1
|
Bardallo RG, Chullo G, Alva N, Rosello-Catafau J, Fundora-Suárez Y, Carbonell T, Panisello-Rosello A. Mitigating Cold Ischemic Injury: HTK, UW and IGL-2 Solution's Role in Enhancing Antioxidant Defence and Reducing Inflammation in Steatotic Livers. Int J Mol Sci 2024; 25:9318. [PMID: 39273266 PMCID: PMC11394993 DOI: 10.3390/ijms25179318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Liver transplantation remains the only definitive treatment for end-stage liver diseases. However, the increasing prevalence of fatty liver disease among potential donors exacerbates the shortage of suitable organs. This study evaluates the efficacy of the preservation solution Institut Georges Lopez-2 (IGL-2) compared to Histidine-Tryptophan-Ketoglutarate (HTK) and University of Wisconsin (UW) preservation solutions in mitigating ischemia-reperfusion injury (IRI) in steatotic livers. Using Zucker Obese rat livers, we assessed the impact of 24-h static cold storage (SCS) with each solution on transaminase release, glutathione redox balance, antioxidant enzyme activity, lipoperoxidation, and inflammation markers. IGL-2 and UW solutions demonstrated reduced transaminase and lactate levels compared to HTK, indicating better preservation of liver integrity. IGL-2 maintained a higher reduced glutathione/oxidized glutathione (GSH/GSSG) ratio, suggesting more effective management of oxidative stress. Antioxidant enzyme activities catalase, superoxide dismutase, and glutathione peroxidase (CAT, SOD, GPX) were higher in IGL-2 preserved livers, contributing to decreased oxidative damage. Lipid peroxidation markers and inflammatory markers were lower in IGL-2 than in HTK, indicating reduced oxidative stress and inflammation. Additionally, improved mitochondrial function was observed in the IGL-2 group, correlating with reduced reactive oxygen species (ROS) production and lipid peroxidation. These findings suggest that IGL-2 offers superior preservation of liver viability, reduces oxidative stress, and minimizes inflammation compared to HTK and UW solutions. By maintaining a higher ratio of reduced glutathione and antioxidant enzyme activity, IGL-2 effectively mitigates the harmful effects of ischemia-reperfusion injury. The reduced lipid peroxidation and inflammation in the IGL-2 group further underscore its potential in improving liver transplant outcomes. These results highlight the importance of optimizing preservation solutions to enhance the viability and functionality of donor organs, potentially expanding the donor pool and improving the success rates of liver transplantation. Future research should focus on refining preservation techniques and exploring additional protective agents to further improve organ preservation and transplant outcomes.
Collapse
Affiliation(s)
- Raquel G. Bardallo
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain (N.A.); (T.C.)
| | - Gabriela Chullo
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (G.C.); (J.R.-C.); (Y.F.-S.)
| | - Norma Alva
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain (N.A.); (T.C.)
| | - Joan Rosello-Catafau
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (G.C.); (J.R.-C.); (Y.F.-S.)
- Experimental Pathology Department, Institut d’Investigacions Biomèdiques de Barcelona—Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain
| | - Yiliam Fundora-Suárez
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (G.C.); (J.R.-C.); (Y.F.-S.)
| | - Teresa Carbonell
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain (N.A.); (T.C.)
| | - Arnau Panisello-Rosello
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (G.C.); (J.R.-C.); (Y.F.-S.)
- Experimental Pathology Department, Institut d’Investigacions Biomèdiques de Barcelona—Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain
| |
Collapse
|
2
|
Carbonic anhydrase 14 protects the liver against the cytotoxicity of bile acids in a biliary bicarbonate umbrella-related manner. Life Sci 2022; 310:121117. [DOI: 10.1016/j.lfs.2022.121117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022]
|
3
|
Ionescu VA, Diaconu CC, Bungau S, Jinga V, Gheorghe G. Current Approaches in the Allocation of Liver Transplantation. J Pers Med 2022; 12:jpm12101661. [PMID: 36294801 PMCID: PMC9605642 DOI: 10.3390/jpm12101661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 11/07/2022] Open
Abstract
In recent decades, important advances have been made in the field of liver transplantation. One of the major problems remaining in this area is the small number of donors. Thus, recent data bring multiple updates of the indications and contraindications of this therapeutic method. The main goal is to increase the number of patients who can benefit from liver transplantation, a therapeutic method that can improve life expectancy and the quality of life of patients with end-stage liver disease. Another goal in the management of these patients is represented by the optimal care of those on the waiting list during that period. A multidisciplinary team approach is necessary to obtain the best results for both the donor and the recipient.
Collapse
Affiliation(s)
- Vlad Alexandru Ionescu
- “Prof. Dr. Theodor Burghele” Clinical Hospital, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania
- Department of Gastroenterology, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
| | - Camelia Cristina Diaconu
- “Prof. Dr. Theodor Burghele” Clinical Hospital, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania
- Department of Internal Medicine, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
- Medical Sciences Section, Academy of Romanian Scientists, 050085 Bucharest, Romania
- Correspondence: (C.C.D.); (S.B.); Tel.: +40-726-377-300 (C.C.D.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Correspondence: (C.C.D.); (S.B.); Tel.: +40-726-377-300 (C.C.D.)
