1
|
Hai L, Friedel D, Hinz F, Hoffmann DC, Doubrovinskaia S, Rohdjess H, Weidenauer K, Denisova E, Scheffler GT, Kessler T, Kourtesakis A, Herold-Mende C, Henegariu O, Baehring JM, Dietrich J, Brors B, Wick W, Sahm F, Kaulen LD. Distinct epigenetic and transcriptional profiles of Epstein-Barr virus-positive and negative primary CNS lymphomas. Neuro Oncol 2025; 27:979-992. [PMID: 39575767 PMCID: PMC12083237 DOI: 10.1093/neuonc/noae251] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2025] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV)+ and EBV- primary CNS lymphomas (PCNSL) carry distinct mutational landscapes, but their transcriptional and epigenetic profiles have not been integrated and compared. This precludes further insights into pathobiology and molecular differences, relevant for classification and targeted therapy. METHODS Twenty-three EBV- and 15 EBV+ PCNSL, histologically classified as diffuse large B-cell lymphomas, were subjected to RNA-sequencing and EPIC methylation arrays. Unsupervised clustering analyses were performed. Differentially expressed and differentially methylated genes were identified and integrated. RESULTS Two distinct transcriptional clusters were found, which separated EBV- and EBV+ PCNSL (P < .0001). The EBV+ transcriptional signature contained genes (GPR15, FCER2/CD23, SLAMF1/CD150) closely regulated by EBV oncogenes in B cells. Pathway enrichment analysis uncovered enhanced B-cell receptor (BCR) and WNT/beta-catenin signaling in EBV- lymphomas, whereas Interleukin-10, NOTCH, and viral life cycle pathways were upregulated in EBV+ PCNSL. Correspondingly, BCR-associated SYK kinase activity was enriched in EBV- tumors while JAK2 was overrepresented in EBV+ PCNSL. Epigenetic profiling revealed reduced global promoter methylation in EBV+ PCNSL. Two methylation clusters were recognized, which separated EBV- and EBV+ PCNSL (P < .0001). Epigenetic profiles were distinct from 2,788 other brain tumor and nonmalignant reference samples. Promoter region hypermethylation of CD79B, a BCR subunit critical for sustained proliferation in EBV- disease, highly correlated (R = -0.7) with its transcriptional downregulation in EBV+ PCNSL. CONCLUSIONS EBV+ and EBV- PCNSL harbor distinct transcriptional and epigenetic profiles, corroborating them as distinctive biological subtypes. Uncovered differences provide novel insights into their pathobiology, may guide molecular diagnostics and targeted therapies.
Collapse
Affiliation(s)
- Ling Hai
- Clinical Cooperation Unit (CCU) Neuro-Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- Department of Neurology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Dennis Friedel
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, and Clinical Cooperation Unit (CCU) Neuropathology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Felix Hinz
- Department of Neuropathology, Heidelberg University Hospital, and Clinical Cooperation Unit (CCU) Neuropathology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Dirk C Hoffmann
- Clinical Cooperation Unit (CCU) Neuro-Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- Department of Neurology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Sofia Doubrovinskaia
- Department of Neurology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Hannah Rohdjess
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Clinical Cooperation Unit (CCU) Neuro-Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- Department of Neurology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Katharina Weidenauer
- Department of Neurology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Evgeniya Denisova
- Division of Applied Bioinformatics, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Georg T Scheffler
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Tobias Kessler
- Clinical Cooperation Unit (CCU) Neuro-Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- Department of Neurology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Alexandros Kourtesakis
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Clinical Cooperation Unit (CCU) Neuro-Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- Department of Neurology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Christel Herold-Mende
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Octavian Henegariu
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Joachim M Baehring
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jorg Dietrich
- Department of Neurology, Division of Neuro-Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Benedikt Brors
- Division of Applied Bioinformatics, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wolfgang Wick
- Clinical Cooperation Unit (CCU) Neuro-Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- Department of Neurology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, Heidelberg University Hospital, and Clinical Cooperation Unit (CCU) Neuropathology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Leon D Kaulen
- Department of Neurology, Division of Neuro-Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Clinical Cooperation Unit (CCU) Neuro-Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- Department of Neurology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
2
|
Allen UD, L'Huillier AG, Bollard CM, Gross TG, Hayashi RJ, Höcker B, Maecker-Kolhoff B, Marks SD, Mazariegos GV, Smets F, Trappe RU, Visner G, Chinnock RE, Comoli P, Danziger-Isakov L, Dulek DE, Dipchand AI, Ferry JA, Martinez OM, Metes DM, Michaels MG, Preiksaitis J, Squires JE, Swerdlow SH, Wilkinson JD, Dharnidharka VR, Green M, Webber SA, Esquivel CO. The IPTA Nashville consensus conference on post-transplant lymphoproliferative disorders after solid organ transplantation in children: IV-consensus guidelines for the management of post-transplant lymphoproliferative disorders in children and adolescents. Pediatr Transplant 2024; 28:e14781. [PMID: 38808744 DOI: 10.1111/petr.14781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/30/2024]
Abstract
The International Pediatric Transplant Association convened an expert consensus conference to assess current evidence and develop recommendations for various aspects of care relating to post-transplant lymphoproliferative disorders (PTLD) after pediatric solid organ transplantation. This report addresses the outcomes of deliberations by the PTLD Management Working Group. A strong recommendation was made for reduction in immunosuppression as the first step in management. Similarly, strong recommendations were made for the use of the anti-CD20 monoclonal antibody (rituximab) as was the case for chemotherapy in selected scenarios. In some scenarios, there is uncoupling of the strength of the recommendations from the available evidence in situations where such evidence is lacking but collective clinical experiences drive decision-making. Of note, there are no large, randomized phase III trials of any treatment for PTLD in the pediatric age group. Current gaps and future research priorities are highlighted.
Collapse
Affiliation(s)
- Upton D Allen
- Division of Infectious Diseases, Department of Paediatrics, Transplant and Regenerative Medicine Center, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Arnaud G L'Huillier
- Pediatric Infectious Diseases Unit and Laboratory of Virology, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Hospital, The George Washington University, Washington, District of Columbia, USA
| | - Thomas G Gross
- Center for Cancer and Blood Diseases, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Robert J Hayashi
- Division of Pediatric Hematology/Oncology, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Britta Höcker
- Department of Pediatrics I, Medical Faculty, University Children's Hospital, Heidelberg University, Heidelberg, Germany
| | | | - Stephen D Marks
- Department of Paediatric Nephrology, Great Ormond Street Hospital for Children NHS Foundation Trust, NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - George Vincent Mazariegos
- Hillman Center for Pediatric Transplantation, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Francoise Smets
- Pediatric Gastroenterology and Hepatology, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Ralf U Trappe
- Department of Hematology and Oncology, DIAKO Ev. Diakonie-Krankenhaus Bremen, Bremen, Germany
- Department of Internal Medicine II: Hematology and Oncology, University Medical Centre Schleswig-Holstein, Kiel, Germany
| | - Gary Visner
- Division of Pulmonary Medicine, Boston Children's Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | | | - Patrizia Comoli
- Cell Factory & Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Lara Danziger-Isakov
- Division of Infectious Disease, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Daniel E Dulek
- Division of Pediatric Infectious Diseases, Monroe Carell Junior Children's Hospital at Vanderbilt and Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Anne I Dipchand
- Department of Paediatrics, Labatt Family Heart Centre, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Judith A Ferry
- Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Olivia M Martinez
- Department of Surgery and Program in Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Diana M Metes
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Marian G Michaels
- Division of Pediatric Infectious Diseases, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jutta Preiksaitis
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - James E Squires
- Division of Gastroenterology, Hepatology and Nutrition, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Steven H Swerdlow
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - James D Wilkinson
- Department of Pediatrics, Vanderbilt School of Medicine, Nashville, Tennessee, USA
| | - Vikas R Dharnidharka
- Division of Pediatric Nephrology, Hypertension & Apheresis, Department of Pediatrics, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri, USA
| | - Michael Green
- Division of Pediatric Infectious Diseases, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Steven A Webber
- Department of Pediatrics, Vanderbilt School of Medicine, Nashville, Tennessee, USA
| | | |
Collapse
|
3
|
Bednarska K, Chowdhury R, Tobin JWD, Swain F, Keane C, Boyle S, Khanna R, Gandhi MK. Epstein-Barr virus-associated lymphomas decoded. Br J Haematol 2024; 204:415-433. [PMID: 38155519 DOI: 10.1111/bjh.19255] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/15/2023] [Accepted: 11/29/2023] [Indexed: 12/30/2023]
Abstract
Epstein-Barr virus (EBV)-associated lymphomas cover a range of histological B- and T-cell non-Hodgkin and Hodgkin lymphoma subtypes. The role of EBV on B-cell malignant pathogenesis and its impact on the tumour microenvironment are intriguing but incompletely understood. Both the International Consensus Classification (ICC) and 5th Edition of the World Health Organization (WHO-HAEM5) proposals give prominence to the distinct clinical, prognostic, genetic and tumour microenvironmental features of EBV in lymphoproliferative disorders. There have been major advances in our biological understanding, in how to harness features of EBV and its host immune response for targeted therapy, and in using EBV as a method to monitor disease response. In this article, we showcase the latest developments and how they may be integrated to stimulate new and innovative approaches for further lines of investigation and therapy.
Collapse
Affiliation(s)
- Karolina Bednarska
- Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Rakin Chowdhury
- Frazer Institute, University of Queensland, Brisbane, Queensland, Australia
- Department of Haematology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Joshua W D Tobin
- Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia
- Department of Haematology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Fiona Swain
- Frazer Institute, University of Queensland, Brisbane, Queensland, Australia
- Department of Haematology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Colm Keane
- Frazer Institute, University of Queensland, Brisbane, Queensland, Australia
- Department of Haematology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Stephen Boyle
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Rajiv Khanna
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Maher K Gandhi
- Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia
- Department of Haematology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| |
Collapse
|
4
|
Wang WT, Yang Y, Zhang Y, Le YN, Wu YL, Liu YY, Tu YJ. EBV-microRNAs as Potential Biomarkers in EBV-related Fever: A Narrative Review. Curr Mol Med 2024; 24:2-13. [PMID: 36411555 PMCID: PMC10825793 DOI: 10.2174/1566524023666221118122005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/31/2022] [Accepted: 10/11/2022] [Indexed: 11/23/2022]
Abstract
At present, timely and accurate diagnosis and effective treatment of Epstein- Barr Virus (EBV) infection-associated fever remain a difficult challenge. EBV encodes 44 mature microRNAs (miRNAs) that inhibit viral lysis, adjust inflammatory response, regulate cellular apoptosis, promote tumor genesis and metastasis, and regulate tumor cell metabolism. Herein, we have collected the specific expression data of EBV-miRNAs in EBV-related fevers, including infectious mononucleosis (IM), EBVassociated hemophagocytic lymphohistiocytosis (EBV-HLH), chronic active EBV infection (CAEBV), and EBV-related tumors, and proposed the potential value of EBVmiRNAs as biomarkers to assist in the identification, diagnosis, and prognosis of EBVrelated fever, as well as therapeutic targets for drug development.
Collapse
Affiliation(s)
- Wei-ting Wang
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai (201203), China
| | - Yun Yang
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai (201203), China
| | - Yang Zhang
- Information Center of Science and Technology, Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai (201203), China
| | - Yi-ning Le
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai (200433), China
| | - Yu-lin Wu
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai (201203), China
| | - Yi-yi Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai (200032), China
| | - Yan-jie Tu
- Department of Febrile Disease, Basic Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai (201203), China
| |
Collapse
|
5
|
Kolijn PM, Langerak AW. Immune dysregulation as a leading principle for lymphoma development in diverse immunological backgrounds. Immunol Lett 2023; 263:46-59. [PMID: 37774986 DOI: 10.1016/j.imlet.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/28/2023] [Accepted: 08/10/2023] [Indexed: 10/01/2023]
Abstract
Lymphoma is a heterogeneous group of malignancies arising from lymphocytes, which poses a significant challenge in terms of diagnosis and treatment due to its diverse subtypes and underlying mechanisms. This review aims to explore the shared and distinct features of various forms of lymphoma predisposing conditions, with a focus on genetic, immunological and molecular aspects. While diseases such as autoimmune disorders, inborn errors of immunity and iatrogenic immunodeficiencies are biologically and immunologically distinct, each of these diseases results in profound immune dysregulation and a predisposition to lymphoma development. Interestingly, the increased risk is often skewed towards a particular subtype of lymphoma. Patients with inborn errors of immunity in particular present with extreme forms of lymphoma predisposition, providing a unique opportunity to study the underlying mechanisms. External factors such as chronic infections and environmental exposures further modulate the risk of lymphoma development. Common features of conditions predisposing to lymphoma include: persistent inflammation, recurrent DNA damage or malfunctioning DNA repair, impaired tumor surveillance and viral clearance, and dysregulation of fundamental cellular processes such as activation, proliferation and apoptosis. Our growing understanding of the underlying mechanisms of lymphomagenesis provides opportunities for early detection, prevention and tailored treatment of lymphoma development.
