1
|
Stoerzer S, Kruszona S, Wand P, Linge H, Zlatev H, Hoeffler K, Singh J, Roters N, Muth V, Tavil S, Saipbaev A, Cvitkovic K, Kues WA, Zardo P, Ius F, Mengwasser J, Splith K, Schmidt-Ott KM, Goecke T, Schwinzer R, Niemann H, Ruhparwar A, Schmelzle M, Ramm R, Felgendreff P. Advances in Xenotransplantation: Evaluation of αGal-KO Porcine Livers and Lungs Using Normothermic Machine Perfusion in a Collaborative Perfusion Hub. Transpl Int 2025; 38:13781. [PMID: 40124174 PMCID: PMC11925705 DOI: 10.3389/ti.2025.13781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 02/17/2025] [Indexed: 03/25/2025]
Abstract
Recently, initial clinical experience has been gained with the xenotransplantation of pig organs such as heart and kidney into terminally ill human patients in an effort to overcoming organ shortage. Here, we investigated the use of normothermic machine perfusion (NMP) to advance xenotransplantation research and develop bridging therapies for acute organ failure such as the use of pig livers as a liver dialysis system. We simultaneously analyzed livers and lungs from genetically modified pigs, carrying a knock-out of the GGTA1 gene, which is essential for xenoreactive αGal-KO-epitopes, by applying clinically established normothermic perfusion systems, solutions and human blood. Experiments involved perfusing organs with cell-free solutions as well as human erythrocyte concentrates for up to six hours, analyzing organ quality using invasive and non-invasive methods, and the isolation and analysis of immune cells from the perfusate. The results obtained show stable flow characteristics with physiological perfusion and oxygenation levels of the organs, and a largely intact organ architecture, confirmed by histological sections before and after perfusion. Overall, this study demonstrates the feasibility of normothermic machine perfusion of xenogeneic organs by an interdisciplinary team, thus paving the way for clinical applications of porcine xenografts involving NMP.
Collapse
Affiliation(s)
- S. Stoerzer
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - S. Kruszona
- Department for Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - P. Wand
- Department for Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - H. Linge
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - H. Zlatev
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - K. Hoeffler
- Department for Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - J. Singh
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - N. Roters
- Department for Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - V. Muth
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - S. Tavil
- Department for Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - A. Saipbaev
- Department for Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - K. Cvitkovic
- Department for Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - W. A. Kues
- Biotechnology/Stem Cell Physiology, Institute of Farm Animal Genetics (FLI), Federal Research Institute for Animal Health, Neustadt, Germany
| | - P. Zardo
- Department for Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
- Biomedical Research in End Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - F. Ius
- Department for Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - J. Mengwasser
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - K. Splith
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - K. M. Schmidt-Ott
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - T. Goecke
- Department for Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
- Biomedical Research in End Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - R. Schwinzer
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - H. Niemann
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - A. Ruhparwar
- Department for Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
- Biomedical Research in End Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - M. Schmelzle
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - R. Ramm
- Department for Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
- Biomedical Research in End Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - P. Felgendreff
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
2
|
Bahadori K, Lee CY, Ferdinand JR, Cabantous M, Butler AJ, Rouhani FJ, Watson CJ, Clatworthy MR. Inflammatory Gene Expression in Livers Undergoing Ex Situ Normothermic Perfusion Is Attenuated by Leukocyte Removal From the Perfusate. Transplantation 2025; 109:332-345. [PMID: 39350310 PMCID: PMC11745667 DOI: 10.1097/tp.0000000000005214] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/26/2024] [Accepted: 08/06/2024] [Indexed: 01/23/2025]
Abstract
BACKGROUND Ex situ normothermic perfusion (ESNP) is a method to evaluate and potentially recondition organs before transplantation. However, increased expression of inflammatory molecules, including by tissue-resident immune cells, may occur during the perfusion process, potentially negating the beneficial effects of perfusion. METHODS We used RNA sequencing to assess gene expression in 31 livers undergoing ESNP, including 23 donated after circulatory death (DCD) and 8 donated after brain death. In 7 DCD livers, a leucocyte filter was added to the circuit during perfusion. Biopsies were available for transcriptomic assessment in all cases at the start of perfusion and at varying time points postperfusion. RESULTS During ESNP in DCD livers, we observed an increase in proinflammatory, profibrinolytic, and prorepair pathway genes. SERPINE1 , encoding plasminogen activator inhibitor-1, was among the genes most significantly upregulated during perfusion in DCD livers, potentially promoting fibrin clot persistence in vasculature. We also found increased expression of monocyte and neutrophil recruiting chemokine and proinflammatory cytokine transcripts during ESNP, but several prorepair molecules, including thymic stromal lymphopoietin, were also upregulated. In both DCD and donation after brain death livers, interferon-gamma response genes were enriched, whereas oxidative phosphorylation genes decreased in organs with high perfusate alanine transaminase, a biomarker associated with adverse clinical outcomes. The inclusion of a leukocyte filter in the perfusion circuit mitigated the induction of inflammation/immune pathway genes during perfusion and was associated with enrichment in oxidative phosphorylation genes. CONCLUSIONS Leukocyte removal during ESNP abrogates transcriptional changes that are associated with unfavorable clinical outcomes, potentially benefiting human livers undergoing ESNP.
Collapse
Affiliation(s)
- Kasra Bahadori
- Molecular Immunity Unit, Department of Medicine, Laboratory of Molecular Biology, University of Cambridge, Cambridge, United Kingdom
| | - Colin Y.C. Lee
- Molecular Immunity Unit, Department of Medicine, Laboratory of Molecular Biology, University of Cambridge, Cambridge, United Kingdom
| | - John R. Ferdinand
- Molecular Immunity Unit, Department of Medicine, Laboratory of Molecular Biology, University of Cambridge, Cambridge, United Kingdom
- National Institute of Health Research Blood and Transplant Research Unit in Organ Donation and Transplantation, Cambridge, United Kingdom
| | - Mia Cabantous
- Molecular Immunity Unit, Department of Medicine, Laboratory of Molecular Biology, University of Cambridge, Cambridge, United Kingdom
- National Institute of Health Research Blood and Transplant Research Unit in Organ Donation and Transplantation, Cambridge, United Kingdom
| | - Andrew J. Butler
- National Institute of Health Research Blood and Transplant Research Unit in Organ Donation and Transplantation, Cambridge, United Kingdom
- Department of Surgery, University of Cambridge, Cambridge, United Kingdom
| | - Foad J. Rouhani
- Department of Surgery, University of Cambridge, Cambridge, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - Christopher J.E. Watson
- National Institute of Health Research Blood and Transplant Research Unit in Organ Donation and Transplantation, Cambridge, United Kingdom
- Department of Surgery, University of Cambridge, Cambridge, United Kingdom
| | - Menna R. Clatworthy
- Molecular Immunity Unit, Department of Medicine, Laboratory of Molecular Biology, University of Cambridge, Cambridge, United Kingdom
- National Institute of Health Research Blood and Transplant Research Unit in Organ Donation and Transplantation, Cambridge, United Kingdom
- Cellular Genetics, Wellcome Sanger Institute, Hinxton, United Kingdom
| |
Collapse
|
3
|
Amarelli C, Bello I, Aigner C, Berman M, Boffini M, Clark S, Dalvindt M, de Wolf J, Ensminger S, Gomez de Antonio D, Hoyos L, Palmieri L, Schweiger M, Sponga S, Wiegmann B, Neyrinck A, the ESOT Guidelines Taskforce. European Society of Organ Transplantation (ESOT) Consensus Statement on Machine Perfusion in Cardiothoracic Transplant. Transpl Int 2024; 37:13112. [PMID: 39649067 PMCID: PMC11620879 DOI: 10.3389/ti.2024.13112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/26/2024] [Indexed: 12/10/2024]
Abstract
The machine perfusion (MP) of transplantable grafts has emerged as an upcoming field in Cardiothoracic (CT) transplantation during the last decade. This technology carries the potential to assess, preserve, and even recondition thoracic grafts before transplantation, so it is a possible game-changer in the field. This technology field has reached a critical turning point, with a growing number of publications coming predominantly from a few leading institutions, but still need solid scientific evidence. Due to the increasing need to expand the donor pool, especially in Europe, where the donor age is steeply increased, a consensus has been established to address the growing need and knowledge of machine perfusion in cardiothoracic transplantation, targeting the unmet scientific need in this growing field but also, priorities for development, and regional differences in utilization rates and organizational issues. To address MP in CT, the European Society of Organ Transplantation (ESOT) convened a dedicated Working group comprised of experts in CT to review literature about MP to develop guidelines that were subsequently discussed and voted on during the Consensus Conference that took place in person in Prague during the TLJ 3.0 in November 2022. The findings and recommendations of the Cardiothoracic Working Group on MP are presented in this article.
Collapse
Affiliation(s)
- Cristiano Amarelli
- Department of Cardiac Surgery and Transplants, Monaldi, Azienda dei Colli, Naples, Italy
| | - Irene Bello
- Institut Clínic Respiratorio, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Clemens Aigner
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Marius Berman
- Transplant Unit, Royal Papworth Hospital, NHS Foundation Trust, Cambridge, United Kingdom
| | - Massimo Boffini
- Cardiac Surgery Division, Surgical Sciences Department, Citta della Salute e della Scienza, University of Torino, Turin, Italy
| | - Stephen Clark
- Department Cardiothoracic Transplant, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Marita Dalvindt
- Department of Cardiothoracic Surgery, Lund University, Lund, Sweden
| | - Julien de Wolf
- Department of Thoracic Surgery, Lung Heart Institute, University Hospital of Lille, Lille, France
| | - Stephan Ensminger
- Department of Cardiac and Thoracic Vascular Surgery, University Heart Center Lübeck, Lübeck, Germany
| | - David Gomez de Antonio
- Department of Thoracic Surgery, Puerta de Hierro University Hospital Majadahonda, Madrid, Spain
| | - Lucas Hoyos
- Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Lucrezia Palmieri
- Department of Translational Medical Sciences, Monaldi Hospital, University of Campania “Luigi Vanvitelli“, Naples, Italy
| | - Martin Schweiger
- Department of Congenital Cardiovascular Surgery, Pediatric Heart Center, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Sandro Sponga
- Division of Cardiac Surgery, Cardiothoracic Department, University Hospital of Udine, Udine, Italy
| | - Bettina Wiegmann
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hanover, Germany
| | - Arne Neyrinck
- Department of Cardiovascular Sciences, Anesthesiology and Algology, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
4
|
Guinn MT, Fernandez R, Lau S, Loor G. Transcriptomic Signatures in Lung Allografts and Their Therapeutic Implications. Biomedicines 2024; 12:1793. [PMID: 39200257 PMCID: PMC11351513 DOI: 10.3390/biomedicines12081793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/20/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
Ex vivo lung perfusion (EVLP) is a well-established method of lung preservation in clinical transplantation. Transcriptomic analyses of cells and tissues uncover gene expression patterns which reveal granular molecular pathways and cellular programs under various conditions. Coupling EVLP and transcriptomics may provide insights into lung allograft physiology at a molecular level with the potential to develop targeted therapies to enhance or repair the donor lung. This review examines the current landscape of transcriptional analysis of lung allografts in the context of state-of-the-art therapeutics that have been developed to optimize lung allograft function.
Collapse
Affiliation(s)
- Michael Tyler Guinn
- Division of Cardiothoracic Transplantation and Circulatory Support, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (M.T.G.)
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Ramiro Fernandez
- Division of Cardiothoracic Transplantation and Circulatory Support, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (M.T.G.)
| | - Sean Lau
- Department of Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Gabriel Loor
- Division of Cardiothoracic Transplantation and Circulatory Support, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (M.T.G.)
| |
Collapse
|
5
|
Zhang IW, Lurje I, Lurje G, Knosalla C, Schoenrath F, Tacke F, Engelmann C. Combined Organ Transplantation in Patients with Advanced Liver Disease. Semin Liver Dis 2024; 44:369-382. [PMID: 39053507 PMCID: PMC11449526 DOI: 10.1055/s-0044-1788674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Transplantation of the liver in combination with other organs is an increasingly performed procedure. Over the years, continuous improvement in survival could be realized through careful patient selection and refined organ preservation techniques, in spite of the challenges posed by aging recipients and donors, as well as the increased use of steatotic liver grafts. Herein, we revisit the epidemiology, allocation policies in different transplant zones, indications, and outcomes with regard to simultaneous organ transplants involving the liver, that is combined heart-liver, liver-lung, liver-kidney, and multivisceral transplantation. We address challenges surrounding combined organ transplantation such as equity, utility, and logistics of dual organ implantation, but also advantages that come along with combined transplantation, thereby focusing on molecular mechanisms underlying immunoprotection provided by the liver to the other allografts. In addition, the current standing and knowledge of machine perfusion in combined organ transplantation, mostly based on center experience, will be reviewed. Notwithstanding all the technical advances, shortage of organs, and the lack of universal eligibility criteria for certain multi-organ combinations are hurdles that need to be tackled in the future.
