1
|
Xu S, Akhatayeva Z, Liu J, Feng X, Yu Y, Badaoui B, Esmailizadeh A, Kantanen J, Amills M, Lenstra JA, Johansson AM, Coltman DW, Liu GE, Curik I, Orozco-terWengel P, Paiva SR, Zinovieva NA, Zhang L, Yang J, Liu Z, Wang Y, Yu Y, Li M. Genetic advancements and future directions in ruminant livestock breeding: from reference genomes to multiomics innovations. SCIENCE CHINA. LIFE SCIENCES 2025; 68:934-960. [PMID: 39609363 DOI: 10.1007/s11427-024-2744-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/24/2024] [Indexed: 11/30/2024]
Abstract
Ruminant livestock provide a rich source of products, such as meat, milk, and wool, and play a critical role in global food security and nutrition. Over the past few decades, genomic studies of ruminant livestock have provided valuable insights into their domestication and the genetic basis of economically important traits, facilitating the breeding of elite varieties. In this review, we summarize the main advancements for domestic ruminants in reference genome assemblies, population genomics, and the identification of functional genes or variants for phenotypic traits. These traits include meat and carcass quality, reproduction, milk production, feed efficiency, wool and cashmere yield, horn development, tail type, coat color, environmental adaptation, and disease resistance. Functional genomic research is entering a new era with the advancements of graphical pangenomics and telomere-to-telomere (T2T) gap-free genome assembly. These advancements promise to improve our understanding of domestication and the molecular mechanisms underlying economically important traits in ruminant livestock. Finally, we provide new perspectives and future directions for genomic research on ruminant genomes. We suggest how ever-increasing multiomics datasets will facilitate future studies and molecular breeding in livestock, including the potential to uncover novel genetic mechanisms underlying phenotypic traits, to enable more accurate genomic prediction models, and to accelerate genetic improvement programs.
Collapse
Affiliation(s)
- Songsong Xu
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhanerke Akhatayeva
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010, China
| | - Jiaxin Liu
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xueyan Feng
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yi Yu
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Bouabid Badaoui
- Laboratory of Biodiversity, Ecology and Genome, Department of Biology, Faculty of Sciences Rabat, Mohammed V University, Rabat, 10106, Morocco
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, 76169-133, Iran
| | - Juha Kantanen
- Production Systems, Natural Resources Institute Finland (Luke), Jokioinen, FI-31600, Finland
| | - Marcel Amills
- Department of Animal Genetics, Center for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus de la Universitat Autónoma de Barcelona, Bellaterra, 08193, Spain
- Departament de Ciència Animal i dels Aliments, Universitat Autónoma de Barcelona, Bellaterra, 08193, Spain
| | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584, The Netherlands
| | - Anna M Johansson
- Department of Animal Breeding and Genetics, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Uppsala, 75007, Sweden
| | - David W Coltman
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
- Department of Biology, Western University, London, Ontario, N6A 5B7, Canada
| | - George E Liu
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Beltsville, MD, 20705, USA
| | - Ino Curik
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Zagreb, 10000, Croatia
- Institute of Animal Sciences, Hungarian University of Agriculture and Life Sciences (MATE), Kaposvár, 7400, Hungary
| | | | - Samuel R Paiva
- Embrapa Genetic Resources and Biotechnology, Laboratory of Animal Genetics, Brasília, Federal District, 70770917, Brazil
| | - Natalia A Zinovieva
- L.K. Ernst Federal Science Center for Animal Husbandry, Moscow Region, Podolsk, 142132, Russian Federation
| | - Linwei Zhang
- Department of Neurology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Ji Yang
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhihong Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Yachun Wang
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ying Yu
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Menghua Li
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
- Sanya Institute of China Agricultural University, Sanya, 572024, China.
