1
|
Messchendorp AL, Zaeck LM, Bouwmans P, van den Broek DAJ, Frölke SC, Geers D, Imhof C, Malahe SRK, Schmitz KS, Reinders J, Visscher FE, Baan CC, Bemelman FJ, Gansevoort RT, GeurtsvanKessel CH, Hemmelder MH, Hilbrands LB, Källmark H, Kapetanovic MC, Kho MML, de Vries APJ, van Zuilen AD, Reinders ME, van Baarle D, de Vries RD, Sanders JSF. Replacing Mycophenolate Mofetil by Everolimus in Kidney Transplant Recipients to Increase Vaccine Immunogenicity: Results of a Randomized Controlled Trial. Clin Infect Dis 2025:ciaf107. [PMID: 40231961 DOI: 10.1093/cid/ciaf107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Vaccine immunogenicity is reduced in kidney transplant recipients (KTRs), especially in those using mycophenolate mofetil (MMF). Whether replacement of MMF by everolimus improves vaccine immunogenicity is unknown. METHODS KTRs were randomized 1:1 to continue MMF or switch to everolimus. Participants received one coronavirus disease 2019 (COVID-19) booster vaccination and two herpes zoster (HZ) vaccinations at 6, 10 and 14 weeks postrandomization. Primary outcome was the neutralizing antibody response 28 days after COVID-19 vaccination. Secondary outcomes included antibody and T-cell responses 28 days after COVID-19 and HZ vaccination, and safety. RESULTS In 110 KTRs, COVID-19 vaccination resulted in comparable Omicron XBB.1.5 neutralizing antibody titers in the everolimus versus MMF group (308 [74.4-1314] vs 327 [115-897]; P = .83), whereas severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) Spike-specific T-cell responses were slightly lower with everolimus (118 [32.1-243] vs 228 [113-381] spot-forming cells [SFCs]/106 peripheral blood mononuclear cells [PBMCs]; P = .02). HZ vaccination led to higher varicella zoster virus (VZV) glycoprotein E (gE)-specific immunoglobulin G titers with everolimus (2192 [888-4523] vs 1101 [440-2078] 50% endpoint titer; P = .004), while VZV gE-specific T-cell responses were similar (85.0 [27.5-155] vs 115 [50.0-258] SFCs/106 PBMCs; P = .24). Besides known side effects, everolimus led to more bacterial infections (27.3% vs 11.1%; P = .03). CONCLUSIONS Six weeks' replacement of MMF by everolimus in KTRs does not improve COVID-19 booster vaccine immunogenicity, whereas 10 weeks' replacement enhances humoral HZ vaccine immunogenicity. While replacing MMF by everolimus may improve vaccine responses, its timing and potential risks require careful consideration.
Collapse
Affiliation(s)
- A Lianne Messchendorp
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, Groningen, The Netherlands
| | - Luca M Zaeck
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Pim Bouwmans
- Division of Nephrology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht, School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Dennis A J van den Broek
- Division of Nephrology, Department of Medicine, Leiden University Medical Center and Leiden Transplant Center, Leiden, The Netherlands
| | - Sophie C Frölke
- Renal Transplant Unit, Amsterdam Universtiy Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Daryl Geers
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Céline Imhof
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - S Reshwan K Malahe
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Katharina S Schmitz
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, Groningen, The Netherlands
| | - Julian Reinders
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, Groningen, The Netherlands
| | - Frederique E Visscher
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center Transplant Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Carla C Baan
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center Transplant Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Frederike J Bemelman
- Renal Transplant Unit, Amsterdam Universtiy Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Ron T Gansevoort
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Marc H Hemmelder
- Division of Nephrology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht, School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Luuk B Hilbrands
- Department of Nephrology, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Hanna Källmark
- Section of Rheumatology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Rheumatology, Skåne University Hospital, Lund and Malmö, Sweden
| | - Meliha C Kapetanovic
- Section of Rheumatology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Rheumatology, Skåne University Hospital, Lund and Malmö, Sweden
| | - Marcia M L Kho
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center Transplant Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Aiko P J de Vries
- Division of Nephrology, Department of Medicine, Leiden University Medical Center and Leiden Transplant Center, Leiden, The Netherlands
| | - Arjan D van Zuilen
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marlies E Reinders
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center Transplant Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Debbie van Baarle
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, Groningen, The Netherlands
| | - Rory D de Vries
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jan-Stephan F Sanders
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
2
|
Larpparisuth N, Pongsakornkullachart K, Ratchawang N, Vongwiwatana A, Skulratanasak P. Impact of immunosuppressive regimens on antibody response after COVID-19 vaccination among Thai kidney transplant recipients. Heliyon 2025; 11:e42291. [PMID: 39931482 PMCID: PMC11808495 DOI: 10.1016/j.heliyon.2025.e42291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/13/2025] [Accepted: 01/24/2025] [Indexed: 02/13/2025] Open