Collapse
Affiliation(s)
- Ingrid Wei Zhang
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin, Berlin, Germany
- European Foundation for the Study of Chronic Liver Failure (EF CLIF) and Grifols Chair, Barcelona, Spain
| | - Isabella Lurje
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Georg Lurje
- Department of Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph Knosalla
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Felix Schoenrath
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Cornelius Engelmann
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin, Berlin, Germany
| |
Collapse
|
6
|
Hullegie-Peelen DM, Hesselink DA, Dieterich M, Minnee RC, Peeters A, Hoogduijn MJ, Baan CC. Tissue-resident Lymphocytes Are Released During Hypothermic and Normothermic Machine Perfusion of Human Donor Kidneys. Transplantation 2024; 108:1551-1557. [PMID: 38557650 PMCID: PMC11188625 DOI: 10.1097/tp.0000000000004936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/24/2023] [Accepted: 01/02/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Machine perfusion is the preferred preservation method for deceased donor kidneys. Perfusate fluid, which contains a complex mixture of components, offers potential insight into the organ's viability and function. This study explored immune cell release, particularly tissue-resident lymphocytes (TRLs), during donor kidney machine perfusion and its correlation with injury markers. METHODS Perfusate samples from hypothermic machine perfusion (HMP; n = 26) and normothermic machine perfusion (NMP; n = 16) of human donor kidneys were analyzed for TRLs using flow cytometry. Residency was defined by expressions of CD69, CD103, and CD49as. TRL release was quantified exclusively in NMP. Additionally, levels of cell-free DNA, neutrophil gelatinase-associated lipocalin, and soluble E-cadherin (sE-cadherin) were measured in NMP supernatants with quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. RESULTS Both HMP and NMP samples contained a heterogeneous population of TRLs, including CD4 + tissue-resident memory T cells, CD8 + tissue-resident memory T cells, tissue-resident natural killer cells, tissue-resident natural killer T cells, and helper-like innate lymphoid cells. Median TRL proportions among total CD45 + lymphocytes were 0.89% (NMP) and 0.84% (HMP). TRL quantities in NMP did not correlate with donor characteristics, perfusion parameters, posttransplant outcomes, or cell-free DNA and neutrophil gelatinase-associated lipocalin concentrations. However, CD103 + TRL release positively correlated with the release of sE-cadherin, the ligand for the CD103 integrin. CONCLUSIONS Human donor kidneys release TRLs during both HMP and NMP. The release of CD103 + TRLs was associated with the loss of their ligand sE-cadherin but not with general transplant injury biomarkers.
Collapse
Affiliation(s)
- Daphne M. Hullegie-Peelen
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Dennis A. Hesselink
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Marjolein Dieterich
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Robert C. Minnee
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Division of Hepato-pancreatobiliary and Transplant Surgery, Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Annemiek Peeters
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Martin J. Hoogduijn
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Carla C. Baan
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
7
|
Iskender I. Technical Advances Targeting Multiday Preservation of Isolated Ex Vivo Lung Perfusion. Transplantation 2024; 108:1319-1332. [PMID: 38499501 DOI: 10.1097/tp.0000000000004992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Indications for ex vivo lung perfusion (EVLP) have evolved from assessment of questionable donor lungs to treatment of some pathologies and the logistics. Yet up to 3 quarters of donor lungs remain discarded across the globe. Multiday preservation of discarded human lungs on EVLP platforms would improve donor lung utilization rates via application of sophisticated treatment modalities, which could eventually result in zero waitlist mortality. The purpose of this article is to summarize advances made on the technical aspects of the protocols in achieving a stable multiday preservation of isolated EVLP. Based on the evidence derived from large animal and/or human studies, the following advances have been considered important in achieving this goal: ability to reposition donor lungs during EVLP; perfusate adsorption/filtration modalities; perfusate enrichment with plasma and/or donor whole blood, nutrients, vitamins, and amino acids; low-flow, pulsatile, and subnormothermic perfusion; positive outflow pressure; injury specific personalized ventilation strategies; and negative pressure ventilation. Combination of some of these advances in an automatized EVLP device capable of managing perfusate biochemistry and ventilation would likely speed up the processes of achieving multiday preservation of isolated EVLP.
Collapse
Affiliation(s)
- Ilker Iskender
- Department of Cardiac Surgery, East Limburg Hospital, Genk, Belgium
| |
Collapse
|
8
|
Vidal-dos-Santos M, Anunciação LF, Armstrong-Jr R, Ricardo-da-Silva FY, Ramos IYT, Correia CJ, Moreira LFP, Leuvenink HGD, Breithaupt-Faloppa AC. 17β-estradiol and methylprednisolone association as a therapeutic option to modulate lung inflammation in brain-dead female rats. Front Immunol 2024; 15:1375943. [PMID: 38765005 PMCID: PMC11099279 DOI: 10.3389/fimmu.2024.1375943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/15/2024] [Indexed: 05/21/2024] Open
Abstract
Introduction Brain death (BD) is known to compromise graft quality by causing hemodynamic, metabolic, and hormonal changes. The abrupt reduction of female sex hormones after BD was associated with increased lung inflammation. The use of both corticoids and estradiol independently has presented positive results in modulating BD-induced inflammatory response. However, studies have shown that for females the presence of both estrogen and corticoids is necessary to ensure adequate immune response. In that sense, this study aims to investigate how the association of methylprednisolone (MP) and estradiol (E2) could modulate the lung inflammation triggered by BD in female rats. Methods Female Wistar rats (8 weeks) were divided into four groups: sham (animals submitted to the surgical process, without induction of BD), BD (animals submitted to BD), MP/E2 (animals submitted to BD that received MP and E2 treatment 3h after BD induction) and MP (animals submitted to BD that received MP treatment 3h after BD induction). Results Hemodynamics, systemic and local quantification of IL-6, IL-1β, VEGF, and TNF-α, leukocyte infiltration to the lung parenchyma and airways, and adhesion molecule expression were analyzed. After treatment, MP/E2 association was able to reinstate mean arterial pressure to levels close to Sham animals (p<0.05). BD increased leukocyte infiltration to the airways and MP/E2 was able to reduce the number of cells (p=0.0139). Also, the associated treatment modulated the vasculature by reducing the expression of VEGF (p=0.0616) and maintaining eNOS levels (p=0.004) in lung tissue. Discussion Data presented in this study show that the association between corticoids and estradiol could represent a better treatment strategy for lung inflammation in the female BD donor by presenting a positive effect in the hemodynamic management of the donor, as well as by reducing infiltrated leukocyte to the airways and release of inflammatory markers in the short and long term.
Collapse
Affiliation(s)
- Marina Vidal-dos-Santos
- Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Department of Surgery, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Lucas F. Anunciação
- Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Roberto Armstrong-Jr
- Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Fernanda Y. Ricardo-da-Silva
- Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Isabella Yumi Taira Ramos
- Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Cristiano J. Correia
- Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Luiz F. P. Moreira
- Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Henri G. D. Leuvenink
- Department of Surgery, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Ana C. Breithaupt-Faloppa
- Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Abstract
Despite significant advances in the field of transplantation in the past two decades, current clinically available therapeutic options for immunomodulation remain fairly limited. The advent of calcineurin inhibitor-based immunosuppression has led to significant success in improving short-term graft survival; however, improvements in long-term graft survival have stalled. Solid organ transplantation provides a unique opportunity for immunomodulation of both the donor organ prior to implantation and the recipient post transplantation. Furthermore, therapies beyond targeting the adaptive immune system have the potential to ameliorate ischemic injury to the allograft and halt its aging process, augment its repair, and promote recipient immune tolerance. Other recent advances include expanding the donor pool by reducing organ discard, and bioengineering and genetically modifying organs from other species to generate transplantable organs. Therapies discussed here will likely be most impactful if individualized on the basis of specific donor and recipient considerations.
Collapse
Affiliation(s)
- Irma Husain
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA;
| | - Xunrong Luo
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA;
- Duke Transplant Center, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
10
|
Ricardo-da-Silva FY, Armstrong-Jr R, Ramos MMDA, Vidal-Dos-Santos M, Jesus Correia C, Ottens PJ, Moreira LFP, Leuvenink HGD, Breithaupt-Faloppa AC. Male versus female inflammatory response after brain death model followed by ex vivo lung perfusion. Biol Sex Differ 2024; 15:11. [PMID: 38287395 PMCID: PMC10826050 DOI: 10.1186/s13293-024-00581-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 01/02/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Ex vivo lung perfusion (EVLP) is a useful tool for assessing lung grafts quality before transplantation. Studies indicate that donor sex is as an important factor for transplant outcome, as females present higher inflammatory response to brain death (BD) than males. Here, we investigated sex differences in the lungs of rats subjected to BD followed by EVLP. METHODS Male and female Wistar rats were subjected to BD, and as controls sham animals. Arterial blood was sampled for gas analysis. Heart-lung blocks were kept in cold storage (1 h) and normothermic EVLP carried out (4 h), meanwhile ventilation parameters were recorded. Perfusate was sampled for gas analysis and IL-1β levels. Leukocyte infiltration, myeloperoxidase presence, IL-1β gene expression, and long-term release in lung culture (explant) were evaluated. RESULTS Brain dead females presented a low lung function after BD, compared to BD-males; however, at the end of the EVLP period oxygenation capacity decreased in all BD groups. Overall, ventilation parameters were maintained in all groups. After EVLP lung infiltrate was higher in brain dead females, with higher neutrophil content, and accompanied by high IL-1β levels, with increased gene expression and concentration in the culture medium (explant) 24 h after EVLP. Female rats presented higher lung inflammation after BD than male rats. Despite maintaining lung function and ventilation mechanics parameters for 4 h, EVLP was not able to alter this profile. CONCLUSION In this context, further studies should focus on therapeutic measures to control inflammation in donor or during EVLP to increase lung quality.
Collapse
Affiliation(s)
- Fernanda Yamamoto Ricardo-da-Silva
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), HC-FMUSP, Instituto Do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 455 2º Andar, Sala 2146, São Paulo, 01246-903, Brazil
| | - Roberto Armstrong-Jr
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), HC-FMUSP, Instituto Do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 455 2º Andar, Sala 2146, São Paulo, 01246-903, Brazil
- Department of Surgery, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Mayara Munhoz de Assis Ramos
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), HC-FMUSP, Instituto Do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 455 2º Andar, Sala 2146, São Paulo, 01246-903, Brazil
- Department of Surgery, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Marina Vidal-Dos-Santos
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), HC-FMUSP, Instituto Do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 455 2º Andar, Sala 2146, São Paulo, 01246-903, Brazil
- Department of Surgery, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Cristiano Jesus Correia
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), HC-FMUSP, Instituto Do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 455 2º Andar, Sala 2146, São Paulo, 01246-903, Brazil
| | - Petra J Ottens
- Department of Surgery, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Luiz Felipe Pinho Moreira
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), HC-FMUSP, Instituto Do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 455 2º Andar, Sala 2146, São Paulo, 01246-903, Brazil
| | - Henri G D Leuvenink
- Department of Surgery, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Ana Cristina Breithaupt-Faloppa
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), HC-FMUSP, Instituto Do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 455 2º Andar, Sala 2146, São Paulo, 01246-903, Brazil.
| |
Collapse
|
11
|
Noda K, Snyder ME, Xu Q, Peters D, McDyer JF, Zeevi A, Sanchez PG. Single center study investigating the clinical association of donor-derived cell-free DNA with acute outcomes in lung transplantation. FRONTIERS IN TRANSPLANTATION 2024; 2:1339814. [PMID: 38993874 PMCID: PMC11235270 DOI: 10.3389/frtra.2023.1339814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/29/2023] [Indexed: 07/13/2024]
Abstract
Background Circulating donor-derived cell-free DNA (dd-cfDNA) levels have been proposed as a potential tool for the diagnosis of graft injury. In this study, we prospectively investigated dd-cfDNA plasma levels and their association with severe primary graft dysfunction (PGD) and graft rejection after lung transplant. Methods A total of 40 subjects undergoing de-novo lung transplants at our institution were recruited in this study. Blood samples were collected at various time points before and after lung transplant for 1 year. Dd-cfDNA in samples was determined using AlloSure assay (CareDx Inc.). The correlation of the value of %dd-cfDNA was investigated with the incidence of PGD, acute cellular rejection (ACR), and donor-specific antibody. Results We observed a rapid increase of %dd-cfDNA in the blood of recipients after lung transplantation compared to baseline. The levels of dd-cfDNA decreased during the first two weeks. The peak was observed within 72 h after transplantation. The peak values of %dd-cfDNA varied among subjects and did not correlate with severe PGD incidence. We observed an association between levels of %dd-cfDNA from blood collected at the time of transbronchial biopsy and the histological diagnosis of ACR at 3 weeks. Conclusion Our data show that circulating dd-cfDNA levels are associated with ACR early after transplantation but not with severe PGD. Plasma levels of dd-cfDNA may be a less invasive tool to estimate graft rejection after lung transplantation however larger studies are still necessary to better identify thresholds.
