North Carolina at Greensboro, Kannapolis, NC, USA
- Department of Nutrition, School of Health and Human Sciences, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Wei Zhong
- Center for Translational Biomedical Research, School of Health and Human Sciences, University of North Carolina at Greensboro, Kannapolis, NC, USA
| |
Collapse
|
38
|
Zhao L, Jiang Y, Ni Y, Zhang T, Duan C, Huang C, Zhao Y, Gao L, Li S. Protective effects of Lactobacillus plantarum C88 on chronic ethanol-induced liver injury in mice. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.05.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
39
|
Klarich DS, Penprase J, Cintora P, Medrano O, Erwin D, Brasser SM, Hong MY. Effects of moderate alcohol consumption on gene expression related to colonic inflammation and antioxidant enzymes in rats. Alcohol 2017; 61:25-31. [PMID: 28599714 DOI: 10.1016/j.alcohol.2017.02.179] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 02/11/2017] [Accepted: 02/14/2017] [Indexed: 01/21/2023]
Abstract
Excessive alcohol consumption is a risk factor associated with colorectal cancer; however, some studies have reported that moderate alcohol consumption may not contribute additional risk for developing colorectal cancer while others suggest that moderate alcohol consumption provides a protective effect that reduces colorectal cancer risk. The purpose of this study was to determine the effects of moderate voluntary alcohol (20% ethanol) intake on alternate days for 3 months in outbred Wistar rats on risk factors associated with colorectal cancer development. Colonic gene expression of cyclooxygenase-2, RelA, 8-oxoguanine DNA glycosylase 1, superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione-S-transferase M1, and aldehyde dehydrogenase 2 were determined. Blood alcohol content, liver function enzyme activities, and 8-oxo-deoxyguanosine DNA adducts were also assessed. Alcohol-treated rats were found to have significantly lower 8-oxo-deoxyguanosine levels in blood, a marker of DNA damage. Alanine aminotransferase and lactate dehydrogenase were both significantly lower in the alcohol group. Moderate alcohol significantly decreased cyclooxygenase-2 gene expression, an inflammatory marker associated with colorectal cancer risk. The alcohol group had significantly increased glutathione-S-transferase M1 expression, an antioxidant enzyme that helps detoxify carcinogens, such as acetaldehyde, and significantly increased aldehyde dehydrogenase 2 expression, which allows for greater acetaldehyde clearance. Increased expression of glutathione-S-transferase M1 and aldehyde dehydrogenase 2 likely contributed to reduce mucosal damage that is caused by acetaldehyde accumulation. These results indicate that moderate alcohol may reduce the risk for colorectal cancer development, which was evidenced by reduced inflammation activity and lower DNA damage after alcohol exposure.
Collapse
|
40
|
Sahay P, Shukla PK, Ghimire HM, Almabadi HM, Tripathi V, Mohanty SK, Rao R, Pradhan P. Quantitative analysis of nanoscale intranuclear structural alterations in hippocampal cells in chronic alcoholism via transmission electron microscopy imaging. Phys Biol 2017; 14:026001. [PMID: 28248645 DOI: 10.1088/1478-3975/aa5d71] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Chronic alcoholism is known to alter the morphology of the hippocampus, an important region of cognitive function in the brain. Therefore, to understand the effect of chronic alcoholism on hippocampal neural cells, we employed a mouse model of chronic alcoholism and quantified intranuclear nanoscale structural alterations in these cells. Transmission electron microscopy (TEM) images of hippocampal neurons were obtained, and the degree of structural alteration in terms of mass density fluctuation was determined using the light-localization properties of optical media generated from TEM imaging. The results, which were obtained at length scales ranging from ~30 to 200 nm, show that 10-12 week-old mice fed a Lieber-DeCarli liquid (alcoholic) diet had a higher degree of structural alteration than control mice fed a normal diet without alcohol. The degree of structural alteration became significantly distinguishable at a sample length of ~100 nm, which is the typical length scale of the building blocks of cells, such as DNA, RNA, proteins and lipids. Interestingly, different degrees of structural alteration at such length scales suggest possible structural rearrangement of chromatin inside the nuclei in chronic alcoholism.