Collapse
Affiliation(s)
- P Martijn Kolijn
- Laboratory Medical Immunology, Department of Immunology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Anton W Langerak
- Laboratory Medical Immunology, Department of Immunology, Erasmus Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
6
|
Kaulen LD, Denisova E, Hinz F, Hai L, Friedel D, Henegariu O, Hoffmann DC, Ito J, Kourtesakis A, Lehnert P, Doubrovinskaia S, Karschnia P, von Baumgarten L, Kessler T, Baehring JM, Brors B, Sahm F, Wick W. Integrated genetic analyses of immunodeficiency-associated Epstein-Barr virus- (EBV) positive primary CNS lymphomas. Acta Neuropathol 2023; 146:499-514. [PMID: 37495858 PMCID: PMC10412493 DOI: 10.1007/s00401-023-02613-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/28/2023]
Abstract
Immunodeficiency-associated primary CNS lymphoma (PCNSL) represents a distinct clinicopathological entity, which is typically Epstein-Barr virus-positive (EBV+) and carries an inferior prognosis. Genetic alterations that characterize EBV-related CNS lymphomagenesis remain unclear precluding molecular classification and targeted therapies. In this study, a comprehensive genetic analysis of 22 EBV+ PCNSL, therefore, integrated clinical and pathological information with exome and RNA sequencing (RNASeq) data. EBV+ PCNSL with germline controls carried a median of 55 protein-coding single nucleotide variants (SNVs; range 24-217) and 2 insertions/deletions (range 0-22). Genetic landscape was largely shaped by aberrant somatic hypermutation with a median of 41.01% (range 31.79-53.49%) of SNVs mapping to its target motifs. Tumors lacked established SNVs (MYD88, CD79B, PIM1) and copy number variants (CDKN2A, HLA loss) driving EBV- PCNSL. Instead, EBV+ PCNSL were characterized by SOCS1 mutations (26%), predicted to disinhibit JAK/STAT signaling, and mutually exclusive gain-of-function NOTCH pathway SNVs (26%). Copy number gains were enriched on 11q23.3, a locus directly targeted for chromosomal aberrations by EBV, that includes SIK3 known to protect from cytotoxic T-cell responses. Losses covered 5q31.2 (STING), critical for sensing viral DNA, and 17q11 (NF1). Unsupervised clustering of RNASeq data revealed two distinct transcriptional groups, that shared strong expression of CD70 and IL1R2, previously linked to tolerogenic tumor microenvironments. Correspondingly, deconvolution of bulk RNASeq data revealed elevated M2-macrophage, T-regulatory cell, mast cell and monocyte fractions in EBV+ PCNSL. In addition to novel insights into the pathobiology of EBV+ PCNSL, the data provide the rationale for the exploration of targeted therapies including JAK-, NOTCH- and CD70-directed approaches.
Collapse
Affiliation(s)
- Leon D Kaulen
- Department of Neurology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany.
- Clinical Cooperation Unit (CCU) Neuro-Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
| | - Evgeniya Denisova
- Division of Applied Bioinformatics, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Felix Hinz
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit (CCU) Neuropathology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Ling Hai
- Clinical Cooperation Unit (CCU) Neuro-Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Dennis Friedel
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Octavian Henegariu
- Department of Neurosurgery, Yale School of Medicine, New Haven, USA
- Department of Genetics, Yale School of Medicine, New Haven, USA
| | - Dirk C Hoffmann
- Department of Neurology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
- Clinical Cooperation Unit (CCU) Neuro-Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Jakob Ito
- Clinical Cooperation Unit (CCU) Neuro-Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Alexandros Kourtesakis
- Clinical Cooperation Unit (CCU) Neuro-Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Pascal Lehnert
- Clinical Cooperation Unit (CCU) Neuro-Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Sofia Doubrovinskaia
- Department of Neurology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Philipp Karschnia
- Department of Neurosurgery, Munich University Hospital, Ludwig Maximilians University (LMU) Munich, and German Cancer Consortium (DKTK) Partner Site, Munich, Germany
| | - Louisa von Baumgarten
- Department of Neurosurgery, Munich University Hospital, Ludwig Maximilians University (LMU) Munich, and German Cancer Consortium (DKTK) Partner Site, Munich, Germany
| | - Tobias Kessler
- Department of Neurology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
- Clinical Cooperation Unit (CCU) Neuro-Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Joachim M Baehring
- Department of Neurosurgery, Yale School of Medicine, New Haven, USA
- Department of Neurology, Yale School of Medicine, New Haven, USA
| | - Benedikt Brors
- Division of Applied Bioinformatics, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany.
- Clinical Cooperation Unit (CCU) Neuropathology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany.
| | - Wolfgang Wick
- Department of Neurology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany.
- Clinical Cooperation Unit (CCU) Neuro-Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
| |
Collapse
|
7
|
Thakur A, Kumar M. Integration of Human and Viral miRNAs in Epstein-Barr Virus-Associated Tumors and Implications for Drug Repurposing. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2023; 27:93-108. [PMID: 36927073 DOI: 10.1089/omi.2023.0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Epstein-Barr virus (EBV) is associated with several tumors, and has substantial relevance for public health. Therapeutics innovation for EBV-related disorders is much needed. In this context, miRNAs are noncoding RNA molecules that play vital roles in EBV infection. miRNA-Seq and RNA-Seq data for EBV-associated clinical samples and cell lines have been generated, but their detailed integrative analyses, and exploitation for drug repurposing against EBV are lacking. Hence, we identified and analyzed the differentially expressed miRNAs (DEmiRs) in EBV-infected cell lines (28) and infected (28) and uninfected human tissue (20) samples using an in-house pipeline. We found significantly enriched host miRNAs like hsa-mir-3651, hsa-mir-1248, and hsa-mir-29c-3p in EBV-infected samples from EBV-associated nasopharyngeal carcinoma and Hodgkin's lymphoma, among others. Furthermore, we also identified significantly enriched novel miRNAs such as hsa-mir-29c-3p, hsa-mir-3651, and hsa-mir-98-3p, which were not previously reported in EBV-related tumors. Differentially expressed mRNAs (DEMs) were identified in EBV-infected cell lines (21) and uninfected human tissue (14) samples. We predicted and selected 1572 DEMs (upregulated) that are targeted by 547 DEmiRs (downregulated). These were further classified into essential (870) and nonessential (702) genes. Moreover, a miRNA-mRNA network was developed for the hub miRNAs. Importantly, we used the DEMs during EBV latent infection types I, II, and III to identify the candidate drugs for repurposing: Glyburide, Levodopa, Nateglinide, and Stiripentol, among others. To the best of our knowledge, this is the first integrative analyses that identified DEmiRs and DEMs as potential therapeutic targets and predicted drugs as potential candidates for repurposing against EBV-related tumors.
Collapse
Affiliation(s)
- Anamika Thakur
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Manoj Kumar
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
8
|
Thieme CJ, Schulz M, Wehler P, Anft M, Amini L, Blàzquez-Navarro A, Stervbo U, Hecht J, Nienen M, Stittrich AB, Choi M, Zgoura P, Viebahn R, Schmueck-Henneresse M, Reinke P, Westhoff TH, Roch T, Babel N. In vitro and in vivo evidence that the switch from calcineurin to mTOR inhibitors may be a strategy for immunosuppression in Epstein-Barr virus-associated post-transplant lymphoproliferative disorder. Kidney Int 2022; 102:1392-1408. [PMID: 36103953 DOI: 10.1016/j.kint.2022.08.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/02/2022] [Accepted: 08/12/2022] [Indexed: 01/12/2023]
Abstract
Post-transplant lymphoproliferative disorder is a life-threatening complication of immunosuppression following transplantation mediated by failure of T cells to control Epstein-Barr virus (EBV)-infected and transformed B cells. Typically, a modification or reduction of immunosuppression is recommended, but insufficiently defined thus far. In order to help delineate this, we characterized EBV-antigen-specific T cells and lymphoblastoid cell lines from healthy donors and in patients with a kidney transplant in the absence or presence of the standard immunosuppressants tacrolimus, cyclosporin A, prednisolone, rapamycin, and mycophenolic acid. Phenotypes of lymphoblastoid cell-lines and T cells, T cell-receptor-repertoire diversity, and T-cell reactivity upon co-culture with autologous lymphoblastoid cell lines were analyzed. Rapamycin and mycophenolic acid inhibited lymphoblastoid cell-line proliferation. T cells treated with prednisolone and rapamycin showed nearly normal cytokine production. Proliferation and the viability of T cells were decreased by mycophenolic acid, while tacrolimus and cyclosporin A were strong suppressors of T-cell function including their killing activity. Overall, our study provides a basis for the clinical decision for the modification and reduction of immunosuppression and adds information to the complex balance of maintaining anti-viral immunity while preventing acute rejection. Thus, an immunosuppressive regime based on mTOR inhibition and reduced or withdrawn calcineurin inhibitors could be a promising strategy for patients with increased risk of or manifested EBV-associated post-transplant lymphoproliferative disorder.
Collapse
Affiliation(s)
- Constantin J Thieme
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Malissa Schulz
- Hochschule für Technik und Wirtschaft Berlin (HTW), Berlin, Germany
| | - Patrizia Wehler
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Moritz Anft
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, Ruhr-University Bochum, Herne, Germany
| | - Leila Amini
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Arturo Blàzquez-Navarro
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, Ruhr-University Bochum, Herne, Germany
| | - Ulrik Stervbo
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, Ruhr-University Bochum, Herne, Germany
| | - Jochen Hecht
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain; Experimental and Health Sciences Department, Universitat Pompeu Fabra, Barcelona, Spain
| | - Mikalai Nienen
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Mira Choi
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Panagiota Zgoura
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, Ruhr-University Bochum, Herne, Germany
| | - Richard Viebahn
- Department of Surgery, University Hospital Knappschaftskrankenhaus Bochum, Ruhr-University Bochum, Bochum, Germany
| | - Michael Schmueck-Henneresse
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Petra Reinke
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Timm H Westhoff
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, Ruhr-University Bochum, Herne, Germany
| | - Toralf Roch
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, Ruhr-University Bochum, Herne, Germany
| | - Nina Babel
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, Ruhr-University Bochum, Herne, Germany.
| |
Collapse
|
9
|
Sen A, Enriquez J, Rao M, Glass M, Balachandran Y, Syed S, Twist CJ, Weinberg K, Boyd SD, Bernstein D, Trickey AW, Gratzinger D, Tan B, Lapasaran MG, Robien MA, Brown M, Armstrong B, Desai D, Mazariegos G, Chin C, Fishbein TM, Venick RS, Tekin A, Zimmermann H, Trappe RU, Anagnostopoulos I, Esquivel CO, Martinez OM, Krams SM. Host microRNAs are decreased in pediatric solid-organ transplant recipients during EBV+ Post-transplant Lymphoproliferative Disorder. Front Immunol 2022; 13:994552. [PMID: 36304469 PMCID: PMC9595046 DOI: 10.3389/fimmu.2022.994552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Post-transplant lymphoproliferative disorder (PTLD) is a serious complication of solid organ transplantation. Predisposing factors include primary Epstein-Barr virus (EBV) infection, reactivation of EBV in recipient B cells, and decreased T cell immunity due to immunosuppression. In our previous studies EBV infection was demonstrated to markedly alter the expression of host B cell microRNA (miR). Specifically, miR-194 expression was uniquely suppressed in EBV+ B cell lines from PTLD patients and the 3’untranslated region of IL-10 was determined to be targeted by miR-194. Although EBV has been shown to regulate host miR expression in B cell lymphoma cell lines, the expression of miRs in the circulation of patients with EBV-associated PTLD has not been studied. The objective of this study was to determine if changes in miR expression are associated with EBV+ PTLD. In this study, we have shown that miR-194 is significantly decreased in EBV+PTLD tumors and that additional miRs, including miRs-17, 19 and 106a are also reduced in EBV+PTLD as compared to EBV-PTLD. We quantitated the levels of miRs-17, 19, 106a, 155, and 194 in the plasma and extracellular vesicles (EV; 50-70 nm as determined by nanoparticle tracking analysis) from pediatric recipients of solid organ transplants with EBV+ PTLD+ that were matched 1:2 with EBV+ PTLD- pediatric transplant recipients as part of the NIH-sponsored Clinical Trials in Organ Transplantation in Children, (CTOTC-06) study. Levels of miRs-17, 19, 106a, and 194 were reduced in the plasma and extracellular vesicles (EV) of EBV+ PTLD+ group compared to matched controls, with miRs-17 (p = 0.034; plasma), miRs-19 (p = 0.029; EV) and miR-106a (p = 0.007; plasma and EV) being significantly reduced. Similar levels of miR-155 were detected in the plasma and EV of all pediatric SOT recipients. Importantly, ~90% of the cell-free miR were contained within the EV supporting that EBV+ PTLD tumor miR are detected in the circulation and suggesting that EVs, containing miRs, may have the potential to target and regulate cells of the immune system. Further development of diagnostic, mechanistic and potential therapeutic uses of the miRs in PTLD is warranted.
