1
|
Lu Y, Li Y, Li Y, Lin Y, Wang X, Zhu Y, Wang B, Du M. SCM-198 Inhibits EMS Development by Reversing Decreased Proportions of IFN-γ +T Cells and CCR5 +T Cells. Reprod Sci 2025:10.1007/s43032-025-01823-9. [PMID: 40113654 DOI: 10.1007/s43032-025-01823-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 02/13/2025] [Indexed: 03/22/2025]
Abstract
Endometriosis is a common gynecological disease that causes severe pain and infertility. However, the available treatments for EMS are limited. SCM-198, a synthetic form of leonurine, possesses various abilities, including anti-inflammatory, immunomodulatory, antioxidant, anti-fibrotic, and anti-proliferative effects. Previous studies have shown that SCM-198 can inhibit the growth of ectopic lesions, but the specific mechanism remains unknown. The results of our studies indicate that SCM-198 significantly suppresses the endometriotic growth of EMS mice. Enrichment analysis of RNA-seq indicates that SCM-198 is involved in T cell differentiation, activation, cytokine production, stimulation of chemotaxis, and migration. Flow cytometry reveals that SCM-198 reverses the decreased proportions of IFN-γ + T cells and CCR5 + T cells in ectopic lesions. RNA-seq analysis shows that SCM-198 enhances the expression of CCL5 in the ectopic lesions, and western blot is conducted to verify this conclusion both in vivo and in vitro. These findings demonstrate that SCM-198 reverses the decreased proportions of IFN-γ + T cells and CCR5 + T cells, alleviating the growth of mouse ectopic lesions, and the changes in CCR5 + T cells are likely due to the reduced expression of CCL5.
Collapse
Affiliation(s)
- Yewei Lu
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau, SAR, China
- Department of Obstetrics and Gynecology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital and Institute, Fudan University Shanghai Medical College, Shanghai, China
- Department of Obstetrics, The Yancheng Clinical College of Xuzhou Medical University, The First people's Hospital of Yancheng, Yancheng, Jiangsu, 224001, PR China
| | - Yunyun Li
- Department of Reproductive Medical Center, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Yue Li
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau, SAR, China
- Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Longgang Maternity Child Institute of Shantou University Medical College, Shenzhen, 518172, China
| | - Yikong Lin
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital and Institute, Fudan University Shanghai Medical College, Shanghai, China
| | - Xiaolin Wang
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau, SAR, China.
| | - Yizhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau, SAR, China.
| | - Beihua Wang
- Department of Obstetrics and Gynecology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Meirong Du
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau, SAR, China.
- Department of Obstetrics and Gynecology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital and Institute, Fudan University Shanghai Medical College, Shanghai, China.
| |
Collapse
|
2
|
Li Y, Li Y, Lu Y, Lin Y, Wang X, Zhu Y, Zeng Q, Du M. Decreased CCL5 expression in endometrial stromal cells induces deficient CCR5 +CD4 + T cells in endometriosis. Acta Biochim Biophys Sin (Shanghai) 2025. [PMID: 40205945 DOI: 10.3724/abbs.2024178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025] Open
Abstract
Endometriosis (EMS) is a benign gynecological disease characterized by the growth of endometrial tissue outside the uterine cavity. Evidence shows that the survival of patients with ectopic endometrial implants is associated with a dysregulated immune microenvironment. CD4 + T cells can regulate EMS through diverse cytokines, the inflammatory response, and angiogenesis. CCR5 +CD4 + T cells exhibit increased cellular immunogenicity and play a role in infectious diseases, host defense, and cancer progression. However, the specific mechanisms of CCR5 +CD4 + T cells in EMS remain unknown. In the present study, flow cytometry and RNA-seq are utilized to assess the proportions and features of CCR5 +CD4 + T cells in EMS patients, RT-PCR and ELISA are used to assess the production of CCL5 by ectopic endometrial stromal cells (ecESCs). Two EMS models are established through C57B6 wild-type and CCL5 ‒/‒ mice and utilized to explore the in vivo effects of CCR5 +CD4 + T cells on ectopic lesions. Compared with CCR5 ‒CD4 + T cells, CCR5 +CD4 + T cells display a more activated and cytotoxic phenotype. Diminished CCR5 +CD4 + T cells and their impaired ability to produce IFN-γ are observed in the ectopic lesions of EMS patients and in murine EMS models. Impaired production of CCL5 has been detected in human ecESCs. Moreover, endometria stripped from CCL5 ‒/‒ mice are more likely to generate ectopic lesions in the peritoneum of recipient mice. These findings demonstrate that the attenuated recruitment of CCR5 + CD4 + T cells in ectopic lesions caused by decreased production of CCL5 in ecESCs may facilitate the progression of EMS.
Collapse
Affiliation(s)
- Yue Li
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau SAR, China
- Department of Obstetrics and Gynecology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital and Institute, Fudan University Shanghai Medical College, Shanghai 200433, China
| | - Yunyun Li
- Department of Reproductive Medical Center, West China Second University Hospital, Sichuan University, Chengdu 610065, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Yewei Lu
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau SAR, China
| | - Yikong Lin
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital and Institute, Fudan University Shanghai Medical College, Shanghai 200433, China
| | - Xiaolin Wang
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau SAR, China
| | - Yizhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau SAR, China
| | - Qiongjing Zeng
- Department of Obstetrics and Gynecology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Meirong Du
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau SAR, China
- Department of Obstetrics and Gynecology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital and Institute, Fudan University Shanghai Medical College, Shanghai 200433, China
| |
Collapse
|
3
|
Parthasarathy S, Shen Z, Carrillo-Salinas FJ, Iyer V, Vogell A, Illanes D, Wira CR, Rodriguez-Garcia M. Aging modifies endometrial dendritic cell function and unconventional double negative T cells in the human genital mucosa. Immun Ageing 2023; 20:34. [PMID: 37452337 PMCID: PMC10347869 DOI: 10.1186/s12979-023-00360-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 07/01/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Immune function in the genital mucosa balances reproduction with protection against pathogens. As women age, genital infections, and gynecological cancer risk increase, however, the mechanisms that regulate cell-mediated immune protection in the female genital tract and how they change with aging remain poorly understood. Unconventional double negative (DN) T cells (TCRαβ + CD4-CD8-) are thought to play important roles in reproduction in mice but have yet to be characterized in the human female genital tract. Using genital tissues from women (27-77 years old), here we investigated the impact of aging on the induction, distribution, and function of DN T cells throughout the female genital tract. RESULTS We discovered a novel site-specific regulation of dendritic cells (DCs) and unconventional DN T cells in the genital tract that changes with age. Human genital DCs, particularly CD1a + DCs, induced proliferation of DN T cells in a TFGβ dependent manner. Importantly, induction of DN T cell proliferation, as well as specific changes in cytokine production, was enhanced in DCs from older women, indicating subset-specific regulation of DC function with increasing age. In human genital tissues, DN T cells represented a discrete T cell subset with distinct phenotypical and transcriptional profiles compared to CD4 + and CD8 + T cells. Single-cell RNA and oligo-tag antibody sequencing studies revealed that DN T cells represented a heterogeneous population with unique homeostatic, regulatory, cytotoxic, and antiviral functions. DN T cells showed relative to CD4 + and CD8 + T cells, enhanced expression of inhibitory checkpoint molecules and genes related to immune regulatory as well as innate-like anti-viral pathways. Flow cytometry analysis demonstrated that DN T cells express tissue residency markers and intracellular content of cytotoxic molecules. Interestingly, we demonstrate age-dependent and site-dependent redistribution and functional changes of genital DN T cells, with increased cytotoxic potential of endometrial DN T cells, but decreased cytotoxicity in the ectocervix as women age, with implications for reproductive failure and enhanced susceptibility to infections respectively. CONCLUSIONS Our deep characterization of DN T cell induction and function in the female genital tract provides novel mechanistic avenues to improve reproductive outcomes, protection against infections and gynecological cancers as women age.