Collapse
Affiliation(s)
- Peeyush Sahay
- Department of Physics and Materials Science, BioNanoPhotonics Laboratory, University of Memphis, Memphis, TN 38152, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Wegner SA, Pollard KA, Kharazia V, Darevsky D, Perez L, Roychowdhury S, Xu A, Ron D, Nagy LE, Hopf FW. Limited Excessive Voluntary Alcohol Drinking Leads to Liver Dysfunction in Mice. Alcohol Clin Exp Res 2017; 41:345-358. [PMID: 28103636 DOI: 10.1111/acer.13303] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 11/28/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Liver damage is a serious and sometimes fatal consequence of long-term alcohol intake, which progresses from early-stage fatty liver (steatosis) to later-stage steatohepatitis with inflammation and fibrosis/necrosis. However, very little is known about earlier stages of liver disruption that may occur in problem drinkers, those who drink excessively but are not dependent on alcohol. METHODS We examined how repeated binge-like alcohol drinking in C57BL/6 mice altered liver function, as compared with a single binge-intake session and with repeated moderate alcohol consumption. We measured a number of markers associated with early- and later-stage liver disruption, including liver steatosis, measures of liver cytochrome P4502E1 (CYP2E1) and alcohol dehydrogenase (ADH), alcohol metabolism, expression of cytokine mRNA, accumulation of 4-hydroxynonenal (4-HNE) as an indicator of oxidative stress, and alanine transaminase/aspartate transaminase as a measure of hepatocyte injury. RESULTS Importantly, repeated binge-like alcohol drinking increased triglyceride levels in the liver and plasma, and increased lipid droplets in the liver, indicators of steatosis. In contrast, a single binge-intake session or repeated moderate alcohol consumption did not alter triglyceride levels. In addition, alcohol exposure can increase rates of alcohol metabolism through CYP2E1 and ADH, which can potentially increase oxidative stress and liver dysfunction. Intermittent, excessive alcohol intake increased liver CYP2E1 mRNA, protein, and activity, as well as ADH mRNA and activity. Furthermore, repeated, binge-like drinking, but not a single binge or moderate drinking, increased alcohol metabolism. Finally, repeated, excessive intake transiently elevated mRNA for the proinflammatory cytokine IL-1B and 4-HNE levels, but did not alter markers of later-stage liver hepatocyte injury. CONCLUSIONS Together, we provide data suggesting that even relatively limited binge-like alcohol drinking can lead to disruptions in liver function, which might facilitate the transition to more severe forms of liver damage.
Collapse
Affiliation(s)
- Scott A Wegner
- Department of Neurology, University of California at San Francisco, San Francisco, California.,Wheeler Center for the Study of Addiction, University of California at San Francisco, San Francisco, California.,Alcohol and Addiction Research Group , University of California at San Francisco, San Francisco, California
| | - Katherine A Pollard
- Department of Pathobiology, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio
| | - Viktor Kharazia
- Department of Neurology, University of California at San Francisco, San Francisco, California.,Wheeler Center for the Study of Addiction, University of California at San Francisco, San Francisco, California.,Alcohol and Addiction Research Group , University of California at San Francisco, San Francisco, California
| | - David Darevsky
- Department of Neurology, University of California at San Francisco, San Francisco, California.,Wheeler Center for the Study of Addiction, University of California at San Francisco, San Francisco, California.,Alcohol and Addiction Research Group , University of California at San Francisco, San Francisco, California
| | - Luz Perez
- Diabetes Center, University of California at San Francisco, San Francisco, California
| | - Sanjoy Roychowdhury
- Department of Pathobiology, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio
| | - Allison Xu
- Diabetes Center, University of California at San Francisco, San Francisco, California
| | - Dorit Ron
- Department of Neurology, University of California at San Francisco, San Francisco, California.,Wheeler Center for the Study of Addiction, University of California at San Francisco, San Francisco, California.,Alcohol and Addiction Research Group , University of California at San Francisco, San Francisco, California
| | - Laura E Nagy
- Department of Pathobiology, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio
| | - Frederic Woodward Hopf