| |
Collapse
|
2
|
Frezarim GB, Mota LFM, Fonseca LFS, Salatta BM, Arikawa LM, Schmidt PI, Silva DBS, Albuquerque LG. Multi-omics integration identifies molecular markers and biological pathways for carcass and meat quality traits in Nellore cattle. Sci Rep 2025; 15:10467. [PMID: 40140445 PMCID: PMC11947269 DOI: 10.1038/s41598-025-93714-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Understanding the biological factors that influence carcass and meat quality traits in Nellore cattle requires a clear interpretation of molecular complexity and its variations at different levels of expression. Hence, this study aimed to elucidate the biological control of carcass and meat quality traits in Nellore cattle by integrating genome-wide association study (GWAS), transcriptomic, and proteomic data, focusing on identifying key genes and pathways. GWAS analysis was performed using weighted single-step GBLUP with two iterations. RNA-Seq and proteomic analyses were performed on 24 muscle samples from animals with divergent adjusted phenotypic values (12 for high and 12 for low), for meat tenderness, ribeye area (REA), marbling, and backfat thickness (BFT). The phenotypic values were adjusted for the systematic effects of contemporary groups and age. Differential expression analyses indicated that genes associated with the promotion of growth processes, such as FRZB, IGFBP5 and SEMA6C, exhibited overexpression within the group characterized by higher meat tenderness that inhibits cellular cycles and growth (RTN4 and RB1) were downregulated. Proteins related to heat shock, structural functions, and metabolic regulation also affected the higher meat tenderness group. For marbling, actin-binding proteins, microtubule-forming proteins, and structural proteins were downregulated, while genes involved in fatty acid composition and synthesis were upregulated, with the key genes and transcripts CAND1, ACTN4, FGFR2, and NCOR2 identified. For BFT, neuronal genes, transcripts, and proteins associated with actin cytoskeleton organization and microtubule formation were found. Key genes related to ubiquitination, regulation of energy metabolism, and tissue remodeling were also identified. These findings provide a better understanding of genes, transcripts, proteins, and metabolic pathways involved in carcass and meat quality traits in Nellore cattle.
Collapse
Affiliation(s)
- Gabriela B Frezarim
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Lucio F M Mota
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil.
| | - Larissa F S Fonseca
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Bruna M Salatta
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Leonardo M Arikawa
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Patrícia I Schmidt
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Danielly B S Silva
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Lucia G Albuquerque
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil.
- National Council for Science and Technological Development, Brasilia, DF, 71605-001, Brazil.
| |
Collapse
|
3
|
Chen L, He X, Han Y, Huang Y, Li J, Li J, Yu X, Yun X, Wu J, Sha R, Dong T, Borjigin G. Lipidomics analysis of adipose depots at differently aged Sunit sheep. Food Chem 2024; 467:142243. [PMID: 39632170 DOI: 10.1016/j.foodchem.2024.142243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/07/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024]
Abstract
The objective of this study was to optimize the utilization of deposited fat in Sunit sheep, with a focus on dietary nutrition. This study also elucidated variations in lipid metabolism among subcutaneous fat (SF), perirenal fat (PF), and tail fat (TF) in sheep of different ages using non-targeted lipidomic techniques. In total, 173 different lipids were identified, of which triacylglycerol (TG) and phosphatidylcholine (PC) were prominent. The relative intensity of TG was highest at 6 months of age in three adipose depots. Glycerophospholipids (PLs) were expressed at peak levels in TF and SF at 18 months of age. Pathway analysis revealed that biosynthesis of unsaturated fatty acids, linoleic acid metabolism, glycerophospholipid metabolism, and fatty acid biosynthesis were the main pathways involved in the metabolism of adipose depots. These findings provide a comprehensive reference for the metabolic characteristics and pathways of adipose tissue in sheep and the utilization of its by-products.
Collapse
Affiliation(s)
- Lu Chen
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xige He
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Yunfei Han
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China
| | - Yajuan Huang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jin Li
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jin Li
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xueting Yu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xueyan Yun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jindi Wu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Rina Sha
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Tungalag Dong
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Gerelt Borjigin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China.
| |
Collapse
|
4
|
Alonso-García M, Gutiérrez-Gil B, Pelayo R, Fonseca PAS, Marina H, Arranz JJ, Suárez-Vega A. A meta-analysis approach for annotation and identification of lncRNAs controlling perirenal fat deposition in suckling lambs. Anim Biotechnol 2024; 35:2374328. [PMID: 39003576 DOI: 10.1080/10495398.2024.2374328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
Long non-coding RNAs (lncRNAs) are being studied in farm animals due to their association with traits of economic interest, such as fat deposition. Based on the analysis of perirenal fat transcriptomes, this research explored the relevance of these regulatory elements to fat deposition in suckling lambs. To that end, meta-analysis techniques have been implemented to efficiently characterize and detect differentially expressed transcripts from two different RNA-seq datasets, one including samples of two sheep breeds that differ in fat deposition features, Churra and Assaf (n = 14), and one generated from Assaf suckling lambs with different fat deposition levels (n = 8). The joint analysis of the 22 perirenal fat RNA-seq samples with the FEELnc software allowed the detection of 3953 novel lncRNAs. After the meta-analysis, 251 differentially expressed genes were identified, 21 of which were novel lncRNAs. Additionally, a co-expression analysis revealed that, in suckling lambs, lncRNAs may play a role in controlling angiogenesis and thermogenesis, processes highlighted in relation to high and low fat deposition levels, respectively. Overall, while providing information that could be applied for the improvement of suckling lamb carcass traits, this study offers insights into the biology of perirenal fat deposition regulation in mammals.