Collapse
Affiliation(s)
- Ayantika Sen
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Jeanna Enriquez
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Mahil Rao
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Marla Glass
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Yarl Balachandran
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Sharjeel Syed
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Clare J. Twist
- Department of Pediatric Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Kenneth Weinberg
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Scott D. Boyd
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Daniel Bernstein
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Amber W. Trickey
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Dita Gratzinger
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Brent Tan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Mary Gay Lapasaran
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Mark A. Robien
- Division of Allergy Immunity Transplantation, National Institute of Allergy and Infectious Diseases, Rockville, MD, United States
| | - Merideth Brown
- Division of Allergy Immunity Transplantation, National Institute of Allergy and Infectious Diseases, Rockville, MD, United States
| | - Brian Armstrong
- Rho Federal Systems Division, Rho, Durham, NC, United States
| | - Dev Desai
- Division of Surgical Transplantation, University of Texas (UT) Southwestern Medical Center, Dallas, TX, United States
| | - George Mazariegos
- Department of Pediatrics, University of Pittsburgh Medical Center (UPMC) Children’s Hospital, Pittsburgh, PA, United States
| | - Clifford Chin
- Department of Pediatrics and Cincinnati Children’s Hospital, University of Cincinnati, Cincinnati, OH, United States
| | - Thomas M. Fishbein
- Departments of Surgery and Pediatrics, MedStar Georgetown University Hospital, Washington, DC, United States
| | - Robert S. Venick
- Department of Pediatric Gastroenterology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Akin Tekin
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Heiner Zimmermann
- Department of Internal Medicine II: Hematology and Oncology, DIAKO Ev. Diakoniekrankenhaus, Bremen, Germany
| | - Ralf U. Trappe
- Department of Internal Medicine II: Hematology and Oncology, DIAKO Ev. Diakoniekrankenhaus, Bremen, Germany
- Department of Internal Medicine II: Hematology and Oncology , University Medical Center Schleswig-Holstein, Kiel, Germany
- Department of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Carlos O. Esquivel
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Olivia M. Martinez
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Sheri M. Krams
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
- *Correspondence: Sheri M. Krams,
| |
Collapse
|
10
|
Lupo J, Wielandts AS, Buisson M, Consortium CRYOSTEM, Habib M, Hamoudi M, Morand P, Verduyn-Lunel F, Caillard S, Drouet E. High Predictive Value of the Soluble ZEBRA Antigen (Epstein-Barr Virus Trans-Activator Zta) in Transplant Patients with PTLD. Pathogens 2022; 11:pathogens11080928. [PMID: 36015048 PMCID: PMC9413454 DOI: 10.3390/pathogens11080928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
The ZEBRA (Z EBV replication activator) protein is the major transcription factor of EBV, expressed upon EBV lytic cycle activation. An increasing body of studies have highlighted the critical role of EBV lytic infection as a risk factor for lymphoproliferative disorders, such as post-transplant lymphoproliferative disease (PTLD). We studied 108 transplanted patients (17 PTLD and 91 controls), retrospectively selected from different hospitals in France and in the Netherlands. The majority of PTLD were EBV-positive diffuse large B-cell lymphomas, five patients experienced atypical PTLD forms (EBV-negative lymphomas, Hodgkin’s lymphomas, and T-cell lymphomas). Fourteen patients among the seventeen who developed a pathologically confirmed PTLD were sZEBRA positive (soluble ZEBRA, plasma level above 20 ng/mL, measured by an ELISA test). The specificity and positive predictive value (PPV) of the sZEBRA detection in plasma were 98% and 85%, respectively. Considering a positivity threshold of 20 ng/mL, the sensitivity of the sZEBRA was 82.35% and the specificity was 94.51%. The mean of the sZEBRA values in the PTLD cases were significantly higher than in the controls (p < 0.0001). The relevance of the lytic cycle and, particularly, the role of ZEBRA in lymphomagenesis is a new paradigm pertaining to the prevention and treatment strategies for PTLD. Given the high-specificity and the predictive values of this test, it now appears relevant to investigate the lytic EBV infection in transplanted patients as a prognostic biomarker.
Collapse
Affiliation(s)
- Julien Lupo
- Institut de Biologie Structurale, Université Grenoble-Alpes, 38000 Grenoble, France
- Laboratoire de Virologie, Institut de Biologie-Pathologie, Centre Hospitalier Universitaire Grenoble Alpes, 38000 Grenoble, France
| | - Anne-Sophie Wielandts
- Laboratoire de Virologie, Institut de Biologie-Pathologie, Centre Hospitalier Universitaire Grenoble Alpes, 38000 Grenoble, France
| | - Marlyse Buisson
- Institut de Biologie Structurale, Université Grenoble-Alpes, 38000 Grenoble, France
- Laboratoire de Virologie, Institut de Biologie-Pathologie, Centre Hospitalier Universitaire Grenoble Alpes, 38000 Grenoble, France
| | - CRYOSTEM Consortium
- CRYOSTEM Consortium: Marseille Innovation—Hôtel Technologique, 13382 Marseille, France
| | - Mohammed Habib
- Laboratoire de Virologie, Institut de Biologie-Pathologie, Centre Hospitalier Universitaire Grenoble Alpes, 38000 Grenoble, France
| | - Marwan Hamoudi
- Institut de Biologie Structurale, Université Grenoble-Alpes, 38000 Grenoble, France
| | - Patrice Morand
- Institut de Biologie Structurale, Université Grenoble-Alpes, 38000 Grenoble, France
- Laboratoire de Virologie, Institut de Biologie-Pathologie, Centre Hospitalier Universitaire Grenoble Alpes, 38000 Grenoble, France
| | | | - Sophie Caillard
- Département de Néphrologie et de Transplantation Centre, Hospitalier Universitaire de Strasbourg, 67091 Strasbourg, France
| | - Emmanuel Drouet
- Institut de Biologie Structurale, Université Grenoble-Alpes, 38000 Grenoble, France
- Correspondence:
| |
Collapse
|
11
|
Asleh R, Alnsasra H, Habermann TM, Briasoulis A, Kushwaha SS. Post-transplant Lymphoproliferative Disorder Following Cardiac Transplantation. Front Cardiovasc Med 2022; 9:787975. [PMID: 35282339 PMCID: PMC8904724 DOI: 10.3389/fcvm.2022.787975] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/01/2022] [Indexed: 11/24/2022] Open
Abstract
Post-transplant lymphoproliferative disorder (PTLD) is a spectrum of lymphoid conditions frequently associated with the Epstein Barr Virus (EBV) and the use of potent immunosuppressive drugs after solid organ transplantation. PTLD remains a major cause of long-term morbidity and mortality following heart transplantation (HT). Epstein-Barr virus (EBV) is a key pathogenic driver in many PTLD cases. In the majority of PTLD cases, the proliferating immune cell is the B-cell, and the impaired T-cell immune surveillance against infected B cells in immunosuppressed transplant patients plays a key role in the pathogenesis of EBV-positive PTLD. Preventive screening strategies have been attempted for PTLD including limiting patient exposure to aggressive immunosuppressive regimens by tailoring or minimizing immunosuppression while preserving graft function, anti-viral prophylaxis, routine EBV monitoring, and avoidance of EBV seromismatch. Our group has also demonstrated that conversion from calcineurin inhibitor to the mammalian target of rapamycin (mTOR) inhibitor, sirolimus, as a primary immunosuppression was associated with a decreased risk of PTLD following HT. The main therapeutic measures consist of immunosuppression reduction, treatment with rituximab and use of immunochemotherapy regimens. The purpose of this article is to review the potential mechanisms underlying PTLD pathogenesis, discuss recent advances, and review potential therapeutic targets to decrease the burden of PTLD after HT.
Collapse
Affiliation(s)
- Rabea Asleh
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States
- Heart Institute, Hadassah University Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hilmi Alnsasra
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States
- Soroka University Medical Center, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Thomas M. Habermann
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Alexandros Briasoulis
- Division of Cardiovascular Disease, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Sudhir S. Kushwaha
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States
- *Correspondence: Sudhir S. Kushwaha
| |
Collapse
|
12
|
Law SC, Hoang T, O'Rourke K, Tobin JWD, Gunawardana J, Loo-Oey D, Bednarska K, Merida de Long L, Sabdia MB, Hapgood G, Blyth E, Clancy L, Hennig S, Keane C, Gandhi MK. Successful treatment of Epstein-Barr virus-associated primary central nervous system lymphoma due to post-transplantation lymphoproliferative disorder, with ibrutinib and third-party Epstein-Barr virus-specific T cells. Am J Transplant 2021; 21:3465-3471. [PMID: 33942495 DOI: 10.1111/ajt.16628] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/30/2021] [Accepted: 04/23/2021] [Indexed: 01/25/2023]
Abstract
Primary central nervous system lymphoma (PCNSL) occurring following organ transplantation (post-transplantation lymphoproliferative disorder [PTLD]) is a highly aggressive non-Hodgkin lymphoma. It is typically treated with high-dose methotrexate-based regimens. Outcomes are dismal and clinical trials are lacking. It is almost always Epstein-Barr virus (EBV) associated. Two patients (CA1-2) presented with EBV-associated PCNSL after renal transplant. CA1 was on hemodialysis and had prior disseminated cryptococcus and pseudomonas bronchiectasis, precluding treatment with methotrexate. CA2 was refractory to methotrexate. Both were treated off-label with the first-generation Bruton's tyrosine kinase inhibitor ibrutinib for 12 months. Cerebrospinal fluid penetration at therapeutic levels was confirmed in CA1 despite hemodialysis. Both patients entered remission by 2 months. Sequencing confirmed absence of genetic aberrations in human leukocyte antigen (HLA) class I/II and antigen-presentation/processing genes, indicating retention of the ability to present EBV-antigens. Between Weeks 10 and 13, they received third-party EBV-specific T cells for consolidation with no adverse effects. They remain in remission ≥34 months since therapy began. The strength of these findings led to an ongoing phase I study (ACTRN12618001541291).
Collapse
Affiliation(s)
- Soi C Law
- Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Thanh Hoang
- Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia.,Hue University of Medicine and Pharmacy, Hue, Vietnam
| | - Kacey O'Rourke
- Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Joshua W D Tobin
- Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Jay Gunawardana
- Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Dorothy Loo-Oey
- Proteomics Core Facility, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Karolina Bednarska
- Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Lilia Merida de Long
- Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Muhammed B Sabdia
- Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Greg Hapgood
- Haematology, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Emily Blyth
- Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Leighton Clancy
- Cellular Therapies, NSW Government Health Pathology, Westmead, NSW, Australia
| | - Stefanie Hennig
- Certara Inc., Princeton, New Jersey.,School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia.,Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Colm Keane
- Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia.,Haematology, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Maher K Gandhi
- Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia.,Haematology, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| |
Collapse
|
13
|
EBV-associated primary CNS lymphoma occurring after immunosuppression is a distinct immunobiological entity. Blood 2021; 137:1468-1477. [PMID: 33202420 DOI: 10.1182/blood.2020008520] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/08/2020] [Indexed: 02/07/2023] Open
Abstract
Primary central nervous system lymphoma (PCNSL) is confined to the brain, eyes, and cerebrospinal fluid without evidence of systemic spread. Rarely, PCNSL occurs in the context of immunosuppression (eg, posttransplant lymphoproliferative disorders or HIV [AIDS-related PCNSL]). These cases are poorly characterized, have dismal outcome, and are typically Epstein-Barr virus (EBV)-associated (ie, tissue-positive). We used targeted sequencing and digital multiplex gene expression to compare the genetic landscape and tumor microenvironment (TME) of 91 PCNSL tissues all with diffuse large B-cell lymphoma histology. Forty-seven were EBV tissue-negative: 45 EBV- HIV- PCNSL and 2 EBV- HIV+ PCNSL; and 44 were EBV tissue-positive: 23 EBV+ HIV+ PCNSL and 21 EBV+ HIV- PCNSL. As with prior studies, EBV- HIV- PCNSL had frequent MYD88, CD79B, and PIM1 mutations, and enrichment for the activated B-cell (ABC) cell-of-origin subtype. In contrast, these mutations were absent in all EBV tissue-positive cases and ABC frequency was low. Furthermore, copy number loss in HLA class I/II and antigen-presenting/processing genes were rarely observed, indicating retained antigen presentation. To counter this, EBV+ HIV- PCNSL had a tolerogenic TME with elevated macrophage and immune-checkpoint gene expression, whereas AIDS-related PCNSL had low CD4 gene counts. EBV-associated PCNSL in the immunosuppressed is immunobiologically distinct from EBV- HIV- PCNSL, and, despite expressing an immunogenic virus, retains the ability to present EBV antigens. Results provide a framework for targeted treatment.