Abstract
Background The lower humoral immunity response after the COVID-19 vaccine in kidney transplant recipients (KTR) has been reported in several studies. However, there are few studies on the efficacy of the ChAdOx1 nCoV-19 (AstraZeneca) vaccine compared between various immunosuppressive regimens. Methods We conducted a prospective cohort study at Siriraj Hospital, Bangkok, Thailand. Adult KTRs who received two doses of the ChAdOx1 nCoV-19 vaccine at intervals of 3 months were enrolled. Anti-SARS-COV-2 S-RBD-IgG antibody (anti-RBD) was assessed at the one month after the second dose and considered positive if the level ≥50 AU/mL or 7 BAU/mL. The primary outcome was the seropositivity of anti-RBD. The association between type, dose, and level of immunosuppressive regimen and anti-RBD seropositivity was analyzed. Results Between October 2021 and January 2022, 139 KTRs with a median time of 55 months (IQR, 29-102 months), were enrolled. The mean age was 49.1 ± 11.3 years and 64.7 % were men. Seroconversion of anti-RBD was found in 72 patients (51.8 %). The seropositive rate was significantly higher in KTR who received tacrolimus (TAC)/everolimus (EVR)/prednisolone (CS) immunosuppression than EVR/mycophenolic acid (MPA)/CS and TAC/MPA/CS, respectively (95 % vs. 65 % vs. 34 %; p < 0.001). The MPA-containing regimen is associated with an inferior humoral response (OR 0.02, 95%CI 0.01-0.16; p < 0.001). In contrast, KTRs who received EVR had the highest immunogenic response (OR 12.97, 95%CI 4.69-35.84; p < 0.001). During the 11-month follow-up period, COVID-19 pneumonia occurred in 3 KTR in the seronegative group and none in the seropositive group. Conclusion The anti-RBD response after ChAdOx1 nCoV-19 vaccination was revealed in 51.8 % of the KTR. KTRs who received the TAC/EVR/CS regimen had the highest immune response after vaccination, relatively comparable to the general population. The immunosuppressive regimen should be considered for a further vaccine dose in KTR.
Collapse
Affiliation(s)
- Nuttasith Larpparisuth
- Division of Nephrology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kritsada Pongsakornkullachart
- Division of Nephrology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nartsiri Ratchawang
- Department of Nursing Siriraj Hospital, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Attapong Vongwiwatana
- Division of Nephrology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Peenida Skulratanasak
- Division of Nephrology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
3
|
Donadeu L, Gomez-Olles S, Casanova F, Torija A, Lopez-Meseguer M, Boada-Pérez M, Kervella D, Crespo E, Carrera-Muñoz C, Campos-Varela I, Castells L, Cortese MF, Esperalba J, Fernández-Naval C, Quintero J, Muñoz M, Agüero F, Gonzalez-Costello J, Lladó L, Favà A, Cañas L, del Mar de la Hoz-Caballero M, Meneghini M, Torres IB, Juvé M, Hafkamp FMJ, Vila M, Robles AG, Buzón MJ, Toapanta N, Zúñiga JM, Monforte V, Saez-Giménez B, Len O, Arcos IL, Miret E, Ariceta G, Pardo E, Martínez X, Moreso F, Bestard O. Role of SARS-CoV-2-specific memory B cells promoting immune protection after booster vaccination in solid organ transplantation. Front Immunol 2024; 15:1463769. [PMID: 39439787 PMCID: PMC11493670 DOI: 10.3389/fimmu.2024.1463769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/09/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction Solid organ transplant (SOT) recipients display weak seroconversion and neutralizing antibody (NAb) responses after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination and remain at risk of severe coronavirus disease 2019 (COVID-19). While B-cell memory is the hallmark of serological immunity, its role in driving successful vaccine responses and providing immune protection in SOT patients remains unclear. Methods We investigated the function and interplay of SARS-CoV-2-specific memory B cells (mBc), different cytokineproducing T cells, and cross-reactive NAb in driving seroconversion and protection against COVID-19 in two cohorts. First, we studied a large cohort of 148 SOT recipients and 32 immunocompetent individuals who underwent several vaccinations. Subsequently, we assessed 25 SOT patients participating in a randomized controlled trial to compare two different immunosuppressive strategies for allowing successful seroconversion and memory-cell responses after booster vaccination. Results We corroborate previous findings that B- and T-cell memory responses are weaker and more delayed in SOT patients than in immunocompetent (IC) individuals; however, within the SOT cohort, we found that these responses are relatively stronger and more robust in patients not receiving mycophenolate mofetil (MMF)-based therapies. Anti- spike IgG titers strongly correlated with RBD-specific IgG-producing mBc, with both displaying broad viral cross reactivity. Prebooster SARS-CoV-2-specific mBc and IL-2- producing T cells accurately predicted Nab seroconversion (AUC, 0.828) and protection against severe COVID-19. While switching unresponsive SOT patients from calcineurin inhibitors (CNI)/MMF to a low-exposure CNI/mTOR-i regimen favored wider SARS-CoV-2-specific immune responses after a fourth booster vaccination, preformed RBD-specific mBc predicted NAb seroconversion. Discussion Our study adds new insights into the pathobiology of immune memory and highlights the pivotal role of SARS-CoV-2-specific mBc in promoting immune protection inSOT patients.
