1
|
Sahebi K, Arianejad M, Azadi S, Hosseinpour-Soleimani F, Kazemi R, Tajbakhsh A, Negahdaripour M. The interplay between gut microbiome, epigenetics, and substance use disorders: from molecular to clinical perspectives. Eur J Pharmacol 2025; 998:177630. [PMID: 40252900 DOI: 10.1016/j.ejphar.2025.177630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/27/2025] [Accepted: 04/15/2025] [Indexed: 04/21/2025]
Abstract
Substance use disorders (SUDs) involve a complex series of central and peripheral pathologies, leading to impairments in cognitive, behavioral, and physiological processes. Emerging evidence indicates a more significant role for the microbiome-gut-brain axis (MGBA) in SUDs than previously recognized. The MGBA is interconnected with various body systems by producing numerous metabolites, most importantly short-chain fatty acids (SCFAs), cytokines, and neurotransmitters. These mediators influence the human body's epigenome and transcriptome. While numerous epigenetic alterations in different brain regions have been reported in SUD models, the intricate relationship between SUDs and the MGBA suggests that the gut microbiome may partially contribute to the underlying mechanisms of SUDs. Promising results have been observed with gut microbiome-directed interventions in patients with SUDs, including prebiotics, probiotics, antibiotics, and fecal microbiota transplantation. Nonetheless, the long-term epigenetic effects of these interventions remain unexplored. Moreover, various confounding factors and study limitations have hindered the identification of molecular mechanisms and clinical applications of gut microbiome interventions in SUDs. In the present review, we will (i) provide a comprehensive discussion on how the gut microbiome influences SUDs, with an emphasis on epigenetic alterations; (ii) discuss the current evidence on the bidirectional relationship of gut microbiome and SUDs, highlighting potential targets for intervention; and (iii) review recent advances in gut microbiome-directed therapies, along with their limitations and future directions.
Collapse
Affiliation(s)
- Keivan Sahebi
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mona Arianejad
- Department of Molecular Medicine, School of Advanced Technologies of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Soha Azadi
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Hosseinpour-Soleimani
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Applied Cell Sciences and Tissue Engineering, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Radmehr Kazemi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Mitra S, Werner CT, Shwani T, Lopez AG, Federico D, Higdon K, Li X, Gobira PH, Thomas SA, Martin JA, An C, Chandra R, Maze I, Neve R, Lobo MK, Gancarz AM, Dietz DM. A Novel Role for the Histone Demethylase JMJD3 in Mediating Heroin-Induced Relapse-Like Behaviors. Biol Psychiatry 2025; 97:602-613. [PMID: 39019389 DOI: 10.1016/j.biopsych.2024.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 06/10/2024] [Accepted: 06/25/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND Epigenetic changes that lead to long-term neuroadaptations following opioid exposure are not well understood. We examined how histone demethylase JMJD3 in the nucleus accumbens (NAc) influences heroin seeking after abstinence from self-administration. METHODS Male Sprague Dawley rats were trained to self-administer heroin. Western blotting and quantitative polymerase chain reaction were performed to quantify JMJD3 and bone morphogenetic protein (BMP) pathway expression in the NAc (n = 7-11/group). Pharmacological inhibitors or viral expression vectors were microinfused into the NAc to manipulate JMJD3 or the BMP pathway member SMAD1 (n = 9-11/group). The RiboTag capture method (n = 3-5/group) and viral vectors (n = 7-8/group) were used in male transgenic rats to identify the contributions of D1- and D2-expressing medium spiny neurons in the NAc. Drug seeking was tested by cue-induced response previously paired with drug infusion. RESULTS Levels of JMJD3 and phosphorylated SMAD1/5 in the NAc were increased after 14 days of abstinence from heroin self-administration. Pharmacological and virus-mediated inhibition of JMJD3 or the BMP pathway attenuated cue-induced seeking. Pharmacological inhibition of BMP signaling reduced JMJD3 expression and H3K27me3 levels. JMJD3 bidirectionally affected seeking: expression of the wild-type increased cue-induced seeking whereas expression of a catalytic dead mutant decreased it. JMJD3 expression was increased in D2+ but not D1+ medium spiny neurons. Expression of the mutant JMJD3 in D2+ neurons was sufficient to decrease cue-induced heroin seeking. CONCLUSIONS JMJD3 mediates persistent cellular and behavioral adaptations that underlie heroin relapse, and this activity is regulated by the BMP pathway.
Collapse
Affiliation(s)
- Swarup Mitra
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Craig T Werner
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Treefa Shwani
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Ana Garcia Lopez
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Dale Federico
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Kate Higdon
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Xiaofang Li
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Pedro H Gobira
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Shruthi A Thomas
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Jennifer A Martin
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Chunna An
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Ramesh Chandra
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Ian Maze
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Howard Hughes Medical Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Rachel Neve
- Gene Technology Core, Massachusetts General Hospital, Cambridge, Massachusetts
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Amy M Gancarz
- Department of Psychology, California State University, Bakersfield, Bakersfield, California
| | - David M Dietz
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York.
| |
Collapse
|
3
|
Ma Y, Lv W, Guo Y, Yin T, Bai Y, Liu Z, Chen C, WenjuanYang, Feng J, Qian W, Tang R, Su Y, Shan S, Dong H, Bao Y, Qu L. Histone demethylases in autophagy and inflammation. Cell Commun Signal 2025; 23:24. [PMID: 39806430 PMCID: PMC11727796 DOI: 10.1186/s12964-024-02006-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025] Open
Abstract
Autophagy dysfunction is associated with changes in autophagy-related genes. Various factors are connected to autophagy, and the mechanism regulating autophagy is highly complicated. Epigenetic changes, such as aberrant expression of histone demethylase, are actively associated not only with oncogenesis but also with inflammatory responses. Among post-translational modifications, histone lysine methylation holds significant importance. There are over 30 members of histone lysine demethylases (KDMs), which act as epigenetic regulators in physiological processes and diseases. Importantly, KDMs are abnormally expressed in the regulation of cellular autophagy and inflammation, representing a crucial mechanism affecting inflammation-related diseases. This article reviewed the function of KDMs proteins in autophagy and inflammation. Specifically, It focused on the specific regulatory mechanisms underlying the activation or inhibition of autophagy, as well as their abnormal expression in inflammatory responses. By analyzing each KDM in epigenetic modification, this review provides a reliable theoretical basis for clinical decision marking regarding autophagy abnormalities and inflammatory diseases.
Collapse
Affiliation(s)
- Yaoyao Ma
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Hubei, 437000, China
- School of Basic Medical Sciences, Hubei University of Science and Technology, Hubei, 437000, China
| | - Wenting Lv
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China
| | - Yi Guo
- School of Basic Medical Sciences, Hubei University of Science and Technology, Hubei, 437000, China
| | - Tong Yin
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China
| | - Yujie Bai
- Department of Scientific Research and Education, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330000, China
| | - Ziqi Liu
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China
| | - Chao Chen
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - WenjuanYang
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China
| | - Jiayi Feng
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China
| | - Wenbin Qian
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Hubei, 437000, China
| | - Ruiling Tang
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Hubei, 437000, China
| | - Yanting Su
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Hubei, 437000, China
| | - Shigang Shan
- School of Public Health and Nursing, Hubei University of Science and Technology, Hubei, 437000, China
| | - Huifen Dong
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China.
| | - Yongfen Bao
- School of Basic Medical Sciences, Hubei University of Science and Technology, Hubei, 437000, China.
| | - Lihua Qu
- School of Basic Medical Sciences, Hubei University of Science and Technology, Hubei, 437000, China.
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China.
| |
Collapse
|
4
|
Yu W, Li X, Zhang C, Niu P, Wu J, He W, Gao K, Xu Y, Li Y. KDM6B knockdown alleviates sleep deprivation-induced cerebrovascular lesions in APP/PS1 mice by inhibiting PARP16 expression. Biochem Pharmacol 2025; 231:116650. [PMID: 39603516 DOI: 10.1016/j.bcp.2024.116650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/22/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024]
Abstract
Cerebral amyloid angiopathy (CAA) is a neurological disorder in the elderly, involving the deposition of vascular amyloid-β (Aβ). Sleep deprivation (SD) causes memory deficits during CAA. Lysine specific demethylase 6B (KDM6B) is a histone H3 lysine 27-specific demethylase associated with neuronal injury and inflammation. However, the role of KDM6B in CAA has yet to be studied. In the current study, the multi-platform over-water method was used to induce chronic SD in APP/PS1 mice. Pathological analysis revealed that SD exacerbated vascular lesions in this model, as manifested by extensive formation of Aβ-positive deposits. In addition, SD led to a significant increase in the expression of KDM6B in the cerebral cortex of APP/PS1 mice. Next, the effect of KDM6B on CAA progression was explored through loss of function. Further experiments illustrated that KDM6B knockdown diminished SD-induced memory impairment, neuronal injury and vascular lesions in vivo. Additionally, isolated primary cortical neurons were treated with 10 µM Aβ1-42 for 48 h to induce the cell model. As expected, knockdown of KDM6B inhibited the Aβ1-42-induced cytotoxicity in primary neurons. Mechanistically, our results demonstrated that KDM6B knockdown downregulated poly (ADP-ribose) polymerase16 (PARP16) expression by increasing trimethylated lysine 27 on histone 3 (H3K27me3) levels, indicating that KDM6B epigenetically regulated PARP16 expression. Function recovery experiment results further proved that PARP16 overexpression negated the effect of KDM6B knockdown on Aβ1-42-induced cytotoxicity. Overall, our findings uncover an unanticipated role of KDM6B in CAA, and KDM6B may serve as a potential therapeutic target for CAA. Abbreviations: CAA, cerebral amyloid angiopathy; Aβ, amyloid-β; SD, sleep deprivation; KDM6B, lysine specific demethylase 6B; AD, Alzheimer's disease; H3K27me3, trimethylated lysine 27 on histone 3; PARP16, poly (ADP-ribose) polymerase16; AAV2, adeno-associated virus 2; CHIP, chromatin immunoprecipitation; ANOVA, one-way analysis of variance.