Collapse
Affiliation(s)
| | - Zheng Shen
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | | | - Vidya Iyer
- Department of Gynecology and Obstetrics, Tufts Medical Center, Boston, MA, USA
| | - Alison Vogell
- Department of Gynecology and Obstetrics, Tufts Medical Center, Boston, MA, USA
| | - Diego Illanes
- Department of Gynecology and Obstetrics, Tufts Medical Center, Boston, MA, USA
| | - Charles R Wira
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | | |
Collapse
|
4
|
Patel MV, Shen Z, Wira CR. Do endometrial immune changes with age prior to menopause compromise fertility in women? EXPLORATION OF IMMUNOLOGY 2022; 2:677-692. [PMID: 39931230 PMCID: PMC11809571 DOI: 10.37349/ei.2022.00076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 06/22/2022] [Indexed: 02/13/2025]
Abstract
Menopause signals the end of the reproductive period in women. However, fertility and fecundity decrease with increasing age prior to menopause demonstrating that changes in the premenopausal female reproductive tract (FRT) are already occurring that negatively impact reproductive success. The effects of age on the endometrium are poorly understood, in contrast to the ovary where changes occur with increasing age that negatively affect successful reproduction. The endometrial immune system is essential for generating a receptive endometrium, but the link between the immune and reproductive systems in the endometrium in the years prior to menopause has not been well-defined. Since the endometrial immune system is tightly regulated to maximize reproductive success and pathogen protection, changes in immune function with increasing premenopausal age have the potential to impact reproduction.
Collapse
Affiliation(s)
| | | | - Charles R. Wira
- Correspondence: Charles R. Wira, Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH 03766, USA.
| |
Collapse
|
5
|
Bunjun R, Ramla TF, Jaumdally SZ, Noël-Romas L, Ayele H, Brown BP, Gamieldien H, Harryparsad R, Dabee S, Nair G, Onono M, Palanee-Phillips T, Scoville CW, Heller KB, Baeten JM, Bosinger SE, Burgener A, Passmore JAS, Jaspan H, Heffron R. Initiating Intramuscular Depot Medroxyprogesterone Acetate Increases Frequencies of Th17-like Human Immunodeficiency Virus Target Cells in the Genital Tract of Women in South Africa: A Randomized Trial. Clin Infect Dis 2022; 75:2000-2011. [PMID: 35941737 PMCID: PMC9710690 DOI: 10.1093/cid/ciac284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Cervicovaginal CD4+ T cells are preferential targets for human immunodeficiency virus (HIV) infection and have consequently been used as a proxy measure for HIV susceptibility. The ECHO randomized trial offered a unique opportunity to consider the association between contraceptives and Th17-like cells within a trial designed to evaluate HIV risk. In a mucosal substudy of the ECHO trial, we compared the impact of initiating intramuscular depot medroxyprogesterone acetate (DMPA-IM), copper-IUD, and the levonorgestrel (LNG) implant on cervical T cells. METHODS Cervical cytobrushes from 58 women enrolled in the ECHO trial were collected at baseline and 1 month after contraceptive initiation. We phenotyped cervical T cells using multiparameter flow cytometry, characterized the vaginal microbiome using 16s sequencing, and determined proteomic signatures associated with Th17-like cells using mass spectrometry. RESULTS Unlike the LNG implant or copper-IUD, DMPA-IM was associated with higher frequencies of cervical Th17-like cells within 1 month of initiation (P = .012), including a highly susceptible, activated population co-expressing CD38, CCR5, and α4β7 (P = .003). After 1 month, women using DMPA-IM also had more Th17-like cells than women using the Cu-IUD (P = .0002) or LNG implant (P = .04). Importantly, in women using DMPA-IM, proteomic signatures signifying enhanced mucosal barrier function were associated with the increased abundance of Th17-like cells. We also found that a non-Lactobacillus-dominant microbiome at baseline was associated with more Th17-like cells post-DMPA-IM (P = .03), although this did not influence barrier function. CONCLUSIONS Our data suggest that DMPA-IM-driven accumulation of HIV-susceptible Th17-like cells might be counteracted by their role in maintaining mucosal barrier integrity. CLINICAL TRIALS REGISTRATION NCT02550067.
Collapse
Affiliation(s)
- Rubina Bunjun
- Institute of Infectious Disease and Molecular Medicine, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Tanko F Ramla
- Institute of Infectious Disease and Molecular Medicine, Department of Pathology, University of Cape Town, Cape Town, South Africa,The Medical Research Centre, Institute of Medical Research and Medicinal Plant Studies (IMPM), Ministry of Scientific Research and Innovation, Yaoundé, Cameroon
| | - Shameem Z Jaumdally
- Institute of Infectious Disease and Molecular Medicine, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Laura Noël-Romas
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, USA,Department of Obstetrics and Gynecology, University of Manitoba, Winnipeg, Canada
| | - Hossaena Ayele
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, USA
| | - Bryan P Brown
- Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Hoyam Gamieldien
- Institute of Infectious Disease and Molecular Medicine, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Rushil Harryparsad
- Institute of Infectious Disease and Molecular Medicine, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Smritee Dabee
- Institute of Infectious Disease and Molecular Medicine, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | | | | | - Thesla Palanee-Phillips
- Wits Reproductive Health and HIV Institute (WHRI), Johannesburg, South Africa,University of Washington, Seattle, Washington, USA
| | | | | | | | - Steven E Bosinger
- Emory University, Atlanta, Georgia, USA,Yerkes National Primate Research Center, Atlanta, Georgia, USA
| | - Adam Burgener
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, USA,Department of Obstetrics and Gynecology, University of Manitoba, Winnipeg, Canada,Unit of Infectious Diseases, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Jo-Ann S Passmore
- Correspondence: J.-A. S. Passmore, Institute of Infectious Disease and Molecular Medicine, Division of Virology, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa ()
| | - Heather Jaspan
- Institute of Infectious Disease and Molecular Medicine, Department of Pathology, University of Cape Town, Cape Town, South Africa,Seattle Children’s Research Institute, Seattle, Washington, USA,University of Washington, Seattle, Washington, USA
| | | |
Collapse
|
6
|
Wiche Salinas TR, Gosselin A, Raymond Marchand L, Moreira Gabriel E, Tastet O, Goulet JP, Zhang Y, Vlad D, Touil H, Routy JP, Bego MG, El-Far M, Chomont N, Landay AL, Cohen ÉA, Tremblay C, Ancuta P. IL-17A reprograms intestinal epithelial cells to facilitate HIV-1 replication and outgrowth in CD4+ T cells. iScience 2021; 24:103225. [PMID: 34712922 PMCID: PMC8531570 DOI: 10.1016/j.isci.2021.103225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 08/09/2021] [Accepted: 10/01/2021] [Indexed: 12/25/2022] Open
Abstract
The crosstalk between intestinal epithelial cells (IECs) and Th17-polarized CD4+ T cells is critical for mucosal homeostasis, with HIV-1 causing significant alterations in people living with HIV (PLWH) despite antiretroviral therapy (ART). In a model of IEC and T cell co-cultures, we investigated the effects of IL-17A, the Th17 hallmark cytokine, on IEC ability to promote de novo HIV infection and viral reservoir reactivation. Our results demonstrate that IL-17A acts in synergy with TNF to boost IEC production of CCL20, a Th17-attractant chemokine, and promote HIV trans-infection of CD4+ T cells and viral outgrowth from reservoir cells of ART-treated PLWH. Importantly, the Illumina RNA-sequencing revealed an IL-17A-mediated pro-inflammatory and pro-viral molecular signature, including a decreased expression of type I interferon (IFN-I)-induced HIV restriction factors. These findings point to the deleterious features of IL-17A and raise awareness for caution when designing therapies aimed at restoring the paucity of mucosal Th17 cells in ART-treated PLWH. IL-17A acts in synergy with TNF to enhance CCL20 production in IEC exposed to HIV IL-17A/TNF-activated IEC efficiently promote HIV trans-infection of CD4+ T cells IL-17A reprograms IEC to boost HIV outgrowth from CD4+ T cells of ART-treated PLWH IL-17A decreases the expression of IFN-I-induced HIV restriction factors in IEC
Collapse
Affiliation(s)
- Tomas Raul Wiche Salinas
- CHUM-Research Centre, 900 rue Saint-Denis, Tour Viger R, room R09.416, Montreal, QC H2X 0A9, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Annie Gosselin
- CHUM-Research Centre, 900 rue Saint-Denis, Tour Viger R, room R09.416, Montreal, QC H2X 0A9, Canada
| | | | - Etiene Moreira Gabriel
- CHUM-Research Centre, 900 rue Saint-Denis, Tour Viger R, room R09.416, Montreal, QC H2X 0A9, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Olivier Tastet
- CHUM-Research Centre, 900 rue Saint-Denis, Tour Viger R, room R09.416, Montreal, QC H2X 0A9, Canada