Collapse
Affiliation(s)
- Laura Donadeu
- Laboratory of Nephrology and Transplantation, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Vall d’Hebron for Solid Organ Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Susana Gomez-Olles
- Vall d’Hebron for Solid Organ Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Laboratory of Pneumology, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Ciber Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Franc Casanova
- Laboratory of Nephrology and Transplantation, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Vall d’Hebron for Solid Organ Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alba Torija
- Laboratory of Nephrology and Transplantation, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Vall d’Hebron for Solid Organ Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Manuel Lopez-Meseguer
- Vall d’Hebron for Solid Organ Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Laboratory of Pneumology, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Ciber Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Lung Transplant Unit, Pneumology Department, Vall d’Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Meritxell Boada-Pérez
- Vall d’Hebron for Solid Organ Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Laboratory of Pneumology, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Delphine Kervella
- Laboratory of Nephrology and Transplantation, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Vall d’Hebron for Solid Organ Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Kidney Transplant Unit, Nephrology Department, Vall d’Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Elena Crespo
- Laboratory of Nephrology and Transplantation, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Vall d’Hebron for Solid Organ Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Claudia Carrera-Muñoz
- Laboratory of Nephrology and Transplantation, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Vall d’Hebron for Solid Organ Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Kidney Transplant Unit, Nephrology Department, Vall d’Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Isabel Campos-Varela
- Vall d’Hebron for Solid Organ Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Liver Unit, Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Lluís Castells
- Vall d’Hebron for Solid Organ Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Liver Unit, Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria F. Cortese
- Microbiology Department, Vall d’Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juliana Esperalba
- Vall d’Hebron for Solid Organ Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Microbiology Department, Vall d’Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Candela Fernández-Naval
- Microbiology Department, Vall d’Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jesús Quintero
- Vall d’Hebron for Solid Organ Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Pediatric Hepatology and Liver Transplant Department, Vall d’Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marina Muñoz
- Vall d’Hebron for Solid Organ Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Pediatric Nephrology, Vall d’Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Fernando Agüero
- Department of Preventive Medicine and Epidemiology, Bellvitge University Hospital, Barcelona, Spain
| | - José Gonzalez-Costello
- Advanced Heart Failure and Heart Transplant Unit, Department of Cardiology, Hospital Universitari de Bellvitge, BIOHEART-Cardiovascular Diseases Research Group, Bellvitge Biomedical Research Institute (IDIBELL), Universitat de Barcelona, Ciber Cardiovascular (CIBERCV), Barcelona, Spain
| | - Laura Lladó
- Liver Transplant Unit, Bellvitge University Hospital, Barcelona, Spain
| | - Alexandre Favà
- Kidney Transplant Unit, Bellvitge University Hospital, Barcelona, Spain
| | - Laura Cañas
- Kidney Transplant Unit, Nephrology department, Germans Trias i Pujol Hospital, Badalona, Spain
| | - María del Mar de la Hoz-Caballero
- Equipo de Atención Primaria Sant Rafael, Servei d'Atenció Primària (SAP) Muntanya, Gerència Territorial de Barcelona Ciutat, Institut Català de la Salut, Barcelona, Spain
| | - Maria Meneghini
- Laboratory of Nephrology and Transplantation, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Vall d’Hebron for Solid Organ Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Kidney Transplant Unit, Nephrology Department, Vall d’Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Irina B. Torres
- Vall d’Hebron for Solid Organ Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Kidney Transplant Unit, Nephrology Department, Vall d’Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mariona Juvé
- Laboratory of Nephrology and Transplantation, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - FMJ Hafkamp
- Laboratory of Nephrology and Transplantation, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Vall d’Hebron for Solid Organ Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marta Vila
- Microbiology Department, Vall d’Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alba G. Robles
- Infectious Diseases Department, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria José Buzón