Collapse
Affiliation(s)
- Wenkai Yu
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Engineering Research Center of Neural Function Detection and Regulation, Zhengzhou, Henan, China; National Health Commission Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China
| | - Xinyu Li
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Engineering Research Center of Neural Function Detection and Regulation, Zhengzhou, Henan, China; National Health Commission Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China
| | - Chan Zhang
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Engineering Research Center of Neural Function Detection and Regulation, Zhengzhou, Henan, China
| | - Pengpeng Niu
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Engineering Research Center of Neural Function Detection and Regulation, Zhengzhou, Henan, China
| | - Jinghao Wu
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Engineering Research Center of Neural Function Detection and Regulation, Zhengzhou, Henan, China
| | - Wenjun He
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Engineering Research Center of Neural Function Detection and Regulation, Zhengzhou, Henan, China
| | - Kai Gao
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Engineering Research Center of Neural Function Detection and Regulation, Zhengzhou, Henan, China
| | - Yuming Xu
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Engineering Research Center of Neural Function Detection and Regulation, Zhengzhou, Henan, China; National Health Commission Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China; Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou, Henan, China.
| | - Yusheng Li
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Engineering Research Center of Neural Function Detection and Regulation, Zhengzhou, Henan, China; National Health Commission Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China; Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou, Henan, China.
| |
Collapse
|
5
|
Friske MM, Torrico EC, Haas MJW, Borruto AM, Giannone F, Hade AC, Yu Y, Gao L, Sutherland GT, Hitzemann R, Philips MA, Fei SS, Sommer WH, Mayfield RD, Spanagel R. A systematic review and meta-analysis on the transcriptomic signatures in alcohol use disorder. Mol Psychiatry 2025; 30:310-326. [PMID: 39242950 PMCID: PMC11649567 DOI: 10.1038/s41380-024-02719-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024]
Abstract
Currently available clinical treatments on alcohol use disorder (AUD) exhibit limited efficacy and new druggable targets are required. One promising approach to discover new molecular treatment targets involves the transcriptomic profiling of brain regions within the addiction neurocircuitry, utilizing animal models and postmortem brain tissue from deceased patients with AUD. Unfortunately, such studies suffer from large heterogeneity and small sample sizes. To address these limitations, we conducted a cross-species meta-analysis on transcriptome-wide data obtained from brain tissue of patients with AUD and animal models. We integrated 36 cross-species transcriptome-wide RNA-expression datasets with an alcohol-dependent phenotype vs. controls, following the PRISMA guidelines. In total, we meta-analyzed 964 samples - 502 samples from the prefrontal cortex (PFC), 282 nucleus accumbens (NAc) samples, and 180 from amygdala (AMY). The PFC had the highest number of differentially expressed genes (DEGs) across rodents, monkeys, and humans. Commonly dysregulated DEGs suggest conserved cross-species mechanisms for chronic alcohol consumption/AUD comprising MAPKs as well as STAT, IRF7, and TNF. Furthermore, we identified numerous unique gene sets that might contribute individually to these conserved mechanisms and also suggest novel molecular aspects of AUD. Validation of the transcriptomic alterations on the protein level revealed interesting targets for further investigation. Finally, we identified a combination of DEGs that are commonly regulated across different brain tissues as potential biomarkers for AUD. In summary, we provide a compendium of genes that are assessable via a shiny app, and describe signaling pathways, and physiological and cellular processes that are altered in AUD that require future studies for functional validation.
Collapse
Affiliation(s)
- Marion M Friske
- Institute of Psychopharmacology, Central Institute of Mental Health, Mannheim, University of Heidelberg, Heidelberg, Germany.
- Waggoner Center for Alcohol and Addiction Research and the Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA.
| | - Eva C Torrico
- Institute of Psychopharmacology, Central Institute of Mental Health, Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Maximilian J W Haas
- Institute of Psychopharmacology, Central Institute of Mental Health, Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Anna M Borruto
- Institute of Psychopharmacology, Central Institute of Mental Health, Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Francesco Giannone
- Institute of Psychopharmacology, Central Institute of Mental Health, Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Andreas-Christian Hade
- Department of Pathological Anatomy and Forensic Medicine, University of Tartu, Tartu, Estonia
- Forensic Medical Examination Department, Estonian Forensic Science Institute, Tallinn, Estonia
| | - Yun Yu
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Oregon Health & Science University West Campus, Portland, OR, USA
| | - Lina Gao
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Oregon Health & Science University West Campus, Portland, OR, USA
| | - Greg T Sutherland
- New South Wales Tissue Resource Center, University of Sydney, Camperdown, NSW, Australia
| | - Robert Hitzemann
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Mari-Anne Philips
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Suzanne S Fei
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Oregon Health & Science University West Campus, Portland, OR, USA
| | - Wolfgang H Sommer
- Bethania Hospital for Psychiatry, Psychosomatics and Psychotherapy, Greifswald, Germany
- German Center for Mental Health (DZPG), Partner Site Mannheim-Heidelberg-Ulm, Mannheim, Germany
| | - R Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research and the Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Mannheim, University of Heidelberg, Heidelberg, Germany.
- German Center for Mental Health (DZPG), Partner Site Mannheim-Heidelberg-Ulm, Mannheim, Germany.
| |
Collapse
|
6
|
Pierrefiche O. [Epigenetic changes in alcohol addiction and therapeutic perspectives]. ANNALES PHARMACEUTIQUES FRANÇAISES 2025; 83:13-21. [PMID: 39374866 DOI: 10.1016/j.pharma.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 08/26/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024]
Abstract
Alcohol consumption is a major public health issue. Patients with Alcohol Use Disorder (AUD) can benefit from five treatments that preferentially target membrane receptors, and whose efficacy is generally modest. However, a large body of experimental evidence points to an important role for epigenetics in the effects of alcohol consumption, and epidrugs that modify the epigenome offer an interesting alternative to current therapeutic options. This article reviews the most striking experimental evidence obtained at different ages in animal models, before comparing it with data obtained in humans and concluding on the relevance of using epidrugs. Finally, a new therapeutic option is suggested between psychedelics, recent molecules of interest, and epigenetic factors in alcohol intake.
Collapse
Affiliation(s)
- Olivier Pierrefiche
- Inserm UMR1247, groupe de recherche sur l'alcool et les pharmacodépendances, centre universitaire de recherche en santé, université Picardie Jules-Verne, chemin du Thil, Amiens, France.
| |
Collapse
|
7
|
Martins FRB, Beltrami VA, Zenóbio IC, Martins DG, da Silva Gurgel IL, de Assis Rabelo Ribeiro N, Queiroz-Junior CM, Bonaventura D, Rezende BM, Teixeira MM, Pinho V, Oliveira NL, Soriani FM. Chronic ethanol exposure decreases H3K27me3 in the Il6 promoter region of macrophages and generates persistent dysfunction on neutrophils during fungal infection. Inflamm Res 2024; 73:1747-1763. [PMID: 39127870 DOI: 10.1007/s00011-024-01928-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/17/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
OBJECTIVE AND DESIGN The aim of this study was to investigate the effects of ethanol exposure on epigenetic markers in bone marrow (BM) and their impact on inflammatory response during Aspergillus fumigatus infection. RESULTS Chronic ethanol exposure decreased H3K27me3 enrichment in the Il6 promoter region while increased H3K4me3 enrichment in Tnf. Chimeric mice were generated by transplanting BM from mice exposed to ethanol or water. Infection of ethanol-chimeric mice culminated in higher clinical scores, although there was no effect on mortality. However, previous chronic exposure to ethanol affects persistently the inflammatory response in lung tissue, demonstrated by increased lung damage, neutrophil accumulation and IL-6, TNF and CXCL2 production in ethanol-chimeric mice, resulting in a decreased neutrophil infiltration into the alveolar space. Neutrophil killing and phagocytosis were also significantly lower. Moreover, BM derived macrophages (BMDM) from ethanol-chimeric mice stimulated with A. fumigatus conidia exhibited higher levels of TNF, CXCL2 and IL-6 release and a higher killing activity. The Il6 promoter of BMDM from ethanol-chimeric mice exhibited a reduction in H3K27me3 enrichment, a finding also observed in BM donors exposed to ethanol. CONCLUSIONS These evidences demonstrate that prior chronic alcohol exposure of bone-marrow modify immune effector cells functions impairing the inflammatory response during A. fumigatus infection. These findings highlight the persistent impact of chronic ethanol exposure on infectious disease outcomes.