| | | | - Yuwei Zhang
- CHUM-Research Centre, 900 rue Saint-Denis, Tour Viger R, room R09.416, Montreal, QC H2X 0A9, Canada
| | - Dragos Vlad
- CHUM-Research Centre, 900 rue Saint-Denis, Tour Viger R, room R09.416, Montreal, QC H2X 0A9, Canada
| | - Hanane Touil
- CHUM-Research Centre, 900 rue Saint-Denis, Tour Viger R, room R09.416, Montreal, QC H2X 0A9, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Jean-Pierre Routy
- Chronic Viral Illness Service and Division of Hematology, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Mariana G. Bego
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
- Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada
| | - Mohamed El-Far
- CHUM-Research Centre, 900 rue Saint-Denis, Tour Viger R, room R09.416, Montreal, QC H2X 0A9, Canada
| | - Nicolas Chomont
- CHUM-Research Centre, 900 rue Saint-Denis, Tour Viger R, room R09.416, Montreal, QC H2X 0A9, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Alan L. Landay
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Éric A. Cohen
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
- Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada
| | - Cécile Tremblay
- CHUM-Research Centre, 900 rue Saint-Denis, Tour Viger R, room R09.416, Montreal, QC H2X 0A9, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Petronela Ancuta
- CHUM-Research Centre, 900 rue Saint-Denis, Tour Viger R, room R09.416, Montreal, QC H2X 0A9, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
- Corresponding author
| |
Collapse
|
7
|
Patel MV, Shen Z, Rodriguez-Garcia M, Usherwood EJ, Tafe LJ, Wira CR. Endometrial Cancer Suppresses CD8+ T Cell-Mediated Cytotoxicity in Postmenopausal Women. Front Immunol 2021; 12:657326. [PMID: 33968059 PMCID: PMC8103817 DOI: 10.3389/fimmu.2021.657326] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/06/2021] [Indexed: 12/19/2022] Open
Abstract
Endometrial cancer is the most common gynecological cancer. To investigate how it suppresses host immune function, we isolated CD8+ T cells from endometrial endometroid carcinomas and adjacent non-cancerous endometrium and determined if the tumor environment regulates cytotoxic capacity. Endometrial carcinomas had increased numbers of CD8+ T cells compared to adjacent non-cancerous endometrium. Tumor CD8+ T cells expressed significantly less granzyme A (GZA), B (GZB), and PD-1 than those in adjacent non-cancerous tissues and also had significantly lower cytotoxic killing of allogeneic target cells. CD103-CD8+ T cells, but not CD103+CD8+ T cells, from both adjacent and tumor tissue were primarily responsible for killing of allogeneic target cells. Secretions recovered from endometrial carcinoma tissues suppressed CD8+ cytotoxic killing and lowered perforin, GZB and PD-1 expression relative to non-tumor CD8+ T cells. Furthermore, tumor secretions contained significantly higher levels of immunosuppressive cytokines including TGFβ than non-tumor tissues. Thus, the tumor microenvironment suppresses cytotoxic killing by CD8+ T cells via the secretion of immunosuppressive cytokines leading to decreased expression of intracellular cytolytic molecules. These studies demonstrate the complexity of CD8+ T cell regulation within the endometrial tumor microenvironment and provide a foundation of information essential for the development of therapeutic strategies for gynecological cancers.
Collapse
Affiliation(s)
- Mickey V. Patel
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Zheng Shen
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Marta Rodriguez-Garcia
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
| | - Edward J. Usherwood
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Laura J. Tafe
- Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
| | - Charles R. Wira
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| |
Collapse
|
8
|
Early Colorectal Responses to HIV-1 and Modulation by Antiretroviral Drugs. Vaccines (Basel) 2021; 9:vaccines9030231. [PMID: 33800213 PMCID: PMC8000905 DOI: 10.3390/vaccines9030231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 01/01/2023] Open
Abstract
Innate responses during acute HIV infection correlate with disease progression and pathogenesis. However, limited information is available about the events occurring during the first hours of infection in the mucosal sites of transmission. With an ex vivo HIV-1 challenge model of human colorectal tissue we assessed the mucosal responses induced by R5- and X4-tropic HIV-1 isolates in the first 24 h of exposure. Microscopy studies demonstrated virus penetration of up to 39 μm into the lamina propia within 6 h of inoculation. A rapid, 6 h post-challenge, increase in the level of secretion of inflammatory cytokines, chemokines, interferon- γ (IFN-γ), and granulocyte-macrophage colony-stimulating factor (GM-CSF) was observed following exposure to R5- or X4-tropic isolates. This profile persisted at the later time point measured of 24 h. However, exposure to the X4-tropic isolate tested induced greater changes at the proteomic and transcriptomic levels than the R5-tropic. The X4-isolate induced greater levels of CCR5 ligands (RANTES, MIP-1α and MIP-1β) secretion than R5-HIV-1. Potential drugs candidates for colorectal microbicides, including entry, fusion or reverse transcriptase inhibitors demonstrated differential capacity to modulate these responses. Our findings indicate that in colorectal tissue, inflammatory responses and a Th1 cytokine profile are induced in the first 24 h following viral exposure.
Collapse
|
9
|
Shen Z, Rodriguez-Garcia M, Patel MV, Wira CR. Direct and Indirect endocrine-mediated suppression of human endometrial CD8+T cell cytotoxicity. Sci Rep 2021; 11:1773. [PMID: 33469053 PMCID: PMC7815780 DOI: 10.1038/s41598-021-81380-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023] Open
Abstract
Regulation of endometrial (EM) CD8+T cells is essential for successful reproduction and protection against pathogens. Suppression of CD8+T cells is necessary for a tolerogenic environment that promotes implantation and pregnancy. However, the mechanisms regulating this process remain unclear. Sex hormones are known to control immune responses directly on immune cells and indirectly through the tissue environment. When the actions of estradiol (E2), progesterone (P) and TGFβ on EM CD8+T cells were evaluated, cytotoxic activity, perforin and granzymes were directly suppressed by E2 and TGFβ but not P. Moreover, incubation of polarized EM epithelial cells with P, but not E2, increased TGFβ secretion. These findings suggest that E2 acts directly on CD8+T cell to suppress cytotoxic activity while P acts indirectly through induction of TGFβ production. Understanding the mechanisms involved in regulating endometrial CD8+T cells is essential for optimizing reproductive success and developing protective strategies against genital infections and gynecological cancers.
Collapse
Affiliation(s)
- Z Shen
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH, 03756, USA
| | - M Rodriguez-Garcia
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - M V Patel
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH, 03756, USA
| | - C R Wira
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH, 03756, USA.
| |
Collapse
|
10
|
DeJong CS, Maurice NJ, McCartney SA, Prlic M. Human Tissue-Resident Memory T Cells in the Maternal-Fetal Interface. Lost Soldiers or Special Forces? Cells 2020; 9:cells9122699. [PMID: 33339211 PMCID: PMC7765601 DOI: 10.3390/cells9122699] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 12/20/2022] Open
Abstract
The immune system plays a critical role during pregnancy, but the specific mechanisms and immune cell function needed to support pregnancy remain incompletely understood. Despite decades of research efforts, it is still unclear how the immune system maintains tolerance of fetal-derived tissues, which include most cells of the placenta and of course the fetus itself, without forfeiting the ability to protect against harmful infections. T cells recognize antigen in the context of major histocompatibility complex (MHC) encoded proteins, but classical MHC class I and II expression are diminished in fetal-derived cells. Can T cells present at the maternal–fetal interface (MFI) protect these cells from infection? Here we review what is known in regard to tissue-resident memory T (Trm) cells at the MFI. We mainly focus on how Trm cells can contribute to protection in the context of the unique features of the MFI, such as limited MHC expression as well as the temporary nature of the MFI, that are not found in other tissues.
Collapse
Affiliation(s)
- Caitlin S. DeJong
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (C.S.D.); (N.J.M.)
| | - Nicholas J. Maurice
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (C.S.D.); (N.J.M.)
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195, USA
| | - Stephen A. McCartney
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA;
| | - Martin Prlic
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (C.S.D.); (N.J.M.)