- Infectious Diseases Department, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Nestor Toapanta
- Vall d’Hebron for Solid Organ Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Kidney Transplant Unit, Nephrology Department, Vall d’Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - José Miguel Zúñiga
- Laboratory of Nephrology and Transplantation, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Vall d’Hebron for Solid Organ Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Kidney Transplant Unit, Nephrology Department, Vall d’Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Víctor Monforte
- Vall d’Hebron for Solid Organ Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Laboratory of Pneumology, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Lung Transplant Unit, Pneumology Department, Vall d’Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Berta Saez-Giménez
- Vall d’Hebron for Solid Organ Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Laboratory of Pneumology, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Lung Transplant Unit, Pneumology Department, Vall d’Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Oscar Len
- Vall d’Hebron for Solid Organ Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Infectious Diseases, Vall d’Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ibai Los Arcos
- Vall d’Hebron for Solid Organ Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Infectious Diseases, Vall d’Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Enric Miret
- Vall d’Hebron for Solid Organ Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Urology Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gema Ariceta
- Vall d’Hebron for Solid Organ Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Pediatric Nephrology, Vall d’Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Emma Pardo
- Kidney Transplant Unit, Nephrology Department, Vall d’Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Xavier Martínez
- Department of Preventive Medicine and Epidemiology, Vall d’Hebron Hospital Universitari, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francesc Moreso
- Vall d’Hebron for Solid Organ Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Kidney Transplant Unit, Nephrology Department, Vall d’Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Oriol Bestard
- Laboratory of Nephrology and Transplantation, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Vall d’Hebron for Solid Organ Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Kidney Transplant Unit, Nephrology Department, Vall d’Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
4
|
Troise D, Mercuri S, Infante B, Losappio V, Cirolla L, Netti GS, Ranieri E, Stallone G. mTOR and SGLT-2 Inhibitors: Their Synergistic Effect on Age-Related Processes. Int J Mol Sci 2024; 25:8676. [PMID: 39201363 PMCID: PMC11354721 DOI: 10.3390/ijms25168676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
The aging process contributes significantly to the onset of chronic diseases, which are the primary causes of global mortality, morbidity, and healthcare costs. Numerous studies have shown that the removal of senescent cells from tissues extends lifespan and reduces the occurrence of age-related diseases. Consequently, there is growing momentum in the development of drugs targeting these cells. Among them, mTOR and SGLT-2 inhibitors have garnered attention due to their diverse effects: mTOR inhibitors regulate cellular growth, metabolism, and immune responses, while SGLT-2 inhibitors regulate glucose reabsorption in the kidneys, resulting in various beneficial metabolic effects. Importantly, these drugs may act synergistically by influencing senescence processes and pathways. Although direct studies on the combined effects of mTOR inhibition and SGLT-2 inhibition on age-related processes are limited, this review aims to highlight the potential synergistic benefits of these drugs in targeting senescence.
Collapse
Affiliation(s)
- Dario Troise
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Renal Medicine and Baxter Novum, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 14152 Stockholm, Sweden
| | - Silvia Mercuri
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Barbara Infante
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Vincenzo Losappio
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Luciana Cirolla
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Giuseppe Stefano Netti
- Unit of Clinical Pathology, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Elena Ranieri
- Unit of Clinical Pathology, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
5
|
Bouzari B, Chugaeva UY, Karampoor S, Mirzaei R. Immunometabolites in viral infections: Action mechanism and function. J Med Virol 2024; 96:e29807. [PMID: 39037069 DOI: 10.1002/jmv.29807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/10/2024] [Accepted: 07/05/2024] [Indexed: 07/23/2024]
Abstract