Collapse
|
14
|
Nakid-Cordero C, Choquet S, Gauthier N, Balegroune N, Tarantino N, Morel V, Arzouk N, Burrel S, Rousseau G, Charlotte F, Larsen M, Vieillard V, Autran B, Leblond V, Guihot A. Distinct immunopathological mechanisms of EBV-positive and EBV-negative posttransplant lymphoproliferative disorders. Am J Transplant 2021; 21:2846-2863. [PMID: 33621411 DOI: 10.1111/ajt.16547] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/29/2021] [Accepted: 02/15/2021] [Indexed: 01/25/2023]
Abstract
EBV-positive and EBV-negative posttransplant lymphoproliferative disorders (PTLDs) arise in different immunovirological contexts and might have distinct pathophysiologies. To examine this hypothesis, we conducted a multicentric prospective study with 56 EBV-positive and 39 EBV-negative PTLD patients of the K-VIROGREF cohort, recruited at PTLD diagnosis and before treatment (2013-2019), and compared them to PTLD-free Transplant Controls (TC, n = 21). We measured absolute lymphocyte counts (n = 108), analyzed NK- and T cell phenotypes (n = 49 and 94), and performed EBV-specific functional assays (n = 16 and 42) by multiparameter flow cytometry and ELISpot-IFNγ assays (n = 50). EBV-negative PTLD patients, NK cells overexpressed Tim-3; the 2-year progression-free survival (PFS) was poorer in patients with a CD4 lymphopenia (CD4+ <300 cells/mm3 , p < .001). EBV-positive PTLD patients presented a profound NK-cell lymphopenia (median = 60 cells/mm3 ) and a high proportion of NK cells expressing PD-1 (vs. TC, p = .029) and apoptosis markers (vs. TC, p < .001). EBV-specific T cells of EBV-positive PTLD patients circulated in low proportions, showed immune exhaustion (p = .013 vs. TC) and poorly recognized the N-terminal portion of EBNA-3A viral protein. Altogether, this broad comparison of EBV-positive and EBV-negative PTLDs highlight distinct patterns of immunopathological mechanisms between these two diseases and provide new clues for immunotherapeutic strategies and PTLD prognosis.
Collapse
Affiliation(s)
- Cecilia Nakid-Cordero
- Sorbonne Université (Univ. Paris 06), INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, Paris, France
| | - Sylvain Choquet
- Service d'Hématologie, Hôpital Pitié-Salpêtrière, Paris, France
| | - Nicolas Gauthier
- Sorbonne Université (Univ. Paris 06), INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, Paris, France
| | | | - Nadine Tarantino
- Sorbonne Université (Univ. Paris 06), INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, Paris, France.,CNRS ERL8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Véronique Morel
- Service d'Hématologie, Hôpital Pitié-Salpêtrière, Paris, France
| | - Nadia Arzouk
- Service de Néphrologie, Urologie et Transplantation Rénale, Hôpital Pitié-Salpêtrière, Paris, France
| | - Sonia Burrel
- Service de Virologie, Hôpital Pitié-Salpêtrière, Paris, France
| | - Géraldine Rousseau
- Service de Chirurgie Digestive, Hépato-Bilio-pancréatique et Transplantation Hépatique, Hôpital Pitié-Salpêtrière, Paris, France
| | | | - Martin Larsen
- Sorbonne Université (Univ. Paris 06), INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, Paris, France.,CNRS ERL8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Vincent Vieillard
- Sorbonne Université (Univ. Paris 06), INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, Paris, France.,CNRS ERL8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Brigitte Autran
- Sorbonne Université (Univ. Paris 06), INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, Paris, France
| | | | - Amélie Guihot
- Sorbonne Université (Univ. Paris 06), INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, Paris, France.,Département d'Immunologie, Assistance Publique-Hôpitaux de Paris (AP-HP), Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | | |
Collapse
|
15
|
Kimura H, Okuno Y, Sato Y, Watanabe T, Murata T. Deletion of Viral microRNAs in the Oncogenesis of Epstein-Barr Virus-Associated Lymphoma. Front Microbiol 2021; 12:667968. [PMID: 34305835 PMCID: PMC8297563 DOI: 10.3389/fmicb.2021.667968] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/08/2021] [Indexed: 12/26/2022] Open
Abstract
Epstein–Barr virus (EBV), which encodes >80 genes and nearly 50 non-coding RNAs, is a double-stranded DNA virus. EBV is associated with various types of lymphomas and lymphoproliferative disorders not only of B-cell but also T/NK-cell origin. However, the oncogenic mechanism remains poorly understood, including the EBV receptors expressed on T/NK cells, relationship of EBV with host genes, and epigenetic regulation of EBV and host genes. The roles of host and viral non-coding RNAs during tumorigenesis have been elucidated. EBV encodes at least 49 mature microRNAs (miRNAs), of which 44 are located in BamHI-A rightward transcripts (BARTs) region, and the remaining five are located in BamHI-H rightward fragment 1. BART miRNAs modulate cell differentiation, proliferation, apoptosis, and the cell cycle, and they are considered positive regulators of oncogenesis. We and others have recently reported that EBV-positive lymphomas frequently possess large deletions in BART miRNA clusters, suggesting that some viral miRNAs have suppressive effects on oncogenesis, and that deletion of these miRNAs may aid lymphoma formation.
Collapse
Affiliation(s)
- Hiroshi Kimura
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yusuke Okuno
- Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | - Yoshitaka Sato
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Takahiro Watanabe
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takayuki Murata
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Japan
| |
Collapse
|
16
|
Zimmermann H, Nitsche M, Pott C, Reinke P, Babel N, Hermann RM, Hauser IA, Hahn D, Ritgen M, Pietschmann C, Klapper W, Anagnostopoulos I, Trappe RU. Reduction of immunosuppression combined with whole-brain radiotherapy and concurrent systemic rituximab is an effective yet toxic treatment of primary central nervous system post-transplant lymphoproliferative disorder (pCNS-PTLD): 14 cases from the prospective German PTLD registry. Ann Hematol 2021; 100:2043-2050. [PMID: 33973053 DOI: 10.1007/s00277-021-04548-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/01/2021] [Indexed: 01/10/2023]
Abstract
Post-transplant lymphoproliferative disorders (PTLD) exclusively affecting the central nervous system-primary CNS-PTLD (pCNS-PTLD)-are rare. There is no standard therapy, and previous case series have included heterogeneous treatment approaches. We performed a retrospective, multi-centre analysis of 14 patients with pCNS-PTLD after solid organ transplantation (SOT) treated in the prospective German PTLD registry with reduction of immunosuppression (RI), whole-brain radiotherapy (WBRT), and concurrent systemic rituximab between 2001 and 2018. Twelve of fourteen patients were kidney transplant recipients and median age at diagnosis was 65 years. Thirteen of fourteen cases (93%) were monomorphic PTLD of the diffuse large B-cell lymphoma type, and 12/13 were EBV-associated. The median dose of WBRT administered was 40 Gy with a median fraction of 2 Gy. The median number of administered doses of rituximab (375 mg/m2) IV was four. All ten patients evaluated responded to treatment (100%). Median OS was 2.5 years with a 2-year Kaplan-Meier estimate of 63% (95% confidence interval 30-83%) without any recorded relapses after a median follow-up of 2.6 years. Seven of fourteen patients (50%) suffered grade III/IV infections under therapy (fatal in two cases, 14%). During follow-up, imaging demonstrated grey matter changes interpreted as radiation toxicity in 7/10 evaluated patients (70%). The combination of RI, WBRT, and rituximab was an effective yet toxic treatment of pCNS-PTLD in this series of 14 patients. Future treatment approaches in pCNS-PTLD should take into account the significant risk of infections as well as radiation-induced neurotoxicity.
Collapse
Affiliation(s)
- Heiner Zimmermann
- Department of Haematology and Oncology, DIAKO Ev. Diakonie-Krankenhaus Bremen, Gröpelinger Heerstr. 406-408, 28239, Bremen, Germany
| | | | - Christiane Pott
- Department of Internal Medicine II: Haematology and Oncology, University Medical Centre Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Petra Reinke
- Department of Nephrology and Intensive Care, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Nina Babel
- Center for Translational Medicine and Department of Internal Medicine I, Marien Hospital Herne, Ruhr-University Bochum University Hospital, Herne, Germany
| | - Robert M Hermann
- Center of Radiotherapy, Bremen, Germany
- Department of Radiotherapy and Special Oncology, Hannover Medical School, Hannover, Germany
| | - Ingeborg A Hauser
- Department of Nephrology, UKF, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Dennis Hahn
- Department of Haematology, Oncology and Palliative Care, Katharinen hospital, Stuttgart, Germany
| | - Matthias Ritgen
- Department of Internal Medicine II: Haematology and Oncology, University Medical Centre Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | | | - Wolfram Klapper
- Department of Haematopathology, University Medical Centre Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | | | - Ralf U Trappe
- Department of Haematology and Oncology, DIAKO Ev. Diakonie-Krankenhaus Bremen, Gröpelinger Heerstr. 406-408, 28239, Bremen, Germany.
- Department of Internal Medicine II: Haematology and Oncology, University Medical Centre Schleswig-Holstein, Campus Kiel, Kiel, Germany.
- Department of Haematology and Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
17
|
Soltani S, Zakeri A, Tabibzadeh A, Zakeri AM, Zandi M, Siavoshi S, Seifpour S, Farahani A. A review on EBV encoded and EBV-induced host microRNAs expression profile in different lymphoma types. Mol Biol Rep 2021; 48:1801-1817. [PMID: 33523370 DOI: 10.1007/s11033-021-06152-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/12/2021] [Indexed: 01/10/2023]
Abstract
Previous literature supports the variations in microRNAs expression levels among lymphoma patients due to EBV infection. These alterations can be observed in both EBV-encoded-microRNAs and EBV-induced cellular microRNAs. Moreover, changes in the microRNA profile could be significant in disease progression. This study aimed to assess published literature to obtain a microRNA profile for both EBV-encoded microRNAs and EBV-induced cellular microRNAs among lymphoma patients. We searched common available electronic databases by using relevant keywords. The result demonstrated that EBV infection could alter the microRNA expression levels among lymphoma patients. In Burkitt lymphoma, hsa-miR197 and miR510 were most frequently assessed human micro RNAs. Also, miR-BART6-3P and miR-BART17-5P were the most frequent viral micro RNAs in Burkitt lymphoma. Other human important micro RNAs were hsa-miR155 (in Diffuse large B cell lymphoma (DLBCL)), hsa-miR145 (in Nasal natural killer T cell lymphoma (NNKTCL)), miR-96, miR-128a, miR-128b, miR-129, and miR-205 (in Classic Hodgkin lymphoma (CHL)), miR-21, miR-142-3P, miR-126, miR-451 and miR-494-3P (in Nasal natural killer cell lymphoma (NNKCL)). Also, viral assessed micro RNAs were miR-BART1-5P (in DLBCL and NNKTCL), miR-BART-5 (in CHL), and EBV-miR-BART20-5P (in NNKCL). In conclusion, it could be suggested that EBV-encoded-microRNAs and EBV-induced cellular-microRNAs can be utilized as helpful factors for different types of lymphoma diagnoses or prognostic factors. Moreover, the mentioned microRNAs can also be promising therapeutic targets and can be used to modulate the oncogenes.
Collapse
Affiliation(s)
- Saber Soltani
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Armin Zakeri
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Alireza Tabibzadeh
- Department of Virology, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Mohammad Zakeri
- Pediatric Surgery Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Milad Zandi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Saba Siavoshi
- Razi Vaccine and Serum Research Institute, Karaj, Iran
| | - Saba Seifpour
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abbas Farahani
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| |
Collapse
|
18
|
Leeaphorn N, Thongprayoon C, Chewcharat A, Hansrivijit P, Jadlowiec CC, Cummings LS, Katari S, Mao SA, Mao MA, Cheungpasitporn W. Outcomes of kidney retransplantation in recipients with prior posttransplant lymphoproliferative disorders: An analysis of the 2000-2019 UNOS/OPTN database. Am J Transplant 2021; 21:846-853. [PMID: 33128832 DOI: 10.1111/ajt.16385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/13/2020] [Accepted: 10/25/2020] [Indexed: 01/25/2023]
Abstract
This study utilized the UNOS database to assess clinical outcomes after kidney retransplantation in patients with a history of posttransplant lymphoproliferative disease (PTLD). Among second kidney transplant patients from 2000 to 2019, 254 had history of PTLD in their first kidney transplant, whereas 28,113 did not. After a second kidney transplant, PTLD occurred in 2.8% and 0.8% of patients with and without history of PTLD, respectively (p = .001). Over a median follow-up time of 4.5 years after a second kidney transplant, 5-year death-censored graft failure was 9.5% vs. 12.6% (p = .21), all-cause mortality was 8.3% vs. 11.8% (p = .51), and 1-year acute rejection was 11.0% vs. 9.3% (p = .36) in the PTLD vs. non-PTLD groups, respectively. There was no significant difference in death-censored graft failure, mortality, and acute rejection between PTLD and non-PTLD groups in adjusted analysis and after propensity score matching. We conclude that graft survival, patient survival, and acute rejection after kidney retransplantation are comparable between patients with and without history of PTLD, but PTLD occurrence after kidney retransplantation remains higher in patients with history of PTLD.
