1
|
Hung JT, Chiou SP, Tang YH, Huang JR, Lo FY, Yu AL. Bioactivities and Anti-Cancer Activities of NKT-Stimulatory Phenyl-Glycolipid Formulated with a PEGylated Lipid Nanocarrier. Drug Des Devel Ther 2024; 18:5323-5332. [PMID: 39583633 PMCID: PMC11586003 DOI: 10.2147/dddt.s484130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024] Open
Abstract
Purpose The glycolipid α-galactosylceramide (α-GalCer), when presented by CD1d, can modulate the immune system through the activation of natural killer T (NKT) cells. Previously, we synthesized over 30 analogs of α-GalCer and identified a compound, C34, which features two phenyl rings on the acyl chain. C34 exhibited the most potent NKT-stimulating activities, characterized by strong Th1-biased cytokines and potent anti-tumor effects in several murine tumor models. Importantly, unlike α-GalCer, C34 did not induce NKT cell anergy. Despite these promising results, the clinical application of C34 is limited by its poor aqueous solubility. PEGylation enhances the solubility of hydrophobic drugs, and numerous PEGylated drugs have received clinical approval. Consequently, we assessed the biological activity of PEGylated C34 in this study. Methods Murine NK1.2 cells were cultured with A20-CD1d cells in the presence of either PEGylated lipid nanocarriers encapsulating C34 (PLN-C34) or C34 dissolved in DMSO to determine IL-2 production via ELISA. C57BL/6 mice were i.v. injected with C34 or PLN-C34 to examine cytokine profiles and immune cell populations using luminex and flow cytometry, respectively. The anticancer effects of C34 and PLN-C34 were evaluated in mice bearing TC-1 lung cancer and B16 melanoma tumors. Additionally, human PBMCs were cultured with C34 or PLN-C34 to measure cytokine production through luminex. Results PLN-C34 demonstrated a comparable capacity to C34 in activating the NKT cell line in vitro and inducing various cytokines in vivo. Furthermore, treatment with either PLN-C34 or C34 significantly prolonged the survival of TC-1- and B16F10-bearing mice to a similar extent. Additionally, PLN-C34 effectively stimulated cytokine responses in human NKT cells, comparable to those induced by C34. Conclusion These findings demonstrate that the newly formulated PLN-C34 retains NKT-stimulatory activity and anti-cancer efficacy of C34, supporting the potential of PLN as a solvent for C34 for further development in cancer therapy.
Collapse
Affiliation(s)
- Jung-Tung Hung
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Shih-Pin Chiou
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yun-Hsin Tang
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Branch, and Chang Gung University, College of Medicine, Taoyuan, Taiwan
- Gynecologic Cancer Research Center, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan
| | - Jing-Rong Huang
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Fei-Yun Lo
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Alice L Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Pediatrics, University of California in San Diego, San Diego, California, USA
| |
Collapse
|
2
|
Mousavi-Salehi A, Ghafourian M, Amari A, Zargar M. Evaluation of NKT Cell Percentage and Function and Its Relationship with Serum IFN-γ and Vitamin D Levels in Women with Recurrent Spontaneous Abortion and Recurrent Implantation Failure. J Obstet Gynaecol India 2024; 74:391-397. [PMID: 39568976 PMCID: PMC11573966 DOI: 10.1007/s13224-023-01894-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 10/24/2023] [Indexed: 11/22/2024] Open
Abstract
Background Mothers experiencing recurrent spontaneous abortion (RSA) along with repeated implantation failures (RIF) could potentially have abnormalities in their immune systems. Vitamin D is known as a crucial immunomodulatory agent. This study aimed to assess the ratio of Natural Killer T-cells (NKTs) and the correlation between this ratio with serum vitamin D levels among women with RSA and RIF. Methods In this research, blood samples were collected from both patients and a group of healthy individuals. The flow cytometry technique was used to determine the proportion of NKT and activated NKT cells. Additionally, Vitamin D and IFN-γ levels were measured using the ELISA technique. Results The mean ratio of NKT cells and IFN-γ levels increased significantly in those women with RSA relative to our healthy control group [(P < 0.018) and (p < 0.031), respectively]. Nevertheless, women in the RIF and control groups did not show any significant differences. Serum vitamin D levels significantly decreased in RIF (p < 0.04) and RSA (p < 0.01) groups relative to the control group. Conclusions It was found that increasing ratio as well as inflammatory activity of NKT cells correlated with repeated miscarriage. Reduced vitamin D levels could cause immune system disorder along with pregnancy complications.