| | - Viorel Jinga
- “Prof. Dr. Theodor Burghele” Clinical Hospital, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania
- Medical Sciences Section, Academy of Romanian Scientists, 050085 Bucharest, Romania
- Department of Urology, “Prof. Dr. Theodor Burghele” Hospital, 050653 Bucharest, Romania
| | - Gina Gheorghe
- “Prof. Dr. Theodor Burghele” Clinical Hospital, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania
- Department of Gastroenterology, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
| |
Collapse
|
4
|
Venkitaraman A, De A, Verma N, Kumari S, Leishangthem B, Sharma RR, Kalra N, Grover S, Singh V. Multiple cycles of granulocyte colony-stimulating factor in decompensated cirrhosis: a double-blind RCT. Hepatol Int 2022; 16:1127-1136. [PMID: 35322373 PMCID: PMC8942063 DOI: 10.1007/s12072-022-10314-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/14/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Liver transplant, the definitive treatment of decompensated cirrhosis (DC), is constrained by donor shortage and long-term complications. Granulocyte colony-stimulating factor (G-CSF) has been explored as an alternative option in open-label studies. This double-blind, randomized, placebo-controlled trial was designed to elucidate the efficacy of G-CSF in DC. METHODS Seventy patients were randomized to either G-CSF plus standard medical therapy (group A, n = 35) or placebo plus standard medical therapy (group B, n = 35). Primary outcome was 12-month overall survival in patients who received at least one cycle of intervention. Secondary outcomes were mobilization of CD34+ cells at day 6, improvement in Child-Turcotte-Pugh (CTP), and model for end-stage liver disease (MELD), liver stiffness measurement, quality of life, nutrition, hepatic decompensation, infection, hospitalization, and acute kidney injury. RESULTS Survival in group A was higher than that in Group B although the difference was not statistically significant (87.9% vs 66.7%; p = 0.053). CD34+ cells at day 6 were significantly higher in group A as compared to baseline (p < 0.001). Ascites control (p = 0.03) and CTP score improvement (p = 0.02) were better in group A at 12-months. Encephalopathy episodes (p = 0.005), infections (p = 0.005) were fewer in group A than group B at 12 months. Other secondary outcomes did not improve post-therapy. There were no treatment-related discontinuations or severe adverse events. CONCLUSIONS G-CSF therapy is safe. The improvement in survival at 12 months is not statistically significant. Better control of ascites, improvement of CTP score, fewer encephalopathy episodes and decreased rate of infections were observed with G-CSF therapy (NCT03911037). Trials Registration NCT03911037.
Collapse
Affiliation(s)
- Aswath Venkitaraman
- Department of Hepatology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Arka De
- Department of Hepatology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Nipun Verma
- Department of Hepatology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Sunita Kumari
- Department of Hepatology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Bidyalaxmi Leishangthem
- Department of Hepatology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ratti Ram Sharma
- Department of Transfusion Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Naveen Kalra
- Department of Radiodiagnosis and Imaging, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Sandeep Grover
- Department of Psychiatry, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Virendra Singh
- Department of Hepatology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
5
|
Development of a Scalable Three-Dimensional Culture of Human Induced Pluripotent Stem Cells-Derived Liver Organoids. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2455:131-147. [PMID: 35212992 DOI: 10.1007/978-1-0716-2128-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Human induced pluripotent stem cells (hiPSCs) represent a powerful tool for the generation of specialized cells to be used in regenerative medicine as well as hepatocellular repopulation tool to treat liver metabolic diseases such as nonalcoholic steatohepatitis (NASH). Here we describe a strategy to obtain fully functional liver organoids from hiPSCs in a scalable manner. Our approach uses a two-step process, with a first step involving the scalable formation of homogeneous and uniform-sized human embryoid bodies (hEBs), followed by the application of a four-step liver differentiation protocol for the derivation of liver organoids that possess all the features of primary human hepatocytes. This chapter will also illustrate the characterization of the liver organoids by directed biomolecular techniques.
Collapse
|
6
|
Abstract
Over the past decade, 3D culture models of human and animal cells have found their way into tissue differentiation, drug development, personalized medicine and tumour behaviour studies. Embryoid bodies (EBs) are in vitro 3D cultures established from murine pluripotential stem cells, whereas tumoroids are patient-derived in vitro 3D cultures. This thesis aims to describe a new implication of an embryoid body model and to characterize the patient-specific microenvironment of the parental tumour in relation to tumoroid growth rate. In this thesis, we described a high-throughput monitoring method, where EBs are used as a dynamic angiogenesis model. In this model, digital image analysis (DIA) is implemented on immunohistochemistry (IHC) stained sections of the cultures over time. Furthermore, we have investigated the correlation between the genetic profile and inflammatory microenvironment of parental tumours on the in vitro growth rate of tumoroids. The EBs were cultured in spinner flasks. The samples were collected at days 4, 6, 9, 14, 18 and 21, dehydrated and embedded in paraffin. The histological sections were IHC stained for the endothelial marker CD31 and digitally scanned. The virtual whole-image slides were digitally analysed by Visiopharm® software. Histological evaluation showed vascular-like structures over time. The quantitative DIA was plausible to monitor significant increase in the total area of the EBs and an increase in endothelial differentiation. The tumoroids were established from 32 colorectal adenocarcinomas. The in vitro growth rate of the tumoroids was followed by automated microscopy over an 11-day period. The parental tumours were analysed by next-generation sequencing for KRAS, TP53, PIK3CA, SMAD4, MAP2K1, BRAF, FGFR3 and FBXW7 status. The tumoroids established from KRAS-mutated parental tumours showed a significantly higher growth rate compared to their wild-type counterparts. The density of CD3+ T lymphocytes and CD68+ macrophages was calculated in the centre of the tumours and at the invasive margin of the tumours. The high density of CD3+ cells and the low density of CD68+ cells showed a significant correlation with a higher growth rate of the tumoroids. In conclusion, a novel approach for histological monitoring of endothelial differentiation is presented in the stem cell-derived EBs. Furthermore, the KRAS status and density of CD3+ T cells and macrophages in the parental tumour influence the growth rate of the tumoroids. Our results indicate that these parameters should be included when tumoroids are to be implemented in personalized medicine.
Collapse
Affiliation(s)
- Nabi Mousavi
- Department of Pathology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Ali M, Payne SL. Biomaterial-based cell delivery strategies to promote liver regeneration. Biomater Res 2021; 25:5. [PMID: 33632335 PMCID: PMC7905561 DOI: 10.1186/s40824-021-00206-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/05/2021] [Indexed: 02/08/2023] Open
Abstract
Chronic liver disease and cirrhosis is a widespread and untreatable condition that leads to lifelong impairment and eventual death. The scarcity of liver transplantation options requires the development of new strategies to attenuate disease progression and reestablish liver function by promoting regeneration. Biomaterials are becoming an increasingly promising option to both culture and deliver cells to support in vivo viability and long-term function. There is a wide variety of both natural and synthetic biomaterials that are becoming established as delivery vehicles with their own unique advantages and disadvantages for liver regeneration. We review the latest developments in cell transplantation strategies to promote liver regeneration, with a focus on the use of both natural and synthetic biomaterials for cell culture and delivery. We conclude that future work will need to refine the use of these biomaterials and combine them with novel strategies that recapitulate liver organization and function in order to translate this strategy to clinical use.