Collapse
Affiliation(s)
- Kentaro Noda
- Division of Lung Transplant and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Mark E. Snyder
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Qingyong Xu
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States
| | - David Peters
- Departments of Obstetrics, Gynecology and Reproductive Sciences, Human Genetics and Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - John F. McDyer
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Adriana Zeevi
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Pablo G. Sanchez
- Division of Lung Transplant and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
12
|
Gouin C, Vu Manh TP, Jouneau L, Bevilacqua C, De Wolf J, Glorion M, Hannouche L, Urien C, Estephan J, Roux A, Magnan A, Le Guen M, Da Costa B, Chevalier C, Descamps D, Schwartz-Cornil I, Dalod M, Sage E. Cell type- and time-dependent biological responses in ex vivo perfused lung grafts. Front Immunol 2023; 14:1142228. [PMID: 37465668 PMCID: PMC10351384 DOI: 10.3389/fimmu.2023.1142228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/13/2023] [Indexed: 07/20/2023] Open
Abstract
In response to the increasing demand for lung transplantation, ex vivo lung perfusion (EVLP) has extended the number of suitable donor lungs by rehabilitating marginal organs. However despite an expanding use in clinical practice, the responses of the different lung cell types to EVLP are not known. In order to advance our mechanistic understanding and establish a refine tool for improvement of EVLP, we conducted a pioneer study involving single cell RNA-seq on human lungs declined for transplantation. Functional enrichment analyses were performed upon integration of data sets generated at 4 h (clinical duration) and 10 h (prolonged duration) from two human lungs processed to EVLP. Pathways related to inflammation were predicted activated in epithelial and blood endothelial cells, in monocyte-derived macrophages and temporally at 4 h in alveolar macrophages. Pathways related to cytoskeleton signaling/organization were predicted reduced in most cell types mainly at 10 h. We identified a division of labor between cell types for the selected expression of cytokine and chemokine genes that varied according to time. Immune cells including CD4+ and CD8+ T cells, NK cells, mast cells and conventional dendritic cells displayed gene expression patterns indicating blunted activation, already at 4 h in several instances and further more at 10 h. Therefore despite inducing inflammatory responses, EVLP appears to dampen the activation of major lung immune cell types, what may be beneficial to the outcome of transplantation. Our results also support that therapeutics approaches aiming at reducing inflammation upon EVLP should target both the alveolar and vascular compartments.
Collapse
Affiliation(s)
- Carla Gouin
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Thien-Phong Vu Manh
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Luc Jouneau
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
- Université Paris-Saclay, INRAE, UVSQ, BREED, 78350, Jouy-en-Josas, France
| | - Claudia Bevilacqua
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Julien De Wolf
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
- Department of Thoracic Surgery and Lung Transplantation, Foch Hospital, Suresnes, France
| | - Matthieu Glorion
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
- Department of Thoracic Surgery and Lung Transplantation, Foch Hospital, Suresnes, France
| | - Laurent Hannouche
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Céline Urien
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Jérôme Estephan
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Antoine Roux
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
- Department of Pulmonology, Foch Hospital, Suresnes, France
| | - Antoine Magnan
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
- Department of Pulmonology, Foch Hospital, Suresnes, France
| | - Morgan Le Guen
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
- Department of Anesthesiology, Foch Hospital, Suresnes, France
| | - Bruno Da Costa
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | | | - Delphyne Descamps
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | | | - Marc Dalod
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Edouard Sage
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
- Department of Thoracic Surgery and Lung Transplantation, Foch Hospital, Suresnes, France
| |
Collapse
|
13
|
Hautz T, Salcher S, Fodor M, Sturm G, Ebner S, Mair A, Trebo M, Untergasser G, Sopper S, Cardini B, Martowicz A, Hofmann J, Daum S, Kalb M, Resch T, Krendl F, Weissenbacher A, Otarashvili G, Obrist P, Zelger B, Öfner D, Trajanoski Z, Troppmair J, Oberhuber R, Pircher A, Wolf D, Schneeberger S. Immune cell dynamics deconvoluted by single-cell RNA sequencing in normothermic machine perfusion of the liver. Nat Commun 2023; 14:2285. [PMID: 37085477 PMCID: PMC10121614 DOI: 10.1038/s41467-023-37674-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/27/2023] [Indexed: 04/23/2023] Open
Abstract
Normothermic machine perfusion (NMP) has emerged as an innovative organ preservation technique. Developing an understanding for the donor organ immune cell composition and its dynamic changes during NMP is essential. We aimed for a comprehensive characterization of immune cell (sub)populations, cell trafficking and cytokine release during liver NMP. Single-cell transcriptome profiling of human donor livers prior to, during NMP and after transplantation shows an abundance of CXC chemokine receptor 1+/2+ (CXCR1+/CXCR2+) neutrophils, which significantly decreased during NMP. This is paralleled by a large efflux of passenger leukocytes with neutrophil predominance in the perfusate. During NMP, neutrophils shift from a pro-inflammatory state towards an aged/chronically activated/exhausted phenotype, while anti-inflammatory/tolerogenic monocytes/macrophages are increased. We herein describe the dynamics of the immune cell repertoire, phenotypic immune cell shifts and a dominance of neutrophils during liver NMP, which potentially contribute to the inflammatory response. Our findings may serve as resource to initiate future immune-interventional studies.
Collapse
Affiliation(s)
- T Hautz
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - S Salcher
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
| | - M Fodor
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - G Sturm
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - S Ebner
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - A Mair
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
| | - M Trebo
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
| | - G Untergasser
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
- Tyrolpath Obrist Brunhuber GmbH, Zams, Austria
| | - S Sopper
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
| | - B Cardini
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - A Martowicz
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
- Tyrolpath Obrist Brunhuber GmbH, Zams, Austria
| | - J Hofmann
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - S Daum
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
| | - M Kalb
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
| | - T Resch
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - F Krendl
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - A Weissenbacher
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - G Otarashvili
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - P Obrist
- Tyrolpath Obrist Brunhuber GmbH, Zams, Austria
| | - B Zelger
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
| | - D Öfner
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - Z Trajanoski
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - J Troppmair
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - R Oberhuber
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - A Pircher
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
| | - D Wolf
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria.
| | - S Schneeberger
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
14
|
Yamanashi K, Ohsumi A, Oda H, Tanaka S, Yamada Y, Nakajima D, Date H. Reduction of donor mononuclear phagocytes with clodronate-liposome during ex vivo lung perfusion attenuates ischemia-reperfusion injury. J Thorac Cardiovasc Surg 2023; 165:e181-e203. [PMID: 36404143 DOI: 10.1016/j.jtcvs.2022.10.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/28/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Clodronate-liposome is used for depleting mononuclear phagocytes associated with ischemia-reperfusion injury. We hypothesized that administration of clodronate-liposome into the perfusate during ex vivo lung perfusion could reduce mononuclear phagocytes and attenuate ischemia-reperfusion injury. METHODS First, the number of mononuclear phagocytes in flushed grafts (minimum cold ischemic time, 6-hour cold ischemic time, 15-hour cold ischemic time, and 18-hour cold ischemic time; n = 6 each) was determined using flow cytometry. Second, grafts (15-hour cold ischemic time) were allocated to control or clodronate (n = 5 each). In the clodronate group, clodronate-liposome is administered into the perfusate. After 4 hours of ex vivo lung perfusion, the number of mononuclear phagocytes in the perfusate and lung tissues was measured. Third, grafts (15-hour cold ischemic time) were allocated to control or clodronate (n = 6 each). After 4 hours of ex vivo lung perfusion, the left lungs were transplanted and reperfused for 2 hours. Lung function was evaluated, and samples were analyzed. RESULTS First, mononuclear phagocytes remain in flushed grafts after prolonged cold ischemia. Second, the number of mononuclear phagocytes in lung tissues after ex vivo lung perfusion was significantly reduced in the clodronate group (P = .008). Third, lung compliance and vascular resistance during ex vivo lung perfusion were significantly improved in the clodronate group (P < .001 for both). Blood oxygenation and pulmonary edema were significantly improved in the clodronate group after 2 hours of reperfusion (P = .015 and P = .026, respectively). Histological findings showed reduced lung injury in the clodronate group (P = .013). CONCLUSIONS Administration of clodronate-liposome into the perfusate during ex vivo lung perfusion resulted in a significant reduction of mononuclear phagocytes in donor lungs, leading to attenuation of ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Keiji Yamanashi
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akihiro Ohsumi
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Hiromi Oda
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satona Tanaka
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshito Yamada
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Daisuke Nakajima
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Date
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
15
|
Van Raemdonck D, Ceulemans LJ, Van Beersel D, Neyrinck A. Current achievements and future applications of ex vivo lung perfusion; where do we go from here? J Thorac Cardiovasc Surg 2023; 165:920-924. [PMID: 35931582 DOI: 10.1016/j.jtcvs.2022.06.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/25/2022]
Affiliation(s)
- Dirk Van Raemdonck
- Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium; Department of Chronic Diseases and Metabolism, Catholic University Leuven, Leuven, Belgium.
| | - Laurens J Ceulemans
- Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium; Department of Chronic Diseases and Metabolism, Catholic University Leuven, Leuven, Belgium
| | - Dieter Van Beersel
- Department of Anesthesiology, University Hospitals Leuven, Leuven, Belgium; Department of Cardiovascular Sciences, Catholic University Leuven, Leuven, Belgium
| | - Arne Neyrinck
- Department of Anesthesiology, University Hospitals Leuven, Leuven, Belgium; Department of Cardiovascular Sciences, Catholic University Leuven, Leuven, Belgium
| |
Collapse
|
16
|
Noda K, Chan EG, Furukawa M, Ryan JP, Clifford S, Luketich JD, Sanchez PG. Single-center experience of ex vivo lung perfusion and subsequent lung transplantation. Clin Transplant 2023; 37:e14901. [PMID: 36588340 DOI: 10.1111/ctr.14901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND The safety of lung transplantation using ex vivo lung perfusion (EVLP) has been confirmed in multiple clinical studies; however, limited evidence is currently available regarding the potential effects of EVLP on posttransplant graft complications and survival with mid- to long-term follow-up. In this study, we reviewed our institutional data to better understand the impact of EVLP. METHODS Lungs placed on EVLP from 2014 through 2020 and transplant outcomes were retrospectively analyzed. Data were compared between lungs transplanted and declined after EVLP, between patients with severe primary graft dysfunction (PGD3) and no PGD3 after EVLP, and between matched patients with lungs transplanted with and without EVLP. RESULTS In total, 98 EVLP cases were performed. Changes in metabolic indicators during EVLP were correlated with graft quality and transplantability, but not changes in physiological parameters. Among 58 transplanted lungs after EVLP, PGD3 at 72 h occurred in 36.9% and was associated with preservation time, mechanical support prior to transplant, and intraoperative transfusion volume. Compared with patients without EVLP, patients who received lungs screened with EVLP had a higher incidence of PGD3 and longer ICU and hospital stays. Lung grafts placed on EVLP exhibited a significantly higher chance of developing airway anastomotic ischemic injury by 30 days posttransplant. Acute and chronic graft rejection, pulmonary function, and posttransplant survival were not different between patients with lungs screened on EVLP versus lungs with no EVLP. CONCLUSION EVLP use is associated with an increase of early posttransplant adverse events, but graft functional outcomes and patient survival are preserved.