The interplay between viral pathogens and host metabolism plays a pivotal role in determining the outcome of viral infections. Upon viral detection, the metabolic landscape of the host cell undergoes significant changes, shifting from oxidative respiration via the tricarboxylic acid (TCA) cycle to increased aerobic glycolysis. This metabolic shift is accompanied by elevated nutrient accessibility, which is vital for cell function, development, and proliferation. Furthermore, depositing metabolites derived from fatty acids, TCA intermediates, and amino acid catabolism accelerates the immunometabolic transition, facilitating pro-inflammatory and antimicrobial responses. Immunometabolites refer to small molecules involved in cellular metabolism regulating the immune response. These molecules include nutrients, such as glucose and amino acids, along with metabolic intermediates and signaling molecules adenosine, lactate, itaconate, succinate, kynurenine, and prostaglandins. Emerging evidence suggests that immunometabolites released by immune cells establish a complex interaction network within local niches, orchestrating and fine-tuning immune responses during viral diseases. However, our current understanding of the immense capacity of metabolites to convey essential cell signals from one cell to another or within cellular compartments remains incomplete. Unraveling these complexities would be crucial for harnessing the potential of immunometabolites in therapeutic interventions. In this review, we discuss specific immunometabolites and their mechanisms of action in viral infections, emphasizing recent findings and future directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Behnaz Bouzari
- Department of Pathology, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Uliana Y Chugaeva
- Department of Pediatric, Preventive Dentistry and Orthodontics, Institute of Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
6
|
Kawashiro K, Suzuki R, Nogimori T, Tsujino S, Iwahara N, Hirose T, Okada K, Yamamoto T, Fukuhara T, Hotta K, Shinohara N. Neutralizing antibody responses and cellular responses against SARS-CoV-2 Omicron subvariants after mRNA SARS-CoV-2 vaccination in kidney transplant recipients. Sci Rep 2024; 14:12176. [PMID: 38806644 PMCID: PMC11133393 DOI: 10.1038/s41598-024-63147-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024] Open
Abstract
Although the mRNA SARS-CoV-2 vaccine has improved the mortality rate in the general population, its efficacy against rapidly mutating virus strains, especially in kidney transplant recipients, remains unclear. We examined the anti-SARS-CoV-2 spike protein IgG antibody and neutralizing antibody titers and cellular immunity against B.1.1, BA.1, and BA.5 antigens in 73 uninfected kidney recipients and 16 uninfected healthy controls who received three doses of an mRNA SARS-CoV-2 vaccine. The IgG antibody titers were significantly lower in recipients than in healthy controls. Similarly, neutralizing antibody titers against three viral variants were significantly lower in recipients. When the virus was mutated, the neutralizing antibody titers decreased significantly in both groups. In cellular immunity analysis, the number of spike-specific CD8 + non-naïve T cells against three variants significantly decreased in recipients. Conversely, the frequency of spike-specific Th2 CD4 + T-cells in recipients was higher than that in healthy controls. Nineteen recipients and six healthy controls also received a bivalent omicron-containing booster vaccine, leading to increase IgG and neutralizing antibody titers in both groups. After that, eleven recipients and five healthy controls received XBB.1.5 monovalent vaccines, increasing the neutralizing antibody titers against not only XBB.1.5, but also EG.5.1 and BA.2.86 antigens in kidney recipients. Although kidney recipients did not gain sufficient immunity against Omicron BA.5 with the third dose of vaccine, humoral response against mutant SARS-CoV-2 lineages significantly increased after bivalent Omicron-containing booster vaccine and the XBB.1.5 monovalent vaccine. Therefore, it is important for kidney recipients to continue to administer updated vaccines.
Collapse
Affiliation(s)
- Keita Kawashiro
- Department of Urology, Hokkaido University Hospital, Sapporo, Japan
| | - Rigel Suzuki
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development: HU-IVReD, Hokkaido University, Sapporo, Japan
| | - Takuto Nogimori
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan
| | - Shuhei Tsujino
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Naoya Iwahara
- Department of Urology, Hokkaido University Hospital, Sapporo, Japan
| | - Takayuki Hirose
- Department of Urology, Hokkaido University Hospital, Sapporo, Japan
| | - Kazufumi Okada
- Data Science Center, Promotion Unit, Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Sapporo, Japan
| | - Takuya Yamamoto
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan.
- Laboratory of Aging and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.
- Department of Virology and Immunology, Graduate School of Medicine, Osaka University, Suita, Japan.
| | - Takasuke Fukuhara
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan.
- Institute for Vaccine Research and Development: HU-IVReD, Hokkaido University, Sapporo, Japan.
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Japan.
- AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo, Japan.
| | - Kiyohiko Hotta
- Department of Urology, Hokkaido University Hospital, Sapporo, Japan.