Collapse
Affiliation(s)
- Napat Leeaphorn
- Renal Transplant Program, University of Missouri-Kansas City School of Medicine/Saint Luke's Health System, Kansas City, Missouri
| | - Charat Thongprayoon
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Api Chewcharat
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Panupong Hansrivijit
- Department of Internal Medicine, University of Pittsburgh Medical Center Pinnacle, Harrisburg, Pennsylvania
| | | | - Lee S Cummings
- Renal Transplant Program, University of Missouri-Kansas City School of Medicine/Saint Luke's Health System, Kansas City, Missouri
| | - Sreelatha Katari
- Renal Transplant Program, University of Missouri-Kansas City School of Medicine/Saint Luke's Health System, Kansas City, Missouri
| | - Shennen A Mao
- Division of Transplant Surgery, Mayo Clinic, Jacksonville, Florida
| | - Michael A Mao
- Division of Nephrology and Hypertension, Mayo Clinic, Jacksonville, Florida
| | - Wisit Cheungpasitporn
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
19
|
Biomarkers for PTLD diagnosis and therapies. Pediatr Nephrol 2020; 35:1173-1181. [PMID: 31240394 DOI: 10.1007/s00467-019-04284-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/14/2019] [Accepted: 05/31/2019] [Indexed: 02/08/2023]
Abstract
Post-transplant lymphoproliferative disorder (PTLD) represents a spectrum of lymphoproliferative disorders and is a serious complication of pediatric transplantation. The majority of PTLD are associated with Epstein Barr virus (EBV) and the characteristic EBV+ B cell lymphomas are the leading post-transplant malignancy in children. EBV+ PTLD remains a formidable issue in pediatric transplantation and is thought to result from impaired immunity to EBV as a result of immunosuppression. However, the key viral and immune factors that determine whether EBV+ PTLD develops remain unknown. Recently, there has been much interest in developing biomarkers in order to improve and achieve more personalized approaches, in the clinical diagnosis, management, and treatment of EBV+ PTLD. Here, we review the status of immune-, viral-, and B cell lymphoma-derived candidates for biomarkers of EBV+ PTLD.
Collapse
|
20
|
Germini D, Sall FB, Shmakova A, Wiels J, Dokudovskaya S, Drouet E, Vassetzky Y. Oncogenic Properties of the EBV ZEBRA Protein. Cancers (Basel) 2020; 12:E1479. [PMID: 32517128 PMCID: PMC7352903 DOI: 10.3390/cancers12061479] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022] Open
Abstract
Epstein Barr Virus (EBV) is one of the most common human herpesviruses. After primary infection, it can persist in the host throughout their lifetime in a latent form, from which it can reactivate following specific stimuli. EBV reactivation is triggered by transcriptional transactivator proteins ZEBRA (also known as Z, EB-1, Zta or BZLF1) and RTA (also known as BRLF1). Here we discuss the structural and functional features of ZEBRA, its role in oncogenesis and its possible implication as a prognostic or diagnostic marker. Modulation of host gene expression by ZEBRA can deregulate the immune surveillance, allow the immune escape, and favor tumor progression. It also interacts with host proteins, thereby modifying their functions. ZEBRA is released into the bloodstream by infected cells and can potentially penetrate any cell through its cell-penetrating domain; therefore, it can also change the fate of non-infected cells. The features of ZEBRA described in this review outline its importance in EBV-related malignancies.
Collapse
Affiliation(s)
- Diego Germini
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, 94805 Villejuif, France; (D.G.); (F.B.S.); (A.S.); (J.W.); (S.D.)
| | - Fatimata Bintou Sall
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, 94805 Villejuif, France; (D.G.); (F.B.S.); (A.S.); (J.W.); (S.D.)
- Laboratory of Hematology, Aristide Le Dantec Hospital, Cheikh Anta Diop University, Dakar 12900, Senegal
| | - Anna Shmakova
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, 94805 Villejuif, France; (D.G.); (F.B.S.); (A.S.); (J.W.); (S.D.)
| | - Joëlle Wiels
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, 94805 Villejuif, France; (D.G.); (F.B.S.); (A.S.); (J.W.); (S.D.)
| | - Svetlana Dokudovskaya
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, 94805 Villejuif, France; (D.G.); (F.B.S.); (A.S.); (J.W.); (S.D.)
| | - Emmanuel Drouet
- CIBB-IBS UMR 5075 Université Grenoble Alpes, 38044 Grenoble, France;
| | - Yegor Vassetzky
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, 94805 Villejuif, France; (D.G.); (F.B.S.); (A.S.); (J.W.); (S.D.)
- Koltzov Institute of Developmental Biology, 117334 Moscow, Russia
| |
Collapse
|
21
|
miRNAs: EBV Mechanism for Escaping Host's Immune Response and Supporting Tumorigenesis. Pathogens 2020; 9:pathogens9050353. [PMID: 32397085 PMCID: PMC7281681 DOI: 10.3390/pathogens9050353] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/25/2020] [Accepted: 05/04/2020] [Indexed: 12/18/2022] Open
Abstract
Epstein-Barr virus (EBV) or human herpesvirus 4 (HHV-4) is a ubiquitous human oncogenic virus, and the first human virus found to express microRNAs (miRNAs). Its genome contains two regions encoding more than 40 miRNAs that regulate expression of both viral and human genes. There are numerous evidences that EBV miRNAs impact immune response, affect antigen presentation and recognition, change T- and B-cell communication, drive antibody production during infection, and have a role in cell apoptosis. Moreover, the ability of EBV to induce B-cell transformation and take part in mechanisms of oncogenesis in humans is well known. Although EBV infection is associated with development of various diseases, the role of its miRNAs is still not understood. There is abundant data describing EBV miRNAs in nasopharyngeal carcinoma and several studies that have tried to evaluate their role in gastric carcinoma and lymphoma. This review aims to summarize so far known data about the role of EBV miRNAs in altered regulation of gene expression in human cells in EBV-associated diseases.
Collapse
|
22
|
Ferla V, Rossi FG, Goldaniga MC, Baldini L. Biological Difference Between Epstein-Barr Virus Positive and Negative Post-transplant Lymphoproliferative Disorders and Their Clinical Impact. Front Oncol 2020; 10:506. [PMID: 32457824 PMCID: PMC7225286 DOI: 10.3389/fonc.2020.00506] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/20/2020] [Indexed: 12/18/2022] Open
Abstract
Epstein–Barr virus (EBV) infection is correlated with several lymphoproliferative disorders, including Hodgkin disease, Burkitt lymphoma, diffuse large B-cell lymphoma (DLBCL), and post-transplant lymphoproliferative disorder (PTLD). The oncogenic EBV is present in 80% of PTLD. EBV infection influences immune response and has a causative role in the oncogenic transformation of lymphocytes. The development of PTLD is the consequence of an imbalance between immunosurveillance and immunosuppression. Different approaches have been proposed to treat this disorder, including suppression of the EBV viral load, reduction of immune suppression, and malignant clone destruction. In some cases, upfront chemotherapy offers better and durable clinical responses. In this work, we elucidate the clinicopathological and molecular-genetic characteristics of PTLD to clarify the biological differences of EBV(+) and EBV(–) PTLD. Gene expression profiling, next-generation sequencing, and microRNA profiles have recently provided many data that explore PTLD pathogenic mechanisms and identify potential therapeutic targets. This article aims to explore new insights into clinical behavior and pathogenesis of EBV(–)/(+) PTLD with the hope to support future therapeutic studies.
Collapse
Affiliation(s)
- Valeria Ferla
- Hematology Division, IRCCS Ca' Granda-Maggiore Policlinico Hospital Foundation, Milan, Italy
| | - Francesca Gaia Rossi
- Hematology Division, IRCCS Ca' Granda-Maggiore Policlinico Hospital Foundation, Milan, Italy
| | - Maria Cecilia Goldaniga
- Hematology Division, IRCCS Ca' Granda-Maggiore Policlinico Hospital Foundation, Milan, Italy
| | - Luca Baldini
- Hematology Division, IRCCS Ca' Granda-Maggiore Policlinico Hospital Foundation, Milan, Italy.,University of Milan, Milan, Italy
| |
Collapse
|
23
|
EBV microRNA-BHRF1-2-5p targets the 3'UTR of immune checkpoint ligands PD-L1 and PD-L2. Blood 2020; 134:2261-2270. [PMID: 31856276 DOI: 10.1182/blood.2019000889] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 10/28/2019] [Indexed: 01/08/2023] Open
Abstract
Epstein-Barr virus-positive (EBV+) diffuse large B-cell lymphomas (DLBCLs) express high levels of programmed death ligand 1 (PD-L1) and PD-L2. MicroRNA (miR) regulation is an important mechanism for the fine-tuning of gene expression via 3'-untranslated region (3'UTR) targeting, and we have previously demonstrated strong EBV miR expression in EBV+ DLBCL. Whereas the EBV latent membrane protein-1 (LMP1) is known to induce PD-L1/L2, a potential counterregulatory role of EBV miR in the fine-tuning of PD-L1/L2 expression remains to be established. To examine this, a novel in vitro model of EBV+ DLBCL was developed, using the viral strain EBV WIL, which unlike common laboratory strains retains intact noncoding regions where several EBV miRs reside. This enabled interrogation of the relationship among EBV latency genes, cell of origin (COO), PD-L1, PD-L2, and EBV miRs. The model successfully recapitulated the full spectrum of B-cell differentiation, with 4 discrete COO phases: early and late germinal center B cells (GCBs) and early and late activated B cells (ABCs). Interestingly, PD-L1/L2 levels increased markedly during transition from late GCB to early ABC phase, after LMP1 upregulation. EBV miR-BamHI fragment H rightward open reading frame 1 (BHRF1)-2-5p clustered apart from other EBV miRs, rising during late GCB phase. Bioinformatic prediction, together with functional validation, confirmed EBV miR-BHRF1-2-5p bound to PD-L1 and PD-L2 3'UTRs to reduce PD-L1/L2 surface protein expression. Results indicate a novel mechanism by which EBV miR-BHRF1-2-5p plays a context-dependent counterregulatory role to fine-tune the expression of the LMP1-driven amplification of these inhibitory checkpoint ligands. Further identification of immune checkpoint-targeting miRs may enable potential novel RNA-based therapies to emerge.
Collapse
|
24
|
Ose N, Minami M, Funaki S, Kanou T, Fukui E, Morii E, Shintani Y. Late-Onset Central Nervous System Posttransplant Lymphoproliferative Disorder After Lung Transplantation:A Case Report. Transplant Proc 2019; 51:3163-3166. [PMID: 31619339 DOI: 10.1016/j.transproceed.2019.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 07/28/2019] [Indexed: 11/26/2022]
Abstract
Posttransplant lymphoproliferative disorder (PTLD) is caused by uncontrolled proliferation of lymphoid cells after a hematopoietic stem cell or solid organ transplant procedure related to the Epstein-Barr virus (EBV) infection. A primary central nervous system (CNS) PTLD (CNS-PTLD) is rare and important to distinguish from an intracranial lesion after transplantation. A 66-year-old man with pulmonary arterial hypertension who underwent living-donor lung transplantation 9 years prior noticed disorientation regarding route and dates. Brain magnetic resonance imaging revealed multiple white matter lesions and fluorodeoxyglucose (FDG) positron emission tomography showed FDG uptake in the brain and skin. CNS-PTLD was diagnosed by craniotomy biopsy and EBV-encoded RNA was positive in in situ hybridization findings and elevated in brain tissue. The treatment was started with immunosuppressant reduction and whole brain radiotherapy. But the condition progressed rapidly over 2 months after the first symptom and the patient was passed away 25 days after hospitalization. CNS-PTLD can occur several years after transplantation and it is necessary to keep in mind to distinguish brain disease because early diagnosis and treatment are important.
Collapse
Affiliation(s)
- Naoko Ose
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - Masato Minami
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Soichiro Funaki
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takashi Kanou
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Eriko Fukui
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasushi Shintani
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
25
|
Allen UD, Preiksaitis JK. Post-transplant lymphoproliferative disorders, Epstein-Barr virus infection, and disease in solid organ transplantation: Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transplant 2019; 33:e13652. [PMID: 31230381 DOI: 10.1111/ctr.13652] [Citation(s) in RCA: 213] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 06/19/2019] [Indexed: 02/06/2023]
Abstract
PTLD with the response-dependent sequential use of RIS, rituximab, and cytotoxic chemotherapy is recommended. Evidence gaps requiring future research and alternate treatment strategies including immunotherapy are highlighted.