- Department of Neurology, University of California at San Francisco, San Francisco, California.,Wheeler Center for the Study of Addiction, University of California at San Francisco, San Francisco, California.,Alcohol and Addiction Research Group , University of California at San Francisco, San Francisco, California
| |
Collapse
|
42
|
Samak G, Gangwar R, Meena AS, Rao RG, Shukla PK, Manda B, Narayanan D, Jaggar JH, Rao R. Calcium Channels and Oxidative Stress Mediate a Synergistic Disruption of Tight Junctions by Ethanol and Acetaldehyde in Caco-2 Cell Monolayers. Sci Rep 2016; 6:38899. [PMID: 27958326 PMCID: PMC5153649 DOI: 10.1038/srep38899] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/14/2016] [Indexed: 12/13/2022] Open
Abstract
Ethanol is metabolized into acetaldehyde in most tissues. In this study, we investigated the synergistic effect of ethanol and acetaldehyde on the tight junction integrity in Caco-2 cell monolayers. Expression of alcohol dehydrogenase sensitized Caco-2 cells to ethanol-induced tight junction disruption and barrier dysfunction, whereas aldehyde dehydrogenase attenuated acetaldehyde-induced tight junction disruption. Ethanol up to 150 mM did not affect tight junction integrity or barrier function, but it dose-dependently increased acetaldehyde-mediated tight junction disruption and barrier dysfunction. Src kinase and MLCK inhibitors blocked this synergistic effect of ethanol and acetaldehyde on tight junction. Ethanol and acetaldehyde caused a rapid and synergistic elevation of intracellular calcium. Calcium depletion by BAPTA or Ca2+-free medium blocked ethanol and acetaldehyde-induced barrier dysfunction and tight junction disruption. Diltiazem and selective knockdown of TRPV6 or CaV1.3 channels, by shRNA blocked ethanol and acetaldehyde-induced tight junction disruption and barrier dysfunction. Ethanol and acetaldehyde induced a rapid and synergistic increase in reactive oxygen species by a calcium-dependent mechanism. N-acetyl-L-cysteine and cyclosporine A, blocked ethanol and acetaldehyde-induced barrier dysfunction and tight junction disruption. These results demonstrate that ethanol and acetaldehyde synergistically disrupt tight junctions by a mechanism involving calcium, oxidative stress, Src kinase and MLCK.
Collapse
Affiliation(s)
- Geetha Samak
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Avenue, Memphis TN 38163, USA
| | - Ruchika Gangwar
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Avenue, Memphis TN 38163, USA
| | - Avtar S Meena
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Avenue, Memphis TN 38163, USA
| | - Roshan G Rao
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Avenue, Memphis TN 38163, USA
| | - Pradeep K Shukla
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Avenue, Memphis TN 38163, USA
| | - Bhargavi Manda
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Avenue, Memphis TN 38163, USA
| | - Damodaran Narayanan
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Avenue, Memphis TN 38163, USA
| | - Jonathan H Jaggar
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Avenue, Memphis TN 38163, USA
| | - RadhaKrishna Rao
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Avenue, Memphis TN 38163, USA
| |
Collapse
|
43
|
Hersoug LG, Møller P, Loft S. Gut microbiota-derived lipopolysaccharide uptake and trafficking to adipose tissue: implications for inflammation and obesity. Obes Rev 2016; 17:297-312. [PMID: 26712364 DOI: 10.1111/obr.12370] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 12/12/2022]
Abstract
The composition of the gut microbiota and excessive ingestion of high-fat diets (HFD) are considered to be important factors for development of obesity. In this review we describe a coherent mechanism of action for the development of obesity, which involves the composition of gut microbiota, HFD, low-grade inflammation, expression of fat translocase and scavenger receptor CD36, and the scavenger receptor class B type 1 (SR-BI). SR-BI binds to both lipids and lipopolysaccharide (LPS) from Gram-negative bacteria, which may promote incorporation of LPS in chylomicrons (CMs). These CMs are transported via lymph to the circulation, where LPS is transferred to other lipoproteins by translocases, preferentially to HDL. LPS increases the SR-BI binding, transcytosis of lipoproteins over the endothelial barrier,and endocytosis in adipocytes. Especially large size adipocytes with high metabolic activity absorb LPS-rich lipoproteins. In addition, macrophages in adipose tissue internalize LPS-lipoproteins. This may contribute to the polarization from M2 to M1 phenotype, which is a consequence of increased LPS delivery into the tissue during hypertrophy. In conclusion, evidence suggests that LPS is involved in the development of obesity as a direct targeting molecule for lipid delivery and storage in adipose tissue.