| | - Nobuo Shinohara
- Department of Urology, Hokkaido University Hospital, Sapporo, Japan
| |
Collapse
|
7
|
Castellano G, Netti GS, Cantaluppi V, Losappio V, Spadaccino F, Ranieri E, Marengo M, Borzumati M, Alfieri C, Stallone G. PMMA dialyzers modulate both humoral and cell-mediate immune response to anti-COVID-19 vaccine (BNT162b2) in a cohort of chronic hemodialyzed patients. Sci Rep 2024; 14:12217. [PMID: 38806543 PMCID: PMC11133365 DOI: 10.1038/s41598-024-62044-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 05/09/2024] [Indexed: 05/30/2024] Open
Abstract
Patients on hemodialysis (HD) have a high risk of death from COVID-19. We evaluated the humoral and cell-mediated immune response to BNT162b2 (Pfizer-BioNTech) vaccine in HD patients, comparing HD with Poly-methyl-methacrylate (PMMA) and HD with Polysulphone (PS). Samples were collected before vaccination (T0) and 14-days after the 2ndvaccine (T2) in a TG (TG, n = 16-Foggia) and in a VG (CG, n = 36-Novara). Anti-SARS-CoV-2-Ig were titrated in the cohort 2-weeks after the 2nddose of vaccine. In the Testing-Group, serum neutralizing antibodies (NAb) were assayed and PBMCs isolated from patients were thawed, counted and stimulated with SARS-CoV-2 IGRA stimulation tube set. All patients had a positive ab-response, except in a case. PMMA-patients had higher levels of anti-SARS-CoV-2 IgG (p = 0.031); VG data confirmed these findings (p < 0.05). NAb evaluation: PMMA patients passed the positive cut-off value, while in PS group only only 1/8 patient did not respond. PMMA patients showed higher percentages of anti-SARS-CoV-2 S1/RBD-Ig after a complete vaccine schedule (p = 0.028). Interferon-gamma release: PMMA patients showed significantly higher release of IFNγ (p = 0.014). The full vaccination course provided sufficient protection against SARS-CoV-2 across the entire cohort, regardless of dialyzer type. After vaccination, PMMA patients show a better immune response, both humoral and cellular, at the end of the vaccination course than PS patients.
Collapse
Affiliation(s)
- Giuseppe Castellano
- Nephrology, Dialysis and Renal Transplantation Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Commenda 15, 20122, Milan, Italy.
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.
| | - Giuseppe Stefano Netti
- Unit of Clinical Pathology, Center for Molecular Medicine and Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Vincenzo Cantaluppi
- Unit of Nephrology and Kidney Transplantation, Department of Translational Medicine, University of Piemonte Orientale (UPO), 17-28100, Novara, Italy
| | - Vincenzo Losappio
- Unit of Nephrology Dialysis and Transplantation, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Federica Spadaccino
- Unit of Clinical Pathology, Center for Molecular Medicine and Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Elena Ranieri
- Unit of Clinical Pathology, Center for Molecular Medicine and Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Marita Marengo
- Unit of Nephrology and Dialysis, Azienda Sanitaria Locale (ASL) CN1, Cuneo, Italy
| | - Maurizio Borzumati
- Unit of Nephrology and Dialysis, ASL VCO, Verbania, Verbano Cusio Ossola, Italy
| | - Carlo Alfieri
- Nephrology, Dialysis and Renal Transplantation Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Commenda 15, 20122, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giovanni Stallone
- Unit of Nephrology Dialysis and Transplantation, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
8
|
Schrezenmeier E, Dörner T, Halleck F, Budde K. Cellular Immunobiology and Molecular Mechanisms in Alloimmunity-Pathways of Immunosuppression. Transplantation 2024; 108:148-160. [PMID: 37309030 DOI: 10.1097/tp.0000000000004646] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Current maintenance immunosuppression commonly comprises a synergistic combination of tacrolimus as calcineurin inhibitor (CNI), mycophenolic acid, and glucocorticoids. Therapy is often individualized by steroid withdrawal or addition of belatacept or inhibitors of the mechanistic target of rapamycin. This review provides a comprehensive overview of their mode of action, focusing on the cellular immune system. The main pharmacological action of CNIs is suppression of the interleukin-2 pathway that leads to inhibition of T cell activation. Mycophenolic acid inhibits the purine pathway and subsequently diminishes T and B cell proliferation but also exerts a variety of effects on almost all immune cells, including inhibition of plasma cell activity. Glucocorticoids exert complex regulation via genomic and nongenomic mechanisms, acting mainly by downregulating proinflammatory cytokine signatures and cell signaling. Belatacept is potent in inhibiting B/T cell interaction, preventing formation of antibodies; however, it lacks the potency of CNIs in preventing T cell-mediated rejections. Mechanistic target of rapamycin inhibitors have strong antiproliferative activity on all cell types interfering with multiple metabolic pathways, partly explaining poor tolerability, whereas their superior effector T cell function might explain their benefits in the case of viral infections. Over the past decades, clinical and experimental studies provided a good overview on the underlying mechanisms of immunosuppressants. However, more data are needed to delineate the interaction between innate and adaptive immunity to better achieve tolerance and control of rejection. A better and more comprehensive understanding of the mechanistic reasons for failure of immunosuppressants, including individual risk/benefit assessments, may permit improved patient stratification.