Collapse
Affiliation(s)
- María Alonso-García
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Beatriz Gutiérrez-Gil
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Rocío Pelayo
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Pablo A S Fonseca
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Héctor Marina
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Juan José Arranz
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Aroa Suárez-Vega
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| |
Collapse
|
5
|
Rocha RDFB, Garcia AO, Otto PI, Dos Santos MG, da Silva MVB, Martins MF, Machado MA, Panetto JCDC, Guimarães SEF. Single-step genome-wide association studies and post-GWAS analyses for the number of oocytes and embryos in Gir cattle. Mamm Genome 2023:10.1007/s00335-023-10009-0. [PMID: 37438444 DOI: 10.1007/s00335-023-10009-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/29/2023] [Indexed: 07/14/2023]
Abstract
Genome-Wide Association Studies (GWAS) are used for identification of quantitate trait loci (QTL) and genes associated with several traits. We aimed to identify genomic regions, genes, and biological processes associated with number of total and viable oocytes, and number of embryos in Gir dairy cattle. A dataset with 17,526 follicular aspirations, including the following traits: number of viable oocytes (VO), number of total oocytes (TO), and number of embryos (EMBR) from 1641 Gir donors was provided by five different stock farms. A genotype file with 2093 animals and 395,524 SNP markers was used to perform a single-step GWAS analysis for each trait. The top 10 windows with the highest percentage of additive genetic variance explained by 100 adjacent SNPs were selected. The genomic regions identified in our work were overlapped with QTLs from QTL database on chromosomes 1, 2, 5, 6, 7, 8, 9, 13, 17, 18, 20, 21, 22, 24, and 29. These QTLs were classified as External, Health, Meat and carcass, Production or Reproduction traits, and about 38% were related to Reproduction. In total, 117 genes were identified, of which 111 were protein-coding genes. Exclusively associations were observed for 42 genes with EMBR, and 1 with TO. Also, 42 genes were in common between VO and TO, 28 between VO and EMBR, and four genes were in common among all traits. In conclusion, great part of the identified genes plays a functional role in initial embryo development or general cell functions. The protein-coding genes ARNT, EGR1, HIF1A, AHR, and PAX2 are good markers for the production of oocytes and embryos in Gir cattle.
Collapse
Affiliation(s)
| | | | - Pamela Itajara Otto
- Department of Animal Science, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | | | | | | | | | | | | |
Collapse
|
6
|
Alonso-García M, Suárez-Vega A, Fonseca PAS, Marina H, Pelayo R, Mateo J, Arranz JJ, Gutiérrez-Gil B. Transcriptome analysis of perirenal fat from Spanish Assaf suckling lamb carcasses showing different levels of kidney knob and channel fat. Front Vet Sci 2023; 10:1150996. [PMID: 37255997 PMCID: PMC10225515 DOI: 10.3389/fvets.2023.1150996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/19/2023] [Indexed: 06/01/2023] Open
Abstract
Introduction Suckling lamb meat is highly appreciated in European Mediterranean countries because of its mild flavor and soft texture. In suckling lamb carcasses, perirenal and pelvic fat depots account for a large fraction of carcass fat accumulation, and their proportions are used as an indicator of carcass quality. Material and Methods This study aimed to characterize the genetic mechanisms that regulate fat deposition in suckling lambs by evaluating the transcriptomic differences between Spanish Assaf lambs with significantly different proportions of kidney knob and channel fat (KKCF) depots in their carcasses (4 High-KKCF lambs vs. 4 Low-KKCF lambs). Results The analyzed fat tissue showed overall dominant expression of white adipose tissue gene markers, although due to the young age of the animals (17-36 days), the expression of some brown adipose tissue gene markers (e.g., UCP1, CIDEA) was still identified. The transcriptomic comparison between the High-KKCF and Low-KKCF groups revealed a total of 80 differentially expressed genes (DEGs). The enrichment analysis of the 49 DEGs with increased expression levels in the Low-KKCF lambs identified significant terms linked to the biosynthesis of lipids and thermogenesis, which may be related to the higher expression of the UCP1 gene in this group. In contrast, the enrichment analysis of the 31 DEGs with increased expression in the High-KKCF lambs highlighted angiogenesis as a key biological process supported by the higher expression of some genes, such as VEGF-A and THBS1, which encode a major angiogenic factor and a large adhesive extracellular matrix glycoprotein, respectively. Discussion The increased expression of sestrins, which are negative regulators of the mTOR complex, suggests that the preadipocyte differentiation stage is being inhibited in the High-KKCF group in favor of adipose tissue expansion, in which vasculogenesis is an essential process. All of these results suggest that the fat depots of the High-KKCF animals are in a later stage of development than those of the Low-KKCF lambs. Further genomic studies based on larger sample sizes and complementary analyses, such as the identification of polymorphisms in the DEGs, should be designed to confirm these results and achieve a deeper understanding of the genetic mechanisms underlying fat deposition in suckling lambs.