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
- Correspondence:
| |
Collapse
|
11
|
Meziane O, Alexandrova Y, Olivenstein R, Dupuy FP, Salahuddin S, Thomson E, Orlova M, Schurr E, Ancuta P, Durand M, Chomont N, Estaquier J, Bernard NF, Costiniuk CT, Jenabian MA. Peculiar Phenotypic and Cytotoxic Features of Pulmonary Mucosal CD8 T Cells in People Living with HIV Receiving Long-Term Antiretroviral Therapy. THE JOURNAL OF IMMUNOLOGY 2020; 206:641-651. [PMID: 33318292 DOI: 10.4049/jimmunol.2000916] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/13/2020] [Indexed: 12/31/2022]
Abstract
People living with HIV have high burdens of chronic lung disease, lung cancers, and pulmonary infections despite antiretroviral therapy (ART). The rates of tobacco smoking by people living with HIV vastly exceed that of the general population. Furthermore, we showed that HIV can persist within the lung mucosa despite long-term ART. As CD8 T cell cytotoxicity is pivotal for controlling viral infections and eliminating defective cells, we explored the phenotypic and functional features of pulmonary versus peripheral blood CD8 T cells in ART-treated HIV+ and uninfected controls. Bronchoalveolar lavage fluid and matched blood were obtained from asymptomatic ART-treated HIV+ smokers (n = 11) and nonsmokers (n = 15) and uninfected smokers (n = 7) and nonsmokers (n = 10). CD8 T cell subsets and phenotypes were assessed by flow cytometry. Perforin/granzyme B content, degranulation (CD107a expression), and cytotoxicity against autologous Gag peptide-pulsed CD4 T cells (Annexin V+) following in vitro stimulation were assessed. In all groups, pulmonary CD8 T cells were enriched in effector memory subsets compared with blood and displayed higher levels of activation (HLA-DR+) and exhaustion (PD1+) markers. Significant reductions in proportions of senescent pulmonary CD28-CD57+ CD8 T cells were observed only in HIV+ smokers. Pulmonary CD8 T cells showed lower perforin expression ex vivo compared with blood CD8 T cells, with reduced granzyme B expression only in HIV+ nonsmokers. Bronchoalveolar lavage CD8 T cells showed significantly less in vitro degranulation and CD4 killing capacity than blood CD8 T cells. Therefore, pulmonary mucosal CD8 T cells are more differentiated, activated, and exhausted, with reduced killing capacity in vitro than blood CD8 T cells, potentially contributing to a suboptimal anti-HIV immune response within the lungs.
Collapse
Affiliation(s)
- Oussama Meziane
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Département des Sciences Biologiques, Université du Québec à Montréal, Montreal, Quebec H2X 1Y4, Canada
| | - Yulia Alexandrova
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Département des Sciences Biologiques, Université du Québec à Montréal, Montreal, Quebec H2X 1Y4, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Ronald Olivenstein
- Division of Respirology, Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Franck P Dupuy
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Syim Salahuddin
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Département des Sciences Biologiques, Université du Québec à Montréal, Montreal, Quebec H2X 1Y4, Canada
| | - Elaine Thomson
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Département des Sciences Biologiques, Université du Québec à Montréal, Montreal, Quebec H2X 1Y4, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Marianna Orlova
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Erwin Schurr
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Petronela Ancuta
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec H2X 0A9, Canada.,Département de Microbiologie, Infectiologie, et Immunologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Madeleine Durand
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec H2X 0A9, Canada
| | - Nicolas Chomont
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec H2X 0A9, Canada.,Département de Microbiologie, Infectiologie, et Immunologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Jérôme Estaquier
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Faculté de Médecine, Université Laval, Quebec City, Quebec G1V 4G2, Canada
| | - Nicole F Bernard
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Division of Experimental Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada.,Division of Clinical Immunology, McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada; and
| | - Cecilia T Costiniuk
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Division of Infectious Diseases, McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Mohammad-Ali Jenabian
- Département des Sciences Biologiques, Université du Québec à Montréal, Montreal, Quebec H2X 1Y4, Canada; .,Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada.,Département de Microbiologie, Infectiologie, et Immunologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|
12
|
Shanmugasundaram U, Critchfield JW, Giudice LC, Smith-McCune K, Greenblatt RM, Shacklett BL. Parallel studies of mucosal immunity in the reproductive and gastrointestinal mucosa of HIV-infected women. Am J Reprod Immunol 2020; 84:e13246. [PMID: 32301548 DOI: 10.1111/aji.13246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/19/2020] [Accepted: 03/31/2020] [Indexed: 11/28/2022] Open
Abstract
PROBLEM The effects of HIV on the gastrointestinal tract (GIT), including CD4 depletion, epithelial disruption, and collagen deposition, are well documented and only partially reversed by combination antiretroviral therapy (cART). However, the effects of HIV on the female reproductive tract (FRT) are poorly understood, and most studies have focused on ectocervix and vagina without assessing the upper tract. Here, we investigated CD4+ T-cell frequency, phenotype, and HIV-specific T-cell responses in the endocervix and endometrium of HIV-infected women, comparing these tissues to the GIT. METHOD OF STUDY Mucosal samples and blood were obtained from 18 women: four who were HIV-positive and not on cART for at least 3 years prior to sampling, including two natural controllers (viral load [VL] undetectable and CD4 >350); nine women on cART with low to undetectable VL; and five HIV-uninfected women. Mucosal samples included terminal ileum, sigmoid colon, endocervical cytobrush, endocervical curettage, and endometrial biopsy. T-cell frequency, phenotypes, and HIV-specific T-cell responses were analyzed by multiparameter flow cytometry. RESULTS T-cell activation, measured by CD38/HLA-DR co-expression, remained significantly elevated in endometrium following cART, but was lower in gastrointestinal tissues. HIV-specific CD8+ T-cell responses were detected in ileum, colon, and endometrial tissues of women both on and off cART, and were of higher magnitude on those not on cART. CONCLUSION Our findings reveal differences in CD4+ T-cell frequencies, immune activation, and HIV-specific T-cell responses between the gastrointestinal and reproductive tracts, and highlight differences between HIV controllers and women on cART.
Collapse
Affiliation(s)
- Uma Shanmugasundaram
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
| | - J William Critchfield
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
| | - Linda C Giudice
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Karen Smith-McCune
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Ruth M Greenblatt
- Department of Clinical Pharmacy, University of California, San Francisco, CA, USA.,Department of Internal Medicine, University of California, San Francisco, CA, USA.,Department of Biostatistics and Epidemiology, University of California, San Francisco, CA, USA
| | - Barbara L Shacklett
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA.,Division of Infectious Diseases, Department of Medicine, University of California, Davis, CA, USA
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW This review summarizes our current understanding of HIV-1-specific T-cell responses in mucosal tissues, emphasizing recent work and specifically highlighting papers published over the past 18 months. RECENT FINDINGS Recent work has improved the standardization of tissue sampling approaches and provided new insights on the abundance, phenotype and distribution of HIV-1-specific T-cell populations in mucosal tissues. In addition, it has recently been established that some lymphocytes exist in tissues as "permanent resident" memory cells that differ from their counterparts in blood. SUMMARY HIV-1-specific T-cell responses have been extensively characterized; however, the vast majority of reports have focused on T-cells isolated from peripheral blood. Mucosal tissues of the genitourinary and gastrointestinal tracts serve as the primary sites of HIV-1 transmission, and provide "front line" barrier defenses against HIV-1 and other pathogens. In addition, the gastrointestinal tract remains a significant viral reservoir throughout the chronic phase of infection. Tissue-based immune responses may be critical in fighting infection, and understanding these defenses may lead to improved vaccines and immunotherapeutic strategies.
Collapse
|
14
|
Vallvé-Juanico J, Houshdaran S, Giudice LC. The endometrial immune environment of women with endometriosis. Hum Reprod Update 2019; 25:564-591. [PMID: 31424502 PMCID: PMC6737540 DOI: 10.1093/humupd/dmz018] [Citation(s) in RCA: 287] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/07/2019] [Accepted: 04/18/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Endometriosis, a common oestrogen-dependent inflammatory disorder in women of reproductive age, is characterized by endometrial-like tissue outside its normal location in the uterus, which causes pelvic scarring, pain and infertility. While its pathogenesis is poorly understood, the immune system (systemically and locally in endometrium, pelvic endometriotic lesions and peritoneal fluid) is believed to play a central role in its aetiology, pathophysiology and associated morbidities of pain, infertility and poor pregnancy outcomes. However, immune cell populations within the endometrium of women with the disease have had incomplete phenotyping, thereby limiting insight into their roles in this disorder. OBJECTIVE AND RATIONALE The objective herein was to determine reproducible and consistent findings regarding specific immune cell populations and their abundance, steroid hormone responsiveness, functionality, activation states, and markers, locally and systemically in women with and without endometriosis. SEARCH METHODS A comprehensive English language PubMed, Medline and Google Scholar search was conducted with key search terms that included endometriosis, inflammation, human eutopic/ectopic endometrium, immune cells, immune population, immune system, macrophages, dendritic cells (DC), natural killer cells, mast cells, eosinophils, neutrophils, B cells and T cells. OUTCOMES In women with endometriosis compared to those without endometriosis, some endometrial immune cells display similar cycle-phase variation, whereas macrophages (Mø), immature DC and regulatory T cells behave differently. A pro-inflammatory Mø1 phenotype versus anti-inflammatory Mø2 phenotype predominates and natural killer cells display abnormal activity in endometrium of women with the disease. Conflicting data largely derive from small studies, variably defined hormonal milieu and different experimental approaches and technologies. WIDER IMPLICATIONS Phenotyping immune cell subtypes is essential to determine the role of the endometrial immune niche in pregnancy and endometrial homeostasis normally and in women with poor reproductive history and can facilitate development of innovative diagnostics and therapeutics for associated symptoms and compromised reproductive outcomes.