Collapse
Affiliation(s)
- Upton D Allen
- Division of Infectious Diseases, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada.,Research Institute, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada.,Institute of Health Policy, Management & Evaluation, University of Toronto, Toronto, ON, Canada
| | - Jutta K Preiksaitis
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
26
|
Wang M, Gu B, Chen X, Wang Y, Li P, Wang K. The Function and Therapeutic Potential of Epstein-Barr Virus-Encoded MicroRNAs in Cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 17:657-668. [PMID: 31400608 PMCID: PMC6698931 DOI: 10.1016/j.omtn.2019.07.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 05/14/2019] [Accepted: 07/06/2019] [Indexed: 02/06/2023]
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human γ-herpesvirus that infects over 90% of the global population. EBV is considered a contributory factor in a variety of malignancies including nasopharyngeal carcinoma, gastric carcinoma, Burkitt lymphoma, and Hodgkin’s lymphoma. Notably, EBV was the first virus found to encode microRNAs (miRNAs). Increasing evidence indicates that EBV-encoded miRNAs contribute to the carcinogenesis and development of EBV-associated malignancies. EBV miRNAs have been shown to inhibit the expression of genes involved in cell proliferation, apoptosis, invasion, and immune signaling pathways. Therefore, EBV miRNAs perform a significant function in the complex host-virus interaction and EBV-driven carcinogenesis. However, the integrated mechanisms underlying the roles of EBV miRNAs in carcinogenesis remain to be further explored. In this review, we describe recent advances regarding the involvement of EBV miRNAs in the pathogenesis of EBV-associated malignancies and discuss their potential utility as cancer biomarkers. An in-depth investigation into the pro-carcinogenic role of EBV miRNAs will expand our knowledge of the biological processes associated with virus-driven tumors and contribute to the development of novel therapeutic strategies for the treatment of EBV-associated malignancies.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China.
| | - Bianli Gu
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Xinzhe Chen
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| | - Yefu Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Peifeng Li
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| | - Kun Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China.
| |
Collapse
|
27
|
Dugan JP, Coleman CB, Haverkos B. Opportunities to Target the Life Cycle of Epstein-Barr Virus (EBV) in EBV-Associated Lymphoproliferative Disorders. Front Oncol 2019; 9:127. [PMID: 30931253 PMCID: PMC6428703 DOI: 10.3389/fonc.2019.00127] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/13/2019] [Indexed: 12/29/2022] Open
Abstract
Many lymphoproliferative disorders (LPDs) are considered "EBV associated" based on detection of the virus in tumor tissue. EBV drives proliferation of LPDs via expression of the viral latent genes and many pre-clinical and clinical studies have shown EBV-associated LPDs can be treated by exploiting the viral life cycle. After a brief review of EBV virology and the natural life cycle within a host we will discuss the importance of the viral gene programs expressed during specific viral phases, as well as within immunocompetent vs. immunocompromised hosts and corresponding EBV-associated LPDs. We will then review established and emerging treatment approaches for EBV-associated LPDs based on EBV gene expression programs. Patients with EBV-associated LPDs can have a poor performance status, multiple comorbidities, and/or are immunocompromised from organ transplantation, autoimmune disease, or other congenital or acquired immunodeficiency making them poor candidates to receive intensive cytotoxic chemotherapy. With the emergence of EBV-directed therapy there is hope that we can devise more effective therapies that confer milder toxicity.
Collapse
Affiliation(s)
- James P. Dugan
- Division of Hematology, University of Colorado, Aurora, CO, United States
| | - Carrie B. Coleman
- Division of Immunology, University of Colorado, Aurora, CO, United States
| | - Bradley Haverkos
- Division of Hematology, University of Colorado, Aurora, CO, United States
| |
Collapse
|
28
|
Dharnidharka VR, Ruzinova MB, Chen C, Parameswaran P, O'Gorman H, Goss CW, Gu H, Storch GA, Wylie K. Metagenomic analysis of DNA viruses from posttransplant lymphoproliferative disorders. Cancer Med 2019; 8:1013-1023. [PMID: 30697958 PMCID: PMC6434222 DOI: 10.1002/cam4.1985] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/15/2018] [Accepted: 12/27/2018] [Indexed: 12/16/2022] Open
Abstract
Posttransplant lymphoproliferative disorders (PTLDs), 50%-80% of which are strongly associated with Epstein-Barr virus (EBV), carry a high morbidity and mortality. Most clinical/epidemiological/tumor characteristics do not consistently associate with worse patient survival, so our aim was to identify if other viral genomic characteristics associated better with survival. We extracted DNA from stored paraffin-embedded PTLD tissues at our center, identified viral sequences by metagenomic shotgun sequencing (MSS), and analyzed the data in relation to clinical outcomes. Our study population comprised 69 PTLD tissue samples collected between 1991 and 2015 from 60 subjects. Nucleotide sequences from at least one virus were detected by MSS in 86% (59/69) of the tissues (EBV in 61%, anelloviruses 52%, gammapapillomaviruses 14%, CMV 7%, and HSV in 3%). No viruses were present in higher proportion in EBV-negative PTLD (compared to EBV-positive PTLD). In univariable analysis, death within 5 years of PTLD diagnosis was associated with anellovirus (P = 0.037) and gammapapillomavirus (P = 0.036) detection by MSS, higher tissue qPCR levels of the predominant human anellovirus species torque teno virus (TTV; P = 0.016), T cell type PTLD, liver, brain or bone marrow location. In multivariable analyses, T cell PTLD (P = 0.006) and TTV PCR level (P = 0.012) remained significant. In EBV-positive PTLD, EBNA-LP, EBNA1 and EBNA3C had significantly higher levels of nonsynonymous gene variants compared to the other EBV genes. Multiple viruses are detectable in PTLD tissues by MSS. Anellovirus positivity, not EBV positivity,was associated with worse patient survival in our series. Confirmation and extension of this work in larger multicenter studies is desirable.
Collapse
Affiliation(s)
- Vikas R. Dharnidharka
- Division of Pediatric NephrologyWashington University School of MedicineSt LouisMOUSA
| | - Marianna B. Ruzinova
- Department of Pathology and ImmunologyWashington University School of MedicineSt LouisMOUSA
| | - Chun‐Cheng Chen
- Department of SurgeryWashington University School of MedicineSt LouisMOUSA
| | - Priyanka Parameswaran
- Division of Pediatric NephrologyWashington University School of MedicineSt LouisMOUSA
| | - Harry O'Gorman
- Division of Pediatric NephrologyWashington University School of MedicineSt LouisMOUSA
| | - Charles W. Goss
- Department of BiostatisticsWashington University School of MedicineSt LouisMOUSA
| | - Hongjie Gu
- Department of BiostatisticsWashington University School of MedicineSt LouisMOUSA
| | - Gregory A. Storch
- Division of Pediatric Infectious DiseasesWashington University School of MedicineSt LouisMOUSA
| | - Kristine Wylie
- Division of Pediatric Infectious DiseasesWashington University School of MedicineSt LouisMOUSA
- McDonnell Genome InstituteWashington University School of MedicineSt LouisMOUSA
| |
Collapse
|
29
|
Hartung A, Makarewicz O, Egerer R, Karrasch M, Klink A, Sauerbrei A, Kentouche K, Pletz MW. EBV miRNA expression profiles in different infection stages: A prospective cohort study. PLoS One 2019; 14:e0212027. [PMID: 30759142 PMCID: PMC6373943 DOI: 10.1371/journal.pone.0212027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 01/25/2019] [Indexed: 01/15/2023] Open
Abstract
The Epstein-Barr virus (EBV) produces different microRNAs (miRNA) with distinct regulatory functions within the infectious cycle. These viral miRNAs regulate the expression of viral and host genes and have been discussed as potential diagnostic markers or even therapeutic targets, provided that the expression profile can be unambiguously correlated to a specific stage of infection or a specific EBV-induced disorder. In this context, miRNA profiling becomes more important since the roles of these miRNAs in the pathogenesis of infections and malignancies are not fully understood. Studies of EBV miRNA expression profiles are sparse and have mainly focused on associated malignancies. This study is the first to examine the miRNA profiles of EBV reactivation and to use a correction step with seronegative patients as a reference. Between 2012 and 2017, we examined the expression profiles of 11 selected EBV miRNAs in 129 whole blood samples from primary infection, reactivation, healthy carriers and EBV seronegative patients. Three of the miRNAs could not be detected in any sample. Other miRNAs showed significantly higher expression levels and prevalence during primary infection than in other stages; miR-BHRF1-1 was the most abundant. The expression profiles from reactivation differed slightly but not significantly from those of healthy carriers, but a specific marker miRNA for each stage could not be identified within the selected EBV miRNA targets.
Collapse
Affiliation(s)
- Anita Hartung
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
- * E-mail:
| | - Oliwia Makarewicz
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
| | - Renate Egerer
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Matthias Karrasch
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Anne Klink
- Department of Haematology and Medical Oncology, Jena University Hospital, Jena, Germany
| | - Andreas Sauerbrei
- Institute of Virology and Antiviral Therapy, Jena University Hospital, Jena, Germany
| | - Karim Kentouche
- Clinic for Children and Youth Medicine, Jena University Hospital, Jena, Germany
| | - Mathias W. Pletz
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
| |
Collapse
|
30
|
Dong M, Chen JN, Huang JT, Gong LP, Shao CK. The roles of EBV-encoded microRNAs in EBV-associated tumors. Crit Rev Oncol Hematol 2019; 135:30-38. [PMID: 30819444 DOI: 10.1016/j.critrevonc.2019.01.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/22/2019] [Accepted: 01/22/2019] [Indexed: 12/19/2022] Open
Abstract
Epstein-Barr virus (EBV) is believed to be a pathogen causing a number of human cancers, but the pathogenic mechanisms remain unclear. An increasing number of studies have indicated that EBV-encoded microRNAs (EBV miRNAs) are expressed in a latency type- and tumor type-dependent manner, playing important roles in the development and progression of EBV-associated tumors. By targeting one or more genes of the virus and the host, EBV miRNAs are responsible for the deregulation of a variety of viral and host cell biological processes, including viral replication, latency maintenance, immune evasion, cell apoptosis and metabolism, and tumor proliferation and metastasis. In addition, some EBV miRNAs can be used as excellent diagnostic, prognostic and treatment efficacy predictive biomarkers for EBV-associated tumors. More importantly, EBV miRNA-targeting therapeutics have emerged and have been developing rapidly, which may open a new era in the treatment of EBV-associated tumors in the near future.
Collapse
Affiliation(s)
- Min Dong
- Department of Medical Oncology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Jian-Ning Chen
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Jun-Ting Huang
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Li-Ping Gong
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Chun-Kui Shao
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
31
|
Epstein-Barr Virus Infection of Cell Lines Derived from Diffuse Large B-Cell Lymphomas Alters MicroRNA Loading of the Ago2 Complex. J Virol 2019; 93:JVI.01297-18. [PMID: 30429351 DOI: 10.1128/jvi.01297-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/05/2018] [Indexed: 12/15/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is an aggressive lymphoid tumor which is occasionally Epstein-Barr virus (EBV) positive and is further subtyped as activated B-cell DLBCL (ABC-DLBCL) and germinal center B-cell DLBCL (GCB-DLBCL), which has implications for prognosis and treatment. We performed Ago2 RNA immunoprecipitation followed by high-throughput RNA sequencing (Ago2-RIP-seq) to capture functionally active microRNAs (miRNAs) in EBV-negative ABC-DLBCL and GCB-DLBCL cell lines and their EBV-infected counterparts. In parallel, total miRNA profiles of these cells were determined to capture the cellular miRNA profile for comparison with the functionally active profile. Selected miRNAs with differential abundances were validated using real-time quantitative PCR (RT-qPCR) and Northern blotting. We found 6 miRNAs with differential abundances (2 upregulated and 4 downregulated miRNAs) between EBV-negative and -positive ABC-DLBCL cells and 12 miRNAs with differential abundances (3 upregulated and 9 downregulated miRNAs) between EBV-negative and -positive GCB-DLBCL cells. Eight and twelve miRNAs were confirmed using RT-qPCR in ABC-DLBCL and GCB-DLBCL cells, respectively. Selected miRNAs were analyzed in additional type I/II versus type III EBV latency DLBCL cell lines. Furthermore, upregulation of miR-221-3p and downregulation of let7c-5p in ABC-DLBCL cells and upregulation of miR-363-3p and downregulation of miR-423-5p in GCB-DLBCL cells were verified using RIP-Northern blotting. Our comprehensive sequence analysis of the DLBCL miRNA profiles identified sets of deregulated miRNAs by Ago2-RIP-seq. Our Ago2-IP-seq miRNA profile could be considered an important data set for the detection of deregulated functionally active miRNAs in DLBCLs and could possibly lead to the identification of miRNAs as biomarkers for the classification of DLBCLs or even as targets for personalized targeted treatment.IMPORTANCE Diffuse large B-cell lymphoma (DLBCL) is a highly aggressive tumor of lymphoid origin which is occasionally Epstein-Barr virus (EBV) positive. MicroRNAs are found in most multicellular organisms and even in viruses such as EBV. They regulate the synthesis of proteins by binding to their cognate mRNA. MicroRNAs are tethered to their target mRNAs by "Argonaute" proteins. Here we compared the overall miRNA content of the Ago2 complex by differential loading to the overall content of miRNAs in two DLBCL cell lines and their EBV-converted counterparts. In all cell lines, the Ago2 load was different from the overall expression of miRNAs. In addition, the loading of the Ago2 complex was changed upon infection with EBV. This indicates that the virus not only changes the overall content of miRNAs but also influences the expression of proteins by affecting the Ago complexes.