Collapse
Affiliation(s)
- Abdolah Mousavi-Salehi
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Golestan Blvd, Ahvaz, P.O. Box 6135715794, Iran
| | - Mehri Ghafourian
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Golestan Blvd, Ahvaz, P.O. Box 6135715794, Iran
| | - Afshin Amari
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Golestan Blvd, Ahvaz, P.O. Box 6135715794, Iran
- Cellular & Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahvash Zargar
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
3
|
Kovoor E, Chauhan SK, Hajrasouliha A. Role of inflammatory cells in pathophysiology and management of diabetic retinopathy. Surv Ophthalmol 2022; 67:1563-1573. [PMID: 35914582 PMCID: PMC11082823 DOI: 10.1016/j.survophthal.2022.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 02/05/2023]
Abstract
Diabetic retinopathy (DR) is a sight-threatening complication of diabetes mellitus. Several inflammatory cells and proteins, including macrophages and microglia, cytokines, and vascular endothelial growth factors, are found to play a significant role in the development and progression of DR. Inflammatory cells play a significant role in the earliest changes seen in DR including the breakdown of the blood retinal barrier leading to leakage of blood into the retina. They also have an important role in the pathogenesis of more advanced stage of proliferative diabetic retinopathy, leading to neovascularization, vitreous hemorrhage, and tractional retinal detachment. In this review, we examine the function of numerous inflammatory cells involved in the pathogenesis, progression, and role as a potential therapeutic target in DR. Additionally, we explore the role of inflammation following treatment of DR.
Collapse
Affiliation(s)
- Elias Kovoor
- Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Sunil K Chauhan
- Schepens Eye Institute, Harvard Medical School, Boston, MA, USA
| | - Amir Hajrasouliha
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
4
|
Liu X, Hasan KMF, Wei S. Immunological regulation, effects, extraction mechanisms, healthy utilization, and bioactivity of edible fungi: A comprehensive review. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.13970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xiaoyi Liu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education; Department of Nutrition and Food Hygiene, School of Public Health Guizhou Medical University Guizhou China
| | | | - Shaofeng Wei
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education; Department of Nutrition and Food Hygiene, School of Public Health Guizhou Medical University Guizhou China
| |
Collapse
|
5
|
Akache B, Stark FC, Agbayani G, Renner TM, McCluskie MJ. Adjuvants: Engineering Protective Immune Responses in Human and Veterinary Vaccines. Methods Mol Biol 2022; 2412:179-231. [PMID: 34918246 DOI: 10.1007/978-1-0716-1892-9_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Adjuvants are key components of many vaccines, used to enhance the level and breadth of the immune response to a target antigen, thereby enhancing protection from the associated disease. In recent years, advances in our understanding of the innate and adaptive immune systems have allowed for the development of a number of novel adjuvants with differing mechanisms of action. Herein, we review adjuvants currently approved for human and veterinary use, describing their use and proposed mechanisms of action. In addition, we will discuss additional promising adjuvants currently undergoing preclinical and/or clinical testing.
Collapse
Affiliation(s)
- Bassel Akache
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON, Canada
| | - Felicity C Stark
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON, Canada
| | - Gerard Agbayani
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON, Canada
| | - Tyler M Renner
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON, Canada
| | - Michael J McCluskie
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON, Canada.