Collapse
Affiliation(s)
- Júlia Vallvé-Juanico
- Department of Gynecology, IVI Barcelona S.L., 08017, Barcelona, Spain
- Group of Biomedical Research in Gynecology, Vall Hebron Research Institute (VHIR) and University Hospital, 08035, Barcelona, Spain
- Universitat Autònoma de Barcelona, 08193, Bellaterra (Barcelona), Spain
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94193, USA
| | - Sahar Houshdaran
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94193, USA
| | - Linda C Giudice
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94193, USA
| |
Collapse
|
15
|
Barrios De Tomasi J, Opata MM, Mowa CN. Immunity in the Cervix: Interphase between Immune and Cervical Epithelial Cells. J Immunol Res 2019; 2019:7693183. [PMID: 31143785 PMCID: PMC6501150 DOI: 10.1155/2019/7693183] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/08/2019] [Accepted: 02/25/2019] [Indexed: 12/12/2022] Open
Abstract
The cervix is divided into two morphologically and immunologically distinct regions, namely, (1) the microbe-laden ectocervix, which is proximal to the vagina, and (2) the "sterile" endocervix, which is distal to the uterus. The two cervical regions are bordered by the cervical transformation zone (CTZ), an area of changing cells, and are predominantly composed of cervical epithelial cells. Epithelial cells are known to play a crucial role in the initiation, maintenance, and regulation of innate and adaptive response in collaboration with immune cells in several tissue types, including the cervix, and their dysfunction can lead to a spectrum of clinical syndromes. For instance, epithelial cells block progression and neutralize or kill microorganisms through multiple ways. These (ways) include mounting physical (intercellular junctions, secretion of mucus) and immune barriers (pathogen-recognition receptor-mediated pathways), which collectively and ultimately lead to the release of specific chemokines and or cytokines. The cytokines subsequently recruit subsets of immune cells appropriate to a particular immune context and response, such as dendritic cells (DCs), T, B, and natural killer (NK) cells. The immune response, as most biological processes in the female reproductive tract (FRT), is mainly regulated by estrogen and progesterone and their (immune cells) responses vary during different physiological phases of reproduction, such as menstrual cycle, pregnancy, and post menopause. The purpose of the present review is to compare the immunological profile of the mucosae and immune cells in the ecto- and endocervix and their interphase during the different phases of female reproduction.
Collapse
Affiliation(s)
- Jorgelina Barrios De Tomasi
- Department of Biology, Appalachian State University, Boone 28608, USA
- Departamento de Ciencias de la Medicina, Division de Ciencias de la Salud, Chetumal, Quintana Roo, Mexico
| | | | - Chishimba Nathan Mowa
- Department of Biology, Appalachian State University, Boone 28608, USA
- Rusangu University, Monze, Zambia
| |
Collapse
|
16
|
Abstract
As our understanding of mucosal immunity increases, it is becoming clear that the host response to HIV-1 is more complex and nuanced than originally believed. The mucosal landscape is populated with a variety of specialized cell types whose functions include combating infectious agents while preserving commensal microbiota, maintaining barrier integrity, and ensuring immune homeostasis. Advances in multiparameter flow cytometry, gene expression analysis and bioinformatics have allowed more detailed characterization of these cell types and their roles in host defense than was previously possible. This review provides an overview of existing literature on immunity to HIV-1 and SIVmac in mucosal tissues of the female reproductive tract and the gastrointestinal tract, focusing on major effector cell populations and briefly summarizing new information on tissue resident memory T cells, Treg, Th17, Th22 and innate lymphocytes (ILC), subsets that have been studied primarily in the gastrointestinal mucosa.
Collapse
Affiliation(s)
- Barbara L Shacklett
- Department of Medical Microbiology and Immunology.,Division of Infectious Diseases, Department of Medicine, School of Medicine, University of California, Davis, CA 95616
| |
Collapse
|
17
|
Sabbaj S, Mestecky J. Evaluation of Mucosal Humoral and Cellular Immune Responses to HIV in External Secretions and Mucosal Tissues. CURRENT IMMUNOLOGY REVIEWS 2019; 15:41-48. [PMID: 33312087 PMCID: PMC7731984 DOI: 10.2174/1573395514666180621152303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/14/2018] [Accepted: 05/24/2018] [Indexed: 11/22/2022]
Abstract
The mucosal immune systems of the genital and intestinal tracts as the most frequent sites of HIV-1 entry, display remarkable immunological differences from the systemic immune compartment which must be considered in the evaluation of humoral and cellular immune responses to HIV-1. Marked differences in the fluids from the genital and intestinal tracts and in plasma with respect to the Ig isotypes, their levels, molecular forms and distinct effector functions must be taken into consideration in the evaluation and interpretation of humoral immune responses. Because of the low levels and highly pronounced variation in Ig content, HIV-1-specific antibody concentrations should be always related to the levels of total Ig of a given isotype. This practice will avoid inevitable differences due to the small volumes of collected fluids and sample dilution during the collection and processing of samples from external secretions. Furthermore, appropriate controls and immunochemical assays should be used to complement and confirm results generated by ELISA, which is prone to false positivity. In the evaluation of antibody-mediated virus neutralization in external secretions, precautions and rigorous controls must be used to exclude the effect of innate humoral factors. The evaluation of cell-mediated immune responses in mucosal tissues is difficult due to the low yields of cells obtained from tissue biopsies or cytobrush scrapings. Furthermore, tissue biopsies of, for example rectal mucosa, provide information pertinent exclusively to this local site, which due to the differences in distribution of cells of different phenotypes, do not provide information generalized to the entire intestinal tract. Importantly, studies concerning the kinetics of cellular responses are difficult to perform due to the limited availability of samples or to the inability of obtaining frequent repeated tissue biopsies. For sampling the female genital tract parallel collection of menstrual and peripheral blood yields high numbers of cells that permit their detailed phenotypic and functional analyses. In contrast to tissue biopsies, this non-traumatic collection procedure, results in high cell yields and repeated monthly sampling permits extensive and parallel functional studies of kinetics and unique characteristics of HIV-1-specific cellular responses in the female genital tract and peripheral blood.
Collapse
Affiliation(s)
- Steffanie Sabbaj
- Departments of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL
| | - Jiri Mestecky
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
18
|
Sennepin A, Real F, Duvivier M, Ganor Y, Henry S, Damotte D, Revol M, Cristofari S, Bomsel M. The Human Penis Is a Genuine Immunological Effector Site. Front Immunol 2017; 8:1732. [PMID: 29312291 PMCID: PMC5735067 DOI: 10.3389/fimmu.2017.01732] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/23/2017] [Indexed: 12/28/2022] Open
Abstract
The human penis is a main portal of entry for numerous pathogens, and vaccines able to control resulting infections locally are highly desirable. However, in contrast to the gastrointestinal or vaginal mucosa, the penile immune system and mechanisms inducing a penile immune response remain elusive. In this descriptive study, using multiparametric flow cytometry and immunohistochemistry, we characterized mucosal immune cells such as B, T, and natural killer (NK) cells from the urethra, fossa, and glans of human adult penile tissues. We show that memory B lymphocytes and CD138+ plasma cells are detected in all penile compartments. CD4+ and CD8+ T lymphocytes reside in the epithelium and lamina propria of the penile regions and have mostly a resting memory phenotype. All penile regions contain CD56dim NK cells surface expressing the natural cytotoxicity receptor NKp44 and the antibody-dependent cell cytotoxicity receptor CD16. These cells are also able to spontaneously secrete pro- and anti-inflammatory cytokines, such as IL-17 and IL-22. Finally, CCR10 is the main homing receptor detected in these penile cells although, together with CCR3, CCR6, and CCR9, their expression level differs between penile compartments. Unlike antigen-presenting cells which type differ between penile regions as we reported earlier, urethral, fossa, and glans content in immune B, T, and NK cells is comparable. However, median values per each analysis suggest that the glans, containing higher number and more activated NK cells together with higher number of terminally differentiate effector CD8+ T cells, is a superior effector site than the urethra and the fossa. Thus, the human penis is an immunologically active tissue containing the cellular machinery required to induce and produce a specific and effective response against mucosal pathogens. It can therefore be considered as a classic mucosal effector site, a feature that must be taken into account for the elaboration of efficient strategies, including vaccines, against sexually transmitted infections.