Collapse
Affiliation(s)
- Maqsood Ali
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Samantha L Payne
- Department of Biomedical Engineering, School of Engineering, Tufts University, Medford, MA, 02155, USA.
| |
Collapse
|
8
|
Soria LR, Ah Mew N, Brunetti-Pierri N. Progress and challenges in development of new therapies for urea cycle disorders. Hum Mol Genet 2020; 28:R42-R48. [PMID: 31227828 DOI: 10.1093/hmg/ddz140] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022] Open
Abstract
Urea cycle disorders (UCD) are inborn errors of metabolism caused by deficiency of enzymes required to transfer nitrogen from ammonia into urea. Current paradigms of treatment focus on dietary manipulations, ammonia scavenger drugs, and orthotopic liver transplantation. In the last years, there has been intense preclinical research aiming at developing more effective treatments for UCD, and as a result, several novel approaches based on new knowledge of the disease pathogenesis, cell and gene therapies are currently under clinical investigation. We provide an overview of the latest advances for the development of novel therapies for UCD.
Collapse
Affiliation(s)
- Leandro R Soria
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Nicholas Ah Mew
- Rare Disease Institute, Children's National Health System, Washington, DC, USA
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Department of Translational Medicine, Federico II University of Naples, Naples, Italy
| |
Collapse
|
9
|
The Effect of Vascular Endothelial Growth Factor on Bone Marrow Mesenchymal Stem Cell Engraftment in Rat Fibrotic Liver upon Transplantation. Stem Cells Int 2019; 2019:5310202. [PMID: 31885614 PMCID: PMC6915021 DOI: 10.1155/2019/5310202] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/17/2019] [Indexed: 12/17/2022] Open
Abstract
Background According to existing related experiments and research reports, stem cell transplantation therapy has been shown to have a positive effect on the recovery of liver fibrosis/cirrhosis, but for some reason, this therapy still cannot be widely used in clinical work. One of the reasons that cannot be ignored is the low quantity of exogenous stem cells transplanted into the liver in vivo. Thus, we investigated whether the use of the vascular endothelial growth factor (VEGF) can increase the number of stem cell transplants and improve the efficacy of stem cell transplantation therapy. Methods Using a Sprague-Dawley rat liver fibrosis model, we transplanted into fibrosis liver allograft bone marrow mesenchymal stem cells (BMSCs) which were labelled with chlormethylbenzamido-1,1-dioctadecyl-3,3,3′3′-tetramethylin-docarbocyamine (CM-DiI) or injected VEGF adenovirus solution through the tail vein or conducted the above two operations simultaneously. The cell surface receptor profile of BMSC was examined by flow cytometry and immunofluorescence staining. Hepatic sinusoidal vascular leakage was measured with Evan's blue dye assay. Paraffin section staining, immunofluorescent staining, RT-qPCR (quantitative reverse transcription polymerase chain reaction), and Western blot were used to evaluate hepatic pathological changes and physiology function. Result The in vivo study indicated that, comparing with other groups of rats, the rats with combined treatment of BMSC transplantation and VEGF injection exhibited obvious reduction in liver fibrosis. Evan's blue dye assay suggests that after injecting with VEGF adenovirus solution, the rat's hepatic sinusoidal permeability would be increased. We confirmed the expression of very late antigen-4 (VLA4, integrin α4β1) on rat BMSCs and the elevated expression of vascular adhesion molecule-1 (VCAM-1) in the hepatic sinusoidal endothelial cells. In addition, the analysis of CM-DiI-labeled BMSCs showed that the BMSC+VEGF group exhibited better cell engraftment and that the engrafted cells were mainly distributed in the hepatic parenchyma. Furthermore, compared with the other situation, it is best to reconstitute the liver secretion and regeneration function of rats after combined application of VEGF and BMSC. Conclusion We showed that VEGF promotes the engraftment of BMSCs in liver fibrosis, enhances liver regeneration, and improves liver function. These outcomes may be related to the increasing hepatic sinusoidal endothelium permeability and VCAM-1-increased expression.
Collapse
|
10
|
Ballester M, Bolonio M, Santamaria R, Castell JV, Ribes-Koninckx C, Bort R. Direct conversion of human fibroblast to hepatocytes using a single inducible polycistronic vector. Stem Cell Res Ther 2019; 10:317. [PMID: 31685034 PMCID: PMC6829923 DOI: 10.1186/s13287-019-1416-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/30/2019] [Accepted: 09/12/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Human fibroblasts can be reprogrammed into induced hepatocyte-like cells through the expression of a set of transcription factors. Although the generation of induced hepatocyte-like cells by HNF4A, HNF1A, and FOXA3 expression has proven to be a robust experimental strategy, using multiple lentivirus results in a highly variable heterogeneous population. METHODS We designed and implemented a novel approach based on the delivery of reprogramming factors and green fluorescent protein in a single doxycycline-inducible lentiviral vector using 2A self-cleaving peptides. RESULTS Fibroblasts infected with the lentiviral vector can be amplified in basic fibroblast culture media in the absence of doxycycline without induction of hepatic genes. Upon switching to hepatic maturation media containing doxycycline, cells stop proliferating, activate hepatic gene transcription, and perform metabolic functions characteristic of hepatocytes. CONCLUSION Our strategy can generate an unlimited source of homogeneously induced hepatocyte-like cells from different genetic background donors, capable of performing typical hepatic functions suitable for drug research and other in vitro applications.
Collapse
Affiliation(s)
- Maria Ballester
- Experimental Hepatology Research Unit, Instituto de Investigación Sanitaria La Fe, Hospital Universitari i Politècnic La Fe and CIBERehd, 46026, Valencia, Spain
| | - Miguel Bolonio
- Experimental Hepatology Research Unit, Instituto de Investigación Sanitaria La Fe, Hospital Universitari i Politècnic La Fe and CIBERehd, 46026, Valencia, Spain.,Coeliac Disease and Inmunopathology Research Unit, Instituto de Investigación Sanitaria La Fe. Pediatric Gastroenterology, Hospital Universitari i Politècnic La Fe, 46026, Valencia, Spain
| | - Ramon Santamaria
- Experimental Hepatology Research Unit, Instituto de Investigación Sanitaria La Fe, Hospital Universitari i Politècnic La Fe and CIBERehd, 46026, Valencia, Spain
| | - José V Castell
- Experimental Hepatology Research Unit, Instituto de Investigación Sanitaria La Fe, Hospital Universitari i Politècnic La Fe and CIBERehd, 46026, Valencia, Spain.,Biochemistry and Molecular Biology Department, Universidad de Valencia, Valencia, Spain
| | - Carmen Ribes-Koninckx
- Coeliac Disease and Inmunopathology Research Unit, Instituto de Investigación Sanitaria La Fe. Pediatric Gastroenterology, Hospital Universitari i Politècnic La Fe, 46026, Valencia, Spain
| | - Roque Bort
- Experimental Hepatology Research Unit, Instituto de Investigación Sanitaria La Fe, Hospital Universitari i Politècnic La Fe and CIBERehd, 46026, Valencia, Spain.