Collapse
Affiliation(s)
- Eva Schrezenmeier
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Academy, Clinician Scientist Program Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Dörner
- Department of Rheumatology and Clinical Immunology - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany
| | - Fabian Halleck
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Klemens Budde
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
9
|
Angelico R, Romano F, Coppola L, Materazzo M, Pedini D, Santicchia MS, Cacciola R, Toti L, Sarmati L, Tisone G. Effects of Anti-COVID-19 Vaccination and Pre-Exposure Prophylaxis with Tixagevimab-Cilgavimab in Kidney and Liver Transplant Recipients. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2101. [PMID: 38138204 PMCID: PMC10744931 DOI: 10.3390/medicina59122101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023]
Abstract
Background and Objectives: Underpowered immune response to vaccines against SARS-CoV-2 was observed in solid organ transplant (SOT) recipients. A novel combination of monoclonal antibodies tixagevimab-cilgavimab (TGM/CGM) received authorization as pre-exposure prophylaxis (PrEP) in those with reduced response to vaccine. We aimed to evaluate the response rate to COVID-19 vaccination in kidney transplant (KT), compared to liver transplant (LT) recipients, and the efficacy and safety of PrEP with TGM/CGM. Material and Methods: Between March and November 2022, adult KT and LT recipients who had completed the vaccination schedule (3 doses) were tested for anti-SARS-CoV-2 antibodies titer. SOT recipients with anti-SARS-CoV-2 titer ≥ 100 IU/mL were considered protected against infection, while those with titer < 100 UI/mL were defined non-protected. Patients with inadequate response were invited to PrEP. Results: In total, 306 patients were enrolled [KT:197 (64.4%), LT:109 (35.6%)]. After the complete scheme of vaccination, 246 (80.3%) patients developed a protective titer, while 60 (19.6%) did not have a protective titer. KT recipients had a lower rate of protective anti-COVID-19 titer compared to LT patients [149 (75.6%) vs. 97 (89.0%), p = 0.004]. Recipients with non-protective anti-COVID-19 titer received mainly tacrolimus-based regimen associated with mycophenolate mofetil (MMF) (70%) e steroids (46.7%) as maintenance immunosuppression, while those treated with everolimus were associated with higher protective titer. Of 35 (58.3%) patients who received PrEP, within 12 months, 6 (17.1%) (all KT) developed pauci-symptomatic COVID-19 disease, while 15/25 (60%) of non-responders, who did not receive the prophylaxis, developed COVID-19 disease. After PrEP, hospitalization rate was lower (2.8% vs. 16%), and no adverse events, neither graft loss nor rejection, were observed. Conclusions: Despite complete COVID-19 vaccination, SOT recipients might be not protected from the SARS-CoV-2 infection, especially after KT. In non-protected SOT patients, the subsequent pre-exposure prophylaxis with combination of monoclonal antibodies (TGM/CGM) might be an efficacy and safe strategy to prevent COVID-19 severe disease and hospitalization.
Collapse
Affiliation(s)
- Roberta Angelico
- HPB and Transplant Unit, Department of Surgical Sciences, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Francesca Romano
- HPB and Transplant Unit, Department of Surgical Sciences, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Luigi Coppola
- Department of System Medicine, Tor Vergata University, 00133 Rome, Italy
| | - Marco Materazzo
- HPB and Transplant Unit, Department of Surgical Sciences, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Domiziana Pedini
- HPB and Transplant Unit, Department of Surgical Sciences, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Maria Sara Santicchia
- HPB and Transplant Unit, Department of Surgical Sciences, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Roberto Cacciola
- HPB and Transplant Unit, Department of Surgical Sciences, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Luca Toti
- HPB and Transplant Unit, Department of Surgical Sciences, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Loredana Sarmati
- Department of System Medicine, Tor Vergata University, 00133 Rome, Italy
- Infectious Disease Clinic, Policlinico Tor Vergata, 00133 Rome, Italy
| | - Giuseppe Tisone
- HPB and Transplant Unit, Department of Surgical Sciences, University of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
10
|
Philippe A, Arns W, Ditt V, Hauser IA, Thaiss F, Sommerer C, Suwelack B, Dragun D, Hillen J, Schiedel C, Elsässer A, Nashan B. Impact of everolimus plus calcineurin inhibitor on formation of non-HLA antibodies and graft outcomes in kidney transplant recipients: 12-month results from the ATHENA substudy. FRONTIERS IN TRANSPLANTATION 2023; 2:1273890. [PMID: 38993854 PMCID: PMC11235374 DOI: 10.3389/frtra.2023.1273890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/31/2023] [Indexed: 07/13/2024]