Collapse
Affiliation(s)
- Kentaro Noda
- Division of Lung Transplant and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ernest G Chan
- Division of Lung Transplant and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Masashi Furukawa
- Division of Lung Transplant and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John P Ryan
- Division of Lung Transplant and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sarah Clifford
- Division of Lung Transplant and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - James D Luketich
- Division of Lung Transplant and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Pablo G Sanchez
- Division of Lung Transplant and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
17
|
Diagnostic and Therapeutic Implications of Ex Vivo Lung Perfusion in Lung Transplantation: Potential Benefits and Inherent Limitations. Transplantation 2023; 107:105-116. [PMID: 36508647 DOI: 10.1097/tp.0000000000004414] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ex vivo lung perfusion (EVLP), a technique in which isolated lungs are continually ventilated and perfused at normothermic temperature, is emerging as a promising platform to optimize donor lung quality and increase the lung graft pool. Over the past few decades, the EVLP technique has become recognized as a significant achievement and gained much attention in the field of lung transplantation. EVLP has been demonstrated to be an effective platform for various targeted therapies to optimize donor lung function before transplantation. Additionally, some physical parameters during EVLP and biological markers in the EVLP perfusate can be used to evaluate graft function before transplantation and predict posttransplant outcomes. However, despite its advantages, the clinical practice of EVLP continuously encounters multiple challenges associated with both intrinsic and extrinsic limitations. It is of utmost importance to address the advantages and disadvantages of EVLP for its broader clinical usage. Here, the pros and cons of EVLP are comprehensively discussed, with a focus on its benefits and potential approaches for overcoming the remaining limitations. Directions for future research to fully explore the clinical potential of EVLP in lung transplantation are also discussed.
Collapse
|
18
|
Fodor M, Salcher S, Gottschling H, Mair A, Blumer M, Sopper S, Ebner S, Pircher A, Oberhuber R, Wolf D, Schneeberger S, Hautz T. The liver-resident immune cell repertoire - A boon or a bane during machine perfusion? Front Immunol 2022; 13:982018. [PMID: 36311746 PMCID: PMC9609784 DOI: 10.3389/fimmu.2022.982018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
The liver has been proposed as an important “immune organ” of the body, as it is critically involved in a variety of specific and unique immune tasks. It contains a huge resident immune cell repertoire, which determines the balance between tolerance and inflammation in the hepatic microenvironment. Liver-resident immune cells, populating the sinusoids and the space of Disse, include professional antigen-presenting cells, myeloid cells, as well as innate and adaptive lymphoid cell populations. Machine perfusion (MP) has emerged as an innovative technology to preserve organs ex vivo while testing for organ quality and function prior to transplantation. As for the liver, hypothermic and normothermic MP techniques have successfully been implemented in clinically routine, especially for the use of marginal donor livers. Although there is evidence that ischemia reperfusion injury-associated inflammation is reduced in machine-perfused livers, little is known whether MP impacts the quantity, activation state and function of the hepatic immune-cell repertoire, and how this affects the inflammatory milieu during MP. At this point, it remains even speculative if liver-resident immune cells primarily exert a pro-inflammatory and hence destructive effect on machine-perfused organs, or in part may be essential to induce liver regeneration and counteract liver damage. This review discusses the role of hepatic immune cell subtypes during inflammatory conditions and ischemia reperfusion injury in the context of liver transplantation. We further highlight the possible impact of MP on the modification of the immune cell repertoire and its potential for future applications and immune modulation of the liver.
Collapse
Affiliation(s)
- M. Fodor
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory, Medical University of Innsbruck, Innsbruck, Austria
- Department of Visceral, Transplant and Thoracic Surgery, Daniel Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - S. Salcher
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University Innsbruck (MUI), Innsbruck, Austria
| | - H. Gottschling
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory, Medical University of Innsbruck, Innsbruck, Austria
- Department of Visceral, Transplant and Thoracic Surgery, Daniel Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - A. Mair
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University Innsbruck (MUI), Innsbruck, Austria
| | - M. Blumer
- Department of Anatomy and Embryology, Medical University of Innsbruck, Innsbruck, Austria
| | - S. Sopper
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University Innsbruck (MUI), Innsbruck, Austria
| | - S. Ebner
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory, Medical University of Innsbruck, Innsbruck, Austria
- Department of Visceral, Transplant and Thoracic Surgery, Daniel Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - A. Pircher
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University Innsbruck (MUI), Innsbruck, Austria
| | - R. Oberhuber
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory, Medical University of Innsbruck, Innsbruck, Austria
- Department of Visceral, Transplant and Thoracic Surgery, Daniel Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - D. Wolf
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University Innsbruck (MUI), Innsbruck, Austria
| | - S. Schneeberger
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory, Medical University of Innsbruck, Innsbruck, Austria
- Department of Visceral, Transplant and Thoracic Surgery, Daniel Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - T. Hautz
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory, Medical University of Innsbruck, Innsbruck, Austria
- Department of Visceral, Transplant and Thoracic Surgery, Daniel Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
- *Correspondence: T. Hautz,
| |
Collapse
|
19
|
Miller CL, O JM, Allan JS, Madsen JC. Novel approaches for long-term lung transplant survival. Front Immunol 2022; 13:931251. [PMID: 35967365 PMCID: PMC9363671 DOI: 10.3389/fimmu.2022.931251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Allograft failure remains a major barrier in the field of lung transplantation and results primarily from acute and chronic rejection. To date, standard-of-care immunosuppressive regimens have proven unsuccessful in achieving acceptable long-term graft and patient survival. Recent insights into the unique immunologic properties of lung allografts provide an opportunity to develop more effective immunosuppressive strategies. Here we describe advances in our understanding of the mechanisms driving lung allograft rejection and highlight recent progress in the development of novel, lung-specific strategies aimed at promoting long-term allograft survival, including tolerance.
Collapse
Affiliation(s)
- Cynthia L. Miller
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
| | - Jane M. O
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
| | - James S. Allan
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, United States
| | - Joren C. Madsen
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
- Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
20
|
Lee ACH, Edobor A, Lysandrou M, Mirle V, Sadek A, Johnston L, Piech R, Rose R, Hart J, Amundsen B, Jendrisak M, Millis JM, Donington J, Madariaga ML, Barth RN, di Sabato D, Shanmugarajah K, Fung J. The Effect of Normothermic Machine Perfusion on the Immune Profile of Donor Liver. Front Immunol 2022; 13:788935. [PMID: 35720395 PMCID: PMC9201055 DOI: 10.3389/fimmu.2022.788935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 05/02/2022] [Indexed: 12/29/2022] Open
Abstract
Background Normothermic machine perfusion (NMP) allows viability assessment and potential resuscitation of donor livers prior to transplantation. The immunological effect of NMP on liver allografts is undetermined, with potential implications on allograft function, rejection outcomes and overall survival. In this study we define the changes in immune profile of human livers during NMP. Methods Six human livers were placed on a NMP device. Tissue and perfusate samples were obtained during cold storage prior to perfusion and at 1, 3, and 6 hours of perfusion. Flow cytometry, immunohistochemistry, and bead-based immunoassays were used to measure leukocyte composition and cytokines in the perfusate and within the liver tissue. Mean values between baseline and time points were compared by Student’s t-test. Results Within circulating perfusate, significantly increased frequencies of CD4 T cells, B cells and eosinophils were detectable by 1 hour of NMP and continued to increase at 6 hours of perfusion. On the other hand, NK cell frequency significantly decreased by 1 hour of NMP and remained decreased for the duration of perfusion. Within the liver tissue there was significantly increased B cell frequency but decreased neutrophils detectable at 6 hours of NMP. A transient decrease in intermediate monocyte frequency was detectable in liver tissue during the middle of the perfusion run. Overall, no significant differences were detectable in tissue resident T regulatory cells during NMP. Significantly increased levels of pro-inflammatory and anti-inflammatory cytokines were seen following initiation of NMP that continued to rise throughout duration of perfusion. Conclusions Time-dependent dynamic changes are seen in individual leukocyte cell-types within both perfusate and tissue compartments of donor livers during NMP. This suggests a potential role of NMP in altering the immunogenicity of donor livers prior to transplant. These data also provide insights for future work to recondition the intrinsic immune profile of donor livers during NMP prior to transplantation.
Collapse
Affiliation(s)
| | - Arianna Edobor
- Department of Surgery, University of Chicago, Chicago, IL, United States
| | - Maria Lysandrou
- Biological Sciences Division, University of Chicago, Chicago, IL, United States
| | - Vikranth Mirle
- Pritzker School of Medicine, University of Chicago, Chicago, IL, United States
| | - Amir Sadek
- Department of Surgery, University of Chicago, Chicago, IL, United States
| | - Laura Johnston
- Biological Sciences Division, University of Chicago, Chicago, IL, United States
| | - Ryan Piech
- Department of Surgery, University of Chicago, Chicago, IL, United States
| | - Rebecca Rose
- Department of Surgery, University of Chicago, Chicago, IL, United States
| | - John Hart
- Department of Pathology, University of Chicago, Chicago, IL, United States
| | - Beth Amundsen
- Gift of Hope Tissue and Donor Network, Itasca, IL, United States
| | - Martin Jendrisak
- Gift of Hope Tissue and Donor Network, Itasca, IL, United States
| | | | - Jessica Donington
- Section of Transplant Surgery, Department of Surgery, University of Chicago, Chicago, IL, United States
| | - Maria Lucia Madariaga
- Section of Transplant Surgery, Department of Surgery, University of Chicago, Chicago, IL, United States
| | - Rolf N Barth
- Section of Thoracic Surgery, Department of Surgery, University of Chicago, Chicago, IL, United States
| | - Diego di Sabato
- Section of Thoracic Surgery, Department of Surgery, University of Chicago, Chicago, IL, United States
| | | | - John Fung
- Section of Thoracic Surgery, Department of Surgery, University of Chicago, Chicago, IL, United States
| |
Collapse
|
21
|
Hamelink TL, Ogurlu B, De Beule J, Lantinga VA, Pool MBF, Venema LH, Leuvenink HGD, Jochmans I, Moers C. Renal Normothermic Machine Perfusion: The Road Toward Clinical Implementation of a Promising Pretransplant Organ Assessment Tool. Transplantation 2022; 106:268-279. [PMID: 33979315 DOI: 10.1097/tp.0000000000003817] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The increased utilization of high-risk renal grafts for transplantation requires optimization of pretransplant organ assessment strategies. Current decision-making methods to accept an organ for transplantation lack overall predictive power and always contain an element of subjectivity. Normothermic machine perfusion (NMP) creates near-physiological conditions, which might facilitate a more objective assessment of organ quality before transplantation. NMP is rapidly gaining popularity, with various transplant centers developing their own NMP protocols and renal viability criteria. However, to date, no validated sets of on-pump viability markers exist nor are there unified NMP protocols. This review provides a critical overview of the fundamentals of current renal NMP protocols and proposes a framework to approach further development of ex vivo organ evaluation. We also comment on the potential logistical implications of routine clinical use of NMP, which is a more complex procedure compared with static cold storage or even hypothermic machine perfusion.
Collapse
Affiliation(s)
- Tim L Hamelink
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Baran Ogurlu
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Julie De Beule
- Laboratory of Abdominal Transplantation, Transplantation Research Group, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium
| | - Veerle A Lantinga
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Merel B F Pool
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Leonie H Venema
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Henri G D Leuvenink
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ina Jochmans
- Laboratory of Abdominal Transplantation, Transplantation Research Group, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium
- Department of Abdominal Transplant Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Cyril Moers
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
22
|
Lascaris B, Thorne AM, Lisman T, Nijsten MWN, Porte RJ, de Meijer VE. Long-term normothermic machine preservation of human livers: what is needed to succeed? Am J Physiol Gastrointest Liver Physiol 2022; 322:G183-G200. [PMID: 34756122 DOI: 10.1152/ajpgi.00257.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Although short-term machine perfusion (≤24 h) allows for resuscitation and viability assessment of high-risk donor livers, the donor organ shortage might be further remedied by long-term perfusion machines. Extended preservation of injured donor livers may allow reconditioning, repairing, and regeneration. This review summarizes the necessary requirements and challenges for long-term liver machine preservation, which requires integrating multiple core physiological functions to mimic the physiological environment inside the body. A pump simulates the heart in the perfusion system, including automatically controlled adjustment of flow and pressure settings. Oxygenation and ventilation are required to account for the absence of the lungs combined with continuous blood gas analysis. To avoid pressure necrosis and achieve heterogenic tissue perfusion during preservation, diaphragm movement should be simulated. An artificial kidney is required to remove waste products and control the perfusion solution's composition. The perfusate requires an oxygen carrier, but will also be challenged by coagulation and activation of the immune system. The role of the pancreas can be mimicked through closed-loop control of glucose concentrations by automatic injection of insulin or glucagon. Nutrients and bile salts, generally transported from the intestine to the liver, have to be supplemented when preserving livers long term. Especially for long-term perfusion, the container should allow maintenance of sterility. In summary, the main challenge to develop a long-term perfusion machine is to maintain the liver's homeostasis in a sterile, carefully controlled environment. Long-term machine preservation of human livers may allow organ regeneration and repair, thereby ultimately solving the shortage of donor livers.