| |
Collapse
|
11
|
Collin de l'Hortet A, Takeishi K, Guzman-Lepe J, Morita K, Achreja A, Popovic B, Wang Y, Handa K, Mittal A, Meurs N, Zhu Z, Weinberg F, Salomon M, Fox IJ, Deng CX, Nagrath D, Soto-Gutierrez A. Generation of Human Fatty Livers Using Custom-Engineered Induced Pluripotent Stem Cells with Modifiable SIRT1 Metabolism. Cell Metab 2019; 30:385-401.e9. [PMID: 31390551 PMCID: PMC6691905 DOI: 10.1016/j.cmet.2019.06.017] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 02/11/2019] [Accepted: 06/24/2019] [Indexed: 12/14/2022]
Abstract
The mechanisms by which steatosis of the liver progresses to non-alcoholic steatohepatitis and end-stage liver disease remain elusive. Metabolic derangements in hepatocytes controlled by SIRT1 play a role in the development of fatty liver in inbred animals. The ability to perform similar studies using human tissue has been limited by the genetic variability in man. We generated human induced pluripotent stem cells (iPSCs) with controllable expression of SIRT1. By differentiating edited iPSCs into hepatocytes and knocking down SIRT1, we found increased fatty acid biosynthesis that exacerbates fat accumulation. To model human fatty livers, we repopulated decellularized rat livers with human mesenchymal cells, fibroblasts, macrophages, and human SIRT1 knockdown iPSC-derived hepatocytes and found that the human iPSC-derived liver tissue developed macrosteatosis, acquired proinflammatory phenotype, and shared a similar lipid and metabolic profiling to human fatty livers. Biofabrication of genetically edited human liver tissue may become an important tool for investigating human liver biology and disease.
Collapse
Affiliation(s)
| | - Kazuki Takeishi
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jorge Guzman-Lepe
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kazutoyo Morita
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Abhinav Achreja
- Department of Biomedical Engineering, University of Michigan Biomedical Engineering, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Branimir Popovic
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yang Wang
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
| | - Kan Handa
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anjali Mittal
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Noah Meurs
- Department of Biomedical Engineering, University of Michigan Biomedical Engineering, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Ziwen Zhu
- Department of Biomedical Engineering, University of Michigan Biomedical Engineering, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Frank Weinberg
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | | | - Ira J Fox
- Department of Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chu-Xia Deng
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, China
| | - Deepak Nagrath
- Department of Biomedical Engineering, University of Michigan Biomedical Engineering, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
12
|
Khan MGM, Ghosh A, Variya B, Santharam MA, Kandhi R, Ramanathan S, Ilangumaran S. Hepatocyte growth control by SOCS1 and SOCS3. Cytokine 2019; 121:154733. [PMID: 31154249 DOI: 10.1016/j.cyto.2019.154733] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/18/2019] [Accepted: 05/21/2019] [Indexed: 02/06/2023]
Abstract
The extraordinary capacity of the liver to regenerate following injury is dependent on coordinated and regulated actions of cytokines and growth factors. Whereas hepatocyte growth factor (HGF) and epidermal growth factor (EGF) are direct mitogens to hepatocytes, inflammatory cytokines such as TNFα and IL-6 also play essential roles in the liver regeneration process. These cytokines and growth factors activate different signaling pathways in a sequential manner to elicit hepatocyte proliferation. The kinetics and magnitude of these hepatocyte-activating stimuli are tightly regulated to ensure restoration of a functional liver mass without causing uncontrolled cell proliferation. Hepatocyte proliferation can become deregulated under conditions of chronic inflammation, leading to accumulation of genetic aberrations and eventual neoplastic transformation. Among the control mechanisms that regulate hepatocyte proliferation, negative feedback inhibition by the 'suppressor of cytokine signaling (SOCS)' family proteins SOCS1 and SOCS3 play crucial roles in attenuating cytokine and growth factor signaling. Loss of SOCS1 or SOCS3 in the mouse liver increases the rate of liver regeneration and renders hepatocytes susceptible to neoplastic transformation. The frequent epigenetic repression of the SOCS1 and SOCS3 genes in hepatocellular carcinoma has stimulated research in understanding the growth regulatory mechanisms of SOCS1 and SOCS3 in hepatocytes. Whereas SOCS3 is implicated in regulating JAK-STAT signaling induced by IL-6 and attenuating EGFR signaling, SOCS1 is crucial for the regulation of HGF signaling. These two proteins also module the functions of certain key proteins that control the cell cycle. In this review, we discuss the current understanding of the functions of SOCS1 and SOCS3 in controlling hepatocyte proliferation, and its implications to liver health and disease.
Collapse
Affiliation(s)
- Md Gulam Musawwir Khan
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Amit Ghosh
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Bhavesh Variya
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Madanraj Appiya Santharam
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Rajani Kandhi
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Sheela Ramanathan
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Subburaj Ilangumaran
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.
| |
Collapse
|
13
|
Vijayavenkataraman S, Yan WC, Lu WF, Wang CH, Fuh JYH. 3D bioprinting of tissues and organs for regenerative medicine. Adv Drug Deliv Rev 2018; 132:296-332. [PMID: 29990578 DOI: 10.1016/j.addr.2018.07.004] [Citation(s) in RCA: 304] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 05/27/2018] [Accepted: 07/03/2018] [Indexed: 02/07/2023]
Abstract
3D bioprinting is a pioneering technology that enables fabrication of biomimetic, multiscale, multi-cellular tissues with highly complex tissue microenvironment, intricate cytoarchitecture, structure-function hierarchy, and tissue-specific compositional and mechanical heterogeneity. Given the huge demand for organ transplantation, coupled with limited organ donors, bioprinting is a potential technology that could solve this crisis of organ shortage by fabrication of fully-functional whole organs. Though organ bioprinting is a far-fetched goal, there has been a considerable and commendable progress in the field of bioprinting that could be used as transplantable tissues in regenerative medicine. This paper presents a first-time review of 3D bioprinting in regenerative medicine, where the current status and contemporary issues of 3D bioprinting pertaining to the eleven organ systems of the human body including skeletal, muscular, nervous, lymphatic, endocrine, reproductive, integumentary, respiratory, digestive, urinary, and circulatory systems were critically reviewed. The implications of 3D bioprinting in drug discovery, development, and delivery systems are also briefly discussed, in terms of in vitro drug testing models, and personalized medicine. While there is a substantial progress in the field of bioprinting in the recent past, there is still a long way to go to fully realize the translational potential of this technology. Computational studies for study of tissue growth or tissue fusion post-printing, improving the scalability of this technology to fabricate human-scale tissues, development of hybrid systems with integration of different bioprinting modalities, formulation of new bioinks with tuneable mechanical and rheological properties, mechanobiological studies on cell-bioink interaction, 4D bioprinting with smart (stimuli-responsive) hydrogels, and addressing the ethical, social, and regulatory issues concerning bioprinting are potential futuristic focus areas that would aid in successful clinical translation of this technology.