Collapse
Affiliation(s)
- L-G Hersoug
- Section of Environmental Health, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - P Møller
- Section of Environmental Health, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - S Loft
- Section of Environmental Health, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
44
|
Astaxanthin Inhibits Acetaldehyde-Induced Cytotoxicity in SH-SY5Y Cells by Modulating Akt/CREB and p38MAPK/ERK Signaling Pathways. Mar Drugs 2016; 14:md14030056. [PMID: 26978376 PMCID: PMC4820310 DOI: 10.3390/md14030056] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 02/10/2016] [Accepted: 02/17/2016] [Indexed: 12/14/2022] Open
Abstract
Excessive alcohol consumption can lead to brain tissue damage and cognitive dysfunction. Acetaldehyde, the most toxic metabolite of ethanol, mediates the brain tissue damage and cognitive dysfunction induced by chronic excessive alcohol consumption. In this study, the effect of astaxanthin, a marine bioactive compound, on acetaldehyde-induced cytotoxicity was investigated in SH-SY5Y cells. It was found that astaxanthin protected cells from apoptosis by ameliorating the effect of acetaldehyde on the expression of Bcl-2 family proteins, preventing the reduction of anti-apoptotic protein Bcl-2 and the increase of pro-apoptotic protein Bak induced by acetaldehyde. Further analyses showed that astaxanthin treatment inhibited acetaldehyde-induced reduction of the levels of activated Akt and cyclic AMP-responsive element binding protein (CREB). Astaxanthin treatment also prevented acetaldehyde-induced increase of the level of activated p38 mitogen-activated protein kinase (MAPK) and decrease of the level of activated extracellular signal-regulated kinases (ERKs). Activation of Akt/CREB pathway promotes cell survival and is involved in the upregulation of Bcl-2 gene. P38MAPK plays a critical role in apoptotic events while ERKs mediates the inhibition of apoptosis. Thus, astaxanthin may inhibit acetaldehyde-induced apoptosis through promoting the activation of Akt/CREB and ERKs and blocking the activation of p38MAPK. In addition, astaxanthin treatment suppressed the oxidative stress induced by acetaldehyde and restored the antioxidative capacity of SH-SY5Y cells. Therefore, astaxanthin may protect cells against acetaldehyde-induced cytotoxicity through maintaining redox balance and modulating apoptotic and survival signals. The results suggest that astaxanthin treatment may be beneficial for preventing neurotoxicity associated with acetaldehyde and excessive alcohol consumption.
Collapse
|
45
|
Mir H, Meena AS, Chaudhry KK, Shukla PK, Gangwar R, Manda B, Padala MK, Shen L, Turner JR, Dietrich P, Dragatsis I, Rao R. Occludin deficiency promotes ethanol-induced disruption of colonic epithelial junctions, gut barrier dysfunction and liver damage in mice. Biochim Biophys Acta Gen Subj 2015; 1860:765-74. [PMID: 26721332 DOI: 10.1016/j.bbagen.2015.12.013] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 12/05/2015] [Accepted: 12/18/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Disruption of epithelial tight junctions (TJ), gut barrier dysfunction and endotoxemia play crucial role in the pathogenesis of alcoholic tissue injury. Occludin, a transmembrane protein of TJ, is depleted in colon by alcohol. However, it is unknown whether occludin depletion influences alcoholic gut and liver injury. METHODS Wild type (WT) and occludin deficient (Ocln(-/-)) mice were fed 1-6% ethanol in Lieber-DeCarli diet. Gut permeability was measured by vascular-to-luminal flux of FITC-inulin. Junctional integrity was analyzed by confocal microscopy. Liver injury was assessed by plasma transaminase, histopathology and triglyceride analyses. The effect of occludin depletion on acetaldehyde-induced TJ disruption was confirmed in Caco-2 cell monolayers. RESULTS Ethanol feeding significantly reduced body weight gain in Ocln(-/-) mice. Ethanol increased inulin permeability in colon of both WT and Ocln(-/-) mice, but the effect was 4-fold higher in Ocln(-/-) mice. The gross morphology of colonic mucosa was unaltered, but ethanol disrupted the actin cytoskeleton, induced redistribution of occludin, ZO-1, E-cadherin and β-catenin from the junctions and elevated TLR4, which was more severe in Ocln(-/-) mice. Occludin knockdown significantly enhanced acetaldehyde-induced TJ disruption and barrier dysfunction in Caco-2 cell monolayers. Ethanol significantly increased liver weight and plasma transaminase activity in Ocln(-/-) mice, but not in WT mice. Histological analysis indicated more severe lesions and fat deposition in the liver of ethanol-fed Ocln(-/-) mice. Ethanol-induced elevation of liver triglyceride was also higher in Ocln(-/-) mice. CONCLUSION This study indicates that occludin deficiency increases susceptibility to ethanol-induced colonic mucosal barrier dysfunction and liver damage in mice.