| |
Collapse
|
6
|
Tissue-resident immunity in the female and male reproductive tract. Semin Immunopathol 2022; 44:785-799. [PMID: 35488095 PMCID: PMC9053558 DOI: 10.1007/s00281-022-00934-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/21/2022] [Indexed: 02/07/2023]
Abstract
The conception of how the immune system is organized has been significantly challenged over the last years. It became evident that not all lymphocytes are mobile and recirculate through secondary lymphoid organs. Instead, subsets of immune cells continuously reside in tissues until being reactivated, e.g., by a recurring pathogen or other stimuli. Consequently, the concept of tissue-resident immunity has emerged, and substantial evidence is now available to support its pivotal function in maintaining tissue homeostasis, sensing challenges and providing antimicrobial protection. Surprisingly, insights on tissue-resident immunity in the barrier tissues of the female reproductive tract are sparse and only slowly emerging. The need for protection from vaginal and amniotic infections, the uniqueness of periodic tissue shedding and renewal of the endometrial barrier tissue, and the demand for a tailored decidual immune adaptation during pregnancy highlight that tissue-resident immunity may play a crucial role in distinct compartments of the female reproductive tract. This review accentuates the characteristics of tissue-resident immune cells in the vagina, endometrium, and the decidua during pregnancy and discusses their functional role in modulating the risk for infertility, pregnancy complications, infections, or cancer. We here also review data published to date on tissue-resident immunity in the male reproductive organs, which is still a largely uncharted territory.
Collapse
|
7
|
Miko E, Barakonyi A, Meggyes M, Szereday L. The Role of Type I and Type II NKT Cells in Materno-Fetal Immunity. Biomedicines 2021; 9:1901. [PMID: 34944717 PMCID: PMC8698984 DOI: 10.3390/biomedicines9121901] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 12/25/2022] Open
Abstract
NKT cells represent a small but significant immune cell population as being a part of and bridging innate and adaptive immunity. Their ability to exert strong immune responses via cytotoxicity and cytokine secretion makes them significant immune effectors. Since pregnancy requires unconventional maternal immunity with a tolerogenic phenotype, investigation of the possible role of NKT cells in materno-fetal immune tolerance mechanisms is of particular importance. This review aims to summarize and organize the findings of previous studies in this field. Data and information about NKT cells from mice and humans will be presented, focusing on NKT cells characteristics during normal pregnancy in the periphery and at the materno-fetal interface and their possible involvement in female reproductive failure and pregnancy complications with an immunological background.
Collapse
Affiliation(s)
- Eva Miko
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, 12 Szigeti Street, 7624 Pécs, Hungary; (A.B.); (M.M.); (L.S.)
- Janos Szentagothai Research Centre, 20 Ifjusag Street, 7624 Pécs, Hungary
- National Laboratory for Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | - Aliz Barakonyi
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, 12 Szigeti Street, 7624 Pécs, Hungary; (A.B.); (M.M.); (L.S.)
- Janos Szentagothai Research Centre, 20 Ifjusag Street, 7624 Pécs, Hungary
- National Laboratory for Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | - Matyas Meggyes
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, 12 Szigeti Street, 7624 Pécs, Hungary; (A.B.); (M.M.); (L.S.)
- Janos Szentagothai Research Centre, 20 Ifjusag Street, 7624 Pécs, Hungary
| | - Laszlo Szereday
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, 12 Szigeti Street, 7624 Pécs, Hungary; (A.B.); (M.M.); (L.S.)