Collapse
|
14
|
Bioengineering Approaches for Bladder Regeneration. Int J Mol Sci 2018; 19:ijms19061796. [PMID: 29914213 PMCID: PMC6032229 DOI: 10.3390/ijms19061796] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/06/2018] [Accepted: 06/10/2018] [Indexed: 12/25/2022] Open
Abstract
Current clinical strategies for bladder reconstruction or substitution are associated to serious problems. Therefore, new alternative approaches are becoming more and more necessary. The purpose of this work is to review the state of the art of the current bioengineering advances and obstacles reported in bladder regeneration. Tissue bladder engineering requires an ideal engineered bladder scaffold composed of a biocompatible material suitable to sustain the mechanical forces necessary for bladder filling and emptying. In addition, an engineered bladder needs to reconstruct a compliant muscular wall and a highly specialized urothelium, well-orchestrated under control of autonomic and sensory innervations. Bioreactors play a very important role allowing cell growth and specialization into a tissue-engineered vascular construct within a physiological environment. Bioprinting technology is rapidly progressing, achieving the generation of custom-made structural supports using an increasing number of different polymers as ink with a high capacity of reproducibility. Although many promising results have been achieved, few of them have been tested with clinical success. This lack of satisfactory applications is a good reason to discourage researchers in this field and explains, somehow, the limited high-impact scientific production in this area during the last decade, emphasizing that still much more progress is required before bioengineered bladders become a commonplace in the clinical setting.
Collapse
|
15
|
Zheng CX, Sui BD, Hu CH, Qiu XY, Zhao P, Jin Y. Reconstruction of structure and function in tissue engineering of solid organs: Toward simulation of natural development based on decellularization. J Tissue Eng Regen Med 2018; 12:1432-1447. [PMID: 29701314 DOI: 10.1002/term.2676] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 10/13/2017] [Accepted: 04/16/2018] [Indexed: 12/21/2022]
Abstract
Failure of solid organs, such as the heart, liver, and kidney, remains a major cause of the world's mortality due to critical shortage of donor organs. Tissue engineering, which uses elements including cells, scaffolds, and growth factors to fabricate functional organs in vitro, is a promising strategy to mitigate the scarcity of transplantable organs. Within recent years, different construction strategies that guide the combination of tissue engineering elements have been applied in solid organ tissue engineering and have achieved much progress. Most attractively, construction strategy based on whole-organ decellularization has become a popular and promising approach, because the overall structure of extracellular matrix can be well preserved. However, despite the preservation of whole structure, the current constructs derived from decellularization-based strategy still perform partial functions of solid organs, due to several challenges, including preservation of functional extracellular matrix structure, implementation of functional recellularization, formation of functional vascular network, and realization of long-term functional integration. This review overviews the status quo of solid organ tissue engineering, including both advances and challenges. We have also put forward a few techniques with potential to solve the challenges, mainly focusing on decellularization-based construction strategy. We propose that the primary concept for constructing tissue-engineered solid organs is fabricating functional organs based on intact structure via simulating the natural development and regeneration processes.
Collapse
Affiliation(s)
- Chen-Xi Zheng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China.,Research and Development Center for Tissue Engineering, Fourth Military Medical University, Shaanxi, China
| | - Bing-Dong Sui
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China.,Research and Development Center for Tissue Engineering, Fourth Military Medical University, Shaanxi, China
| | - Cheng-Hu Hu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, China
| | - Xin-Yu Qiu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China.,Research and Development Center for Tissue Engineering, Fourth Military Medical University, Shaanxi, China
| | - Pan Zhao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, China
| | - Yan Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China.,Research and Development Center for Tissue Engineering, Fourth Military Medical University, Shaanxi, China
| |
Collapse
|
16
|
Gilgenkrantz H, Collin de l'Hortet A. Understanding Liver Regeneration: From Mechanisms to Regenerative Medicine. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1316-1327. [PMID: 29673755 DOI: 10.1016/j.ajpath.2018.03.008] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 03/15/2018] [Accepted: 03/23/2018] [Indexed: 02/06/2023]
Abstract
Liver regeneration is a complex and unique process. When two-thirds of a mouse liver is removed, the remaining liver recovers its initial weight in approximately 10 days. The understanding of the mechanisms responsible for liver regeneration may help patients needing large liver resections or transplantation and may be applied to the field of regenerative medicine. All differentiated hepatocytes are capable of self-renewal, but different subpopulations of hepatocytes seem to have distinct proliferative abilities. In the setting of chronic liver diseases, a ductular reaction ensues in which liver progenitor cells (LPCs) proliferate in the periportal region. Although these LPCs have the capacity to differentiate into hepatocytes and biliary cells in vitro, their ability to participate in liver regeneration is far from clear. Their expansion has even been associated with increased fibrosis and poorer prognosis in chronic liver diseases. Controversies also remain on their origin: lineage studies in experimental mouse models of chronic injury have recently suggested that these LPCs originate from hepatocyte dedifferentiation, whereas in other situations, they seem to come from cholangiocytes. This review summarizes data published in the past 5 years in the liver regeneration field, discusses the mechanisms leading to regeneration disruption in chronic liver disorders, and addresses the potential use of novel approaches for regenerative medicine.