Collapse
|
32
|
Velvet AJJ, Bhutani S, Papachristos S, Dwivedi R, Picton M, Augustine T, Morton M. A single-center experience of post-transplant lymphomas involving the central nervous system with a review of current literature. Oncotarget 2019; 10:437-448. [PMID: 30728897 PMCID: PMC6355190 DOI: 10.18632/oncotarget.26522] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 12/13/2018] [Indexed: 12/13/2022] Open
Abstract
Background Central Nervous System (CNS) lymphoma is a rare presentation of post-transplantation lymphoproliferative disorder (PTLD). Methods This single center retrospective study reviewed presentations, management and outcomes of CNS lymphomas in kidney transplant patients transplanted 1968 to 2015, and reviews relevant current literature. Results We identified 5773 adult kidney transplant recipients of who 90 had a PTLD diagnosis confirmed. CNS disease was diagnosed in 6/90 (7%). Median age at presentation was 60 years and time from transplant 4.5 years. Immunosuppression at diagnosis included mycophenolate mofetil and prednisolone without calcineurin inhibitor in 5/6 patients. Histological analysis diagnosed monomorphic disease in 5/6, and one polymorphic case with tissue positive for Epstein-barr virus (EBV) in 5/6 cases. Despite this 2/4 EBV positive cases had no detectable EBV in peripheral blood or CSF at diagnosis. Treatment strategies included reduction in immunosuppression in all, chemotherapy (n=5), radiotherapy (n=3), Cytotoxic T-Lymphocytes and Craniotomy (n=2). Patient survival was 40% at 1 year with CTL treated patients surviving beyond three years from diagnosis. Conclusion This study supports observational data suggesting MMF treated patients without CNI may have increased risk of disease. Peripheral blood screening for EBV DNAemia does not seem helpful in early identification of those at risk.
Collapse
Affiliation(s)
- Anju John John Velvet
- Department of Renal and Pancreas Transplantation, Division of Surgery, Manchester Royal Infirmary, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Shiv Bhutani
- Department of Renal Medicine and Transplant Nephrology, Manchester Royal Infirmary, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Stavros Papachristos
- Department of Renal and Pancreas Transplantation, Division of Surgery, Manchester Royal Infirmary, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Reena Dwivedi
- Department of Radiology, Manchester Royal Infirmary, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Michael Picton
- Department of Renal Medicine and Transplant Nephrology, Manchester Royal Infirmary, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Titus Augustine
- Department of Renal and Pancreas Transplantation, Division of Surgery, Manchester Royal Infirmary, Manchester University Hospitals NHS Foundation Trust, Manchester, UK.,Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Muir Morton
- Department of Renal Medicine and Transplant Nephrology, Manchester Royal Infirmary, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| |
Collapse
|
33
|
Cui Q, Vari F, Cristino AS, Salomon C, Rice GE, Sabdia MB, Guanzon D, Palma C, Mathew M, Talaulikar D, Jain S, Han E, Hertzberg MS, Gould C, Crooks P, Thillaiyampalam G, Keane C, Gandhi MK. Circulating cell-free miR-494 and miR-21 are disease response biomarkers associated with interim-positron emission tomography response in patients with diffuse large B-cell lymphoma. Oncotarget 2018; 9:34644-34657. [PMID: 30410665 PMCID: PMC6205167 DOI: 10.18632/oncotarget.26141] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/08/2018] [Indexed: 12/21/2022] Open
Abstract
MicroRNA (miRNA)s are dysregulated in Diffuse large B-cell lymphoma (DLBCL), where they reflect the malignant B-cells and the immune infiltrate within the tumor microenvironment. There remains a paucity of data in DLBCL regarding cell-free (c-f) miRNA as disease response biomarkers. Immunosuppressive monocyte/macrophages, which are enriched in DLBCL, are disease response markers in DLBCL, with miRNA key regulators of their immunosuppressive function. Our aim was to determine whether plasma miRNA that reflect the activity of the malignant B-cell and/or immunosuppressive monocytes/macrophages, have value as minimally-invasive disease response biomarkers in DLBCL. Quantification of 99 DLBCL tissues, to select miRNA implicated in immunosuppressive monocytes/macrophage biology, found miR-494 differentially elevated. In a discovery cohort (22 patients), pre-therapy c-f miR-494 and miR-21 but not miR-155 were raised relative to healthy plasma. Both miR-494 and miR-21 levels 3-6 months reduced post immuno-chemotherapy. The validation cohort (56 patients) was from a prospective clinical trial. Interestingly, in sequential samples both miRNAs decreased in patients becoming Positron Emission Tomography/Computerized Tomography (PET/CT)-ve, but not in those remaining interim-PET/CT+. Patient monocytes were phenotypically and functionally immunosuppressive with ex-vivo monocyte depletion enhancing T-cell proliferation in patient but not healthy samples. Pre-therapy monocytes showed an immunosuppressive transcriptome and raised levels of miR-494. MiR-494 was present in all c-f nanoparticle fractions but was most readily detectable in unfractionated plasma. Circulating c-f miR-494 and miR-21 are disease response biomarkers with differential response stratified by interim-PET/CT in patients with DLBCL. Further studies are required to explore their manipulation as potential therapeutic targets.
Collapse
Affiliation(s)
- Qingyan Cui
- University of Queensland Diamantina Institute, Brisbane, QLD, Australia
| | - Frank Vari
- University of Queensland Diamantina Institute, Brisbane, QLD, Australia
| | | | - Carlos Salomon
- University of Queensland Centre for Clinical Research, Brisbane, QLD, Australia.,University of Concepción, Concepción, Chile
| | - Gregory E Rice
- University of Queensland Centre for Clinical Research, Brisbane, QLD, Australia
| | - Muhammed B Sabdia
- University of Queensland Diamantina Institute, Brisbane, QLD, Australia
| | - Dominic Guanzon
- University of Queensland Centre for Clinical Research, Brisbane, QLD, Australia
| | - Carlos Palma
- University of Queensland Centre for Clinical Research, Brisbane, QLD, Australia
| | - Marina Mathew
- University of Queensland Diamantina Institute, Brisbane, QLD, Australia
| | - Dipti Talaulikar
- Canberra Hospital, Garran, ACT, Australia.,Australia National University Medical School, Garran, ACT, Australia
| | | | - Erica Han
- University of Queensland Diamantina Institute, Brisbane, QLD, Australia
| | | | - Clare Gould
- University of Queensland Diamantina Institute, Brisbane, QLD, Australia
| | - Pauline Crooks
- University of Queensland Diamantina Institute, Brisbane, QLD, Australia
| | | | - Colm Keane
- University of Queensland Diamantina Institute, Brisbane, QLD, Australia.,Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Maher K Gandhi
- University of Queensland Diamantina Institute, Brisbane, QLD, Australia.,Princess Alexandra Hospital, Brisbane, QLD, Australia
| |
Collapse
|
34
|
Navari M, Etebari M, Ibrahimi M, Leoncini L, Piccaluga PP. Pathobiologic Roles of Epstein-Barr Virus-Encoded MicroRNAs in Human Lymphomas. Int J Mol Sci 2018; 19:1168. [PMID: 29649101 PMCID: PMC5979337 DOI: 10.3390/ijms19041168] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/01/2018] [Accepted: 04/03/2018] [Indexed: 02/07/2023] Open
Abstract
Epstein-Barr virus (EBV) is a human γ-herpesvirus implicated in several human malignancies, including a wide range of lymphomas. Several molecules encoded by EBV in its latent state are believed to be related to EBV-induced lymphomagenesis, among which microRNAs-small RNAs with a posttranscriptional regulating role-are of great importance. The genome of EBV encodes 44 mature microRNAs belonging to two different classes, including BamHI-A rightward transcript (BART) and Bam HI fragment H rightward open reading frame 1 (BHRF1), with different expression levels in different EBV latency types. These microRNAs might contribute to the pathogenetic effects exerted by EBV through targeting self mRNAs and host mRNAs and interfering with several important cellular mechanisms such as immunosurveillance, cell proliferation, and apoptosis. In addition, EBV microRNAs can regulate the surrounding microenvironment of the infected cells through exosomal transportation. Moreover, these small molecules could be potentially used as molecular markers. In this review, we try to present an updated and extensive view of the role of EBV-encoded miRNAs in human lymphomas.
Collapse
Affiliation(s)
- Mohsen Navari
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh 9516915169, Iran.
- Department of Experimental, Diagnostic, and Experimental Medicine, Bologna University School of Medicine, 40126 Bologna, Italy.
| | - Maryam Etebari
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh 9516915169, Iran.
- Department of Experimental, Diagnostic, and Experimental Medicine, Bologna University School of Medicine, 40126 Bologna, Italy.
| | - Mostafa Ibrahimi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-111, Tehran, Iran.
| | - Lorenzo Leoncini
- Section of Pathology, Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy.
| | - Pier Paolo Piccaluga
- Department of Experimental, Diagnostic, and Experimental Medicine, Bologna University School of Medicine, 40126 Bologna, Italy.
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy.
- Department of Pathology, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya.
| |
Collapse
|
35
|
Dugan JP, Haverkos BM, Villagomez L, Martin LK, Lustberg M, Patton J, Martin M, Huang Y, Nuovo G, Yan F, Cavaliere R, Fingeroth J, Kenney SC, Ambinder RF, Lozanski G, Porcu P, Caligiuri MA, Baiocchi RA. Complete and Durable Responses in Primary Central Nervous System Posttransplant Lymphoproliferative Disorder with Zidovudine, Ganciclovir, Rituximab, and Dexamethasone. Clin Cancer Res 2018; 24:3273-3281. [PMID: 29632007 DOI: 10.1158/1078-0432.ccr-17-2685] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/31/2018] [Accepted: 04/02/2018] [Indexed: 01/08/2023]
Abstract
Purpose: Primary central nervous system posttransplant lymphoproliferative disorder (PCNS-PTLD) is a complication of solid organ transplantation with a poor prognosis and typically associated with Epstein-Barr virus (EBV). We hypothesized EBV lytic-phase protein expression would allow successful treatment with antiviral therapy.Patients and Methods: Thirteen patients were treated with zidovudine (AZT), ganciclovir (GCV), dexamethasone, and rituximab in EBV+ PCNS-PTLD. Twice-daily, intravenous AZT 1,500 mg, GCV 5 mg/kg, and dexamethasone 10 mg were given for 14 days. Weekly rituximab 375 mg/m2 was delivered for the first 4 weeks. Twice-daily valganciclovir 450 mg and AZT 300 mg started day 15. Lytic and latent protein expression was assessed using in situ hybridization and immunohistochemistry. Immunoblot assay assessed lytic gene activation. Cells transfected with lytic kinase vectors were assessed for sensitivity to our therapy using MTS tetrazolium and flow cytometry.Results: The median time to response was 2 months. Median therapy duration was 26.5 months. Median follow-up was 52 months. The estimated 2-year overall survival (OS) was 76.9% (95% CI, 44.2%-91.9%). Overall response rate (ORR) was 92% (95% CI, 64%-100%). BXLF1/vTK and BGLF4 expression was found in the seven tumor biopsies evaluated. Lytic gene expression was induced in vitro using the four-drug regimen. Transfection with viral kinase cDNA increased cellular sensitivity to antiviral therapy.Conclusions: EBV+ PCNS-PTLD expressed lytic kinases and therapy with AZT, GCV, rituximab and dexamethasone provided durable responses. Induction of the lytic protein expression and increased cellular sensitivity to antiviral therapy after transfection with viral kinase cDNA provides a mechanistic rationale for our approach. Clin Cancer Res; 24(14); 3273-81. ©2018 AACR.