- Janos Szentagothai Research Centre, 20 Ifjusag Street, 7624 Pécs, Hungary
| |
Collapse
|
8
|
Abe M, Kinjo Y, Sadamoto S, Shinozaki M, Nagi M, Shibuya K, Miyazaki Y. α-galactosylceramide-stimulated invariant natural killer T-cells play a protective role in murine vulvovaginal candidiasis by Candida albicans. PLoS One 2021; 16:e0259306. [PMID: 34784362 PMCID: PMC8594805 DOI: 10.1371/journal.pone.0259306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/12/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Vulvovaginal candidiasis is a common superficial candidiasis; however, a host's immunological mechanism against vaginal Candida infection remains unknown. OBJECTIVES In this study, we aimed to elucidate the effect of iNKT cell activation on vulvovaginal candidiasis. METHODS Using a vulvovaginal candidiasis model with estrogenized mice, we evaluated the fungal burden and number of leukocyte infiltrations in the vaginal lavage of wild-type C57BL/6J mice after Candida albicans inoculation. One day before C. albicans inoculation, α-galactosylceramide (the α-GalCer group) or sterile phosphate-buffered saline (the sham group) was intraperitoneally injected into the mice. We also evaluated the level of antimicrobial peptide S100A8 in the vaginal lavage and analyzed the correlation between S100A8 concentration and the number of vaginal leukocyte infiltrations. Moreover, the number of uterine and vaginal immune cells were evaluated using flow cytometry. RESULTS The number of vaginal leukocyte infiltrations was significantly higher in the α-GalCer group than in the sham group 3 days after C. albicans inoculation. In addition, the fungal burden was significantly lower in the α-GalCer group than the sham group at 7 days after inoculation. In the analysis of S100A8 concentration of vaginal lavage, there were no significant differences between these two groups, although S100A8 concentration and the number of vaginal leukocyte infiltrations were positively correlated in the α-GalCer group. Moreover, the number of vaginal iNKT cells, NK cells and CD8+ T-cells was significantly higher in the α-GalCer group 3 days after inoculation. CONCLUSIONS α-GalCer-stimulated iNKT cells likely play a protective role against vulvovaginal candidiasis.
Collapse
Affiliation(s)
- Masahiro Abe
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yuki Kinjo
- Department of Bacteriology, The Jikei University School of Medicine, Tokyo, Japan
- Jikei Center for Biofilm Science and Technology, The Jikei University School of Medicine, Tokyo, Japan
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Sota Sadamoto
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Surgical Pathology, Toho University School of Medicine, Tokyo, Japan
| | - Minoru Shinozaki
- Department of Surgical Pathology, Toho University School of Medicine, Tokyo, Japan
| | - Minoru Nagi
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazutoshi Shibuya
- Department of Surgical Pathology, Toho University School of Medicine, Tokyo, Japan
| | - Yoshitsugu Miyazaki
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
9
|
Bai S, Huang B, Fu S, Zhu M, Hu L, Zhu L, Chen M, Zhang Z, Tan J, Zhang J, Chen H. Changes in the Distribution of Intrauterine Microbiota May Attribute to Immune Imbalance in the CBA/J×DBA/2 Abortion-Prone Mice Model. Front Immunol 2021; 12:641281. [PMID: 33763083 PMCID: PMC7982683 DOI: 10.3389/fimmu.2021.641281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/16/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Female Genital Tract (FGT) is an important micro-ecological area of human body. Microbiota in the lower reproductive tract may subsequently invade the uterine cavity during embryo implantation and produce immune responses. CBA/J×DBA/2 mating combination has been widely used as an abortion-prone mice model but whether microbiota existed in their uterine cavity remains unclear. In this context, the role of the microbial communities in immune response deserves attention. Objective: To investigate the relationship between the distribution of microbiota in the uterine cavity of CBA/J×DBA/2 abortion-prone mouse model and the immune imbalance of the maternal-fetal interface. Methods: In this study, female CBA/J mice were paired with male DBA/2 mice to develop an abortion-prone model (BA group), and with male BALB/c mice to build a standard pregnancy model (BC group). The non-pregnant female mice were served as the control group (C group). Uterine flushing fluid and sera were collected on day 13.5 of pregnancy. 16S rRNA sequencing technology was used to analyze the distribution of intrauterine microbiota. Phylogenetic Investigation of Communities were conducted to predict the microbiota functions by Reconstruction of Unobserved States (PICRUST) and Kyoto Encyclopedia of Genes and Genomes (KEGG). The serum IL 10, INF-γ, and TNF-α levels were examined using Enzyme-linked immunosorbent assay (ELISA) method. Results: All samples were detected with microbial communities. The α diversity (p = 0.00077) had significant differences among three groups. Proteobacteria was the most dominant phylum in C group (mean = 83.21%) and BA group (mean = 43.23%). Firmicutes was dominant in BC group (mean = 46.4%), as well as the second dominant one in C group (mean = 12.63%) and BA group (mean = 40.55%). Microbiota functions were associated with metabolism and immune response through the NOD-like receptor signaling pathway. The serum IL 10 level in BA group were significantly lower than that in BC group (10.14 ± 1.90 pg/ml, n = 8; vs. 19.03 ± 1.82 pg/ml, n = 10; p = 0.004). The serum TNF-α and INF-γ level in BA group were also significantly higher than that in BC group (523.1 ± 58.14 pg/ml, n = 8 vs. 310.3 ± 28.51 pg/ml, n = 10, p = 0.0029; 69.22 ± 5.38 pg/ml, n = 8 vs. 50.85 ± 2.45 pg/ml, n = 10, p = 0.0042). Conclusion: Microbial communities were colonized in uterine cavity of CBA/J mice both at non-pregnant stage and pregnant stage when mated with both BALB/c and DBA/2 male mice. The differentially abundant microbiome may be attributed to the immune tolerance through binding to the NOD-like receptor.