Collapse
Affiliation(s)
- Flávia Rayssa Braga Martins
- Department of Genetics, Ecology, and Evolution, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Vinicius Amorim Beltrami
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Isabelle Cruz Zenóbio
- Department of Genetics, Ecology, and Evolution, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Débora Gonzaga Martins
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Isabella Luísa da Silva Gurgel
- Department of Genetics, Ecology, and Evolution, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Celso Martins Queiroz-Junior
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Daniella Bonaventura
- Department of Pharmacology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Barbara Maximino Rezende
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Vanessa Pinho
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Nathalia Luisa Oliveira
- Department of Genetics, Ecology, and Evolution, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
| | - Frederico Marianetti Soriani
- Department of Genetics, Ecology, and Evolution, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
8
|
Li X, Chen RY, Shi JJ, Li CY, Liu YJ, Gao C, Gao MR, Zhang S, Lu JF, Cao JF, Yang GJ, Chen J. Emerging role of Jumonji domain-containing protein D3 in inflammatory diseases. J Pharm Anal 2024; 14:100978. [PMID: 39315124 PMCID: PMC11417268 DOI: 10.1016/j.jpha.2024.100978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 09/25/2024] Open
Abstract
Jumonji domain-containing protein D3 (JMJD3) is a 2-oxoglutarate-dependent dioxygenase that specifically removes transcriptional repression marks di- and tri-methylated groups from lysine 27 on histone 3 (H3K27me2/3). The erasure of these marks leads to the activation of some associated genes, thereby influencing various biological processes, such as development, differentiation, and immune response. However, comprehensive descriptions regarding the relationship between JMJD3 and inflammation are lacking. Here, we provide a comprehensive overview of JMJD3, including its structure, functions, and involvement in inflammatory pathways. In addition, we summarize the evidence supporting JMJD3's role in several inflammatory diseases, as well as the potential therapeutic applications of JMJD3 inhibitors. Additionally, we also discuss the challenges and opportunities associated with investigating the functions of JMJD3 and developing targeted inhibitors and propose feasible solutions to provide valuable insights into the functional exploration and discovery of potential drugs targeting JMJD3 for inflammatory diseases.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Ru-Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jin-Jin Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Chang Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Ming-Rong Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Shun Zhang
- Ningbo No. 2 Hospital, Ningbo, Zhejiang, 315211, China
- China Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 315211, China
| | - Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jia-Feng Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
9
|
Margetts AV, Vilca SJ, Bourgain-Guglielmetti F, Tuesta LM. Epigenetic heterogeneity shapes the transcriptional landscape of regional microglia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.607229. [PMID: 39149259 PMCID: PMC11326298 DOI: 10.1101/2024.08.08.607229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Microglia, the innate immune cells in the central nervous system, exhibit distinct transcriptional profiles across brain regions that are important for facilitating their specialized function. There has been recent interest in identifying the epigenetic modifications associated with these distinct transcriptional profiles, as these may improve our understanding of the underlying mechanisms governing the functional specialization of microglia. One obstacle to achieving this goal is the large number of microglia required to obtain a genome-wide profile for a single histone modification. Given the cellular and regional heterogeneity of the brain, this would require pooling many samples which would impede biological applications that are limited by numbers of available animals. To overcome this obstacle, we have adapted a method of chromatin profiling known as Cleavage Under Targets and Tagmentation (CUT&Tag-Direct) to profile histone modifications associated with regional differences in gene expression throughout the brain reward system. Consistent with previous studies, we find that transcriptional profiles of microglia vary by brain region. However, here we report that these regional differences also exhibit transcriptional network signatures specific to each region. Additionally, we find that these region-dependent network signatures are associated with differential deposition of H3K27ac and H3K7me3, and while the H3K27me3 landscape is remarkably stable across brain regions, the H3K27ac landscape is most consistent with the anatomical location of microglia which explain their distinct transcriptional profiles. Altogether, these findings underscore the established role of H3K27me3 in cell fate determination and support the active role of H3K27ac in the dynamic regulation of microglial gene expression. In this study, we report a molecular and computational framework that can be applied to improve our understanding of the role of epigenetic regulation in microglia in both health and disease, using as few as 2,500 cells per histone mark.
Collapse
Affiliation(s)
- Alexander V. Margetts
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Samara J. Vilca
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Florence Bourgain-Guglielmetti
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Luis M. Tuesta
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136
| |
Collapse
|
10
|
Morosini C, Vivarelli F, Rullo L, Volino E, Losapio LM, Paolini M, Romualdi P, Canistro D, Candeletti S. Unburned Tobacco Smoke Affects Neuroinflammation-Related Pathways in the Rat Mesolimbic System. Int J Mol Sci 2024; 25:5259. [PMID: 38791298 PMCID: PMC11120663 DOI: 10.3390/ijms25105259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Tobacco use disorder represents a significant public health challenge due to its association with various diseases. Despite awareness efforts, smoking rates remain high, partly due to ineffective cessation methods and the spread of new electronic devices. This study investigated the impact of prolonged nicotine exposure via a heat-not-burn (HnB) device on selected genes and signaling proteins involved in inflammatory processes in the rat ventral tegmental area (VTA) and nucleus accumbens (NAc), two brain regions associated with addiction to different drugs, including nicotine. The results showed a reduction in mRNA levels for PPARα and PPARγ, two nuclear receptors and anti-inflammatory transcription factors, along with the dysregulation of gene expression of the epigenetic modulator KDM6s, in both investigated brain areas. Moreover, decreased PTEN mRNA levels and higher AKT phosphorylation were detected in the VTA of HnB-exposed rats with respect to their control counterparts. Finally, significant alterations in ERK 1/2 phosphorylation were observed in both mesolimbic areas, with VTA decrease and NAc increase, respectively. Overall, the results suggest that HnB aerosol exposure disrupts intracellular pathways potentially involved in the development and maintenance of the neuroinflammatory state. Moreover, these data highlight that, similar to conventional cigarettes, HnB devices use affects specific signaling pathways shaping neuroinflammatory process in the VTA and NAc, thus triggering mechanisms that are currently considered as potentially relevant for the development of addictive behavior.
Collapse
Affiliation(s)
- Camilla Morosini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, 40126 Bologna, Italy; (C.M.); (F.V.); (E.V.); (L.M.L.); (M.P.); (D.C.); (S.C.)
| | - Fabio Vivarelli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, 40126 Bologna, Italy; (C.M.); (F.V.); (E.V.); (L.M.L.); (M.P.); (D.C.); (S.C.)
| | - Laura Rullo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, 40126 Bologna, Italy; (C.M.); (F.V.); (E.V.); (L.M.L.); (M.P.); (D.C.); (S.C.)
| | - Emilia Volino
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, 40126 Bologna, Italy; (C.M.); (F.V.); (E.V.); (L.M.L.); (M.P.); (D.C.); (S.C.)
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum–University of Bologna, 40126 Bologna, Italy
| | - Loredana Maria Losapio
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, 40126 Bologna, Italy; (C.M.); (F.V.); (E.V.); (L.M.L.); (M.P.); (D.C.); (S.C.)
| | - Moreno Paolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, 40126 Bologna, Italy; (C.M.); (F.V.); (E.V.); (L.M.L.); (M.P.); (D.C.); (S.C.)
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, 40126 Bologna, Italy; (C.M.); (F.V.); (E.V.); (L.M.L.); (M.P.); (D.C.); (S.C.)
| | - Donatella Canistro
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, 40126 Bologna, Italy; (C.M.); (F.V.); (E.V.); (L.M.L.); (M.P.); (D.C.); (S.C.)
| | - Sanzio Candeletti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, 40126 Bologna, Italy; (C.M.); (F.V.); (E.V.); (L.M.L.); (M.P.); (D.C.); (S.C.)
| |
Collapse
|
11
|
Skok Gibbs C, Mahmood O, Bonneau R, Cho K. PMF-GRN: a variational inference approach to single-cell gene regulatory network inference using probabilistic matrix factorization. Genome Biol 2024; 25:88. [PMID: 38589899 PMCID: PMC11003171 DOI: 10.1186/s13059-024-03226-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 03/26/2024] [Indexed: 04/10/2024] Open
Abstract
Inferring gene regulatory networks (GRNs) from single-cell data is challenging due to heuristic limitations. Existing methods also lack estimates of uncertainty. Here we present Probabilistic Matrix Factorization for Gene Regulatory Network Inference (PMF-GRN). Using single-cell expression data, PMF-GRN infers latent factors capturing transcription factor activity and regulatory relationships. Using variational inference allows hyperparameter search for principled model selection and direct comparison to other generative models. We extensively test and benchmark our method using real single-cell datasets and synthetic data. We show that PMF-GRN infers GRNs more accurately than current state-of-the-art single-cell GRN inference methods, offering well-calibrated uncertainty estimates.
Collapse
Affiliation(s)
| | - Omar Mahmood
- Center for Data Science, New York University, New York, NY, 10011, USA
| | - Richard Bonneau
- Center for Data Science, New York University, New York, NY, 10011, USA
- Prescient Design, Genentech, New York, NY, 10010, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA
| | - Kyunghyun Cho
- Center for Data Science, New York University, New York, NY, 10011, USA.