Collapse
Affiliation(s)
- Bianca Lascaris
- Section of Hepatopancreatobiliary Surgery & Liver Transplantation, Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Adam M Thorne
- Section of Hepatopancreatobiliary Surgery & Liver Transplantation, Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ton Lisman
- Surgical Research Laboratory, Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Maarten W N Nijsten
- Department of Critical Care, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Robert J Porte
- Section of Hepatopancreatobiliary Surgery & Liver Transplantation, Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Vincent E de Meijer
- Section of Hepatopancreatobiliary Surgery & Liver Transplantation, Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
23
|
Ex-vivo lung perfusion therapies. Curr Opin Organ Transplant 2022; 27:204-210. [DOI: 10.1097/mot.0000000000000961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Weissenbacher A, Stone JP, Lo Faro ML, Hunter JP, Ploeg RJ, Coussios CC, Fildes JE, Friend PJ. Hemodynamics and Metabolic Parameters in Normothermic Kidney Preservation Are Linked With Donor Factors, Perfusate Cells, and Cytokines. Front Med (Lausanne) 2022; 8:801098. [PMID: 35083252 PMCID: PMC8784871 DOI: 10.3389/fmed.2021.801098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/08/2021] [Indexed: 12/29/2022] Open
Abstract
Kidney transplantation is the best renal-replacement option for most patients with end-stage renal disease. Normothermic machine preservation (NMP) of the kidney has been studied extensively during the last two decades and implemented in clinical trials. Biomarker research led to success in identifying molecules with diagnostic, predictive and therapeutic properties in chronic kidney disease. However, perfusate biomarkers and potential predictive mechanisms in NMP have not been identified yet. Twelve discarded human kidneys (n = 7 DBD, n = 5 DCD) underwent NMP for up to 24 h. Eight were perfused applying urine recirculation (URC), four with replacement of urine (UR) using Ringer's lactate. The aim of our study was to investigate biomarkers (NGAL, KIM-1, and L-FABP), cells and cytokines in the perfusate in context with donor characteristics, perfusate hemodynamics and metabolic parameters. Cold ischemia time did not correlate with any of the markers. Perfusates of DBD kidneys had a significantly lower number of leukocytes after 6 h of NMP compared to DCD. Arterial flow, pH, NGAL and L-FABP correlated with donor creatinine and eGFR. Arterial flow was higher in kidneys with lower perfusate lactate. Perfusate TNF-α was higher in kidneys with lower arterial flow. The cytokines IL-1β and GM-CSF decreased during 6 h of NMP. Kidneys with more urine output had lower perfusate KIM-1 levels. Median and 6-h values of lactate, arterial flow, pH, NGAL, KIM-1, and L-FABP correlated with each other indicating a 6-h period being applicable for kidney viability assessment. The study results demonstrate a comparable cytokine and cell profile in perfusates with URC and UR. In conclusion, clinically available perfusate and hemodynamic parameters correlate well with donor characteristics and measured biomarkers in a discarded human NMP model.
Collapse
Affiliation(s)
- Annemarie Weissenbacher
- Oxford Transplant Centre, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom.,Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - John P Stone
- The ex-vivo Lab, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom.,The ex-vivo Research Centre Community Interest Company (CIC), Macclesfield, United Kingdom
| | - Maria Letizia Lo Faro
- Oxford Transplant Centre, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - James P Hunter
- Oxford Transplant Centre, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Rutger J Ploeg
- Oxford Transplant Centre, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | | | - James E Fildes
- The ex-vivo Lab, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom.,The ex-vivo Research Centre Community Interest Company (CIC), Macclesfield, United Kingdom
| | - Peter J Friend
- Oxford Transplant Centre, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
25
|
Iske J, Hinze CA, Salman J, Haverich A, Tullius SG, Ius F. The potential of ex vivo lung perfusion on improving organ quality and ameliorating ischemia reperfusion injury. Am J Transplant 2021; 21:3831-3839. [PMID: 34355495 PMCID: PMC8925042 DOI: 10.1111/ajt.16784] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 01/25/2023]
Abstract
Allogeneic lung transplantation (LuTx) is considered the treatment of choice for a broad range of advanced, progressive lung diseases resistant to conventional treatment regimens. Ischemia reperfusion injury (IRI) occurring upon reperfusion of the explanted, ischemic lung during implantation remains a crucial mediator of primary graft dysfunction (PGD) and early allo-immune responses. Ex vivo lung perfusion (EVLP) displays an advanced technique aiming at improving lung procurement and preservation. Indeed, previous clinical trials have demonstrated a reduced incidence of PGD following LuTx utilizing EVLP, while long-term outcomes are yet to be evaluated. Mechanistically, EVLP may alleviate donor lung inflammation through reconditioning the injured lung and diminishing IRI through storing the explanted lung in a non-ischemic, perfused, and ventilated status. In this work, we review potential mechanisms of EVLP that may attenuate IRI and improve organ quality. Moreover, we dissect experimental treatment approaches during EVLP that may further attenuate inflammatory events deriving from tissue ischemia, shear forces or allograft rejection associated with LuTx.
Collapse
Affiliation(s)
- Jasper Iske
- Department of Cardiothoracic-, Transplant, and Vascular Surgery, Hannover Medical School, Hannover, Lower Saxony, Germany.,Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher A. Hinze
- Department of Cardiothoracic-, Transplant, and Vascular Surgery, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Jawad Salman
- Department of Cardiothoracic-, Transplant, and Vascular Surgery, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Axel Haverich
- Department of Cardiothoracic-, Transplant, and Vascular Surgery, Hannover Medical School, Hannover, Lower Saxony, Germany.,Biomedical research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Stefan G. Tullius
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Fabio Ius
- Department of Cardiothoracic-, Transplant, and Vascular Surgery, Hannover Medical School, Hannover, Lower Saxony, Germany.,Biomedical research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,Correspondence: Fabio Ius, MD, Department of Heart-, Thoracic-, Vascular-, and Transplant Surgery, Hannover Medical School, 1 Carl-Neuberg-Street, 30625 Hannover, Germany, Tel: +49 511 532 2125, Fax: +49 511 532 8436,
| |
Collapse
|
26
|
Steiner R, Weijler AM, Wekerle T, Sprent J, Pilat N. Impact of Graft-Resident Leucocytes on Treg Mediated Skin Graft Survival. Front Immunol 2021; 12:801595. [PMID: 34912349 PMCID: PMC8666425 DOI: 10.3389/fimmu.2021.801595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/12/2021] [Indexed: 02/02/2023] Open
Abstract
The importance and exact role of graft-resident leucocytes (also referred to as passenger leucocytes) in transplantation is controversial as these cells have been reported to either initiate or retard graft rejection. T cell activation to allografts is mediated via recognition of intact or processed donor MHC molecules on antigen-presenting cells (APC) as well as through interaction with donor-derived extracellular vesicles. Reduction of graft-resident leucocytes before transplantation is a well-known approach for prolonging organ survival without interfering with the recipient's immune system. As previously shown by our group, injecting mice with IL-2/anti-IL-2 complexes (IL-2cplx) to augment expansion of CD4 T regulatory cells (Tregs) induces tolerance towards islet allografts, and also to skin allografts when IL-2cplx treatment is supplemented with rapamycin and a short-term treatment of anti-IL-6. In this study, we investigated the mechanisms by which graft-resident leucocytes impact graft survival by studying the combined effects of IL-2cplx-mediated Treg expansion and passenger leucocyte depletion. For the latter, effective depletion of APC and T cells within the graft was induced by prior total body irradiation (TBI) of the graft donor. Surprisingly, substantial depletion of donor-derived leucocytes by TBI did not prolong graft survival in naïve mice, although it did result in augmented recipient leucocyte graft infiltration, presumably through irradiation-induced nonspecific inflammation. Notably, treatment with the IL-2cplx protocol prevented early inflammation of irradiated grafts, which correlated with an influx of Tregs into the grafts. This finding suggested there might be a synergistic effect of Treg expansion and graft-resident leucocyte depletion. In support of this idea, significant prolongation of skin graft survival was achieved if we combined graft-resident leucocyte depletion with the IL-2cplx protocol; this finding correlated along with a progressive shift in the composition of T cells subsets in the grafts towards a more tolerogenic environment. Donor-specific humoral responses remained unchanged, indicating minor importance of graft-resident leucocytes in anti-donor antibody development. These results demonstrate the importance of donor-derived leucocytes as well as Tregs in allograft survival, which might give rise to new clinical approaches.
Collapse
Affiliation(s)
- Romy Steiner
- Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Anna M. Weijler
- Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Thomas Wekerle
- Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Jonathan Sprent
- Immunology Division, Garvan Institute of Medical Research, Sydney, NSW, Australia,St Vincent’s Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Nina Pilat
- Department of General Surgery, Medical University of Vienna, Vienna, Austria,Immunology Division, Garvan Institute of Medical Research, Sydney, NSW, Australia,*Correspondence: Nina Pilat,
| |
Collapse
|
27
|
Challenging the Ex Vivo Lung Perfusion Procedure With Continuous Dialysis in a Pig Model. Transplantation 2021; 106:979-987. [PMID: 34468431 DOI: 10.1097/tp.0000000000003931] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Normothermic ex vivo lung perfusion (EVLP) increases the pool of donor lungs by requalifying marginal lungs refused for transplantation through the recovery of macroscopic and functional properties. However the cell response and metabolism occurring during EVLP generate a nonphysiological accumulation of electrolytes, metabolites, cytokines and other cellular byproducts which may have deleterious effects both at the organ and cell levels, with impact on transplantation outcomes. METHODS We analyzed the physiological, metabolic and genome-wide response of lungs undergoing a 6-hour EVLP procedure in a pig model in 4 experimental conditions: without perfusate modification, with partial replacement of fluid, and with adult or pediatric dialysis filters. RESULTS Adult and pediatric dialysis stabilized the electrolytic and metabolic profiles while maintaining acid-base and gas exchanges. Pediatric dialysis increased the level of IL-10 and IL-6 in the perfusate. Despite leading to modification of the perfusate composition, the 4 EVLP conditions did not affect the gene expression profiles which were associated in all cases with increased cell survival, cell proliferation, inflammatory response and cell movement, and with inhibition of bleeding. CONCLUSIONS Management of EVLP perfusate by periodic replacement and continuous dialysis has no significant effect on the lung function nor on the gene expression profiles ex vivo. These results suggest that the accumulation of dialysable cell products does not significantly alter the lung cell response during EVLP, a finding that may have impact on EVLP management in the clinic.
Collapse
|
28
|
Gao Q, Hartwig MG. Commentary: The ultimate ex vivo lung perfusion: Xenogeneic cross-circulation. J Thorac Cardiovasc Surg 2021; 163:1571-1572. [PMID: 34479715 DOI: 10.1016/j.jtcvs.2021.08.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 11/25/2022]
Affiliation(s)
- Qimeng Gao
- Department of Surgery, Duke University Medical Center, Durham, NC
| | - Matthew G Hartwig
- Division of Cardiovascular and Thoracic Surgery, Duke University Medical Center, Durham, NC.
| |
Collapse
|
29
|
Lung Transplantation, Pulmonary Endothelial Inflammation, and Ex-Situ Lung Perfusion: A Review. Cells 2021; 10:cells10061417. [PMID: 34200413 PMCID: PMC8229792 DOI: 10.3390/cells10061417] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/31/2022] Open
Abstract
Lung transplantation (LTx) is the gold standard treatment for end-stage lung disease; however, waitlist mortality remains high due to a shortage of suitable donor lungs. Organ quality can be compromised by lung ischemic reperfusion injury (LIRI). LIRI causes pulmonary endothelial inflammation and may lead to primary graft dysfunction (PGD). PGD is a significant cause of morbidity and mortality post-LTx. Research into preservation strategies that decrease the risk of LIRI and PGD is needed, and ex-situ lung perfusion (ESLP) is the foremost technological advancement in this field. This review addresses three major topics in the field of LTx: first, we review the clinical manifestation of LIRI post-LTx; second, we discuss the pathophysiology of LIRI that leads to pulmonary endothelial inflammation and PGD; and third, we present the role of ESLP as a therapeutic vehicle to mitigate this physiologic insult, increase the rates of donor organ utilization, and improve patient outcomes.