Collapse
Affiliation(s)
- Hélène Gilgenkrantz
- INSERM U1149, Center for Research on Inflammation, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.
| | | |
Collapse
|
17
|
Lee CW, Chen YF, Wu HH, Lee OK. Historical Perspectives and Advances in Mesenchymal Stem Cell Research for the Treatment of Liver Diseases. Gastroenterology 2018; 154:46-56. [PMID: 29107021 DOI: 10.1053/j.gastro.2017.09.049] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 09/23/2017] [Accepted: 09/27/2017] [Indexed: 12/14/2022]
Abstract
Liver transplantation is the only effective therapy for patients with decompensated cirrhosis and fulminant liver failure. However, due to a shortage of donor livers and complications associated with immune suppression, there is an urgent need for new therapeutic strategies for patients with end-stage liver diseases. Given their unique function in self-renewal and differentiation potential, stem cells might be used to regenerate damaged liver tissue. Recent studies have shown that stem cell-based therapies can improve liver function in a mouse model of hepatic failure. Moreover, acellular liver scaffolds seeded with hepatocytes produced functional bioengineered livers for organ transplantation in preclinical studies. The therapeutic potential of stem cells or their differentiated progenies will depend on their capacity to differentiate into mature and functional cell types after transplantation. It will also be important to devise methods to overcome their genomic instability, immune reactivity, and tumorigenic potential. We review directions and advances in the use of mesenchymal stem cells and their derived hepatocytes for liver regeneration. We also discuss the potential applications of hepatocytes derived from human pluripotent stem cells and challenges to using these cells in treating end-stage liver disease.
Collapse
Affiliation(s)
- Chien-Wei Lee
- Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan; Stem Cell Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Fan Chen
- Stem Cell Research Center, National Yang-Ming University, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hao-Hsiang Wu
- Stem Cell Research Center, National Yang-Ming University, Taipei, Taiwan; Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
| | - Oscar K Lee
- Stem Cell Research Center, National Yang-Ming University, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; Taipei City Hospital, Taipei, Taiwan.
| |
Collapse
|
18
|
Lou YR, Leung AW. Next generation organoids for biomedical research and applications. Biotechnol Adv 2017; 36:132-149. [PMID: 29056474 DOI: 10.1016/j.biotechadv.2017.10.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 10/07/2017] [Accepted: 10/16/2017] [Indexed: 12/14/2022]
Abstract
Organoids are in vitro cultures of miniature fetal or adult organ-like structures. Their potentials for use in tissue and organ replacement, disease modeling, toxicology studies, and drug discovery are tremendous. Currently, major challenges facing human organoid technology include (i) improving the range of cellular heterogeneity for a particular organoid system, (ii) mimicking the native micro- and matrix-environment encountered by cells within organoids, and (iii) developing robust protocols for the in vitro maturation of organoids that remain mostly fetal-like in cultures. To tackle these challenges, we advocate the principle of reverse engineering that replicates the inner workings of in vivo systems with the goal of achieving functionality and maturation of the resulting organoid structures with the input of minimal intrinsic (cellular) and environmental (matrix and niche) constituents. Here, we present an overview of organoid technology development in several systems that employ cell materials derived from fetal and adult tissues and pluripotent stem cell cultures. We focus on key studies that exploit the self-organizing property of embryonic progenitors and the role of designer matrices and cell-free scaffolds in assisting organoid formation. We further explore the relationship between adult stem cells, niche factors, and other current developments that aim to enhance robust organoid maturation. From these works, we propose a standardized pipeline for the development of future protocols that would help generate more physiologically relevant human organoids for various biomedical applications.
Collapse
Affiliation(s)
- Yan-Ru Lou
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| | - Alan W Leung
- Yale Stem Cell Center, Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, United States.
| |
Collapse
|
19
|
Puliga E, Min Q, Tao J, Zhang R, Pradhan-Sundd T, Poddar M, Singh S, Columbano A, Yu J, Monga SP. Thyroid Hormone Receptor-β Agonist GC-1 Inhibits Met-β-Catenin-Driven Hepatocellular Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2473-2485. [PMID: 28807594 DOI: 10.1016/j.ajpath.2017.07.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 06/02/2017] [Accepted: 07/05/2017] [Indexed: 12/13/2022]
Abstract
The thyromimetic agent GC-1 induces hepatocyte proliferation via Wnt/β-catenin signaling and may promote regeneration in both acute and chronic liver insufficiencies. However, β-catenin activation due to mutations in CTNNB1 is seen in a subset of hepatocellular carcinomas (HCC). Thus, it is critical to address any effect of GC-1 on HCC growth and development before its use can be advocated to stimulate regeneration in chronic liver diseases. In this study, we first examined the effect of GC-1 on β-catenin-T cell factor 4 activity in HCC cell lines harboring wild-type or mutated-CTNNB1. Next, we assessed the effect of GC-1 on HCC in FVB mice generated by hydrodynamic tail vein injection of hMet-S45Y-β-catenin, using the sleeping beauty transposon-transposase. Four weeks following injection, mice were fed 5 mg/kg GC-1 or basal diet for 10 or 21 days. GC-1 treatment showed no effect on β-catenin-T cell factor 4 activity in HCC cells, irrespective of CTNNB1 mutations. Treatment with GC-1 for 10 or 21 days led to a significant reduction in tumor burden, associated with decreased tumor cell proliferation and dramatic decreases in phospho-(p-)Met (Y1234/1235), p-extracellular signal-related kinase, and p-STAT3 without affecting β-catenin and its downstream targets. GC-1 exerts a notable antitumoral effect on hMet-S45Y-β-catenin HCC by inactivating Met signaling. GC-1 does not promote β-catenin activation in HCC. Thus, GC-1 may be safe for use in inducing regeneration during chronic hepatic insufficiency.