- Prescient Design, Genentech, New York, NY, 10010, USA.
| |
Collapse
|
12
|
Vivarelli F, Morosini C, Rullo L, Losapio LM, Lacorte A, Sangiorgi S, Ghini S, Fagiolino I, Franchi P, Lucarini M, Candeletti S, Canistro D, Romualdi P, Paolini M. Effects of unburned tobacco smoke on inflammatory and oxidative mediators in the rat prefrontal cortex. Front Pharmacol 2024; 15:1328917. [PMID: 38333013 PMCID: PMC10851081 DOI: 10.3389/fphar.2024.1328917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/04/2024] [Indexed: 02/10/2024] Open
Abstract
Although the Food and Drug Administration has authorized the marketing of "heat-not-burn" (HnB) electronic cigarettes as a modified risk tobacco product (MRTP), toxicological effects of HnB smoke exposure on the brain are still unexplored. Here, paramagnetic resonance of the prefrontal cortex (PFC) of HnB-exposed rats shows a dramatic increase in reactive radical species (RRS) yield coupled with an inflammatory response mediated by NF-κB-target genes including TNF-α, IL-1β, and IL-6 and the downregulation of peroxisome proliferator-activated receptor (PPAR) alpha and gamma expression. The PFC shows higher levels of 8-hydroxyguanosine, a marker of DNA oxidative damage, along with the activation of antioxidant machinery and DNA repair systems, including xeroderma pigmentosum group C (XPC) protein complex and 8-oxoguanine DNA glycosylase 1. HnB also induces the expression of drug-metabolizing enzymes such as CYP1A1, CYP2A6, CYP2B6, and CYP2E, particularly involved in the biotransformation of nicotine and several carcinogenic agents such as aldehydes and polycyclic aromatic hydrocarbons here recorded in the HnB stick smoke. Taken together, these effects, from disruption of redox homeostasis, inflammation, PPAR manipulation along with enhanced bioactivation of neurotoxicants, and upregulation of cMYC protooncogene to impairment of primary cellular defense mechanisms, suggest a possible increased risk of brain cancer. Although the HnB device reduces the emission of tobacco toxicants, our findings indicate that its consumption may carry a risk of potential adverse health effects, especially in non-smokers so far. Further studies are needed to fully understand the long-term effects of these devices.
Collapse
Affiliation(s)
- Fabio Vivarelli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Camilla Morosini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Laura Rullo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Loredana Maria Losapio
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Antonio Lacorte
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Stefano Sangiorgi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Severino Ghini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | | | - Paola Franchi
- Department of Chemistry “G. Ciamician”, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Marco Lucarini
- Department of Chemistry “G. Ciamician”, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Sanzio Candeletti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Donatella Canistro
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Moreno Paolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| |
Collapse
|
13
|
Qiao Y, Li L, Bai L, Gao Y, Yang Y, Wang L, Wang X, Liang Z, Xu J. Upregulation of lysine-specific demethylase 6B aggravates inflammatory pain through H3K27me3 demethylation-dependent production of TNF-α in the dorsal root ganglia and spinal dorsal horn in rats. CNS Neurosci Ther 2023; 29:3479-3492. [PMID: 37287407 PMCID: PMC10580362 DOI: 10.1111/cns.14281] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Abstract
AIMS Lysine-specific demethylase 6B (KDM6B) serves as a key mediator of gene transcription. It regulates expression of proinflammatory cytokines and chemokines in variety of diseases. Herein, the role and the underlying mechanisms of KDM6B in inflammatory pain were studied. METHODS The inflammatory pain was conducted by intraplantar injection of complete Freund's adjuvant (CFA) in rats. Immunofluorescence, Western blotting, qRT-PCR, and chromatin immunoprecipitation (ChIP)-PCR were performed to investigate the underlying mechanisms. RESULTS CFA injection led to upregulation of KDM6B and decrease in the level of H3K27me3 in the dorsal root ganglia (DRG) and spinal dorsal horn. The mechanical allodynia and thermal hyperalgesia following CFA were alleviated by the treatment of intrathecal injection of GSK-J4, and by microinjection of AAV-EGFP-KDM6B shRNA in the sciatic nerve or in lumbar 5 dorsal horn. The increased production of tumor necrosis factor-α (TNF-α) following CFA in the DRGs and dorsal horn was inhibited by these treatments. ChIP-PCR showed that CFA-induced increased binding of nuclear factor κB with TNF-α promoter was repressed by the treatment of microinjection of AAV-EGFP-KDM6B shRNA. CONCLUSIONS These results suggest that upregulated KDM6B via facilitating TNF-α expression in the DRG and spinal dorsal horn aggravates inflammatory pain.
Collapse
Affiliation(s)
- Yiming Qiao
- Department of Physiology and Neurobiology, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Liren Li
- Department of Physiology and Neurobiology, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Liying Bai
- Department of Physiology and Neurobiology, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated HospitalZhengzhou UniversityZhengzhouChina
| | - Yan Gao
- Department of Physiology and Neurobiology, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Yin Yang
- Department of Physiology and Neurobiology, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Li Wang
- Department of Physiology and Neurobiology, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Xueli Wang
- Department of Physiology and Neurobiology, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Zongyi Liang
- Department of Physiology and Neurobiology, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Ji‐Tian Xu
- Department of Physiology and Neurobiology, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
- Neuroscience Research InstituteZhengzhou UniversityZhengzhouChina
| |
Collapse
|
14
|
Domi E, Barchiesi R, Barbier E. Epigenetic Dysregulation in Alcohol-Associated Behaviors: Preclinical and Clinical Evidence. Curr Top Behav Neurosci 2023. [PMID: 36717533 DOI: 10.1007/7854_2022_410] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Alcohol use disorder (AUD) is characterized by loss of control over intake and drinking despite harmful consequences. At a molecular level, AUD is associated with long-term neuroadaptations in key brain regions that are involved in reward processing and decision-making. Over the last decades, a great effort has been made to understand the neurobiological basis underlying AUD. Epigenetic mechanisms have emerged as an important mechanism in the regulation of long-term alcohol-induced gene expression changes. Here, we review the literature supporting a role for epigenetic processes in AUD. We particularly focused on the three most studied epigenetic mechanisms: DNA methylation, Histone modification and non-coding RNAs. Clinical studies indicate an association between AUD and DNA methylation both at the gene and global levels. Using behavioral paradigms that mimic some of the characteristics of AUD, preclinical studies demonstrate that changes in epigenetic mechanisms can functionally impact alcohol-associated behaviors. While many studies support a therapeutic potential for targeting epigenetic enzymes, more research is needed to fully understand their role in AUD. Identification of brain circuits underlying alcohol-associated behaviors has made major advances in recent years. However, there are very few studies that investigate how epigenetic mechanisms can affect these circuits or impact the neuronal ensembles that promote alcohol-associated behaviors. Studies that focus on the role of circuit-specific and cell-specific epigenetic changes for clinically relevant alcohol behaviors may provide new insights on the functional role of epigenetic processes in AUD.
Collapse
Affiliation(s)
- Esi Domi
- Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
- School of Pharmacy, Pharmacology Unit, Center for Neuroscience, University of Camerino, Camerino, Italy
| | - Riccardo Barchiesi
- Department of Neuroscience, Waggoner Center for Alcohol and Alcohol Addiction Research, University of Texas at Austin, Austin, TX, USA
| | - Estelle Barbier
- Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden.
| |
Collapse
|
15
|
Li X, Ye Y, Peng K, Zeng Z, Chen L, Zeng Y. Histones: The critical players in innate immunity. Front Immunol 2022; 13:1030610. [PMID: 36479112 PMCID: PMC9720293 DOI: 10.3389/fimmu.2022.1030610] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022] Open
Abstract
The highly conserved histones in different species seem to represent a very ancient and universal innate host defense system against microorganisms in the biological world. Histones are the essential part of nuclear matter and act as a control switch for DNA transcription. However, histones are also found in the cytoplasm, cell membranes, and extracellular fluid, where they function as host defenses and promote inflammatory responses. In some cases, extracellular histones can act as damage-associated molecular patterns (DAMPs) and bind to pattern recognition receptors (PRRs), thereby triggering innate immune responses and causing initial organ damage. Histones and their fragments serve as antimicrobial peptides (AMPs) to directly eliminate bacteria, viruses, fungi, and parasites in vitro and in vivo. Histones are also involved in phagocytes-related innate immune response as components of neutrophil extracellular traps (NETs), neutrophil activators, and plasminogen receptors. In addition, as a considerable part of epigenetic regulation, histone modifications play a vital role in regulating the innate immune response and expression of corresponding defense genes. Here, we review the regulatory role of histones in innate immune response, which provides a new strategy for the development of antibiotics and the use of histones as therapeutic targets for inflammatory diseases, sepsis, autoimmune diseases, and COVID-19.