Collapse
Affiliation(s)
- James P Dugan
- Division of Hematology, University of Colorado, Aurora, Colorado
| | | | - Lynda Villagomez
- Department of Internal Medicine, Mt Sinai School of Medicine, New York, New York
| | - Ludmila K Martin
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Mark Lustberg
- Division of Infectious Disease, The Ohio State University, Columbus, Ohio
| | - John Patton
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Marisa Martin
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Ying Huang
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Gerard Nuovo
- Department of Pathology, The Ohio State University, Columbus, Ohio
| | - Fengting Yan
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Robert Cavaliere
- Department of Neurosurgery, The Ohio State University, Columbus, Ohio
| | | | - Shannon C Kenney
- University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | | | - Gerard Lozanski
- Department of Neurosurgery, The Ohio State University, Columbus, Ohio
| | - Pierluigi Porcu
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Michael A Caligiuri
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Robert A Baiocchi
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
36
|
Rego Silva J, Macau R, Oliveira Coelho H, Camelo F, Cruz P, Mateus A, Oliveira A, Oliveira C, Ramos A. Late-Onset Post-transplantation Central Nervous System Lymphoproliferative Disorder: Case Report. Transplant Proc 2018; 50:857-860. [DOI: 10.1016/j.transproceed.2018.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Dharnidharka VR. Comprehensive review of post-organ transplant hematologic cancers. Am J Transplant 2018; 18:537-549. [PMID: 29178667 DOI: 10.1111/ajt.14603] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 11/17/2017] [Accepted: 11/17/2017] [Indexed: 01/25/2023]
Abstract
A higher risk for a variety of cancers is among the major complications of posttransplantation immunosuppression. In this part of a continuing series on cancers posttransplantation, this review focuses on the hematologic cancers after solid organ transplantation. Posttransplantation lymphoproliferative disorders (PTLDs), which comprise the great majority of hematologic cancers, represent a spectrum of conditions that include, but are not limited to, the Hodgkin and non-Hodgkin lymphomas. The oncogenic Epstein-Barr virus is a key pathogenic driver in many PTLD cases, through known and unknown mechanisms. The other hematologic cancers include leukemias and plasma cell neoplasms (multiple myeloma and plasmacytoma). Clinical features vary across malignancies and location. Preventive screening strategies have been attempted mainly for PTLDs. Treatments include the chemotherapy regimens for the specific cancers, but also include reduction of immunosuppression, rituximab, and other therapies.
Collapse
Affiliation(s)
- Vikas R Dharnidharka
- Division of Pediatric Nephrology, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
38
|
Affiliation(s)
- Daan Dierickx
- From the Department of Hematology, University Hospitals Leuven, and the Laboratory for Experimental Hematology, Department of Oncology, University of Leuven, Leuven, Belgium (D.D.); and the Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN (T.M.H.)
| | - Thomas M Habermann
- From the Department of Hematology, University Hospitals Leuven, and the Laboratory for Experimental Hematology, Department of Oncology, University of Leuven, Leuven, Belgium (D.D.); and the Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN (T.M.H.)
| |
Collapse
|
39
|
Lytic EBV infection investigated by detection of Soluble Epstein-Barr virus ZEBRA in the serum of patients with PTLD. Sci Rep 2017; 7:10479. [PMID: 28874674 PMCID: PMC5585268 DOI: 10.1038/s41598-017-09798-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/28/2017] [Indexed: 12/14/2022] Open
Abstract
The ZEBRA protein (encoded by the BZLF1 gene), is the major transcription factor of EBV, expressed upon EBV lytic cycle activation. Several studies highlighted the critical role of EBV lytic infection as a risk factor for lymphoproliferative disorders like post-transplant lymphoproliferative disease (PTLD). Here, we use an antigen-capture ELISA assay specifically designed to detecting the circulating soluble ZEBRA (sZEBRA) in serum samples (threshold value determined at 40ng/mL). We retrospectively investigated a population of 66 transplanted patients comprising 35 PTLD. All the samples from a control population (30 EBV-seronegative subjects and 25 immunocompetent individuals with EBV serological reactivation), classified as sZEBRA < 40ng/mL were assigned as negative. At PTLD diagnosis, EBV genome (quantified by qPCR with EBV DNA>200 copies/mL) and sZEBRA were detectable in 51% and 60% of cases, respectively. In the patients who developed a pathologically-confirmed PTLD, the mean sZEBRA value in cases, was 399 ng/mL +/− 141 versus 53ng/mL +/− 7 in patients who did not (p < 0,001). This is the first report relating to the detection of the circulating ZEBRA in serum specimens, as well as the first analysis dealing with the lytic cycle of EBV in PTLD patients with this new biomarker.
Collapse
|
40
|
Primary Central Nervous System Post-Transplant Lymphoproliferative Disorder Following Kidney Transplantation: A Multi-Institution Study in Japan Over 30 years. Ther Apher Dial 2017; 21:516-518. [DOI: 10.1111/1744-9987.12568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 03/22/2017] [Accepted: 04/25/2017] [Indexed: 12/01/2022]
|
41
|
Jha HC, Pei Y, Robertson ES. Epstein-Barr Virus: Diseases Linked to Infection and Transformation. Front Microbiol 2016; 7:1602. [PMID: 27826287 PMCID: PMC5078142 DOI: 10.3389/fmicb.2016.01602] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 09/26/2016] [Indexed: 12/16/2022] Open
Abstract
Epstein–Barr virus (EBV) was first discovered in 1964, and was the first known human tumor virus now shown to be associated with a vast number of human diseases. Numerous studies have been conducted to understand infection, propagation, and transformation in various cell types linked to human diseases. However, a comprehensive lens through which virus infection, reactivation and transformation of infected host cells can be visualized is yet to be formally established and will need much further investigation. Several human cell types infected by EBV have been linked to associated diseases. However, whether these are a direct result of EBV infection or indirectly due to contributions by additional infectious agents will need to be fully investigated. Therefore, a thorough examination of infection, reactivation, and cell transformation induced by EBV will provide a more detailed view of its contributions that drive pathogenesis. This undoubtedly expand our knowledge of the biology of EBV infection and the signaling activities of targeted cellular factors dysregulated on infection. Furthermore, these insights may lead to identification of therapeutic targets and agents for clinical interventions. Here, we review the spectrum of EBV-associated diseases, the role of the encoded latent antigens, and the switch to latency or lytic replication which occurs in EBV infected cells. Furthermore, we describe the cellular processes and critical factors which contribute to cell transformation. We also describe the fate of B-cells and epithelial cells after EBV infection and the expected consequences which contribute to establishment of viral-associated pathologies.
Collapse
Affiliation(s)
- Hem C Jha
- Department of Otorhinolaryngology-Head and Neck Surgery and Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia PA, USA
| | - Yonggang Pei
- Department of Otorhinolaryngology-Head and Neck Surgery and Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia PA, USA
| | - Erle S Robertson
- Department of Otorhinolaryngology-Head and Neck Surgery and Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia PA, USA
| |
Collapse
|
42
|
Yu X, Li Z, Shen J, Chan MTV, Wu WKK. Role of microRNAs in primary central nervous system lymphomas. Cell Prolif 2016; 49:147-53. [PMID: 26990358 DOI: 10.1111/cpr.12243] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 11/16/2015] [Indexed: 12/11/2022] Open
Abstract
Primary central nervous system lymphomas (PCNSL) are extranodal non-Hodgkin lymphomas arising exclusively inside the CNS, and account for about 3% of primary intracranial tumours. This tumour lacks systemic manifestations and prognosis of patients with PCNSL remains poor despite recent advancement of chemoradiotherapy. MicroRNAs are small non-coding RNAs that post-transcriptionally downregulate gene expression by binding to target mRNAs, inducing their degradation or translational repression. MicroRNAs play significant roles in almost all malignancy-related biological processes, including cell proliferation, differentiation, apoptosis and metabolism. Many deregulated miRNAs has been identified in PCNSL but their biological significance remains to be fully elucidated. In this review, we summarize current evidence regarding the pathogenic role of PCNSL-associated microRNAs and their potential applications for diagnosis and prognostication of this deadly disease.
Collapse
Affiliation(s)
- Xin Yu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100042, China
| | - Zheng Li
- Department of Orthopedics Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100042, China
| | - Jianxiong Shen
- Department of Orthopedics Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100042, China
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - William Ka Kei Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, 999077, China.,State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, 999077, China
| |
Collapse
|
43
|
Abstract
Post-transplant lymphoproliferative disorders (PTLDs) are a group of conditions that involve uncontrolled proliferation of lymphoid cells as a consequence of extrinsic immunosuppression after organ or haematopoietic stem cell transplant. PTLDs show some similarities to classic lymphomas in the non-immunosuppressed general population. The oncogenic Epstein-Barr virus (EBV) is a key pathogenic driver in many early-onset cases, through multiple mechanisms. The incidence of PTLD varies with the type of transplant; a clear distinction should therefore be made between the conditions after solid organ transplant and after haematopoietic stem cell transplant. Recipient EBV seronegativity and the intensity of immunosuppression are among key risk factors. Symptoms and signs depend on the localization of the lymphoid masses. Diagnosis requires histopathology, although imaging techniques can provide additional supportive evidence. Pre-emptive intervention based on monitoring EBV levels in blood has emerged as the preferred strategy for PTLD prevention. Treatment of established disease includes reduction of immunosuppression and/or administration of rituximab (a B cell-specific antibody against CD20), chemotherapy and EBV-specific cytotoxic T cells. Despite these strategies, the mortality and morbidity remains considerable. Patient outcome is influenced by the severity of presentation, treatment-related complications and risk of allograft loss. New innovative treatment options hold promise for changing the outlook in the future.
Collapse
|
44
|
Crane GM, Powell H, Kostadinov R, Rocafort PT, Rifkin DE, Burger PC, Ambinder RF, Swinnen LJ, Borowitz MJ, Duffield AS. Primary CNS lymphoproliferative disease, mycophenolate and calcineurin inhibitor usage. Oncotarget 2015; 6:33849-66. [PMID: 26460822 PMCID: PMC4741807 DOI: 10.18632/oncotarget.5292] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/04/2015] [Indexed: 12/24/2022] Open
Abstract
Immunosuppression for solid organ transplantation increases lymphoproliferative disease risk. While central nervous system (CNS) involvement is more rare, we noticed an increase in primary CNS (PCNS) disease. To investigate a potential association with the immunosuppressive regimen we identified all post-transplant lymphoproliferative disease (PTLD) cases diagnosed over a 28-year period at our institution (174 total, 29 PCNS) and all similar cases recorded in a United Network for Organ Sharing-Organ Procurement and Transplant Network (UNOS-OPTN) datafile. While no PCNS cases were diagnosed at our institution between 1986 and 1997, they comprised 37% of PTLD cases diagnosed from 2011-2014. PCNS disease was more often associated with renal vs. other organ transplant, Epstein-Barr virus, large B-cell morphology and mycophenolate mofetil (MMF) as compared to PTLD that did not involve the CNS. Calcineurin inhibitors were protective against PCNS disease when given alone or in combination with MMF. A multivariate analysis of a larger UNOS-OPTN dataset confirmed these findings, where both MMF and lack of calcineurin inhibitor usage were independently associated with risk for development of PCNS PTLD. These findings have significant implications for the transplant community, particularly given the introduction of new regimens lacking calcineurin inhibitors. Further investigation into these associations is warranted.
Collapse
Affiliation(s)
- Genevieve M. Crane
- 1 Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Helen Powell
- 2 Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Rumen Kostadinov
- 2 Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- 3 Division of Hematologic Malignancies, Sidney Kimmel Comprehensive Cancer Center (SKCCC) at Johns Hopkins, Baltimore, MD, USA
| | - Patrick Tim Rocafort
- 4 Department of Pharmacy Practice and Science, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Dena E. Rifkin
- 5 Veterans’ Affairs Healthcare System and Division of Nephrology, Department of Medicine, University of California-San Diego, San Diego, CA, USA
| | - Peter C. Burger
- 1 Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Richard F. Ambinder
- 3 Division of Hematologic Malignancies, Sidney Kimmel Comprehensive Cancer Center (SKCCC) at Johns Hopkins, Baltimore, MD, USA
| | - Lode J. Swinnen
- 3 Division of Hematologic Malignancies, Sidney Kimmel Comprehensive Cancer Center (SKCCC) at Johns Hopkins, Baltimore, MD, USA
| | - Michael J. Borowitz
- 1 Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Amy S. Duffield
- 1 Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| |
Collapse
|
45
|
When to use in situ hybridization for the detection of Epstein-Barr virus: a review of Epstein-Barr virus-associated lymphomas. J Hematop 2015. [DOI: 10.1007/s12308-014-0230-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
46
|
Jones K, Wockner L, Thornton A, Gottlieb D, Ritchie DS, Seymour JF, Kumarasinghe G, Gandhi MK. HLA class I associations with EBV+ post-transplant lymphoproliferative disorder. Transpl Immunol 2015; 32:126-30. [DOI: 10.1016/j.trim.2015.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/18/2015] [Indexed: 10/23/2022]
|