Collapse
Affiliation(s)
- María Alonso-García
- Departemento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Aroa Suárez-Vega
- Departemento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Pablo A. S. Fonseca
- Departemento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Héctor Marina
- Departemento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Rocío Pelayo
- Departemento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Javier Mateo
- Departamento de Higiene y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Juan-José Arranz
- Departemento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Beatriz Gutiérrez-Gil
- Departemento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| |
Collapse
|
7
|
Rocha RDFB, Garcia AO, Otto PI, da Silva MVB, Martins MF, Machado MA, Panetto JCDC, Guimarães SEF. Runs of homozygosity and signatures of selection for number of oocytes and embryos in the Gir Indicine cattle. Mamm Genome 2023:10.1007/s00335-023-09989-w. [PMID: 37000236 DOI: 10.1007/s00335-023-09989-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/11/2023] [Indexed: 04/01/2023]
Abstract
Runs of homozygosity (ROH) and signatures of selection are the results of selection processes in livestock species that have been shown to affect several traits in cattle. The aim of the current work was to verify the profile of ROH and inbreeding depression in the number of total (TO) and viable oocytes (VO) and the number of embryos (EMBR) in Gir Indicine cattle. In addition, we aim to identify signatures of selection, genes, and enriched regions between Gir subpopulations sorted by breeding value for these traits. The genotype file contained 2093 animals and 420,718 SNP markers. Breeding values used to sort Gir animals were previously obtained. ROH and signature of selection analyses were performed using PLINK software, followed by ROH-based (FROH) and pedigree-based inbreeding (Fped) and a search for genes and their functions. An average of 50 ± 8.59 ROHs were found per animal. ROHs were separated into classes according to size, ranging from 1 to 2 Mb (ROH1-2Mb: 58.17%), representing ancient inbreeding, ROH2-4Mb (22.74%), ROH4-8Mb (11.34%), ROH8-16Mb (5.51%), and ROH>16Mb (2.24%). Combining our results, we conclude that the increase in general FROH and Fped significantly decreases TO and VO; however, in different chromosomes traits can increase or decrease with FROH. In the analysis for signatures of selection, we identified 15 genes from 47 significant genomic regions, indicating differences in populations with high and low breeding value for the three traits.
Collapse
Affiliation(s)
| | | | - Pamela Itajara Otto
- Department of Animal Science, Universidade Federal de Santa Maria, Santa Maria, Rio Grande Do Sul, Brazil
| | | | | | | | | | | |
Collapse
|
8
|
Fonseca PAS, Suárez-Vega A, Pelayo R, Marina H, Alonso-García M, Gutiérrez-Gil B, Arranz JJ. Intergenerational impact of dietary protein restriction in dairy ewes on epigenetic marks in the perirenal fat of their suckling lambs. Sci Rep 2023; 13:4351. [PMID: 36928446 PMCID: PMC10020577 DOI: 10.1038/s41598-023-31546-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
In sheep, nutrition during the prepubertal stage is essential for growth performance and mammary gland development. However, the potential effects of nutrient restriction in a prepuberal stage over the progeny still need to be better understood. Here, the intergenerational effect of maternal protein restriction at prepubertal age (2 months of age) on methylation patterns was evaluated in the perirenal fat of Assaf suckling lambs. In total, 17 lambs from ewes subjected to dietary protein restriction (NPR group, 44% less protein) and 17 lambs from control ewes (C group) were analyzed. These lambs were ranked based on their carcass proportion of perirenal and cavitary fat and classified into HighPCF and LowPCF groups. The perirenal tissue from 4 NPR-LowPCF, 4 NPR-HighPCF, 4 C-LowPCF, and 4 C-HighPCF lambs was subjected to whole-genome bisulfite sequencing and differentially methylated regions (DMRs) were identified. Among other relevant processes, these DMRs were mapped in genes responsible for regulating the transition of brown to white adipose tissue and nonshivering thermoregulation, which might be associated with better adaptation/survival of lambs in the perinatal stage. The current study provides important biological insights about the intergenerational effect on the methylation pattern of an NPR in replacement ewes.