Collapse
Affiliation(s)
- Xia Li
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Youyuan Ye
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Kailan Peng
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Zhuo Zeng
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Li Chen
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Yanhua Zeng
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, Hunan, China,Department of Dermatology and Venereology, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China,*Correspondence: Yanhua Zeng, ;
| |
Collapse
|
16
|
Anderson EM, Taniguchi M. Epigenetic Effects of Addictive Drugs in the Nucleus Accumbens. Front Mol Neurosci 2022; 15:828055. [PMID: 35813068 PMCID: PMC9260254 DOI: 10.3389/fnmol.2022.828055] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/30/2022] [Indexed: 12/28/2022] Open
Abstract
Substance use induces long-lasting behavioral changes and drug craving. Increasing evidence suggests that epigenetic gene regulation contributes to the development and expression of these long-lasting behavioral alterations. Here we systematically review extensive evidence from rodent models of drug-induced changes in epigenetic regulation and epigenetic regulator proteins. We focus on histone acetylation and histone methylation in a brain region important for drug-related behaviors: the nucleus accumbens. We also discuss how experimentally altering these epigenetic regulators via systemically administered compounds or nucleus accumbens-specific manipulations demonstrate the importance of these proteins in the behavioral effects of drugs and suggest potential therapeutic value to treat people with substance use disorder. Finally, we discuss limitations and future directions for the field of epigenetic studies in the behavioral effects of addictive drugs and suggest how to use these insights to develop efficacious treatments.
Collapse
|
17
|
Abstract
At-risk alcohol use is a major contributor to the global health care burden and leads to preventable deaths and diseases including alcohol addiction, alcoholic liver disease, cardiovascular disease, diabetes, traumatic injuries, gastrointestinal diseases, cancers, and fetal alcohol syndrome. Excessive and frequent alcohol consumption has increasingly been linked to alcohol-associated tissue injury and pathophysiology, which have significant adverse effects on multiple organ systems. Extensive research in animal and in vitro models has elucidated the salient mechanisms involved in alcohol-induced tissue and organ injury. In some cases, these pathophysiological mechanisms are shared across organ systems. The major alcohol- and alcohol metabolite-mediated mechanisms include oxidative stress, inflammation and immunometabolic dysregulation, gut leak and dysbiosis, cell death, extracellular matrix remodeling, endoplasmic reticulum stress, mitochondrial dysfunction, and epigenomic modifications. These mechanisms are complex and interrelated, and determining the interplay among them will make it possible to identify how they synergistically or additively interact to cause alcohol-mediated multiorgan injury. In this article, we review the current understanding of pathophysiological mechanisms involved in alcohol-induced tissue injury.
Collapse
Affiliation(s)
- Liz Simon
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA;
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Flavia M Souza-Smith
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Patricia E Molina
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA;
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| |
Collapse
|
18
|
Kyzar EJ, Bohnsack JP, Pandey SC. Current and Future Perspectives of Noncoding RNAs in Brain Function and Neuropsychiatric Disease. Biol Psychiatry 2022; 91:183-193. [PMID: 34742545 PMCID: PMC8959010 DOI: 10.1016/j.biopsych.2021.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/05/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023]
Abstract
Noncoding RNAs (ncRNAs) represent the majority of the transcriptome and play important roles in regulating neuronal functions. ncRNAs are exceptionally diverse in both structure and function and include enhancer RNAs, long ncRNAs, and microRNAs, all of which demonstrate specific temporal and regional expression in the brain. Here, we review recent studies demonstrating that ncRNAs modulate chromatin structure, act as chaperone molecules, and contribute to synaptic remodeling and behavior. In addition, we discuss ncRNA function within the context of neuropsychiatric diseases, particularly focusing on addiction and schizophrenia, and the recent methodological developments that allow for better understanding of ncRNA function in the brain. Overall, ncRNAs represent an underrecognized molecular contributor to complex neuronal processes underlying neuropsychiatric disorders.
Collapse
Affiliation(s)
- Evan J Kyzar
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois; Department of Psychiatry, Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, New York
| | - John Peyton Bohnsack
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois; Jesse Brown Veterans Affairs Medical Center, University of Illinois at Chicago, Chicago, Illinois; Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
19
|
Li L, Bai L, Yang K, Zhang J, Gao Y, Jiang M, Yang Y, Zhang X, Wang L, Wang X, Qiao Y, Xu JT. KDM6B epigenetically regulated-interleukin-6 expression in the dorsal root ganglia and spinal dorsal horn contributes to the development and maintenance of neuropathic pain following peripheral nerve injury in male rats. Brain Behav Immun 2021; 98:265-282. [PMID: 34464689 DOI: 10.1016/j.bbi.2021.08.231] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 08/17/2021] [Accepted: 08/21/2021] [Indexed: 12/20/2022] Open
Abstract
The lysine specific demethylase 6B (KDM6B) has been implicated as a coregulator in the expression of proinflammatory mediators, and in the pathogenesis of inflammatory and arthritic pain. However, the role of KDM6B in neuropathic pain has yet to be studied. In the current study, the neuropathic pain was determined by assessing the paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) following lumbar 5 spinal nerve ligation (SNL) in male rats. Immunohistochemistry, Western blotting, qRT-PCR, and chromatin immunoprecipitation (ChIP)-PCR assays were performed to investigate the underlying mechanisms. Our results showed that SNL led to a significant increase in KDM6B mRNA and protein in the ipsilateral L4/5 dorsal root ganglia (DRG) and spinal dorsal horn; and this increase correlated a markedly reduction in the level of H3K27me3 methylation in the same tissue. Double immunofluorescence staining revealed that the KDM6B expressed in myelinated A- and unmyelinated C-fibers in the DRG; and located in neuronal cells, astrocytes, and microglia in the dorsal horn. Behavioral data showed that SNL-induced mechanical allodynia and thermal hyperalgesia were impaired by the treatment of prior to i.t. injection of GSK-J4, a specific inhibitor of KDM6B, or KDM6B siRNA. Both microinjection of AAV2-EGFP-KDM6B shRNA in the lumbar 5 dorsal horn and sciatic nerve, separately, alleviated the neuropathic pain following SNL. The established neuropathic pain was also partially attenuated by repeat i.t. injections of GSK-J4 or KDM6B siRNA, started on day 7 after SNL. SNL also resulted in a remarkable increased expression of interleukin-6 (IL-6) in the DRG and dorsal horn. But this increase was dramatically inhibited by i.t. injection of GSK-J4 and KDM6B siRNA; and suppressed by prior to microinjection of AAV2-EGFP-KDM6B shRNA in the dorsal horn and sciatic nerve. Results of ChIP-PCR assay showed that SNL-induced enhanced binding of STAT3 with IL-6 promoter was inhibited by prior to i.t. injection of GSK-J4. Meanwhile, the level of H3K27me3 methylation was also decreased by the treatment. Together, our results indicate that SNL-induced upregulation of KDM6B via demethylating H3K27me3 facilitates the binding of STAT3 with IL-6 promoter, and subsequently mediated-increase in the expression of IL-6 in the DRG and dorsal horn contributes to the development and maintenance of neuropathic pain. Targeting KDM6B might a promising therapeutic strategy to treatment of chronic pain.
Collapse
Affiliation(s)
- Liren Li
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Liying Bai
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China; Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital, Zhengzhou University, 1 Jianshe East Road, Zhengzhou 450052, China
| | - Kangli Yang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China; Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital, Zhengzhou University, 1 Jianshe East Road, Zhengzhou 450052, China
| | - Jian Zhang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Yan Gao
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China; Neuroscience Research Institute, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Mingjun Jiang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Yin Yang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Xuan Zhang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Li Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Xueli Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Yiming Qiao
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Ji-Tian Xu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China; Neuroscience Research Institute, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China.
| |
Collapse
|
20
|
Sagahón‐Azúa J, Medellín‐Garibay SE, Chávez‐Castillo CE, González‐Salinas CG, Milán‐Segovia RDC, Romano‐Moreno S. Factors associated with fluoxetine and norfluoxetine plasma concentrations and clinical response in Mexican patients with mental disorders. Pharmacol Res Perspect 2021; 9:e00864. [PMID: 34523245 PMCID: PMC8441053 DOI: 10.1002/prp2.864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/20/2021] [Indexed: 12/23/2022] Open
Abstract
Over the last few years, fluoxetine has been one of the most prescribed medications for the treatment of diverse psychiatric conditions in Mexico. Fluoxetine therapeutic effect is consequence of the joint action of the parent drug and its active metabolite, norfluoxetine. However, the clinical efficacy of fluoxetine, can be affected due to diverse factors, such as drug-drug interactions and the large interindividual variability in the pharmacokinetics of this drug. The aim of this study was to determine the factors associated with variability in plasma concentrations of fluoxetine and norfluoxetine and its association with the therapeutic response. Fluoxetine and norfluoxetine plasma concentrations were quantified by liquid chromatography in 81 Mexican patients with mental disorders; 25% of the patients had no medication adherence and 40% were below the reference range of fluoxetine plus norfluoxetine plasma concentrations. The results showed that concentrations can be affected by fluoxetine metabolism caused by CYP2D6 phenotype and the concomitant administration of olanzapine. Furthermore, CYP3A5 and CYP2C19 phenotype were associated with lower anxiety and depression control during treatment with fluoxetine. This study can be a starting point to elucidate the causes of fluoxetine variable response in Mexican patients with mental disorders, as well as to detect and support medication adherence.