Collapse
|
30
|
Prasad NK, Pasrija C, Talaie T, Krupnick AS, Zhao Y, Lau CL. Ex Vivo Lung Perfusion: Current Achievements and Future Directions. Transplantation 2021; 105:979-985. [PMID: 33044428 PMCID: PMC8792510 DOI: 10.1097/tp.0000000000003483] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
There is a severe shortage in the availability of donor organs for lung transplantation. Novel strategies are needed to optimize usage of available organs to address the growing global needs. Ex vivo lung perfusion has emerged as a powerful tool for the assessment, rehabilitation, and optimization of donor lungs before transplantation. In this review, we discuss the history of ex vivo lung perfusion, current evidence on its use for standard and extended criteria donors, and consider the exciting future opportunities that this technology provides for lung transplantation.
Collapse
Affiliation(s)
- Nikhil K. Prasad
- Department of Surgery, University of Maryland School of Medicine
| | - Chetan Pasrija
- Department of Surgery, University of Maryland School of Medicine
| | - Tara Talaie
- Department of Surgery, University of Maryland School of Medicine
| | | | - Yunge Zhao
- Department of Surgery, University of Maryland School of Medicine
| | - Christine L. Lau
- Department of Surgery, University of Maryland School of Medicine
| |
Collapse
|
31
|
Amin KR, Stone JP, Kerr JC, Wong JK, Fildes JE. Normothermic ex vivo perfusion of the limb allograft depletes donor leukocytes prior to transplantation. J Plast Reconstr Aesthet Surg 2021; 74:2969-2976. [PMID: 34274245 DOI: 10.1016/j.bjps.2021.03.071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/02/2021] [Accepted: 03/25/2021] [Indexed: 11/30/2022]
Abstract
INTRODUCTION The donor immune compartment plays a central role in graft rejection of the vascularised composite allograft (VCA) by contributing to 'direct presentation'. Using our limb ex vivo normothermic machine perfusion (EVNP) protocol designed for prolonged allograft preservation, this study aimed to assess whether donor leukocytes responsible for allograft rejection are mobilised from the donor compartment. METHODS Five genetically different pig forelimbs underwent perfusion via the brachial and radial collateral artery for 6 h after 2 h of cold storage. Oxygenated haemodilute leucocyte-deplete blood was recirculated at normothermia using an extracorporeal perfusion system. Tissue perfusion was evaluated clinically and biochemically via blood perfusate. The temporal kinetics of donor leucocyte extravasation, cytokine secretion and cell-free DNA was characterised in the circulating perfusate. RESULTS Flow cytometry revealed increasing populations of viable leukocytes over time, reaching 49 billion leukocytes by 6 h. T (3.0 × 109 cells) and B cells (3.1 × 108 cells) lymphocytes, monocytes (2.7 × 109 cells), granulocytes (8.1 × 109 cells), NK (6.3 × 108) and γδ (8.1 × 108) cells were all identified. Regulatory T cells comprised a minor population (1.6 × 107 cells). There was a cumulative increase in pro-inflammatory cytokines suggesting that the donor limb has the capacity to elicit significant inflammatory responses that could contribute to leucocyte activation and diapedesis. CONCLUSION EVNP not only acts as a preservation tool, but could also be utilized to immunodeplete the VCA allograft prior to transplantation. This has clinical implications to mitigate acute rejection and prevent graft dysfunction and supports the future application of machine perfusion in graft preservation and immune modulation.
Collapse
Affiliation(s)
- K R Amin
- The Ex-Vivo Lab, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom; Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - J P Stone
- 3F66, Block 3, Alderley Park, Nether Alderley, Cheshire, SK10 4TG; The Ex-Vivo Lab, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom; The Transplant Centre, Manchester University NHS Foundation Trust, Manchester M23 9LT, United Kingdom
| | - J C Kerr
- 3F66, Block 3, Alderley Park, Nether Alderley, Cheshire, SK10 4TG; The Ex-Vivo Lab, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - J K Wong
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom; Department of Plastic Surgery & Burns, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - J E Fildes
- 3F66, Block 3, Alderley Park, Nether Alderley, Cheshire, SK10 4TG; The Ex-Vivo Lab, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom; The Transplant Centre, Manchester University NHS Foundation Trust, Manchester M23 9LT, United Kingdom.
| |
Collapse
|
32
|
van Zanden JE, Leuvenink HGD, Verschuuren EAM, Veldhuis ZJ, Ottens PJ, Erasmus ME, Hottenrott MC. Ex Vivo Perfusion With Methylprednisolone Attenuates Brain Death-induced Lung Injury in Rats. Transplant Direct 2021; 7:e682. [PMID: 33748411 PMCID: PMC7969243 DOI: 10.1097/txd.0000000000001141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/24/2021] [Accepted: 02/02/2021] [Indexed: 11/25/2022] Open
Abstract
The onset of brain death (BD) leads to the deterioration of potential donor lungs. Methylprednisolone is considered to increase lung oxygenation capacity and enhance the procurement yield of donor lungs, when applied in situ, during donor management. However, whether BD-induced lung damage is ameliorated upon treatment with methylprednisolone during acellular ex vivo lung perfusion (EVLP), remains unknown. We aimed to investigate whether the quality of lungs from brain-dead donors improves upon methylprednisolone treatment during EVLP.
Collapse
Affiliation(s)
- Judith E van Zanden
- Department of Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Henri G D Leuvenink
- Department of Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Erik A M Verschuuren
- Department of Pulmonary Diseases, University Medical Center Groningen, Groningen, The Netherlands
| | - Zwanida J Veldhuis
- Department of Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Petra J Ottens
- Department of Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Michiel E Erasmus
- Department of Cardiothoracic Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Maximilia C Hottenrott
- Department of Surgery, University Medical Center Groningen, Groningen, The Netherlands.,Department of Surgery, University of Regensburg, Regensburg, Germany
| |
Collapse
|
33
|
Ischemia-reperfusion Injury in the Transplanted Lung: A Literature Review. Transplant Direct 2021; 7:e652. [PMID: 33437867 PMCID: PMC7793349 DOI: 10.1097/txd.0000000000001104] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023] Open
Abstract
Lung ischemia-reperfusion injury (LIRI) and primary graft dysfunction are leading causes of morbidity and mortality among lung transplant recipients. Although extensive research endeavors have been undertaken, few preventative and therapeutic treatments have emerged for clinical use. Novel strategies are still needed to improve outcomes after lung transplantation. In this review, we discuss the underlying mechanisms of transplanted LIRI, potential modifiable targets, current practices, and areas of ongoing investigation to reduce LIRI and primary graft dysfunction in lung transplant recipients.
Collapse
|
34
|
Ball AL, Edge RJ, Amin K, Critchley WR, Howell GJ, Yonan N, Stone JP, Fildes JE. A post-preservation vascular flush removes significant populations of donor leukocytes prior to lung transplantation. Transpl Immunol 2020; 64:101356. [PMID: 33264679 DOI: 10.1016/j.trim.2020.101356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/30/2020] [Accepted: 11/25/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Donor leukocytes are intrinsically involved in acute lung allograft rejection, via self-presentation of donor antigens to recipient leukocytes. Therapeutic modalities to remove donor leukocytes are currently unavailable. We evaluated if a vascular flush immediately following preservation can be used for this purpose. METHODS A post-preservation flush was performed with STEEN solution in n = 6 porcine lungs following static cold storage. The first 500 ml effluent from the left atrium was collected and an inflammatory profile performed. RESULTS A total of 1.17 billion (±2.8 × 108) viable leukocytes were identified within the effluent. T cells were the dominant cell population, representing 82% of the total mobilised leukocytes, of which <0.01% were regulatory T cells. IL-18 was the most abundant cytokine, with a mean concentration of 84,216 pg (±153,552 pg). In addition, there was a mean concentration of 8819 ng (±4415) cell-free mitochondrial DNA. CONCLUSION There is an immediate transfer of donor leukocytes, cytokines and damage-associated molecular patterns following reperfusion. Such a pro-inflammatory donor load may enhance alloantigen presentation and drive recipient alloimmune responses. A post-preservation flush may therefore be an effective method for reducing the immune burden of the donor lung prior to transplantation.
Collapse
Affiliation(s)
- Alexandra L Ball
- The Transplant Centre, University of Manchester NHS Foundation Trust, Manchester M23 9LT, United Kingdom; The Ex-Vivo Lab, Division of Cell Matrix and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, United Kingdom
| | - Rebecca J Edge
- The Transplant Centre, University of Manchester NHS Foundation Trust, Manchester M23 9LT, United Kingdom; The Ex-Vivo Lab, Division of Cell Matrix and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, United Kingdom
| | - Kavit Amin
- The Transplant Centre, University of Manchester NHS Foundation Trust, Manchester M23 9LT, United Kingdom; The Ex-Vivo Lab, Division of Cell Matrix and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, United Kingdom
| | - William R Critchley
- The Transplant Centre, University of Manchester NHS Foundation Trust, Manchester M23 9LT, United Kingdom; The Ex-Vivo Lab, Division of Cell Matrix and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, United Kingdom
| | - Gareth J Howell
- Flow Cytometry Core Facility, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, United Kingdom
| | - Nizar Yonan
- The Transplant Centre, University of Manchester NHS Foundation Trust, Manchester M23 9LT, United Kingdom
| | - John P Stone
- The Transplant Centre, University of Manchester NHS Foundation Trust, Manchester M23 9LT, United Kingdom; The Ex-Vivo Lab, Division of Cell Matrix and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, United Kingdom
| | - James E Fildes
- The Transplant Centre, University of Manchester NHS Foundation Trust, Manchester M23 9LT, United Kingdom; The Ex-Vivo Lab, Division of Cell Matrix and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, United Kingdom.
| |
Collapse
|
35
|
Cyclosporin A Administration During Ex Vivo Lung Perfusion Preserves Lung Grafts in Rat Transplant Model. Transplantation 2020; 104:e252-e259. [PMID: 32217944 DOI: 10.1097/tp.0000000000003237] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Despite the benefits of ex vivo lung perfusion (EVLP) such as lung reconditioning, preservation, and evaluation before transplantation, deleterious effects, including activation of proinflammatory cascades and alteration of metabolic profiles have been reported. Although patient outcomes have been favorable, further studies addressing optimal conditions are warranted. In this study, we investigated the role of the immunosuppressant drug cyclosporine A (CyA) in preserving mitochondrial function and subsequently preventing proinflammatory changes in lung grafts during EVLP. METHODS Using rat heart-lung blocks after 1-hour cold preservation, an acellular normothermic EVLP system was established for 4 hours. CyA was added into perfusate at a final concentration of 1 μM. The evaluation included lung graft function, lung compliance, and pulmonary vascular resistance as well as biochemical marker measurement in the perfusate at multiple time points. After EVLP, single orthotopic lung transplantation was performed, and the grafts were assessed 2 hours after reperfusion. RESULTS Lung grafts on EVLP with CyA exhibited significantly better functional and physiological parameters as compared with those without CyA treatment. CyA administration attenuated proinflammatory changes and prohibited glucose consumption during EVLP through mitigating mitochondrial dysfunction in lung grafts. CyA-preconditioned lungs showed better posttransplant lung early graft function and less inflammatory events compared with control. CONCLUSIONS During EVLP, CyA administration can have a preconditioning effect through both its anti-inflammatory and mitochondrial protective properties, leading to improved lung graft preservation, which may result in enhanced graft quality after transplantation.