Collapse
Affiliation(s)
- Pablo A S Fonseca
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana S/N, 24071, León, Spain
| | - Aroa Suárez-Vega
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana S/N, 24071, León, Spain
| | - Rocio Pelayo
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana S/N, 24071, León, Spain
| | - Hector Marina
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana S/N, 24071, León, Spain
| | - María Alonso-García
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana S/N, 24071, León, Spain
| | - Beatriz Gutiérrez-Gil
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana S/N, 24071, León, Spain
| | - Juan-José Arranz
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana S/N, 24071, León, Spain.
| |
Collapse
|
9
|
Fonseca PAS, Alonso-García M, Pelayo R, Marina H, Esteban-Blanco C, Mateo J, Gutiérrez-Gil B, Arranz JJ, Suárez-Vega A. Integrated analyses of the methylome and transcriptome to unravel sex differences in the perirenal fat from suckling lambs. Front Genet 2022; 13:1035063. [PMID: 36386829 PMCID: PMC9663842 DOI: 10.3389/fgene.2022.1035063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/18/2022] [Indexed: 11/25/2022] Open
Abstract
In sheep, differences were observed regarding fat accumulation and fatty acid (FA) composition between males and females, which may impact the quality and organoleptic characteristics of the meat. The integration of different omics technologies is a relevant approach for investigating biological and genetic mechanisms associated with complex traits. Here, the perirenal tissue of six male and six female Assaf suckling lambs was evaluated using RNA sequencing and whole-genome bisulfite sequencing (WGBS). A multiomic discriminant analysis using multiblock (s)PLS-DA allowed the identification of 314 genes and 627 differentially methylated regions (within these genes), which perfectly discriminate between males and females. These candidate genes overlapped with previously reported QTLs for carcass fat volume and percentage of different FAs in milk and meat from sheep. Additionally, differentially coexpressed (DcoExp) modules of genes between males (nine) and females (three) were identified that harbour 22 of these selected genes. Interestingly, these DcoExp were significantly correlated with fat percentage in different deposits (renal, pelvic, subcutaneous and intramuscular) and were associated with relevant biological processes for adipogenesis, adipocyte differentiation, fat volume and FA composition. Consequently, these genes may potentially impact adiposity and meat quality traits in a sex-specific manner, such as juiciness, tenderness and flavour.
Collapse
Affiliation(s)
- Pablo A. S. Fonseca
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - María Alonso-García
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Rocio Pelayo
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Hector Marina
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Cristina Esteban-Blanco
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Javier Mateo
- Departamento de Higiene y Tecnología de Los Alimentos, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Beatriz Gutiérrez-Gil
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Juan-José Arranz
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain,*Correspondence: Juan-José Arranz,
| | - Aroa Suárez-Vega
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| |
Collapse
|
10
|
RNAseq Analysis of Brown Adipose Tissue and Thyroid of Newborn Lambs Subjected to Short-Term Cold Exposure Reveals Signs of Early Whitening of Adipose Tissue. Metabolites 2022; 12:metabo12100996. [PMID: 36295898 PMCID: PMC9607389 DOI: 10.3390/metabo12100996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/03/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
During the early postnatal period, lambs have the ability to thermoregulate body temperature via non-shivering thermogenesis through brown adipose tissue (BAT), which soon after birth begins to transform into white adipose tissue. An RNA seq approach was used to characterize the transcriptome of BAT and thyroid tissue in newborn lambs exposed to cold conditions. Fifteen newborn Romney lambs were selected and divided into three groups: group 1 (n = 3) was a control, and groups 2 and 3 (n = 6 each) were kept indoors for two days at an ambient temperature (20–22 °C) or at a cold temperature (4 °C), respectively. Sequencing was performed using a paired-end strategy through the BGISEQ-500 platform, followed by the identification of differentially expressed genes using DESeq2 and an enrichment analysis by g:Profiler. This study provides an in-depth expression network of the main characters involved in the thermogenesis and fat-whitening mechanisms that take place in the newborn lamb. Data revealed no significant differential expression of key thermogenic factors such as uncoupling protein 1, suggesting that the heat production peak under cold exposure might occur so rapidly and in such an immediate way that it may seem undetectable in BAT by day three of life. Moreover, these changes in expression might indicate the start of the whitening process of the adipose tissue, concluding the non-shivering thermogenesis period.