Collapse
Affiliation(s)
- Hina Mir
- Department of Physiology, University of Tennessee, Memphis, TN, United States
| | - Avtar S Meena
- Department of Physiology, University of Tennessee, Memphis, TN, United States
| | - Kamaljit K Chaudhry
- Department of Physiology, University of Tennessee, Memphis, TN, United States
| | - Pradeep K Shukla
- Department of Physiology, University of Tennessee, Memphis, TN, United States
| | - Ruchika Gangwar
- Department of Physiology, University of Tennessee, Memphis, TN, United States
| | - Bhargavi Manda
- Department of Physiology, University of Tennessee, Memphis, TN, United States
| | - Mythili K Padala
- Department of Physiology, University of Tennessee, Memphis, TN, United States
| | - Le Shen
- Department of Pathology, University of Chicago, Chicago, IL, United States
| | - Jerrold R Turner
- Department of Pathology, University of Chicago, Chicago, IL, United States
| | - Paula Dietrich
- Department of Physiology, University of Tennessee, Memphis, TN, United States
| | - Ioannis Dragatsis
- Department of Physiology, University of Tennessee, Memphis, TN, United States
| | - RadhaKrishna Rao
- Department of Physiology, University of Tennessee, Memphis, TN, United States.
| |
Collapse
|
46
|
Skin Immunization Obviates Alcohol-Related Immune Dysfunction. Biomolecules 2015; 5:3009-28. [PMID: 26561838 PMCID: PMC4693267 DOI: 10.3390/biom5043009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/21/2015] [Accepted: 09/30/2015] [Indexed: 01/12/2023] Open
Abstract
Alcoholics suffer from immune dysfunction that can impede vaccine efficacy. If ethanol (EtOH)-induced immune impairment is in part a result of direct exposure of immune cells to EtOH, then reduced levels of exposure could result in less immune dysfunction. As alcohol ingestion results in lower alcohol levels in skin than blood, we hypothesized that the skin immune network may be relatively preserved, enabling skin-targeted immunizations to obviate the immune inhibitory effects of alcohol consumption on conventional vaccines. We employed the two most common chronic EtOH mouse feeding models, the liver-damaging Lieber-DeCarli (LD) and liver-sparing Meadows-Cook (MC) diets, to examine the roles of EtOH and/or EtOH-induced liver dysfunction on alcohol related immunosuppression. Pair-fed mice were immunized against the model antigen ovalbumin (OVA) by DNA immunization or against flu by administering the protein-based influenza vaccine either systemically (IV, IM), directly to liver (hydrodynamic), or cutaneously (biolistic, ID). We measured resulting tissue EtOH levels, liver stress, regulatory T cell (Treg), and myeloid-derived suppressor cell (MDSC) populations. We compared immune responsiveness by measuring delayed-type hypersensitivity (DTH), antigen-specific cytotoxic T lymphocyte (CTL), and antibody induction as a function of delivery route and feeding model. We found that, as expected, and independent of the feeding model, EtOH ingestion inhibits DTH, CTL lysis, and antigen-specific total IgG induced by traditional systemic vaccines. On the other hand, skin-targeted vaccines were equally immunogenic in alcohol-exposed and non-exposed subjects, suggesting that cutaneous immunization may result in more efficacious vaccination in alcohol-ingesting subjects.
Collapse
|