Collapse
Affiliation(s)
- Elisabetta Puliga
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Qian Min
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Junyan Tao
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Rong Zhang
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Tirthadipa Pradhan-Sundd
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Minakshi Poddar
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Sucha Singh
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Amedeo Columbano
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Jinming Yu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China; Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Science, Jinan, China.
| | - Satdarshan P Monga
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.
| |
Collapse
|
20
|
Jeong S, Wang X, Wan P, Sha M, Zhang J, Xia L, Tong Y, Luo Y, Xia Q. Risk factors and survival outcomes of biliary complications after adult-to-adult living donor liver transplantation. United European Gastroenterol J 2017; 5:997-1006. [PMID: 29163966 DOI: 10.1177/2050640616688994] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 12/16/2016] [Indexed: 12/12/2022] Open
Abstract
The objective of this study was to evaluate the risk factors and survival outcomes of biliary complications (BCs) after living donor liver transplantation (LDLT) based on our single-center experience. From 2007 to 2010, 112 adult patients were assessed. Forty-nine patients (43.8%) experienced at least one episode of BCs, including biliary stricture and bile leak, occurring in 37.5% and 16.1% of the patients, respectively. Multivariate analysis indicated that hepatic artery thrombosis (relative risk (RR), 5.692; 95% CI, 2.132 to 15.201; p < 0.001), a hepatic duct diameter of less than 3 mm (RR, 2.523; 95% CI, 1.295 to 4.914; p = 0.005), ductoplasty (RR, 2.175; 95% CI, 1.134 to 4.174; p = 0.018), and cytomegalovirus infection (RR, 4.452; 95% CI, 1.868 to 10.613; p = 0.001) were independent risk factors for the development of BCs. However, these factors and BCs showed no prominent impact on the overall survival (OS) and graft survival (GS). In addition, the patients who developed vascular complications demonstrated poor outcomes in terms of OS (five-year, 56.3% vs. 78.1%; p = 0.017), GS (five-year, 56.3% vs. 77.1%; p = 0.023), and BC-free survival (five-year, 25.0% vs. 63.5%; p = 0.007) compared with patients without vascular complications. In conclusion, BCs remain a common problem after LDLT, especially for patients using duct-to-duct anastomosis. Hepatic artery thrombosis, a short duct diameter, ductoplasty, and cytomegalovirus infection lead to an increased incidence of BCs. The occurrence of BCs manifested no significant influence on the long-term survival outcomes. However, our findings await verification through large-scale randomized studies regarding the risk factors for the development of BCs and their impact on the prognosis.
Collapse
Affiliation(s)
- Seogsong Jeong
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Wang
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Wan
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Meng Sha
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianjun Zhang
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Xia
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Tong
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Luo
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Xia
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
21
|
Cervantes-Alvarez E, Wang Y, Collin de l'Hortet A, Guzman-Lepe J, Zhu J, Takeishi K. Current strategies to generate mature human induced pluripotent stem cells derived cholangiocytes and future applications. Organogenesis 2017; 13:1-15. [PMID: 28055309 DOI: 10.1080/15476278.2016.1278133] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Stem cell research has significantly evolved over the last few years, allowing the differentiation of pluripotent cells into almost any kind of lineage possible. Studies that focus on the liver have considerably taken a leap into this novel technology, and hepatocyte-like cells are being generated that are close to resembling actual hepatocytes both genotypically and phenotypically. The potential of this extends from disease models to bioengineering, and even also innovative therapies for end-stage liver disease. Nonetheless, too few attention has been given to the non-parenchymal cells which are also fundamental for normal liver function. This includes cholangiocytes, the cells of the biliary epithelium, without whose role in bile modification and metabolism would impair hepatocyte survival. Such can be observed in diseases that target them, so called cholangiopathies, for which there is much yet to study so as to improve therapeutical options. Protocols that describe the induction of human induced pluripotent stem cells into cholangiocytes are scarce, although progress is being achieved in this area as well. In order to give the current view on this emerging research field, and in hopes to motivate further advances, we present here a review on the known differentiation strategies with sight into future applications.
Collapse
Affiliation(s)
- Eduardo Cervantes-Alvarez
- a Department of Pathology , University of Pittsburgh , Pittsburgh , PA , USA.,b PECEM, Facultad de Medicina, Universidad Nacional Autónoma de México , Mexico City , México
| | - Yang Wang
- a Department of Pathology , University of Pittsburgh , Pittsburgh , PA , USA.,c Department of Hepatobiliary Surgery , Peking University People's Hospital , Beijing , China
| | | | - Jorge Guzman-Lepe
- a Department of Pathology , University of Pittsburgh , Pittsburgh , PA , USA
| | - Jiye Zhu
- c Department of Hepatobiliary Surgery , Peking University People's Hospital , Beijing , China
| | - Kazuki Takeishi
- a Department of Pathology , University of Pittsburgh , Pittsburgh , PA , USA
| |
Collapse
|
22
|
Moldovan NI, Hibino N, Nakayama K. Principles of the Kenzan Method for Robotic Cell Spheroid-Based Three-Dimensional Bioprinting<sup/>. TISSUE ENGINEERING PART B-REVIEWS 2017; 23:237-244. [PMID: 27917703 DOI: 10.1089/ten.teb.2016.0322] [Citation(s) in RCA: 195] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Bioprinting is a technology with the prospect to change the way many diseases are treated, by replacing the damaged tissues with live de novo created biosimilar constructs. However, after more than a decade of incubation and many proofs of concept, the field is still in its infancy. The current stagnation is the consequence of its early success: the first bioprinters, and most of those that followed, were modified versions of the three-dimensional printers used in additive manufacturing, redesigned for layer-by-layer dispersion of biomaterials. In all variants (inkjet, microextrusion, or laser assisted), this approach is material ("scaffold") dependent and energy intensive, making it hardly compatible with some of the intended biological applications. Instead, the future of bioprinting may benefit from the use of gentler scaffold-free bioassembling methods. A substantial body of evidence has accumulated, indicating this is possible by use of preformed cell spheroids, which have been assembled in cartilage, bone, and cardiac muscle-like constructs. However, a commercial instrument capable to directly and precisely "print" spheroids has not been available until the invention of the microneedles-based ("Kenzan") spheroid assembling and the launching in Japan of a bioprinter based on this method. This robotic platform laces spheroids into predesigned contiguous structures with micron-level precision, using stainless steel microneedles ("kenzans") as temporary support. These constructs are further cultivated until the spheroids fuse into cellular aggregates and synthesize their own extracellular matrix, thus attaining the needed structural organization and robustness. This novel technology opens wide opportunities for bioengineering of tissues and organs.