Collapse
|
36
|
Siu JH, Motallebzadeh R, Pettigrew GJ. Humoral autoimmunity after solid organ transplantation: Germinal ideas may not be natural. Cell Immunol 2020; 354:104131. [DOI: 10.1016/j.cellimm.2020.104131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 12/22/2022]
|
37
|
Critchley WR, Stone JP, Liao Q, Qin G, Risnes I, Trafford A, Scott H, Sjöberg T, Steen S, Fildes JE. Non-ischemic Heart Preservation via Hypothermic Cardioplegic Perfusion Induces Immunodepletion of Donor Hearts Resulting in Diminished Graft Infiltration Following Transplantation. Front Immunol 2020; 11:1621. [PMID: 32849549 PMCID: PMC7399062 DOI: 10.3389/fimmu.2020.01621] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 06/17/2020] [Indexed: 12/17/2022] Open
Abstract
Introduction: Many donor organs contain significant leukocyte reservoirs which upon transplantation activate recipient leukocytes to initiate acute rejection. We aimed to assess whether non-ischemic heart preservation via ex vivo perfusion promotes immunodepletion and alters the inflammatory status of the donor organ prior to transplantation. Methods: Isolated porcine hearts underwent ex vivo hypothermic, cardioplegic perfusion for 8 h. Leukocyte populations were quantified in left ventricle samples by flow cytometry. Cell-free DNA, cytokines, and chemokines were quantified in the perfusate. Tissue integrity was profiled by targeted proteomics and a histological assessment was performed. Heterotopic transplants comparing ex vivo hypothermic preservation and static cold storage were utilized to assess graft infiltration as a solid clinical endpoint. Results: Ex vivo perfusion significantly immunodepleted myocardial tissue. The perfusate displayed a selective, pro-inflammatory cytokine/chemokine pattern dominated by IFN-γ. The tissue molecular profile was improved following perfusion by diminished expression of nine pro-apoptotic and six ischemia-associated proteins. Histologically, no evidence of tissue damage was observed and cardiac troponin I was low throughout perfusion. Cell-free DNA was detected, the source of which may be necrotic/apoptotic leukocytes. Post-transplant graft infiltration was markedly reduced in terms of both leucocyte distribution and intensity of foci. Conclusions: These findings demonstrate that ex vivo perfusion significantly reduced donor heart immunogenicity via loss of resident leukocytes. Despite the pro-inflammatory cytokine pattern observed, a pro-survival and reduced ischemia-related profile was observed, indicating an improvement in graft viability by perfusion. Diminished graft infiltration was observed in perfused hearts compared with those preserved by static cold storage following 48 h of transplantation.
Collapse
Affiliation(s)
- William R Critchley
- The Ex-Vivo Lab, Division of Cell Matrix and Regenerative Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom.,The Transplant Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - John P Stone
- The Ex-Vivo Lab, Division of Cell Matrix and Regenerative Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom.,The Transplant Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Qiuming Liao
- Department of Cardiothoracic Surgery, Lund University and Skåne University Hospital, Lund, Sweden
| | - Guangqi Qin
- Department of Cardiothoracic Surgery, Lund University and Skåne University Hospital, Lund, Sweden
| | - Ivar Risnes
- Department of Thoracic Surgery, Rikshospitalet, Oslo, Norway
| | - Andrew Trafford
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Helge Scott
- Department of Pathology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Trygve Sjöberg
- Department of Cardiothoracic Surgery, Lund University and Skåne University Hospital, Lund, Sweden
| | - Stig Steen
- Department of Cardiothoracic Surgery, Lund University and Skåne University Hospital, Lund, Sweden
| | - James E Fildes
- The Ex-Vivo Lab, Division of Cell Matrix and Regenerative Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom.,The Transplant Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
38
|
Jiang Y, Que W, Zhu P, Li XK. The Role of Diverse Liver Cells in Liver Transplantation Tolerance. Front Immunol 2020; 11:1203. [PMID: 32595648 PMCID: PMC7304488 DOI: 10.3389/fimmu.2020.01203] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/14/2020] [Indexed: 12/11/2022] Open
Abstract
Liver transplantation is the ideal treatment approach for a variety of end-stage liver diseases. However, life-long, systemic immunosuppressive treatment after transplantation is required to prevent rejection and graft loss, which is associated with severe side effects, although liver allograft is considered more tolerogenic. Therefore, understanding the mechanism underlying the unique immunologically privileged liver organ is valuable for transplantation management and autoimmune disease treatment. The unique hepatic acinus anatomy and a complex cellular network constitute the immunosuppressive hepatic microenvironment, which are responsible for the tolerogenic properties of the liver. The hepatic microenvironment contains a variety of hepatic-resident immobile non-professional antigen-presenting cells, including hepatocytes, liver sinusoidal endothelial cells, Kupffer cells, and hepatic stellate cells, that are insufficient to optimally prime T cells locally and lead to the removal of alloreactive T cells due to the low expression of major histocompatibility complex (MHC) molecules, costimulatory molecules and proinflammatory cytokines but a rather high expression of coinhibitory molecules and anti-inflammatory cytokines. Hepatic dendritic cells (DCs) are generally immature and less immunogenic than splenic DCs and are also ineffective in priming naïve allogeneic T cells via the direct recognition pathway in recipient secondary lymphoid organs. Although natural killer cells and natural killer T cells are reportedly associated with liver tolerance, their roles in liver transplantation are multifaceted and need to be further clarified. Under these circumstances, T cells are prone to clonal deletion, clonal anergy and exhaustion, eventually leading to tolerance. Other proposed liver tolerance mechanisms, such as soluble donor MHC class I molecules, passenger leukocytes theory and a high-load antigen effect, have also been addressed. We herein comprehensively review the current evidence implicating the tolerogenic properties of diverse liver cells in liver transplantation tolerance.
Collapse
Affiliation(s)
- Yanzhi Jiang
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.,Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Weitao Que
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiao-Kang Li
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
39
|
Ex Vivo Lung Perfusion Improves the Inflammatory Signaling Profile of the Porcine Donor Lung Following Transplantation. Transplantation 2020; 104:1899-1905. [DOI: 10.1097/tp.0000000000003338] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
40
|
Koch A, Pizanis N, Bessa V, Slama A, Aigner C, Taube C, Kamler M. Impact of normothermic ex vivo lung perfusion on early post-transplantation cytomegalovirus infection. J Thorac Dis 2020; 12:1350-1356. [PMID: 32395272 PMCID: PMC7212143 DOI: 10.21037/jtd.2020.02.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Background The low acceptance rates in lung transplantation underline the importance to use every potential transplantable organ. With the use of normothermic ex vivo lung perfusion (EVLP) there is a potential to use more donor lungs for transplantation. Aim of this study was to evaluate if EVLP has an effect on cytomegalovirus (CMV) infection after lung transplantation. Methods Between May 2016 and October 2018, 57 lung transplants were performed. Out of these 21 extended criteria lungs were evaluated by EVLP and 16 transplanted. In a retrospective study, results of EVLP treated lungs were compared with lungs after cold storage preservation (CSP). Donor/recipient CMV IgG status and seroconversion rate was examined. Results Donors were CMV IgG+ in EVLP 69% and CSP 61% (n.s.). Best pO2 on procurement at FiO2 1.0 was in EVLP 278±76 versus CSP 413±96 mmHg (P≤0.05). Recipients were CMV IgG+ in EVLP 38% and CSP 63% (P<0.07). CMV seroconversion: EVLP 12%, CSP 20% (P<0.05), in the CSP group in 5% recipients with more than 1,000 copies/mL were diagnosed by PCR and treated for CMV infection. Procalcitonin (PCT) levels from day 1 to day 5 were significantly lower for CSP group (P<0.05). 30-day mortality was 12% for EVLP recipients. Conclusions Normothermic EVLP did not influence CMV infection rate, however early PCT levels were higher in EVLP group. Short-term results were comparable to standard lung transplantation.
Collapse
Affiliation(s)
- Achim Koch
- West German Center for Lung Transplantation, University of Duisburg-Essen, Essen, Germany.,Department of Thoracic and Cardiovascular Surgery, University of Duisburg-Essen, Essen, Germany
| | - Nikolaus Pizanis
- West German Center for Lung Transplantation, University of Duisburg-Essen, Essen, Germany.,Department of Thoracic and Cardiovascular Surgery, University of Duisburg-Essen, Essen, Germany
| | - Vasiliki Bessa
- West German Center for Lung Transplantation, University of Duisburg-Essen, Essen, Germany.,Department of Pulmonology, University of Duisburg-Essen, Essen, Germany
| | - Alexis Slama
- West German Center for Lung Transplantation, University of Duisburg-Essen, Essen, Germany.,Department of Thoracic Surgery and Surgical Endoscopy, University of Duisburg-Essen, Essen, Germany
| | - Clemens Aigner
- West German Center for Lung Transplantation, University of Duisburg-Essen, Essen, Germany.,Department of Thoracic Surgery and Surgical Endoscopy, University of Duisburg-Essen, Essen, Germany
| | - Christian Taube
- West German Center for Lung Transplantation, University of Duisburg-Essen, Essen, Germany.,Department of Pulmonology, University of Duisburg-Essen, Essen, Germany
| | - Markus Kamler
- West German Center for Lung Transplantation, University of Duisburg-Essen, Essen, Germany.,Department of Thoracic and Cardiovascular Surgery, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
41
|
Resch T, Cardini B, Oberhuber R, Weissenbacher A, Dumfarth J, Krapf C, Boesmueller C, Oefner D, Grimm M, Schneeberger S. Transplanting Marginal Organs in the Era of Modern Machine Perfusion and Advanced Organ Monitoring. Front Immunol 2020; 11:631. [PMID: 32477321 PMCID: PMC7235363 DOI: 10.3389/fimmu.2020.00631] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/19/2020] [Indexed: 12/11/2022] Open
Abstract
Organ transplantation is undergoing profound changes. Contraindications for donation have been revised in order to better meet the organ demand. The use of lower-quality organs and organs with greater preoperative damage, including those from donation after cardiac death (DCD), has become an established routine but increases the risk of graft malfunction. This risk is further aggravated by ischemia and reperfusion injury (IRI) in the process of transplantation. These circumstances demand a preservation technology that ameliorates IRI and allows for assessment of viability and function prior to transplantation. Oxygenated hypothermic and normothermic machine perfusion (MP) have emerged as valid novel modalities for advanced organ preservation and conditioning. Ex vivo prolonged lung preservation has resulted in successful transplantation of high-risk donor lungs. Normothermic MP of hearts and livers has displayed safe (heart) and superior (liver) preservation in randomized controlled trials (RCT). Normothermic kidney preservation for 24 h was recently established. Early clinical outcomes beyond the market entry trials indicate bioenergetics reconditioning, improved preservation of structures subject to IRI, and significant prolongation of the preservation time. The monitoring of perfusion parameters, the biochemical investigation of preservation fluids, and the assessment of tissue viability and bioenergetics function now offer a comprehensive assessment of organ quality and function ex situ. Gene and protein expression profiling, investigation of passenger leukocytes, and advanced imaging may further enhance the understanding of the condition of an organ during MP. In addition, MP offers a platform for organ reconditioning and regeneration and hence catalyzes the clinical realization of tissue engineering. Organ modification may include immunological modification and the generation of chimeric organs. While these ideas are not conceptually new, MP now offers a platform for clinical realization. Defatting of steatotic livers, modulation of inflammation during preservation in lungs, vasodilatation of livers, and hepatitis C elimination have been successfully demonstrated in experimental and clinical trials. Targeted treatment of lesions and surgical treatment or graft modification have been attempted. In this review, we address the current state of MP and advanced organ monitoring and speculate about logical future steps and how this evolution of a novel technology can result in a medial revolution.
Collapse
Affiliation(s)
- Thomas Resch
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Benno Cardini
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Rupert Oberhuber
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Annemarie Weissenbacher
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Julia Dumfarth
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph Krapf
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Claudia Boesmueller
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Dietmar Oefner
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Grimm
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Sefan Schneeberger
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
42
|
Abstract
Although lung transplant remains the only option for patients suffering from end-stage lung failure, donor supply is insufficient to meet demand. Static cold preservation is the most common method to preserve lungs in transport to the recipient; however, this method does not improve lung quality and only allows for 8 h of storage. This results in lungs which become available for donation but cannot be used due to failure to meet physiologic criteria or an inability to store them for a sufficient time to find a suitable recipient. Therefore, lungs lost due to failure to meet physiological or compatibility criteria may be mitigated through preservation methods which improve lung function and storage durations. Ex situ lung perfusion (ESLP) is a recently developed method which allows for longer storage times and has been demonstrated to improve lung function such that rejected lungs can be accepted for donation. Although greater use of ESLP will help to improve donor lung utilization, the ability to cryopreserve lungs would allow for organ banking to better utilize donor lungs. However, lung cryopreservation research remains underrepresented in the literature despite its unique advantages for cryopreservation over other organs. Therefore, this review will discuss the current techniques for lung preservation, static cold preservation and ESLP, and provide a review of the cryopreservation challenges and advantages unique to lungs.