Collapse
Affiliation(s)
- Shiyu Bai
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bingqian Huang
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuai Fu
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Menglan Zhu
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lihao Hu
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liqiong Zhu
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Manqi Chen
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zicheng Zhang
- Department of Radiation Oncology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jianping Tan
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianping Zhang
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hui Chen
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
10
|
Deng S, Qiu K, Tu R, Zheng H, Lu W. Relationship Between Pregnancy and Acute Disseminated Encephalomyelitis: A Single-Case Study. Front Immunol 2021; 11:609476. [PMID: 33597947 PMCID: PMC7882727 DOI: 10.3389/fimmu.2020.609476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/14/2020] [Indexed: 01/30/2023] Open
Abstract
The relationship between pregnancy and autoimmune diseases is unclear. This study investigated the possible role of local immune changes and the activation state of the HMGB1/TLR4/Nf-κB/IL-6 pathway at the maternal–fetal interface during pregnancy in the pathogenesis of acute disseminated encephalomyelitis (ADEM). Clinical data and blood samples of a patient with ADEM were collected to observe the dynamic changes in lymphocyte populations after an abortion. The expression of HMGB1, TLR4, Nf-κB, AQP4, IL-2, IL-4, IL-6, and TNF-α in the fetal membrane and placenta was compared between the patient with pregnancy-related ADEM and a woman with a normal pregnancy using Real-time qPCR and western blotting (WB). The patient was diagnosed with ADEM in the early stage of pregnancy after showing limb weakness symptoms. In the third month of gestation, the symptoms worsened, with a disturbance of consciousness and breathing. After the abortion, the patient relapsed with vertigo and visual rotation. Analysis of lymphocyte subsets by flow cytometry showed that B lymphocytes increased, while natural killer T lymphocytes decreased. WB and Real-time qPCR showed that the expression levels of HMGB1, TLR4, Nf-κB, AQP4, and IL-6 in the fetal membrane and placenta were higher in the patient with pregnancy-related ADEM than in the woman with a normal pregnancy, while those of IL-2 were lower in the patient than in the woman with a normal pregnancy. The local immune changes and the activation of the HMGB1/TLR4/Nf-κB/IL-6 pathway at the maternal–fetal interface may be related to the pathogenesis of ADEM.