Collapse
Affiliation(s)
- Nicanor I Moldovan
- 1 Department of Biomedical Engineering, Schools of Engineering and Medicine, Indiana University-Purdue University Indianapolis , Indianapolis, Indiana.,2 Department of Ophthalmology, Schools of Engineering and Medicine, Indiana University-Purdue University Indianapolis , Indianapolis, Indiana
| | - Narutoshi Hibino
- 3 Department of Surgery, Division of Cardiac Surgery, Johns Hopkins University , Baltimore, Maryland
| | - Koichi Nakayama
- 4 Department of Regenerative Medicine and Biomedical Engineering, Faculty of Medicine, Saga University , Japan
| |
Collapse
|
23
|
Takagi C, Yagi H, Hieda M, Tajima K, Hibi T, Abe Y, Kitago M, Shinoda M, Itano O, Kitagawa Y. Mesenchymal Stem Cells Contribute to Hepatic Maturation of Human Induced Pluripotent Stem Cells. Eur Surg Res 2017; 58:27-39. [DOI: 10.1159/000448516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
<b><i>Background:</i></b> Induced pluripotent stem cells (iPSCs) are human somatic cells that have been reprogrammed to a pluripotent state. Several methods have been used to generate hepatocyte-like cells from iPSCs. However, these hepatic cells have limited clinical application because of their immature function compared to primary hepatocytes. Mesenchymal stem cells (MSCs) have been reported to inhibit apoptosis of hepatic cells and to improve hepatic regeneration in acute liver injury. Therefore, we expected that MSCs had the potential to positively contribute to the maturation of hepatic cells. Here we demonstrate the effect of MSCs on the maturation of hepatoblasts derived from human iPSCs. <b><i>Methods:</i></b> MSCs were isolated from human bone marrow and cultured to 70-80% confluence. MSC-conditioned medium (MSC-CM) was collected 48 h after culture in hepatic maturation medium. Human iPSC-derived hepatoblasts were then cultured for 6 days with MSC-CM. Hepatic functions were analyzed and compared to those from cells cultured in general maturation medium. <b><i>Results:</i></b> Cells in both groups had a cuboidal morphology typical of hepatocytes. The proportion of Oct4-positive cells was decreased and those of albumin- and alpha-fetoprotein-positive cells were increased in the MSC-CM group. Albumin secretion and urea synthesis as well as cytochrome P450 (CYP) 3A4 activity were enhanced in the MSC-CM group. The gene expressions of some CYP enzymes were upregulated as demonstrated by RT-PCR. <b><i>Conclusion:</i></b> Secreted molecules from human MSCs could enhance the hepatic function of human iPSC-derived hepatocyte-like cells. Although more technological innovations are needed, MSC-CM will be useful as a novel efficient strategy for clinically relevant hepatic cell maturation.
Collapse
|
24
|
Nicolas CT, Hickey RD, Chen HS, Mao SA, Lopera Higuita M, Wang Y, Nyberg SL. Concise Review: Liver Regenerative Medicine: From Hepatocyte Transplantation to Bioartificial Livers and Bioengineered Grafts. Stem Cells 2017; 35:42-50. [PMID: 27641427 PMCID: PMC5529050 DOI: 10.1002/stem.2500] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/27/2016] [Accepted: 08/21/2016] [Indexed: 12/13/2022]
Abstract
Donor organ shortage is the main limitation to liver transplantation as a treatment for end-stage liver disease and acute liver failure. Liver regenerative medicine may in the future offer an alternative form of therapy for these diseases, be it through cell transplantation, bioartificial liver (BAL) devices, or bioengineered whole organ liver transplantation. All three strategies have shown promising results in the past decade. However, before they are incorporated into widespread clinical practice, the ideal cell type for each treatment modality must be found, and an adequate amount of metabolically active, functional cells must be able to be produced. Research is ongoing in hepatocyte expansion techniques, use of xenogeneic cells, and differentiation of stem cell-derived hepatocyte-like cells (HLCs). HLCs are a few steps away from clinical application, but may be very useful in individualized drug development and toxicity testing, as well as disease modeling. Finally, safety concerns including tumorigenicity and xenozoonosis must also be addressed before cell transplantation, BAL devices, and bioengineered livers occupy their clinical niche. This review aims to highlight the most recent advances and provide an updated view of the current state of affairs in the field of liver regenerative medicine. Stem Cells 2017;35:42-50.
Collapse
Affiliation(s)
- Clara T Nicolas
- William J Von Liebig Transplant Center, Mayo Clinic, Rochester, Minnesota, USA
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Raymond D Hickey
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Harvey S Chen
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Shennen A Mao
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Manuela Lopera Higuita
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Yujia Wang
- William J Von Liebig Transplant Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Scott L Nyberg
- William J Von Liebig Transplant Center, Mayo Clinic, Rochester, Minnesota, USA
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
25
|
Abstract
Here, we describe a protocol to develop a three-dimensional (3D) liver bud-like tissue from human iPSCs in vitro. This method mainly consists of two parts: (1) hepatic endoderm (HE) differentiation from human iPSCs in 2D culture and (2) co-culturing iPSC-HE with endothelial and mesenchymal cells. First, iPSCs were differentiated into definitive endoderm (DE) cells, and the DE cells were differentiated into HE cells, which were then co-cultured with endothelial cells and mesenchymal cells on Matrigel-coated plastic plates or micropattern plates. The cells rapidly condensed to generate 3D tissue masses. We named these iPSC liver buds (iPSC-LBs) because they resemble the developing liver bud from the perspective of gene expression, cell proliferation, and cell proportion. This liver bud culture system provides a novel approach for future clinical applications, for drug development, and as a tool for studying human development.
Collapse
Affiliation(s)
- Keisuke Sekine
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Kanazawa-ku 3-9, Yokohama, Kanagawa, 236-0004, Japan
| | - Takanori Takebe
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Kanazawa-ku 3-9, Yokohama, Kanagawa, 236-0004, Japan
- Advanced medical research center, Yokohama City University, Kanazawa-ku 3-9, Yokohama, Kanagawa, 236-0004, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8, Honcho, Kawaguchi, Saitama, 332-0012, Japan
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH, 45229-3039, USA
| | - Hideki Taniguchi
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Kanazawa-ku 3-9, Yokohama, Kanagawa, 236-0004, Japan.
- Advanced medical research center, Yokohama City University, Kanazawa-ku 3-9, Yokohama, Kanagawa, 236-0004, Japan.
| |
Collapse
|
26
|
Wertheim JA. Novel technology for liver regeneration and replacement. Liver Transpl 2016; 22:41-46. [PMID: 27611337 PMCID: PMC5244428 DOI: 10.1002/lt.24635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 09/07/2016] [Indexed: 01/13/2023]
Affiliation(s)
- Jason A. Wertheim
- Department of Surgery, Jesse Brown VA Medical Center, Chicago, IL; Chemistry of Life Processes Institute and Biomedical Engineering Department, Northwestern University, Evanston, IL; and Simpson Querrey, Institute, Northwestern University, Chicago, IL; Comprehensive Transplant Center and Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
27
|
|