Collapse
|
11
|
Weldenegodguad M, Pokharel K, Niiranen L, Soppela P, Ammosov I, Honkatukia M, Lindeberg H, Peippo J, Reilas T, Mazzullo N, Mäkelä KA, Nyman T, Tervahauta A, Herzig KH, Stammler F, Kantanen J. Adipose gene expression profiles reveal insights into the adaptation of northern Eurasian semi-domestic reindeer (Rangifer tarandus). Commun Biol 2021; 4:1170. [PMID: 34620965 PMCID: PMC8497613 DOI: 10.1038/s42003-021-02703-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/21/2021] [Indexed: 02/08/2023] Open
Abstract
Reindeer (Rangifer tarandus) are semi-domesticated animals adapted to the challenging conditions of northern Eurasia. Adipose tissues play a crucial role in northern animals by altering gene expression in their tissues to regulate energy homoeostasis and thermogenic activity. Here, we perform transcriptome profiling by RNA sequencing of adipose tissues from three different anatomical depots: metacarpal (bone marrow), perirenal, and prescapular fat in Finnish and Even reindeer (in Sakha) during spring and winter. A total of 16,212 genes are expressed in our data. Gene expression profiles in metacarpal tissue are distinct from perirenal and prescapular adipose tissues. Notably, metacarpal adipose tissue appears to have a significant role in the regulation of the energy metabolism of reindeer in spring when their nutritional condition is poor after winter. During spring, genes associated with the immune system are upregulated in the perirenal and prescapular adipose tissue. Blood and tissue parameters reflecting general physiological and metabolic status show less seasonal variation in Even reindeer than in Finnish reindeer. This study identifies candidate genes potentially involved in immune response, fat deposition, and energy metabolism and provides new information on the mechanisms by which reindeer adapt to harsh arctic conditions.
Collapse
Affiliation(s)
- Melak Weldenegodguad
- grid.22642.300000 0004 4668 6757Natural Resources Institute Finland (Luke), Jokioinen, Finland ,grid.9668.10000 0001 0726 2490Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Kisun Pokharel
- grid.22642.300000 0004 4668 6757Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Laura Niiranen
- grid.10858.340000 0001 0941 4873Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Päivi Soppela
- grid.37430.330000 0001 0744 995XArctic Centre, University of Lapland, Rovaniemi, Finland
| | - Innokentyi Ammosov
- grid.495192.2Laboratory of Reindeer Husbandry and Traditional Industries, Yakut Scientific Research Institute of Agriculture, Yakutsk, The Sakha Republic (Yakutia) Russia
| | | | - Heli Lindeberg
- grid.22642.300000 0004 4668 6757Natural Resources Institute Finland (Luke), Maaninka, Finland
| | - Jaana Peippo
- grid.22642.300000 0004 4668 6757Natural Resources Institute Finland (Luke), Jokioinen, Finland ,NordGen—Nordic Genetic Resource Center, Ås, Norway
| | - Tiina Reilas
- grid.22642.300000 0004 4668 6757Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Nuccio Mazzullo
- grid.37430.330000 0001 0744 995XArctic Centre, University of Lapland, Rovaniemi, Finland
| | - Kari A. Mäkelä
- grid.10858.340000 0001 0941 4873Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Tommi Nyman
- grid.454322.60000 0004 4910 9859Department of Ecosystems in the Barents Region, Norwegian Institute of Bioeconomy Research, Svanvik, Norway
| | - Arja Tervahauta
- grid.9668.10000 0001 0726 2490Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Karl-Heinz Herzig
- grid.10858.340000 0001 0941 4873Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Oulu, Finland ,grid.10858.340000 0001 0941 4873Medical Research Center, Faculty of Medicine, University of Oulu, Oulu, Finland ,grid.412326.00000 0004 4685 4917Oulu University Hospital, Oulu, Finland ,grid.22254.330000 0001 2205 0971Institute of Pediatrics, Poznań University of Medical Sciences, Poznań, Poland
| | - Florian Stammler
- grid.37430.330000 0001 0744 995XArctic Centre, University of Lapland, Rovaniemi, Finland
| | - Juha Kantanen
- grid.22642.300000 0004 4668 6757Natural Resources Institute Finland (Luke), Jokioinen, Finland
| |
Collapse
|
12
|
Han F, Zhou L, Zhao L, Wang L, Liu L, Li H, Qiu J, He J, Liu N. Identification of miRNA in Sheep Intramuscular Fat and the Role of miR-193a-5p in Proliferation and Differentiation of 3T3-L1. Front Genet 2021; 12:633295. [PMID: 33936163 PMCID: PMC8083875 DOI: 10.3389/fgene.2021.633295] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/25/2021] [Indexed: 12/22/2022] Open
Abstract