Collapse
Affiliation(s)
- Shuwen Deng
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ke Qiu
- Department of Neurology, The Third Hospital of Changsha, Changsha, China
| | - Ranran Tu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Haiping Zheng
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Lu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
11
|
Kato M, Negishi Y, Shima Y, Kuwabara Y, Morita R, Takeshita T. Inappropriate activation of invariant natural killer T cells and antigen-presenting cells with the elevation of HMGB1 in preterm births without acute chorioamnionitis. Am J Reprod Immunol 2020; 85:e13330. [PMID: 32852122 DOI: 10.1111/aji.13330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/18/2020] [Indexed: 11/28/2022] Open
Abstract
PROBLEM Acute chorioamnionitis (aCAM) associated with microbial infection is a primary cause of preterm birth (PB). However, recent studies have demonstrated that innate immunity and sterile inflammation are causes of PB in the absence of aCAM. Therefore, we analyzed immune cells in the decidua of early to moderate PB without aCAM. METHOD OF STUDY Deciduas were obtained from patients with PB at a gestational age of 24+0 to 33+6 weeks without aCAM in pathological diagnosis. The patients were divided into two groups as follows: patients with labor and/or rupture of membrane (ROM) (no aCAM with labor and/or ROM: nCAM-w-LR), and patients without labor and/or ROM (no aCAM without labor and/or ROM: nCAM-w/o-LR). The immune cells and high mobility group box 1 (HMGB1) levels in the decidua were analyzed using flow cytometry. Co-culture of CD56+ cells with dendritic cells (DCs) and macrophages obtained from the decidua was also performed in the presence of HMGB1. RESULTS The nCAM-w-LR group demonstrated an accumulation of iNKT cells, and increased expression of HMGB1, TLR4, receptors for advanced glycation end products, and CD1d on DCs and macrophages. HMGB1 facilitated the proliferation of iNKT cells co-cultured with DCs and macrophages, which was found to be inhibited by heparin. CONCLUSIONS Inappropriate activation of innate immune cells and increased HMGB1 expression may represent parturition signs in human pregnancy. Therefore, control of these cells and HMGB1 antigenicity may be represent a potential therapeutic target for the prevention of PB.
Collapse
Affiliation(s)
- Masahiko Kato
- Department of Obstetrics and Gynecology, Nippon Medical School, Tokyo, Japan.,Department of Obstetrics and Gynecology, Nippon Medical School Musashikosugi Hospital, Kanagawa, Japan
| | - Yasuyuki Negishi
- Department of Obstetrics and Gynecology, Nippon Medical School, Tokyo, Japan.,Department of Microbiology and immunology, Nippon Medical School, Tokyo, Japan
| | - Yoshio Shima
- Department of Pediatrics, Nippon Medical School Musashikosugi Hospital, Kanagawa, Japan
| | - Yoshimitsu Kuwabara
- Department of Obstetrics and Gynecology, Nippon Medical School, Tokyo, Japan
| | - Rimpei Morita
- Department of Microbiology and immunology, Nippon Medical School, Tokyo, Japan
| | - Toshiyuki Takeshita
- Department of Obstetrics and Gynecology, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
12
|
Wu SY, Fu T, Jiang YZ, Shao ZM. Natural killer cells in cancer biology and therapy. Mol Cancer 2020; 19:120. [PMID: 32762681 PMCID: PMC7409673 DOI: 10.1186/s12943-020-01238-x] [Citation(s) in RCA: 477] [Impact Index Per Article: 95.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment is highly complex, and immune escape is currently considered an important hallmark of cancer, largely contributing to tumor progression and metastasis. Named for their capability of killing target cells autonomously, natural killer (NK) cells serve as the main effector cells toward cancer in innate immunity and are highly heterogeneous in the microenvironment. Most current treatment options harnessing the tumor microenvironment focus on T cell-immunity, either by promoting activating signals or suppressing inhibitory ones. The limited success achieved by T cell immunotherapy highlights the importance of developing new-generation immunotherapeutics, for example utilizing previously ignored NK cells. Although tumors also evolve to resist NK cell-induced cytotoxicity, cytokine supplement, blockade of suppressive molecules and genetic engineering of NK cells may overcome such resistance with great promise in both solid and hematological malignancies. In this review, we summarized the fundamental characteristics and recent advances of NK cells within tumor immunometabolic microenvironment, and discussed potential application and limitations of emerging NK cell-based therapeutic strategies in the era of presicion medicine.