Collapse
|
43
|
Crepeau RL, Ford ML. Programmed T cell differentiation: Implications for transplantation. Cell Immunol 2020; 351:104099. [PMID: 32247511 DOI: 10.1016/j.cellimm.2020.104099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 12/27/2022]
Abstract
While T cells play a critical role in protective immunity against infection, they are also responsible for graft rejection in the setting of transplantation. T cell differentiation is regulated by both intrinsic transcriptional pathways as well as extrinsic factors such as antigen encounter and the cytokine milieu. Herein, we review recent discoveries in the transcriptional regulation of T cell differentiation and their impact on the field of transplantation. Recent studies uncovering context-dependent differentiation programs that differ in the setting of infection or transplantation will also be discussed. Understanding the key transcriptional pathways that underlie T cell responses in transplantation has important clinical implications, including development of novel therapeutic agents to mitigate graft rejection.
Collapse
Affiliation(s)
- Rebecca L Crepeau
- Emory Transplant Center, Department of Surgery, Emory University, 101 Woodruff Circle, Suite 5208, Atlanta, GA 30322, United States
| | - Mandy L Ford
- Emory Transplant Center, Department of Surgery, Emory University, 101 Woodruff Circle, Suite 5208, Atlanta, GA 30322, United States.
| |
Collapse
|
44
|
Kidney Perfusion as an Organ Quality Assessment Tool-Are We Counting Our Chickens Before They Have Hatched? J Clin Med 2020; 9:jcm9030879. [PMID: 32210197 PMCID: PMC7141526 DOI: 10.3390/jcm9030879] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/16/2020] [Accepted: 03/19/2020] [Indexed: 02/07/2023] Open
Abstract
The final decision to accept an organ for transplantation remains a subjective one. With “poor organ quality” commonly cited as a major reason for kidney discard, accurate, objective, and reliable quality assessment is essential. In an era of increasingly higher-risk deceased donor kidneys, the catch is to accept those where the risk–benefit scale will tip in the right direction. Currently available assessment tools, such as risk-scores predicting outcome and zero-time biopsy, perform unsatisfactory, and assessment options during static cold storage are limited. Kidney perfusion technologies are finding their way into clinical practice, and they bring a new opportunity to assess kidney graft viability and quality, both in hypothermic and normothermic conditions. We give an overview of the current understanding of kidney viability assessment during ex situ kidney perfusion. A pragmatic framework to approach viability assessment is proposed as an interplay of three different compartments: the nephron, the vascular compartment, and the immune compartment. Although many interesting ways to assess kidney injury and function during perfusion have been proposed, none have reached the stage where they can reliably predict posttransplant outcome. Larger well-designed studies and validation cohorts are needed to provide better guidance.
Collapse
|
45
|
Kvietkauskas M, Leber B, Strupas K, Stiegler P, Schemmer P. Machine Perfusion of Extended Criteria Donor Organs: Immunological Aspects. Front Immunol 2020; 11:192. [PMID: 32180769 PMCID: PMC7057848 DOI: 10.3389/fimmu.2020.00192] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 01/24/2020] [Indexed: 12/20/2022] Open
Abstract
Due to higher vulnerability and immunogenicity of extended criteria donor (ECD) organs used for organ transplantation (Tx), the discovery of new treatment strategies, involving tissue allorecognition pathways, is important. The implementation of machine perfusion (MP) led to improved estimation of the organ quality and introduced the possibility to achieve graft reconditioning prior to Tx. A significant number of experimental and clinical trials demonstrated increasing support for MP as a promising method of ECD organ preservation compared to classical static cold storage. MP reduced ischemia-reperfusion injury resulting in the protection from inadequate activation of innate immunity. However, there are no general agreements on MP protocols, and clinical application is limited. The objective of this comprehensive review is to summarize literature on immunological effects of MP of ECD organs based on experimental studies and clinical trials.
Collapse
Affiliation(s)
- Mindaugas Kvietkauskas
- Department of General, Visceral and Transplant Surgery, Medical University of Graz, Graz, Austria
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Bettina Leber
- Department of General, Visceral and Transplant Surgery, Medical University of Graz, Graz, Austria
| | | | - Philipp Stiegler
- Department of General, Visceral and Transplant Surgery, Medical University of Graz, Graz, Austria
| | - Peter Schemmer
- Department of General, Visceral and Transplant Surgery, Medical University of Graz, Graz, Austria
| |
Collapse
|
46
|
Donor Leukocyte Trafficking and Damage-associated Molecular Pattern Expression During Ex Vivo Lung Perfusion. Transplant Direct 2020; 6:e532. [PMID: 32195323 PMCID: PMC7056278 DOI: 10.1097/txd.0000000000000968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/27/2019] [Accepted: 11/08/2019] [Indexed: 01/03/2023] Open
Abstract
Background. While ex vivo lung perfusion (EVLP) has become established in lung transplantation, the cellular processes occurring during this period are not yet fully understood. Prior studies demonstrated that donor leukocytes (DLs) migrate from the graft into the perfusate during EVLP, but the distribution of DLs in graft and perfusate compartments has not been characterized. Moreover, cell death of DLs has been implicated in mediating graft injury during EVLP, but the underlying mechanisms have not been elucidated. We hypothesized the following: (1) there is a nonspecific migration of DLs from the graft into perfusate and (2) cell death of DLs releases damage-associated molecular patterns (DAMPs) that contribute to the inflammatory milieu during EVLP. Methods. EVLP was performed on rat lungs for 3 hours (N = 6). At the end of EVLP, flow cytometry was used to quantify the distribution of different DL cell types in both the graft and perfusate compartments. During EVLP, the perfusate was also sampled hourly to measure levels of DAMPs and downstream inflammatory cytokines generated during EVLP. Results. At the conclusion of EVLP, there was a significantly higher proportion of T and B cells present in the perfusate compartment compared with the graft compartment. There was a time-dependent increase in extracellular DNA and tumor necrosis factor α in the perfusate during EVLP. Conclusions. T cells and B cells are enriched in the perfusate compartment during EVLP. Cell death of DLs contributes to an accumulation of DAMPs during EVLP.
Collapse
|
47
|
Optimizing organs for transplantation; advancements in perfusion and preservation methods. Transplant Rev (Orlando) 2019; 34:100514. [PMID: 31645271 DOI: 10.1016/j.trre.2019.100514] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/20/2019] [Accepted: 10/11/2019] [Indexed: 02/06/2023]
|
48
|
Brief Normothermic Machine Perfusion Rejuvenates Discarded Human Kidneys. Transplant Direct 2019; 5:e502. [PMID: 31773055 PMCID: PMC6831120 DOI: 10.1097/txd.0000000000000944] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 08/24/2019] [Indexed: 12/30/2022] Open
Abstract
Supplemental Digital Content is available in the text. Normothermic machine perfusion (NMP) may allow resuscitation and improved assessment of kidneys before transplantation. Using discarded human kidneys, we investigated the mechanistic basis and translational potential of NMP compared with cold static storage (CS).
Collapse
|
49
|
Chandak P, Phillips BL, Uwechue R, Thompson E, Bates L, Ibrahim I, Sewpaul A, Figueiredo R, Olsburgh J, Hosgood S, Nicholson ML, Wilson C, Callaghan CJ. Dissemination of a novel organ perfusion technique: ex vivo normothermic perfusion of deceased donor kidneys. Artif Organs 2019; 43:E308-E319. [PMID: 31087667 DOI: 10.1111/aor.13499] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/07/2019] [Accepted: 05/07/2019] [Indexed: 12/17/2022]
Abstract
Ex vivo normothermic perfusion (EVNP) technology is a promising means of organ preservation, assessment, and preconditioning prior to kidney transplantation, which has been pioneered by a single group. We describe the challenges of setting up clinical EVNP programs in 2 new centers, as well as early patient outcomes. Governance, training, and logistical pathways are described. In order to demonstrate safety and proficiency in this new technique, early patient outcomes are also described. Patient outcomes included the incidence of primary nonfunction, delayed graft function, graft and patient survival at 1 year. Contralateral kidneys undergoing static cold storage alone were used as a comparator group. Between March 2016 and July 2017, EVNP was performed on 14 kidneys from 12 donors (11 kidneys in center 1, 3 kidneys in center 2). Of the 14 kidneys that underwent EVNP, 12 organs were implanted into 10 recipients. Two pairs of kidneys were implanted as dual grafts and 1 kidney was implanted simultaneously with a pancreas. The remaining 7 kidneys were transplanted as single allografts. Seven pairs of kidneys were available for paired analysis comparing EVNP versus static cold storage. Graft and patient outcomes were comparable between the 2 preservation techniques. The introduction of a clinical EVNP service requires a careful multimodal approach, drawing on the expertise of specialists in transplantation, hematology, and microbiology. Both new clinical EVNP programs demonstrated proficiency and safety when a structured dissemination process was followed.
Collapse
Affiliation(s)
- Pankaj Chandak
- Department of Nephrology and Transplantation, Guy's and St Thomas' Hospitals NHS Trust and King's College London, London, United Kingdom
| | - Benedict L Phillips
- Department of Nephrology and Transplantation, Guy's and St Thomas' Hospitals NHS Trust and King's College London, London, United Kingdom
| | - Raphael Uwechue
- Department of Nephrology and Transplantation, Guy's and St Thomas' Hospitals NHS Trust and King's College London, London, United Kingdom
| | - Emily Thompson
- National Institute of Health Research Blood and Transplant Research Unit, Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Lucy Bates
- National Institute of Health Research Blood and Transplant Research Unit, Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Ibrahim Ibrahim
- National Institute of Health Research Blood and Transplant Research Unit, Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Avinash Sewpaul
- National Institute of Health Research Blood and Transplant Research Unit, Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Rodrigo Figueiredo
- National Institute of Health Research Blood and Transplant Research Unit, Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Jonathon Olsburgh
- Department of Nephrology and Transplantation, Guy's and St Thomas' Hospitals NHS Trust and King's College London, London, United Kingdom
| | - Sarah Hosgood
- Department of Surgery, University of Cambridge, Cambridge, United Kingdom
| | | | - Colin Wilson
- National Institute of Health Research Blood and Transplant Research Unit, Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Chris J Callaghan
- Department of Nephrology and Transplantation, Guy's and St Thomas' Hospitals NHS Trust and King's College London, London, United Kingdom
| |
Collapse
|
50
|
Snell G, Hiho S, Levvey B, Sullivan L, Westall G. Consequences of donor-derived passengers (pathogens, cells, biological molecules and proteins) on clinical outcomes. J Heart Lung Transplant 2019; 38:902-906. [PMID: 31307786 DOI: 10.1016/j.healun.2019.06.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/15/2019] [Accepted: 06/15/2019] [Indexed: 12/12/2022] Open
Abstract
It is recognized that donor factors contribute to lung transplant outcomes. Recent observations and studies have started to elucidate potential mechanisms behind explaining these observations. This perspective piece summarizes evolving lung transplant literature on the subject, focusing on donor "passenger" organisms, cells, hormones, and proteins transferred to the recipient. Many extrinsic and intrinsic donor features or properties have important consequences for subsequent allograft function in the recipient. Potentially, a better understanding of these features may provide useful novel therapeutic targets to enhance allograft outcomes.
Collapse
Affiliation(s)
- Gregory Snell
- Lung Transplant Service, Alfred Hospital and Monash University, Melbourne, Victoria, Australia.
| | - Steven Hiho
- Lung Transplant Service, Alfred Hospital and Monash University, Melbourne, Victoria, Australia; Victorian Transplantation and Immunogenetics Service, Australian Red Cross Blood Service, Melbourne, Victoria, Australia
| | - Bronwyn Levvey
- Lung Transplant Service, Alfred Hospital and Monash University, Melbourne, Victoria, Australia
| | - Lucy Sullivan
- Lung Transplant Service, Alfred Hospital and Monash University, Melbourne, Victoria, Australia; Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Glen Westall
- Lung Transplant Service, Alfred Hospital and Monash University, Melbourne, Victoria, Australia
| |
Collapse
|