Intramuscular fat (IMF) is one of the most critical parameters affecting meat quality and mainly affected by genetic factors. MicroRNA as an important regulatory factor, which is still a lack of research in the development of sheep IMF deposition. We used RNA sequencing (RNA-seq) and cell-level validation to explore the role of miRNA in IMF deposition. As for this purpose, longissimus thoracis et lumborum (LTL) samples of 2 month-old (Mth-2) and 12 months-old (Mth-12) Aohan fine-wool sheep (AFWS) were used to identified miRNAs expression. We found 59 differentially expressed miRNAs (DE-miRNA) between these age groups and predicted their 1,796 target genes. KEGG functional enrichment analysis revealed eight pathways involved in lipid metabolism-related processes, including fatty acid elongation and the AMPK signaling pathway. A highly expressed DE-miRNA, miR-193a-5p, was found to serve a function in 3T3-L1 preadipocyte differentiation. Luciferase assay demonstrated that miR-193a-5p directly binds to the 3′-UTR region of ACAA2. By constructing mimics and inhibitor vector transfecting into 3T3-L1 cells to explore the effect of miR-193a-5p on cell proliferation and differentiation, we demonstrated that overexpression of miR-193a-5p inhibited 3T3-L1 preadipocyte proliferation, as evidenced by decreased mRNA and protein expression of CDK4 and CyclinB. CCK-8 assay showed that miR-193a-5p significantly inhibited cell proliferation. Similarly, the overexpression of miR-193a-5p inhibited 3T3-L1 preadipocyte differentiation and adipocyte-specific molecular markers’ expression, leading to a decrease in PPARγ and C/EBPα and ACAA2. Inhibition of miR-193a-5p had the opposite effects. Our study lists the miRNAs associated with intramuscular lipid deposition in sheep and their potential targets, striving to improve sheep meat quality.
Collapse
Affiliation(s)
- Fuhui Han
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Lisheng Zhou
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Le Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Lei Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Lirong Liu
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Haijuan Li
- Aohan Fine Wool Sheep Stud Farm, Chifeng, China
| | - Jixian Qiu
- Runlin Animal Industry Co., Ltd., Linqing, China
| | - Jianning He
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Nan Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
13
|
Ribeiro DM, Planchon S, Leclercq CC, Dentinho MTP, Bessa RJB, Santos-Silva J, Paulos K, Jerónimo E, Renaut J, Almeida AM. The effects of improving low dietary protein utilization on the proteome of lamb tissues. J Proteomics 2020; 223:103798. [PMID: 32380293 DOI: 10.1016/j.jprot.2020.103798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/03/2020] [Accepted: 04/25/2020] [Indexed: 02/06/2023]
Abstract
Cistus ladanifer L. is a common shrub endemic to the Mediterranean region with high levels of condensed tannins (CT). CT form complexes with dietary protein resisting microbial degradation in the rumen, which enhances dietary protein utilization in ruminant diets. The objective of this study was to evaluate the utilization of CT in the diet of lambs on the proteomes of muscle, hepatic and adipose tissues. Twenty-four Merino Branco ram lambs were randomly allocated to three treatments (n = 8): C - control (160 g crude protein (CP)) per kg DM, RP - reduced protein (120 g CP/kg DM); and RPCT - reduced protein (120 g CP/kg DM) treated with CT extract. At the end of the trial, lambs were slaughtered and the longissimus lumborum muscle, hepatic and peri-renal adipose tissues sampled. A two-way approach was used for proteomic analysis: 2D-DIGE and nanoLC-MS. In the muscle, C lambs had lower abundance proteins that partake in the glycolysis pathway than the lambs of other treatments. Control lambs had lower abundance of Fe-carrying proteins in the hepatic tissue than RP and RPCT lambs. The latter lambs had highest abundance of hepatic flavin reductase. In the adipose tissue, C lambs had lowest abundance of fatty-acid synthase. SIGNIFICANCE: soybean meal is an expensive feedstuff in which intensive animal production systems heavily rely on. It is a source of protein extensively degraded in the rumen, leading to efficiency losses on dietary protein utilization during digestion. Protection of dietary protein from extensive ruminal degradation throughout the use of plants or extracts rich in CT allow an increase in the digestive utilization of feed proteins. In addition to enhance the protein digestive utilization, dietary CT may induce other beneficial effects in ruminants such as the improvement of the antioxidant status.