Collapse
Affiliation(s)
- Alexis Sennepin
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, INSERM, Paris, France.,CNRS, UMR8104, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Fernando Real
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, INSERM, Paris, France.,CNRS, UMR8104, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Marine Duvivier
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, INSERM, Paris, France.,CNRS, UMR8104, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Yonatan Ganor
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, INSERM, Paris, France.,CNRS, UMR8104, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Sonia Henry
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, INSERM, Paris, France.,CNRS, UMR8104, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Diane Damotte
- Anatomy and Pathological Cytology Service, GH Cochin-Saint Vincent de Paul, Paris, France
| | - Marc Revol
- Plastic Surgery Service, Saint Louis Hospital, Paris, France
| | | | - Morgane Bomsel
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, INSERM, Paris, France.,CNRS, UMR8104, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
19
|
Shanmugasundaram U, Hilton JF, Critchfield JW, Greenblatt RM, Giudice LC, Averbach S, Seidman D, Shacklett BL, Smith-McCune K. Effects of the levonorgestrel-releasing intrauterine device on the immune microenvironment of the human cervix and endometrium. Am J Reprod Immunol 2017; 76:137-48. [PMID: 27401588 PMCID: PMC5316474 DOI: 10.1111/aji.12535] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/10/2016] [Indexed: 12/16/2022] Open
Abstract
PROBLEM There is little information regarding the impact of the intrauterine device on immune parameters of the upper female reproductive tract related to risk of HIV acquisition. METHOD OF STUDY We collected cervical and endometrial samples from women using the hormonal intrauterine device to study its effects on endocervical cytokines/chemokine concentrations, phenotypic markers of T cells, responses of endometrial T cells to activation, and alterations of endometrial cellular infiltrates. RESULTS Hormonal intrauterine device use was associated with: increased concentrations of inflammatory cytokines/chemokines (endocervix); increased coexpression of CXCR4 and CCR5 (endocervix and endometrium); increased coexpression of CD38 and HLADR (endocervix and endometrium); increased intracellular IL-10 production after T-cell stimulation (endometrium); and increased density of T cells, most notably regulatory T cells (endometrium). CONCLUSION Hormonal intrauterine device use resulted in both inflammatory and immunosuppressive alterations. Further research is needed to determine the significance of these changes for HIV risk.
Collapse
Affiliation(s)
- Uma Shanmugasundaram
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA
| | - Joan F Hilton
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - J William Critchfield
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA
| | - Ruth M Greenblatt
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA.,Departments of Clinical Pharmacy and Medicine, University of California, San Francisco, CA, USA
| | - Linda C Giudice
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Sarah Averbach
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Dominika Seidman
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Barbara L Shacklett
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA
| | - Karen Smith-McCune
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
| |
Collapse
|
20
|
Effects of depot-medroxyprogesterone acetate on the immune microenvironment of the human cervix and endometrium: implications for HIV susceptibility. Mucosal Immunol 2017; 10:1270-1278. [PMID: 28051087 PMCID: PMC5496803 DOI: 10.1038/mi.2016.121] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 11/21/2016] [Indexed: 02/04/2023]
Abstract
Depot-medroxyprogesterone acetate is a commonly used injectable contraceptive that has been associated with an increased risk of HIV acquisition. This study compares effects of depot-medroxyprogesterone acetate on immune parameters from several upper reproductive tract compartments relevant to HIV-1 susceptibility in repetitive samples from 15 depot-medroxyprogesterone acetate users and 27 women not on hormonal contraceptives. Compared with samples from unexposed women in the mid-luteal phase, depot-medroxyprogesterone acetate use was associated with: increased endocervical concentrations of MCP1 and IFNalpha2; decreased endocervical concentrations of IL1beta and IL6; increased proportions of endometrial CD4+ and CD8+ cells expressing the activation marker HLADR; increased density of endometrial macrophages; and decreased density of endometrial regulatory T cells. Unlike previous reports with samples from the vagina, we did not observe increased expression of the HIV co-receptor CCR5 on CD4+ T cells in the endocervix or endometrium. Our results indicate important differences in anatomic compartments regarding mechanisms by which depot-medroxyprogesterone acetate could be associated with increased risk of HIV acquisition, including increased recruitment of macrophages to the endometrium, decreased levels of pro-inflammatory cytokines in the endocervix possibly leading to enhanced susceptibility to viral infection, and activation of endometrial T cells.
Collapse
|
21
|
An altered endometrial CD8 tissue resident memory T cell population in recurrent miscarriage. Sci Rep 2017; 7:41335. [PMID: 28112260 PMCID: PMC5256279 DOI: 10.1038/srep41335] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/16/2016] [Indexed: 12/15/2022] Open
Abstract
When trying to conceive 1% of couples have recurrent miscarriages, defined as three or more consecutive pregnancy losses. This is not accounted for by the known incidence of chromosomal aneuploidy in miscarriage, and it has been suggested that there is an immunological aetiology. The endometrial mucosa is populated by a variety of immune cells which in addition to providing host pathogen immunity must facilitate pregnancy. Here we characterise the endometrial CD8-T cell population during the embryonic window of implantation and find that the majority of cells are tissue resident memory T cells with high levels of CD69 and CD103 expression, proteins that prevent cells egress. We demonstrate that unexplained recurrent miscarriage is associated with significantly decreased expression of the T-cell co-receptor CD8 and tissue residency marker CD69. These cells differ from those found in control women, with less expression of CD127 indicating a lack of homeostatic cell control through IL-7 signalling. Nevertheless this population is resident in the endometrium of women who have RM, more than three months after the last miscarriage, indicating that the memory CD8-T cell population is altered in RM patients. This is the first evidence of a differing pre-pregnancy phenotype in endometrial immune cells in RM.
Collapse
|
22
|
Gomez-Lopez N, Romero R, Arenas-Hernandez M, Ahn H, Panaitescu B, Vadillo-Ortega F, Sanchez-Torres C, Salisbury KS, Hassan SS. In vivo T-cell activation by a monoclonal αCD3ε antibody induces preterm labor and birth. Am J Reprod Immunol 2016; 76:386-390. [PMID: 27658719 DOI: 10.1111/aji.12562] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 08/15/2016] [Indexed: 01/17/2023] Open
Abstract
PROBLEM Activated/effector T cells seem to play a role in the pathological inflammation associated with preterm labor. The aim of this study was to determine whether in vivo T-cell activation by a monoclonal αCD3ε antibody induces preterm labor and birth. METHOD OF STUDY Pregnant B6 mice were intraperitoneally injected with a monoclonal αCD3ε antibody or its isotype control. The gestational age, the rates of preterm birth and pup mortality at birth as well as the fetal heart rate and umbilical artery pulsatility index were determined. RESULTS Injection of a monoclonal αCD3ε antibody led to preterm labor/birth (αCD3ε 83 ± 16.97% [10/12] vs isotype 0% [0/8]) and increased the rate of pup mortality at birth (αCD3ε 87.30 ± 8.95% [77/85] vs isotype 4.91 ± 4.34% [3/59]). In addition, injection of a monoclonal αCD3ε antibody decreased the fetal heart rate and increased the umbilical artery pulsatility index when compared to the isotype control. CONCLUSION In vivo T-cell activation by a monoclonal αCD3ε antibody in late gestation induces preterm labor and birth.