Collapse
Affiliation(s)
- Julia Sagahón‐Azúa
- Department of PharmacyFaculty of Chemical SciencesAutonomous University of San Luis PotosíSan Luis PotosíMéxico
| | | | | | | | | | - Silvia Romano‐Moreno
- Department of PharmacyFaculty of Chemical SciencesAutonomous University of San Luis PotosíSan Luis PotosíMéxico
| |
Collapse
|
21
|
Saad L, Zwiller J, Kalsbeek A, Anglard P. Epigenetic Regulation of Circadian Clocks and Its Involvement in Drug Addiction. Genes (Basel) 2021; 12:1263. [PMID: 34440437 PMCID: PMC8394526 DOI: 10.3390/genes12081263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 12/19/2022] Open
Abstract
Based on studies describing an increased prevalence of addictive behaviours in several rare sleep disorders and shift workers, a relationship between circadian rhythms and addiction has been hinted for more than a decade. Although circadian rhythm alterations and molecular mechanisms associated with neuropsychiatric conditions are an area of active investigation, success is limited so far, and further investigations are required. Thus, even though compelling evidence connects the circadian clock to addictive behaviour and vice-versa, yet the functional mechanism behind this interaction remains largely unknown. At the molecular level, multiple mechanisms have been proposed to link the circadian timing system to addiction. The molecular mechanism of the circadian clock consists of a transcriptional/translational feedback system, with several regulatory loops, that are also intricately regulated at the epigenetic level. Interestingly, the epigenetic landscape shows profound changes in the addictive brain, with significant alterations in histone modification, DNA methylation, and small regulatory RNAs. The combination of these two observations raises the possibility that epigenetic regulation is a common plot linking the circadian clocks with addiction, though very little evidence has been reported to date. This review provides an elaborate overview of the circadian system and its involvement in addiction, and we hypothesise a possible connection at the epigenetic level that could further link them. Therefore, we think this review may further improve our understanding of the etiology or/and pathology of psychiatric disorders related to drug addiction.
Collapse
Affiliation(s)
- Lamis Saad
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Université de Strasbourg, Neuropôle de Strasbourg, 67000 Strasbourg, France; (L.S.); (J.Z.)
- The Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands;
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Jean Zwiller
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Université de Strasbourg, Neuropôle de Strasbourg, 67000 Strasbourg, France; (L.S.); (J.Z.)
- Centre National de la Recherche Scientifique (CNRS), 75016 Paris, France
| | - Andries Kalsbeek
- The Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands;
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Patrick Anglard
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Université de Strasbourg, Neuropôle de Strasbourg, 67000 Strasbourg, France; (L.S.); (J.Z.)
- Institut National de la Santé et de la Recherche Médicale (INSERM), 75013 Paris, France
| |
Collapse
|
22
|
Histone Methylation Regulation in Neurodegenerative Disorders. Int J Mol Sci 2021; 22:ijms22094654. [PMID: 33925016 PMCID: PMC8125694 DOI: 10.3390/ijms22094654] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/11/2022] Open
Abstract
Advances achieved with molecular biology and genomics technologies have permitted investigators to discover epigenetic mechanisms, such as DNA methylation and histone posttranslational modifications, which are critical for gene expression in almost all tissues and in brain health and disease. These advances have influenced much interest in understanding the dysregulation of epigenetic mechanisms in neurodegenerative disorders. Although these disorders diverge in their fundamental causes and pathophysiology, several involve the dysregulation of histone methylation-mediated gene expression. Interestingly, epigenetic remodeling via histone methylation in specific brain regions has been suggested to play a critical function in the neurobiology of psychiatric disorders, including that related to neurodegenerative diseases. Prominently, epigenetic dysregulation currently brings considerable interest as an essential player in neurodegenerative disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Amyotrophic lateral sclerosis (ALS) and drugs of abuse, including alcohol abuse disorder, where it may facilitate connections between genetic and environmental risk factors or directly influence disease-specific pathological factors. We have discussed the current state of histone methylation, therapeutic strategies, and future perspectives for these disorders. While not somatically heritable, the enzymes responsible for histone methylation regulation, such as histone methyltransferases and demethylases in neurons, are dynamic and reversible. They have become promising potential therapeutic targets to treat or prevent several neurodegenerative disorders. These findings, along with clinical data, may provide links between molecular-level changes and behavioral differences and provide novel avenues through which the epigenome may be targeted early on in people at risk for neurodegenerative disorders.
Collapse
|
23
|
H3K27 demethylase KDM6B aggravates ischemic brain injury through demethylation of IRF4 and Notch2-dependent SOX9 activation. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 24:622-633. [PMID: 33981480 PMCID: PMC8076647 DOI: 10.1016/j.omtn.2021.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/17/2021] [Indexed: 01/03/2023]
Abstract
Lysine demethylase 6B (KDM6B) is a histone H3 lysine 27 (H3K27) demethylase that serves as a key mediator of gene transcription. Although KDM6B has been reported to modulate neuroinflammation after ischemic stroke, its role in ischemic brain injury is yet to be well elucidated. Therefore, this study aimed to thoroughly demonstrate the molecular mechanism underlying the effect of KDM6B on neurological function and astrocyte response in post-ischemic brain injury. Middle cerebral artery occlusion/reperfusion (MCAO) mouse models were constructed, while the oxygen-glucose deprivation/reperfusion (OGD/R) model was developed in astrocytes to mimic injury conditions. KDM6B was upregulated post-MCAO in mice and in astrocytes following the induction of OGD/R. Silencing of KDM6B resulted in suppressed neurological deficit, reduced cerebral infarction volume, attenuated neuronal cell apoptosis, and disrupted inflammation. Dual-luciferase reporter gene and chromatin immunoprecipitation-quantitative polymerase chain reaction assays revealed that KDM6B inhibited H3K27 trimethylation in the interferon regulatory factor 4 (IRF4) promoter region, resulting in the upregulation of IRF4 expression, which in turn bound to the Notch2 promoter region to induce its downstream factor SRY-related high-mobility group box 9 (SOX9). SOX9 knockdown reversed the effects of KDM6B overexpression on ischemia-triggered brain damage. Based on these findings, we concluded that KDM6B-mediated demethylation of IRF4 contributes to aggravation of ischemic brain injury through SOX9 activation.
Collapse
|
24
|
Genome-wide association study of problematic opioid prescription use in 132,113 23andMe research participants of European ancestry. Mol Psychiatry 2021; 26:6209-6217. [PMID: 34728798 PMCID: PMC8562028 DOI: 10.1038/s41380-021-01335-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/21/2021] [Accepted: 09/29/2021] [Indexed: 12/31/2022]
Abstract
The growing prevalence of opioid use disorder (OUD) constitutes an urgent health crisis. Ample evidence indicates that risk for OUD is heritable. As a surrogate (or proxy) for OUD, we explored the genetic basis of using prescription opioids 'not as prescribed'. We hypothesized that misuse of opiates might be a heritable risk factor for OUD. To test this hypothesis, we performed a genome-wide association study (GWAS) of problematic opioid use (POU) in 23andMe research participants of European ancestry (N = 132,113; 21% cases). We identified two genome-wide significant loci (rs3791033, an intronic variant of KDM4A; rs640561, an intergenic variant near LRRIQ3). POU showed positive genetic correlations with the two largest available GWAS of OUD and opioid dependence (rg = 0.64, 0.80, respectively). We also identified numerous additional genetic correlations with POU, including alcohol dependence (rg = 0.74), smoking initiation (rg = 0.63), pain relief medication intake (rg = 0.49), major depressive disorder (rg = 0.44), chronic pain (rg = 0.42), insomnia (rg = 0.39), and loneliness (rg = 0.28). Although POU was positively genetically correlated with risk-taking (rg = 0.38), conditioning POU on risk-taking did not substantially alter the magnitude or direction of these genetic correlations, suggesting that POU does not simply reflect a genetic tendency towards risky behavior. Lastly, we performed phenome- and lab-wide association analyses, which uncovered additional phenotypes that were associated with POU, including respiratory failure, insomnia, ischemic heart disease, and metabolic and blood-related biomarkers. We conclude that opioid misuse can be measured in population-based cohorts and provides a cost-effective complementary strategy for understanding the genetic basis of OUD.