Collapse
Affiliation(s)
- Song-Yang Wu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Tong Fu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yi-Zhou Jiang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Zhi-Ming Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
13
|
Jafarpour R, Pashangzadeh S, Mehdizadeh S, Bayatipoor H, Shojaei Z, Motallebnezhad M. Functional significance of lymphocytes in pregnancy and lymphocyte immunotherapy in infertility: A comprehensive review and update. Int Immunopharmacol 2020; 87:106776. [PMID: 32682255 DOI: 10.1016/j.intimp.2020.106776] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023]
Abstract
During pregnancy, the fetal-maternal interface underlies several dynamic alterations to permit the fetus to be cultivated and developed in the uterus, in spite of being identifies by the maternal immune system. A large variety of decidual leukocyte populations, including natural killer cells, NKT cells, innate lymphoid cells, dendritic cells, B cells, T cells, subpopulations of helper T cells play a vital role in controlling the trophoblast invasion, angiogenesis as well as vascular remodeling. In contrast, several regulatory immunosuppressive mechanisms, including regulatory T cells, regulatory B cells, several cytokines and mediators are involved in maintain the homeostasis of immune system in the fetal-maternal interface. Nonetheless, aberrant alterations in the balance of immune inflammatory or immunosuppressive arms have been associated with various pregnancy losses and infertilities. As a result, numerous strategies have been developed to revers dysregulated balance of immune players to increase the chance of successful pregnancy. Lymphocyte immunotherapy has been developed through utilization of peripheral white blood cells of the husband or others and administered into the mother to confer an immune tolerance for embryo's antigens. However, the results have not always been promising, implying to further investigations to improve the approach. This review attempts to clarify the involvement of lymphocytes in contributing to the pregnancy outcome and the potential of lymphocyte immunotherapy in treatment of infertilities with dysregulated immune system basis.
Collapse
Affiliation(s)
- Roghayeh Jafarpour
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Salar Pashangzadeh
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Saber Mehdizadeh
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hashem Bayatipoor
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Shojaei
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Morteza Motallebnezhad
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran; Student Research Committee, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Zhao A, Liu K, Qi Y. Natural killer T cells from peripheral blood of patients with pregnancy-induced hypertension inhibit the proliferation and migration of vascular endothelial cells by secreting interleukin-17. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1577698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Aixin Zhao
- Obstetrics Department, Jinan Second Maternal and Child Health Hospital, Jinan, P.R. China
| | - Kun Liu
- Obstetrics Department, Jinan Second Maternal and Child Health Hospital, Jinan, P.R. China
| | - Yunfang Qi
- Obstetrics Department, Jinan Second Maternal and Child Health Hospital, Jinan, P.R. China
| |
Collapse
|
15
|
Tu Y, Pan M, Song S, Hua J, Liu R, Li L. CD3 +CD56 + natural killer T cell infiltration is increased in cervical cancer and negatively correlated with tumour progression. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1669489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Yunxia Tu
- Medical College, Nanchang University, Nanchang, PR China
- Department of Oncology, Maternal and Child Health Hospital of Jiangxi Province, Nanchang, PR China
| | - Mei Pan
- Department of Oncology, Maternal and Child Health Hospital of Jiangxi Province, Nanchang, PR China
| | - Shuhong Song
- Department of Obstetrics and Gynecology, Jishui People's Hospital, Ji'an, PR China
| | - Jinren Hua
- Department of Oncology, Maternal and Child Health Hospital of Jiangxi Province, Nanchang, PR China
| | - Rongfang Liu
- Department of Oncology, Maternal and Child Health Hospital of Jiangxi Province, Nanchang, PR China
| | - Longyu Li
- Medical College, Nanchang University, Nanchang, PR China
- Department of Oncology, Maternal and Child Health Hospital of Jiangxi Province, Nanchang, PR China
| |
Collapse
|
16
|
Lv X, Gao Y, Dong T, Yang L. Role of Natural Killer T (NKT) Cells in Type II Diabetes-Induced Vascular Injuries. Med Sci Monit 2018; 24:8322-8332. [PMID: 30451213 PMCID: PMC6256848 DOI: 10.12659/msm.912446] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background This study investigated the distribution and features of natural killer T (NKT) cells in the peripheral blood of diabetic patients, and their regulatory roles on vascular endothelial cells. Material/Methods Peripheral lymphocytes were isolated from diabetic patients. NKT cell distribution, proportion, and surface and intracellular markers were detected with flow cytometry. Peripheral blood-derived NKT cells were isolated and co-cultured with human umbilical vein endothelial cells (HUVECs). Proliferation and migration of HUVECs were assessed with the CCK-8 assay and the Transwell chamber assay. Results The ratios of CD3-CD56+ NK and CD3+CD56+ NKT cells in the peripheral blood of patients with type II diabetes were significantly elevated. The expression levels of NKp30, NKG2D, and NKp44 on the surface were increased in the CD3+CD56+ NKT cells, while the expression levels of NKG2A and 158b were significantly downregulated. The expression level of granzymes in the peripheral blood-derived NKT cells were not changed in patients with type II diabetes, but the expression levels of IFNγ and IL-4 were significantly increased. However, after co-culture with NKT cells derived from the peripheral blood of diabetic patients, the proliferation and migration of HUVECs were significantly inhibited, and was restored by treatment with IL-4 antibody. In addition, the IL-4 stimulus inhibited the proliferation and migration of HUVECs. Conclusions Peripheral blood NKT cells are increased and activated in diabetes. NKT cells inhibit the proliferation and migration of HUVECs by secreting IL-4, thereby inducing vascular injuries.