Collapse
Affiliation(s)
- Nardhy Gomez-Lopez
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA. .,Department of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, MI, USA. .,Department of Immunology & Microbiology, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Roberto Romero
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA. .,Department of Obstetrics & Gynecology, University of Michigan, Ann Arbor, MI, USA. .,Department of Epidemiology & Biostatistics, Michigan State University, East Lansing, MI, USA. .,Center for Molecular Obstetrics & Genetics, Wayne State University, Detroit, MI, USA.
| | - Marcia Arenas-Hernandez
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Molecular Biomedicine, CINVESTAV, Mexico City, Mexico
| | - Hyunyoung Ahn
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Bogdan Panaitescu
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Felipe Vadillo-Ortega
- Unit of Vinculation, Faculty of Medicine, Universidad Nacional Autónoma de México en el Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | | | - Katherine S Salisbury
- Department of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sonia S Hassan
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
23
|
Shanmugasundaram U, Kovarova M, Ho PT, Schramm N, Wahl A, Parniak MA, Garcia JV. Efficient Inhibition of HIV Replication in the Gastrointestinal and Female Reproductive Tracts of Humanized BLT Mice by EFdA. PLoS One 2016; 11:e0159517. [PMID: 27438728 PMCID: PMC4954669 DOI: 10.1371/journal.pone.0159517] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/05/2016] [Indexed: 02/07/2023] Open
Abstract
Background The nucleoside reverse transcriptase inhibitor (NRTI) 4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA) in preclinical development exhibits improved safety and antiviral activity profiles with minimal drug resistance compared to approved NRTIs. However, the systemic antiviral efficacy of EFdA has not been fully evaluated. In this study, we utilized bone marrow/liver/thymus (BLT) humanized mice to investigate the systemic effect of EFdA treatment on HIV replication and CD4+ T cell depletion in the peripheral blood (PB) and tissues. In particular, we performed a comprehensive analysis of the female reproductive tract (FRT) and gastrointestinal (GI) tract, major sites of transmission, viral replication, and CD4+ T cell depletion and where some current antiretroviral drugs have a sub-optimal effect. Results EFdA treatment resulted in reduction of HIV-RNA in PB to undetectable levels in the majority of treated mice by 3 weeks post-treatment. HIV-RNA levels in cervicovaginal lavage of EFdA-treated BLT mice also declined to undetectable levels demonstrating strong penetration of EFdA into the FRT. Our results also demonstrate a strong systemic suppression of HIV replication in all tissues analyzed. In particular, we observed more than a 2-log difference in HIV-RNA levels in the GI tract and FRT of EFdA-treated BLT mice compared to untreated HIV-infected control mice. In addition, HIV-RNA was also significantly lower in the lymph nodes, liver, lung, spleen of EFdA-treated BLT mice compared to untreated HIV-infected control mice. Furthermore, EFdA treatment prevented the depletion of CD4+ T cells in the PB, mucosal tissues and lymphoid tissues. Conclusion Our findings indicate that EFdA is highly effective in controlling viral replication and preserving CD4+ T cells in particular with high efficiency in the GI and FRT tract. Thus, EFdA represents a strong potential candidate for further development as a part of antiretroviral therapy regimens.
Collapse
Affiliation(s)
- Uma Shanmugasundaram
- Division of Infectious Diseases, Center for AIDS Research, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Martina Kovarova
- Division of Infectious Diseases, Center for AIDS Research, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Phong T. Ho
- Division of Infectious Diseases, Center for AIDS Research, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Nathaniel Schramm
- Division of Infectious Diseases, Center for AIDS Research, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Angela Wahl
- Division of Infectious Diseases, Center for AIDS Research, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Michael A. Parniak
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - J. Victor Garcia
- Division of Infectious Diseases, Center for AIDS Research, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
24
|
Shen Z, Rodriguez-Garcia M, Patel MV, Barr FD, Wira CR. Menopausal status influences the expression of programmed death (PD)-1 and its ligand PD-L1 on immune cells from the human female reproductive tract. Am J Reprod Immunol 2016; 76:118-25. [PMID: 27321759 DOI: 10.1111/aji.12532] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 05/23/2016] [Indexed: 01/18/2023] Open
Abstract
PROBLEM The programmed death 1 (PD-1)/PD-L1 pathway regulates peripheral tolerance, immune responses, and is up-regulated in chronic viral infections, including HIV infection. However, expression of PD-1/PD-L1 on immune cells from the human female reproductive tract (FRT) and possible regulation by menopause and sex hormones are poorly understood. METHOD OF STUDY PD-1/PD-L1 expression was analyzed on CD4(+) and CD8(+) T cells, CD163(+) macrophages, and CD11c(+) dendritic cells (DC) from endometrium (EM), endocervix (CX) and ectocervix (ECX). Expression after hormone treatment in culture was also evaluated. RESULTS PD-1 and PD-L1 were constitutively expressed on CD4(+) and CD8(+) T cells from the FRT. PD-L1(+) CD4(+) T cells were increased in CX compared to EM and ECX, while no differences were found for PD-1 or between CD8(+) T cells from different sites. Macrophages and DCs constitutively expressed PD-L1, but not PD-1, with no differences observed between FRT sites. Pre-menopausal FRT tissues showed increased PD-L1 expression on CD8(+) T cells, but decreased expression on DCs when compared to post-menopausal women. In vitro estradiol treatment up-regulated PD-L1 expression specifically on CD8(+) T cells from CX, but had no effect on PD-1/PD-L1 expression on the other cell types. CONCLUSION Our results suggest that PD-L1 may be involved in the differential regulation of FRT immune responses between pre-menopausal and post-menopausal women.
Collapse
Affiliation(s)
- Zheng Shen
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Marta Rodriguez-Garcia
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Mickey V Patel
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Fiona D Barr
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Charles R Wira
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| |
Collapse
|
25
|
Barriers to a cure for HIV in women. J Int AIDS Soc 2016; 19:20706. [PMID: 26900031 PMCID: PMC4761692 DOI: 10.7448/ias.19.1.20706] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 01/29/2016] [Accepted: 02/02/2016] [Indexed: 12/19/2022] Open
Abstract
Introduction Distinct biological factors exist that affect the natural history of HIV and the host immune response between women and men. These differences must be addressed to permit the optimal design of effective HIV eradication strategies for much of the HIV-positive population. Methods and results Here, we review the literature on sex-based differences in HIV pathogenesis and natural history in tissues and anatomic compartments, HIV latency and transcriptional activity, and host immunity including the role of sex hormones. We then outline the potential effects of these differences on HIV persistence, and on the safety and efficacy of HIV eradication and curative interventions. Finally, we discuss the next steps necessary to elucidate these factors to achieve a cure for HIV, taking in account the complex ethical issues and the regulatory landscape in the hopes of stimulating further research and awareness in these areas. Conclusions Targeted enrolment of women in clinical trials and careful sex-based analysis will be crucial to gain further insights into sex-based differences in HIV persistence and to design sex-specific approaches to HIV eradication, if required.
Collapse
|
26
|
Strbo N, Alcaide ML, Romero L, Bolivar H, Jones D, Podack ER, Fischl MA. Loss of Intra-Epithelial Endocervical Gamma Delta (GD) 1 T Cells in HIV-Infected Women. Am J Reprod Immunol 2015; 75:134-45. [PMID: 26666220 DOI: 10.1111/aji.12458] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/05/2015] [Indexed: 01/18/2023] Open
Abstract
PROBLEM Human gamma delta (GD) T cells play a well-documented role in epithelial barrier surveillance and protection. Two subsets of GD T cells, defined by the use of either the Vdelta2 (GD2) or Vdelta1 (GD1) TCR, predominate. We hypothesized that endocervical GD T cells play important role in lower genital tract anti-HIV immune responses. METHOD OF STUDY HIV-infected (n = 18) and HIV-uninfected (n = 19) pre-menopausal women participating in the WIHS cohort were recruited. Frequency and phenotype of GD T cells were determined in endocervical cytobrush samples and peripheral blood by multicolor flow cytometry. RESULTS We found depletion of GD2 cells in the blood of HIV-infected women as well as significant decrease in the frequency of endocervical GD1 cells compared to uninfected women. CONCLUSION We report for the first time, the GD1 cells are a predominant endocervical T-cell subset that is significantly decreased in HIV-infected women.
Collapse
Affiliation(s)
- Natasa Strbo
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Maria L Alcaide
- Division of Infectious Diseases, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Laura Romero
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Hector Bolivar
- Division of Infectious Diseases, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Deborah Jones
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Eckhard R Podack
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Margaret A Fischl
- Division of Infectious Diseases, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
27
|
Blocking HIV-1 transmission in the female reproductive tract: from microbicide development to exploring local antiviral responses. Clin Transl Immunology 2015; 4:e43. [PMID: 26682051 PMCID: PMC4673443 DOI: 10.1038/cti.2015.23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/07/2015] [Accepted: 09/08/2015] [Indexed: 12/20/2022] Open
Abstract
The majority of new HIV-1 infections are transmitted sexually by penetrating the mucosal barrier to infect target cells. The development of microbicides to restrain heterosexual HIV-1 transmission in the past two decades has proven to be a challenging endeavor. Therefore, better understanding of the tissue environment in the female reproductive tract may assist in the development of the next generation of microbicides to prevent HIV-1 transmission. In this review, we highlight the important factors involved in the heterosexual transmission of HIV-1, provide an update on microbicides' clinical trials, and discuss how different delivery platforms and local immunity may empower the development of next generation of microbicide to block HIV-1 transmission in the female reproductive tract.