Collapse
Affiliation(s)
- D M Ribeiro
- LEAF Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, University of Lisbon, Lisboa, Portugal; Luxembourg Institute of Science and Technology (LIST), Green Tech platform, Environmental Research and Innovation Department (ERIN), L-4422 Belvaux, Luxembourg
| | - S Planchon
- Luxembourg Institute of Science and Technology (LIST), Green Tech platform, Environmental Research and Innovation Department (ERIN), L-4422 Belvaux, Luxembourg
| | - C C Leclercq
- Luxembourg Institute of Science and Technology (LIST), Green Tech platform, Environmental Research and Innovation Department (ERIN), L-4422 Belvaux, Luxembourg
| | - M T P Dentinho
- CIISA - Centro Interdisciplinar de Investigação em Sanidade Animal, Faculdade de Medicina Veterinária, Av. Univ. Técnica, Lisboa, Portugal; Instituto Nacional de Investigação Agrária e Veterinária, Pólo Investigação da Fonte Boa (INIAV-Fonte Boa), 2005-048 Santarém, Portugal
| | - R J B Bessa
- CIISA - Centro Interdisciplinar de Investigação em Sanidade Animal, Faculdade de Medicina Veterinária, Av. Univ. Técnica, Lisboa, Portugal
| | - J Santos-Silva
- CIISA - Centro Interdisciplinar de Investigação em Sanidade Animal, Faculdade de Medicina Veterinária, Av. Univ. Técnica, Lisboa, Portugal; Instituto Nacional de Investigação Agrária e Veterinária, Pólo Investigação da Fonte Boa (INIAV-Fonte Boa), 2005-048 Santarém, Portugal
| | - K Paulos
- Instituto Nacional de Investigação Agrária e Veterinária, Pólo Investigação da Fonte Boa (INIAV-Fonte Boa), 2005-048 Santarém, Portugal
| | - E Jerónimo
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja), 7801-908 Beja, Portugal; MED - Mediterranean Institute for Agriculture, Environment and Development, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - J Renaut
- Luxembourg Institute of Science and Technology (LIST), Green Tech platform, Environmental Research and Innovation Department (ERIN), L-4422 Belvaux, Luxembourg
| | - A M Almeida
- LEAF Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, University of Lisbon, Lisboa, Portugal.
| |
Collapse
|
14
|
Wei S, Li A, Zhang L, Du M. GROWTH AND DEVELOPMENT SYMPOSIUM: STEM AND PROGENITOR CELLS IN ANIMAL GROWTH: Long noncoding RNAs in adipogenesis and adipose development of meat animals12. J Anim Sci 2019; 97:2644-2657. [PMID: 30959518 DOI: 10.1093/jas/skz114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 04/05/2019] [Indexed: 12/22/2022] Open
Abstract
Sequencing technology, especially next-generation RNA sequencing, has greatly facilitated the identification and annotation of long noncoding RNAs (lncRNAs). In mammals, a large number of lncRNAs have been identified, which regulate various biological processes. An increasing number of lncRNAs have been identified which could function as key regulators of adipogenesis (adipocyte formation), a key step of the development of adipose tissue. Because proper adipose tissue development is a key factor affecting animal growth efficiency, lean/fat ratio, and meat quality, summarizing the roles and recent advances of lncRNAs in adipogenesis is needed in order to develop strategies to effectively manage fat deposition. In this review, we updated lncRNAs contributed to the regulation of adipogenesis, focusing on their roles in fat development of farm animals.
Collapse
Affiliation(s)
- Shengjuan Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Anning Li
- Department of Animal Sciences, Washington State University, Pullman, WA
| | - Lifan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA
| |
Collapse
|