Collapse
Affiliation(s)
- Xiaohong Lv
- The First Department of Endocrinology, Tai'an Central Hospital, Tai'an, Shandong, China (mainland)
| | - Yun Gao
- The First Department of Endocrinology, Tai'an Central Hospital, Tai'an, Shandong, China (mainland)
| | - Tantan Dong
- Department of Internal Medicine, Taishan People's Hospital, Tai'an, Shandong, China (mainland)
| | - Libo Yang
- The First Department of Endocrinology, Tai'an Central Hospital, Tai'an, Shandong, China (mainland)
| |
Collapse
|
17
|
Nagamatsu T, Fujii T, Schust DJ, Tsuchiya N, Tokita Y, Hoya M, Akiba N, Iriyama T, Kawana K, Osuga Y, Fujii T. Tokishakuyakusan, a traditional Japanese medicine (Kampo) mitigates iNKT cell-mediated pregnancy loss in mice. Am J Reprod Immunol 2018; 80:e13021. [PMID: 29998597 DOI: 10.1111/aji.13021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/19/2018] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Tokishakuyakusan (TSS) is a traditional herbal medicine that has been used empirically to prevent recurrent pregnancy loss. Its mode of action remains unclear. With their potent capacity to produce cytokines, invariant natural killer (iNKT) cells are involved in the control of fetomaternal immunity in early gestation. This study aimed to clarify the effect of TSS on iNKT cell activities in a well-studied murine miscarriage model. METHODS Pregnant mice were fed 1% TSS-containing or control diet from the day of vaginal plug formation. Alpha-galactosylceramide (AGC) was administered intraperitoneally to the pregnant mice at day 9.5 postcoitus (pc) to stimulate iNKT cells. Peripheral cytokine levels were evaluated using cytokine arrays. The percentage of iNKT cells among splenocytes was examined by flow cytometric analysis. The incidence of pregnancy loss was assessed at day 12.5 pc. RESULTS The ratio of fetal resorptions to total conceptuses was significantly higher in the group exposed to TSS (34%) than in controls (78%). A rapid and robust surge in inflammatory cytokines, including IFN-γ and TNF-α, was detected in the peripheral blood of control animals 2 hours after AGC administration. This peripheral cytokine induction was significantly attenuated in the TSS-fed group compared with the control. The percentage of iNKT cells among total splenocytes was lower in the TSS-fed group than in controls. CONCLUSION The findings in this study suggest that the inhibitory effects of TSS on pregnancy loss may involve immune modulation of iNKT cells during early pregnancy.
Collapse
Affiliation(s)
- Takeshi Nagamatsu
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tatsuya Fujii
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Danny J Schust
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, Missouri
| | - Naoko Tsuchiya
- Tsumura Kampo Research Laboratories, Kampo Research and Development Division, Tsumura & Co., Minato-ku, Tokyo, Japan
| | - Yohei Tokita
- Tsumura Kampo Research Laboratories, Kampo Research and Development Division, Tsumura & Co., Minato-ku, Tokyo, Japan
| | - Mari Hoya
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Naoya Akiba
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takayuki Iriyama
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kei Kawana
- Department of Obstetrics and Gynecology, Faculty of Medicine, Nihon University, Tokyo, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|