Collapse
|
28
|
Smith-McCune K, Chen JC, Greenblatt RM, Shanmugasundaram U, Shacklett BL, Hilton JF, Johnson B, Irwin JC, Giudice LC. Unexpected Inflammatory Effects of Intravaginal Gels (Universal Placebo Gel and Nonoxynol-9) on the Upper Female Reproductive Tract: A Randomized Crossover Study. PLoS One 2015; 10:e0129769. [PMID: 26177352 PMCID: PMC4503751 DOI: 10.1371/journal.pone.0129769] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 05/13/2015] [Indexed: 11/18/2022] Open
Abstract
Intravaginal anti-HIV microbicides could provide women with a self-controlled means for HIV prevention, but results from clinical trials have been largely disappointing. We postulated that unrecognized effects of intravaginal gels on the upper female reproductive tract might contribute to the lower-than-expected efficacy of HIV microbicides. Our objective was to study the effects of intravaginal gels on the immune microenvironment of the cervix and uterus. In this randomized crossover study, 27 healthy female volunteers used a nightly application of intravaginal nonoxynol-9 (N9) gel as a "failed" microbicide or the universal placebo gel (UPG) as a "safe" gel (intervention cycles), or nothing (control cycle) from the end of menses to the mid-luteal phase. At a specific time-point following ovulation, all participants underwent sample collection for measurements of T-cell phenotypes, gene expression, and cytokine/chemokine protein concentrations from 3 anatomic sites above the vagina: the cervical transformation zone, the endocervix and the endometrium. We used hierarchical statistical models to estimate mean (95% CI) intervention effects, for N9 and UPG relative to control. Exposure to N9 gel and UPG generated a common "harm signal" that included transcriptional up-regulation of inflammatory genes chemokine (C-C motif) ligand 20 (macrophage inflammatory factor-3alpha) and interleukin 8 in the cervix, decreased protein concentrations of secretory leukocyte protease inhibitor, and transcriptional up-regulation of inflammatory mediators glycodelin-A and osteopontin in the endometrium. These results need to be replicated with a larger sample, but underscore the need to consider the effects of microbicide agents and gel excipients on the upper female reproductive tract in studies of vaginal microbicides.
Collapse
Affiliation(s)
- Karen Smith-McCune
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| | - Joseph C. Chen
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - Ruth M. Greenblatt
- Departments of Clinical Pharmacy and Internal Medicine, University of California San Francisco, San Francisco, California, United States of America
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States of America
| | - Uma Shanmugasundaram
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Barbara L. Shacklett
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Joan F. Hilton
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States of America
| | - Brittni Johnson
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - Juan C. Irwin
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - Linda C Giudice
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
29
|
Immunologic, virologic, and pharmacologic characterization of the female upper genital tract in HIV-infected women. J Acquir Immune Defic Syndr 2015; 68:420-4. [PMID: 25501615 DOI: 10.1097/qai.0000000000000480] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
: A comparative analysis of cellular and soluble markers of immune activation in HIV-infected women on combination antiretroviral therapy showed that the upper genital tract (UGT) compared to the lower female genital tract was characterized by higher frequencies of potential HIV target cells and increased inflammatory molecules. Despite the activated UGT milieu, HIV RNA could not be detected in paired samples of plasma, cervicovaginal or endometrial lavage. As antiretroviral concentrations were ≥3-fold higher in the endometrium than in the lower genital tract, high antiretroviral penetration and/or metabolism may limit viral replication in the UGT.
Collapse
|
30
|
Wira CR, Rodriguez-Garcia M, Patel MV. The role of sex hormones in immune protection of the female reproductive tract. Nat Rev Immunol 2015; 15:217-30. [PMID: 25743222 PMCID: PMC4716657 DOI: 10.1038/nri3819] [Citation(s) in RCA: 274] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Within the human female reproductive tract (FRT), the challenge of protection against sexually transmitted infections (STIs) is coupled with the need to enable successful reproduction. Oestradiol and progesterone, which are secreted during the menstrual cycle, affect epithelial cells, fibroblasts and immune cells in the FRT to modify their functions and hence the individual's susceptibility to STIs in ways that are unique to specific sites in the FRT. The innate and adaptive immune systems are under hormonal control, and immune protection in the FRT varies with the phase of the menstrual cycle. Immune protection is dampened during the secretory phase of the cycle to optimize conditions for fertilization and pregnancy, which creates a 'window of vulnerability' during which potential pathogens can enter and infect the FRT.
Collapse
Affiliation(s)
- Charles R Wira
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756, USA
| | - Marta Rodriguez-Garcia
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756, USA
| | - Mickey V Patel
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756, USA
| |
Collapse
|
31
|
Tuero I, Robert-Guroff M. Challenges in mucosal HIV vaccine development: lessons from non-human primate models. Viruses 2014; 6:3129-58. [PMID: 25196380 PMCID: PMC4147690 DOI: 10.3390/v6083129] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/21/2014] [Accepted: 07/23/2014] [Indexed: 12/23/2022] Open
Abstract
An efficacious HIV vaccine is urgently needed to curb the AIDS pandemic. The modest protection elicited in the phase III clinical vaccine trial in Thailand provided hope that this goal might be achieved. However, new approaches are necessary for further advances. As HIV is transmitted primarily across mucosal surfaces, development of immunity at these sites is critical, but few clinical vaccine trials have targeted these sites or assessed vaccine-elicited mucosal immune responses. Pre-clinical studies in non-human primate models have facilitated progress in mucosal vaccine development by evaluating candidate vaccine approaches, developing methodologies for collecting and assessing mucosal samples, and providing clues to immune correlates of protective immunity for further investigation. In this review we have focused on non-human primate studies which have provided important information for future design of vaccine strategies, targeting of mucosal inductive sites, and assessment of mucosal immunity. Knowledge gained in these studies will inform mucosal vaccine design and evaluation in human clinical trials.
Collapse
Affiliation(s)
- Iskra Tuero
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Marjorie Robert-Guroff
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
32
|
Nguyen PV, Kafka JK, Ferreira VH, Roth K, Kaushic C. Innate and adaptive immune responses in male and female reproductive tracts in homeostasis and following HIV infection. Cell Mol Immunol 2014; 11:410-27. [PMID: 24976268 DOI: 10.1038/cmi.2014.41] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 05/08/2014] [Indexed: 12/13/2022] Open
Abstract
The male and female reproductive tracts are complex microenvironments that have diverse functional demands. The immune system in the reproductive tract has the demanding task of providing a protective environment for a fetal allograft while simultaneously conferring protection against potential pathogens. As such, it has evolved a unique set of adaptations, primarily under the influence of sex hormones, which make it distinct from other mucosal sites. Here, we discuss the various components of the immune system that are present in both the male and female reproductive tracts, including innate soluble factors and cells and humoral and cell-mediated adaptive immunity under homeostatic conditions. We review the evidence showing unique phenotypic and functional characteristics of immune cells and responses in the male and female reproductive tracts that exhibit compartmentalization from systemic immunity and discuss how these features are influenced by sex hormones. We also examine the interactions among the reproductive tract, sex hormones and immune responses following HIV-1 infection. An improved understanding of the unique characteristics of the male and female reproductive tracts will provide insights into improving clinical treatments of the immunological causes of infertility and the design of prophylactic interventions for the prevention of sexually transmitted infections.
Collapse
|
33
|
Wira CR, Rodriguez-Garcia M, Shen Z, Patel M, Fahey JV. The role of sex hormones and the tissue environment in immune protection against HIV in the female reproductive tract. Am J Reprod Immunol 2014; 72:171-81. [PMID: 24661500 DOI: 10.1111/aji.12235] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 02/21/2014] [Indexed: 02/06/2023] Open
Abstract
Despite extensive studies of the mucosal immune system in the female reproductive tract (FRT) and its regulation by sex hormones, relatively little attention has been paid to the tissue environment in the FRT that regulates immune cell function. Consisting of secretions from epithelial cells (EC), stromal fibroblasts, and immune cells in tissues from the upper (Fallopian tubes, uterus, and endocervix) and lower (ectocervix and vagina) tracts, each tissue compartment is unique and precisely regulates immune cells to optimize conditions for successful pregnancy and protection against sexually transmitted diseases including HIV. Our goal in this review is to focus on the mucosal (tissue) environment in the upper and lower FRT. Specifically, this review will identify the contributions of EC and fibroblasts to the tissue environment and examine the impact of this environment on HIV-target cells. Much remains to be learned about the complex interactions with the tissue environment at different sites in the FRT and the ways in which they are regulated by sex hormones and chemical contraceptives. Awareness of the involvement of the tissue environment in determining immune cell function and HIV acquisition is crucial for understanding the mechanisms that lead to HIV prevention, acquisition, and the development of new therapeutic modalities of immune protection.
Collapse
Affiliation(s)
- Charles R Wira
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | | | | | | | | |
Collapse
|