Collapse
|
25
|
Johnstone AL, Andrade NS, Barbier E, Khomtchouk BB, Rienas CA, Lowe K, Van Booven DJ, Domi E, Esanov R, Vilca S, Tapocik JD, Rodriguez K, Maryanski D, Keogh MC, Meinhardt MW, Sommer WH, Heilig M, Zeier Z, Wahlestedt C. Dysregulation of the histone demethylase KDM6B in alcohol dependence is associated with epigenetic regulation of inflammatory signaling pathways. Addict Biol 2021; 26:e12816. [PMID: 31373129 PMCID: PMC7757263 DOI: 10.1111/adb.12816] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/28/2019] [Accepted: 07/09/2019] [Indexed: 12/20/2022]
Abstract
Epigenetic enzymes oversee long‐term changes in gene expression by integrating genetic and environmental cues. While there are hundreds of enzymes that control histone and DNA modifications, their potential roles in substance abuse and alcohol dependence remain underexplored. A few recent studies have suggested that epigenetic processes could underlie transcriptomic and behavioral hallmarks of alcohol addiction. In the present study, we sought to identify epigenetic enzymes in the brain that are dysregulated during protracted abstinence as a consequence of chronic and intermittent alcohol exposure. Through quantitative mRNA expression analysis of over 100 epigenetic enzymes, we identified 11 that are significantly altered in alcohol‐dependent rats compared with controls. Follow‐up studies of one of these enzymes, the histone demethylase KDM6B, showed that this enzyme exhibits region‐specific dysregulation in the prefrontal cortex and nucleus accumbens of alcohol‐dependent rats. KDM6B was also upregulated in the human alcoholic brain. Upregulation of KDM6B protein in alcohol‐dependent rats was accompanied by a decrease of trimethylation levels at histone H3, lysine 27 (H3K27me3), consistent with the known demethylase specificity of KDM6B. Subsequent epigenetic (chromatin immunoprecipitation [ChIP]–sequencing) analysis showed that alcohol‐induced changes in H3K27me3 were significantly enriched at genes in the IL‐6 signaling pathway, consistent with the well‐characterized role of KDM6B in modulation of inflammatory responses. Knockdown of KDM6B in cultured microglial cells diminished IL‐6 induction in response to an inflammatory stimulus. Our findings implicate a novel KDM6B‐mediated epigenetic signaling pathway integrated with inflammatory signaling pathways that are known to underlie the development of alcohol addiction.
Collapse
Affiliation(s)
- Andrea L. Johnstone
- Center for Therapeutic Innovation University of Miami Miller School of Medicine Miami Florida USA
- Department of Psychiatry and Behavioral Sciences University of Miami Miller School of Medicine Miami Florida USA
- Division of Product Development EpiCypher, Inc Durham North Carolina USA
| | - Nadja S. Andrade
- Department of Psychiatry and Behavioral Sciences University of Miami Miller School of Medicine Miami Florida USA
| | - Estelle Barbier
- Department of Clinical and Experimental Medicine, Division of Cell Biology, Faculty of Health Sciences Linköping University Linköping Sweden
| | - Bohdan B. Khomtchouk
- Center for Therapeutic Innovation University of Miami Miller School of Medicine Miami Florida USA
- Department of Psychiatry and Behavioral Sciences University of Miami Miller School of Medicine Miami Florida USA
- Department of Medicine, Section of Computational Biomedicine and Biomedical Data Science, Institute for Genomics and Systems Biology University of Chicago Chicago IL USA
| | - Christopher A. Rienas
- Center for Therapeutic Innovation University of Miami Miller School of Medicine Miami Florida USA
- Department of Psychiatry and Behavioral Sciences University of Miami Miller School of Medicine Miami Florida USA
| | - Kenneth Lowe
- Center for Therapeutic Innovation University of Miami Miller School of Medicine Miami Florida USA
- Department of Psychiatry and Behavioral Sciences University of Miami Miller School of Medicine Miami Florida USA
| | - Derek J. Van Booven
- John P. Hussman Institute for Human Genomics University of Miami Miller School of Medicine Miami Florida USA
| | - Esi Domi
- Department of Clinical and Experimental Medicine, Division of Cell Biology, Faculty of Health Sciences Linköping University Linköping Sweden
| | - Rustam Esanov
- Center for Therapeutic Innovation University of Miami Miller School of Medicine Miami Florida USA
- Department of Psychiatry and Behavioral Sciences University of Miami Miller School of Medicine Miami Florida USA
| | - Samara Vilca
- Center for Therapeutic Innovation University of Miami Miller School of Medicine Miami Florida USA
- Department of Psychiatry and Behavioral Sciences University of Miami Miller School of Medicine Miami Florida USA
| | - Jenica D. Tapocik
- Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism National Institutes of Health Bethesda Maryland USA
| | - Keli Rodriguez
- Division of Product Development EpiCypher, Inc Durham North Carolina USA
| | - Danielle Maryanski
- Division of Product Development EpiCypher, Inc Durham North Carolina USA
| | | | - Marcus W. Meinhardt
- Department of Psychopharmacology Central Institute of Mental Health, Heidelberg University Mannheim Germany
| | - Wolfgang H. Sommer
- Department of Psychopharmacology Central Institute of Mental Health, Heidelberg University Mannheim Germany
| | - Markus Heilig
- Department of Clinical and Experimental Medicine, Division of Cell Biology, Faculty of Health Sciences Linköping University Linköping Sweden
| | - Zane Zeier
- Center for Therapeutic Innovation University of Miami Miller School of Medicine Miami Florida USA
- Department of Psychiatry and Behavioral Sciences University of Miami Miller School of Medicine Miami Florida USA
| | - Claes Wahlestedt
- Center for Therapeutic Innovation University of Miami Miller School of Medicine Miami Florida USA
- Department of Psychiatry and Behavioral Sciences University of Miami Miller School of Medicine Miami Florida USA
| |
Collapse
|
26
|
Bohnsack JP, Pandey SC. Histone modifications, DNA methylation, and the epigenetic code of alcohol use disorder. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 156:1-62. [PMID: 33461661 DOI: 10.1016/bs.irn.2020.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Alcohol use disorder (AUD) is a leading cause of morbidity and mortality. Despite AUD's substantial contributions to lost economic productivity and quality of life, there are only a limited number of approved drugs for treatment of AUD in the United States. This chapter will update progress made on the epigenetic basis of AUD, with particular focus on histone post-translational modifications and DNA methylation and how these two epigenetic mechanisms interact to contribute to neuroadaptive processes leading to initiation, maintenance and progression of AUD pathophysiology. We will also evaluate epigenetic therapeutic strategies that have arisen from preclinical models of AUD and epigenetic biomarkers that have been discovered in human populations with AUD.
Collapse
Affiliation(s)
- John Peyton Bohnsack
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States; Jesse Brown VA Medical Center, Chicago, IL, United States; Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
27
|
Epigenetic and non-coding regulation of alcohol abuse and addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 156:63-86. [PMID: 33461665 DOI: 10.1016/bs.irn.2020.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alcohol use disorder is a chronic debilitated condition adversely affecting the lives of millions of individuals throughout the modern world. Individuals suffering from an alcohol use disorder diagnosis frequently have serious cooccurring conditions, which often further exacerbates problematic drinking behavior. Comprehending the biochemical processes underlying the progression and perpetuation of disease is essential for mitigating maladaptive behavior in order to restore both physiological and psychological health. The range of cellular and biological systems contributing to, and affected by, alcohol use disorder and other comorbid disorders necessitates a fundamental grasp of intricate functional relationships that govern molecular biology. Epigenetic factors are recognized as essential mediators of cellular behavior, orchestrating a symphony of gene expression changes within multicellular environments that are ultimately responsible for directing human behavior. Understanding the epigenetic and transcriptional regulatory mechanisms involved in the pathogenesis of disease is important for improving available pharmacotherapies and reducing the incidence of alcohol abuse and cooccurring conditions.
Collapse
|
28
|
Akemann C, Meyer DN, Gurdziel K, Baker TR. TCDD-induced multi- and transgenerational changes in the methylome of male zebrafish gonads. ENVIRONMENTAL EPIGENETICS 2020; 6:dvaa010. [PMID: 33214906 PMCID: PMC7660120 DOI: 10.1093/eep/dvaa010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/01/2020] [Accepted: 06/09/2020] [Indexed: 05/23/2023]
Abstract
The legacy endocrine disrupting chemical and aryl hydrocarbon receptor agonist, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), is produced as a byproduct of industrial processes and causes adverse health effects ranging from skin irritation to cancer. TCDD endpoints are also observed in subsequent, unexposed generations; however, the mechanisms of these multi- and transgenerational effects are unknown. We hypothesized an epigenetic mechanism, specifically DNA methylation for the transgenerational, male-mediated reproductive effects of developmental TCDD exposure. Using whole genome bisulfite sequencing, we evaluated DNA methylation changes in three generations of zebrafish, the first of which was exposed to TCDD during sexual development at 50 ppt for 1 h at both 3- and 7-week post-fertilization. We discovered that TCDD induces multi- and transgenerational methylomic changes in testicular tissue from zebrafish with decreased reproductive capacity, but most significantly in the indirectly exposed F1 generation. In comparing differentially methylated genes to concurrent transcriptomic changes, we identified several genes and pathways through which transgenerational effects of low level TCDD exposure are likely inherited. These include significant differential methylation of genes involved in reproduction, endocrine function, xenobiotic metabolism, and epigenetic processing. Notably, a number of histone modification genes were both differentially methylated and expressed in all generations, and many differentially methylated genes overlapped between multiple generations. Collectively, our results suggest that DNA methylation is a promising mechanism to explain male-mediated transgenerational reproductive effects of TCDD exposure in zebrafish, and these effects are likely inherited through integration of multiple epigenetic pathways.
Collapse
Affiliation(s)
- Camille Akemann
- Department of Pharmacology, Wayne State University, Detroit, 540 E. Canfield, Detroit, MI, 48201, USA
- Institute of Environmental Health Sciences, Wayne State University, Detroit, 5135 Woodward Ave. Detroit, MI, 48202, USA
| | - Danielle N Meyer
- Department of Pharmacology, Wayne State University, Detroit, 540 E. Canfield, Detroit, MI, 48201, USA
- Institute of Environmental Health Sciences, Wayne State University, Detroit, 5135 Woodward Ave. Detroit, MI, 48202, USA
| | - Katherine Gurdziel
- School of Medicine, Applied Genome Technology Center, Wayne State University, Detroit, 261 E Hancock St, Detroit, MI, 4820, USA
| | - Tracie R Baker
- Department of Pharmacology, Wayne State University, Detroit, 540 E. Canfield, Detroit, MI, 48201, USA
- Institute of Environmental Health Sciences, Wayne State University, Detroit, 5135 Woodward Ave. Detroit, MI, 48202, USA
| |
Collapse
|
29
|
Zhou Y, Tian Q, Zheng C, Yang J, Fan J, Shentu Y. Myocardial infarction-induced anxiety-like behavior is associated with epigenetic alterations in the hippocampus of rat. Brain Res Bull 2020; 164:172-183. [PMID: 32871241 DOI: 10.1016/j.brainresbull.2020.08.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/10/2020] [Accepted: 08/21/2020] [Indexed: 01/01/2023]
Abstract
Epidemiological and experimental animal studies indicate that there is a high risk for the incidence of neuropsychiatric disorders suffering from cardiovascular diseases such as myocardial infarction (MI). However, the potential mechanism of this association remains largely unknown. This study sought to evaluate whether epigenetic alterations in the hippocampus is associated with MI-induced anxiety-like behavior in rats. MI was induced by occlusion of the left anterior descending artery in adult female rats. Anxiety-like behavior was examined by elevated plus maze, light-dark box, and open field test. Relative gene and protein levels expression in the hippocampus were tested by qRT-PCR and western blotting, respectively. We found that MI rats exhibited anxiety-like behavior compared with those in controls, and there is a positive correlation between MI and anxiety-like behavior. We also found that MI decreased KDM6B while increased SIRT1 expression in the hippocampus of MI rats relative to those in controls. In addition, MI not only increased levels of IL-1β, bax, and cleaved-caspase 3, but also increased Iba-1 and GFAP expression in the hippocampus, as compared to those in controls, suggesting a promotion of neuro-inflammation and apoptosis in hippocampus. Co-immunoprecipitation assay illustrated that H3K27me3 functioned by counteracting with YAP activation in the hippocampus of MI rats relative to those in controls. Together, these results suggest a potential role of hippocampal epigenetic signaling in MI-induced anxiety-like behavior in rats, and pharmacological targeting KDM6B or SIRT1 could be a strategy to ameliorate anxiety-like behavior induced by MI.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Qiuyun Tian
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Chenfei Zheng
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Jinge Yang
- Department of Medical Technology, Jiangxi Medical College, Shangrao, Jiangxi, 334709, China
| | - Junming Fan
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Yangping Shentu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
30
|
Dulman RS, Wandling GM, Pandey SC. Epigenetic mechanisms underlying pathobiology of alcohol use disorder. CURRENT PATHOBIOLOGY REPORTS 2020; 8:61-73. [PMID: 33747641 DOI: 10.1007/s40139-020-00210-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Purpose of review Chronic alcohol use is a worldwide problem with multifaceted consequences including multiplying medical costs and sequelae, societal effects like drunk driving and assault, and lost economic productivity. These large-scale outcomes are driven by the consumption of ethanol, a small permeable molecule that has myriad effects in the human body, particularly in the liver and brain. In this review, we have summarized effects of acute and chronic alcohol consumption on epigenetic mechanisms that may drive pathobiology of Alcohol Use Disorder (AUD) while identifying areas of need for future research. Recent findings Epigenetics has emerged as an interesting field of biology at the intersection of genetics and the environment, and ethanol in particular has been identified as a potent modulator of the epigenome with various effects on DNA methylation, histone modifications, and non-coding RNAs. These changes alter chromatin dynamics and regulate gene expression that contribute to behavioral and physiological changes leading to the development of AUD psychopathology and cancer pathology. Summary Evidence and discussion presented here from preclinical results and available translational studies have increased our knowledge of the epigenetic effects of alcohol consumption. These studies have identified targets that can be used to develop better therapies to reduce chronic alcohol abuse and mitigate its societal burden and pathophysiology.
Collapse
Affiliation(s)
- Russell S Dulman
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Gabriela M Wandling
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA.,Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
31
|
Arifuzzaman S, Khatun MR, Khatun R. Emerging of lysine demethylases (KDMs): From pathophysiological insights to novel therapeutic opportunities. Biomed Pharmacother 2020; 129:110392. [PMID: 32574968 DOI: 10.1016/j.biopha.2020.110392] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
In recent years, there have been remarkable scientific advancements in the understanding of lysine demethylases (KDMs) because of their demethylation of diverse substrates, including nucleic acids and proteins. Novel structural architectures, physiological roles in the gene expression regulation, and ability to modify protein functions made KDMs the topic of interest in biomedical research. These structural diversities allow them to exert their function either alone or in complex with numerous other bio-macromolecules. Impressive number of studies have demonstrated that KDMs are localized dynamically across the cellular and tissue microenvironment. Their dysregulation is often associated with human diseases, such as cancer, immune disorders, neurological disorders, and developmental abnormalities. Advancements in the knowledge of the underlying biochemistry and disease associations have led to the development of a series of modulators and technical compounds. Given the distinct biophysical and biochemical properties of KDMs, in this review we have focused on advances related to the structure, function, disease association, and therapeutic targeting of KDMs highlighting improvements in both the specificity and efficacy of KDM modulation.
Collapse
Affiliation(s)
- Sarder Arifuzzaman
- Department of Pharmacy, Jahangirnagar University, Dhaka-1342, Bangladesh; Everest Pharmaceuticals Ltd., Dhaka-1208, Bangladesh.
| | - Mst Reshma Khatun
- Department of Pharmacy, Jahangirnagar University, Dhaka-1342, Bangladesh
| | - Rabeya Khatun
- Department of Pediatrics, TMSS Medical College and Rafatullah Community Hospital, Gokul, Bogura, 5800, Bangladesh
| |
Collapse
|
32
|
De Santis S, Cosa-Linan A, Garcia-Hernandez R, Dmytrenko L, Vargova L, Vorisek I, Stopponi S, Bach P, Kirsch P, Kiefer F, Ciccocioppo R, Sykova E, Moratal D, Sommer WH, Canals S. Chronic alcohol consumption alters extracellular space geometry and transmitter diffusion in the brain. SCIENCE ADVANCES 2020; 6:eaba0154. [PMID: 32637601 PMCID: PMC7314532 DOI: 10.1126/sciadv.aba0154] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 05/14/2020] [Indexed: 05/08/2023]
Abstract
Already moderate alcohol consumption has detrimental long-term effects on brain function. However, how alcohol produces its potent addictive effects despite being a weak reinforcer is a poorly understood conundrum that likely hampers the development of successful interventions to limit heavy drinking. In this translational study, we demonstrate widespread increased mean diffusivity in the brain gray matter of chronically drinking humans and rats. These alterations appear soon after drinking initiation in rats, persist into early abstinence in both species, and are associated with a robust decrease in extracellular space tortuosity explained by a microglial reaction. Mathematical modeling of the diffusivity changes unveils an increased spatial reach of extrasynaptically released transmitters like dopamine that may contribute to alcohol's progressively enhanced addictive potency.
Collapse
Affiliation(s)
- Silvia De Santis
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, Sant Joan d’Alacant, Spain
| | - Alejandro Cosa-Linan
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, Sant Joan d’Alacant, Spain
- Department of Psychopharmacology, Central Institute of Mental Health, University of Heidelberg, 68159 Mannheim, Germany
| | - Raquel Garcia-Hernandez
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, Sant Joan d’Alacant, Spain
| | - Lesia Dmytrenko
- Institute of Experimental Medicine AS CR, 142 20 Prague 4, Czech Republic
| | - Lydia Vargova
- Institute of Experimental Medicine AS CR, 142 20 Prague 4, Czech Republic
- Charles University, 2nd Faculty of Medicine, 150 06 Prague 5, Czech Republic
| | - Ivan Vorisek
- Charles University, 2nd Faculty of Medicine, 150 06 Prague 5, Czech Republic
| | | | - Patrick Bach
- Department of Addiction Medicine, Central Institute of Mental Health, University of Heidelberg, 68159 Mannheim, Germany
| | - Peter Kirsch
- Department of Clinical Psychology, Central Institute of Mental Health, University of Heidelberg, 68159 Mannheim, Germany
| | - Falk Kiefer
- Department of Addiction Medicine, Central Institute of Mental Health, University of Heidelberg, 68159 Mannheim, Germany
| | | | - Eva Sykova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - David Moratal
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, Spain
| | - Wolfgang H. Sommer
- Department of Psychopharmacology, Central Institute of Mental Health, University of Heidelberg, 68159 Mannheim, Germany
- Department of Addiction Medicine, Central Institute of Mental Health, University of Heidelberg, 68159 Mannheim, Germany
| | - Santiago Canals
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, Sant Joan d’Alacant, Spain
| |
Collapse
|