Abstract
Background Non-human leukocyte antigen (non-HLA) antibodies including antibodies targeting Angiotensin II type 1 (AT1R) and Endothelin-1 type A (ETAR) receptors represent a topic of interest in kidney transplantation (KTx). This exploratory substudy evaluated the impact of everolimus (EVR) or mycophenolic acid (MPA) in combination with tacrolimus (TAC) or cyclosporine A (CsA) in patients with preformed non-HLA antibodies, potentially associated rejections and/or their impact on renal function over 1 year. Methods All eligible patients were randomized (1:1:1) before transplantation to receive either EVR/TAC, EVR/CsA, or MPA/TAC regimen. The effect of these regimens on the formation of non-HLA antibodies within one year post de novo KTx and the association with clinical events was evaluated descriptively in randomized (n = 268) population. Results At Month 12, in EVR/TAC group, higher incidence of patients negative for AT1R- and ETAR-antibodies (82.2% and 76.7%, respectively) was noted, whereas the incidence of AT1R- and ETAR-antibodies positivity (28.1% and 34.7%, respectively) was higher in the MPA/TAC group. Non-HLA antibodies had no influence on clinical outcomes in any treatment group and no graft loss or death was reported. Conclusions The studied combinations of immunosuppressants were safe with no influence on clinical outcomes and suggested minimal exposure of calcineurin inhibitors for better patient management. Clinical Trial Registration https://clinicaltrials.gov/ (NCT01843348; EudraCT number: 2011-005238-21).
Collapse
Affiliation(s)
- Aurélie Philippe
- BIH Biomedical Innovation Academy, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Clinic for Nephrology and Critical Care Medicine, Campus Virchow-Klinikum, Berlin, Germany
| | - Wolfgang Arns
- Transplant Centre Cologne, Cologne General Hospital, Cologne, Germany
| | - Vanessa Ditt
- Institute of Transfusion Medicine, Kliniken der Stadt Köln, Cologne, Germany
| | - Ingeborg A. Hauser
- Department of Nephrology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Friedrich Thaiss
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Sommerer
- Nephrology, Kidney Center Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Barbara Suwelack
- Department of Internal Medicine, Transplant Nephrology, University Hospital of Münster, Münster, Germany
| | - Duska Dragun
- BIH Biomedical Innovation Academy, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Clinic for Nephrology and Critical Care Medicine, Campus Virchow-Klinikum, Berlin, Germany
| | - Jan Hillen
- Immunology, Novartis Pharma GmbH, Nürnberg, Germany
| | | | | | - Björn Nashan
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Organ Transplantation Center, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, Hefei, China
| |
Collapse
|
11
|
Quiroga B, Soler MJ, Ortiz A, de Sequera P. Lessons from SENCOVAC: A prospective study evaluating the response to SARS-CoV-2 vaccination in the CKD spectrum. Nefrologia 2023; 43:676-687. [PMID: 37150670 PMCID: PMC10160849 DOI: 10.1016/j.nefroe.2023.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/10/2022] [Indexed: 05/09/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has negatively impacted on patients of the whole CKD spectrum, causing high rates of morbi-mortality. SARS-CoV-2 vaccines opened a new era, but patients with CKD (including kidney transplant, hemodialysis and peritoneal dialysis) were systematically excluded from pivotal clinical trials. The Spanish Society of Nephrology promoted the multicentric national SENCOVAC study aimed at assessing immunological responses after vaccination in patients with CKD. During the first year after vaccination, patients with non-dialysis CKD and those on hemodialysis and peritoneal dialysis presented good anti-Spike antibody responses to vaccination, especially after receiving the third and fourth doses. However, kidney transplant recipients presented suboptimal responses after any vaccination schedule (initial, third and fourth dose). Especially worrisome is the situation of a patients with a persistently negative humoral response that do not seroconvert after boosters. In this regard, monoclonal antibodies targeting SARS-CoV-2 have been approved for high-risk patients, although they may become obsolete as the viral genome evolves. The present report reviews the current status of SARS-CoV-2 vaccination in the CKD spectrum with emphasis on lessons learned from the SENCOVAC study. Predictors of humoral response, including vaccination schedules and types of vaccines, as well as the integration of vaccines, monoclonal antibodies and antiviral agents are discussed.
Collapse
Affiliation(s)
- Borja Quiroga
- IIS-La Princesa, Nephrology Department, Hospital Universitario de la Princesa, Madrid, Spain
| | - María José Soler
- Nephrology Department, Vall d'Hebrón University Hospital, Barcelona, Spain; RICORS2040 (Kidney Disease), Spain.
| | - Alberto Ortiz
- RICORS2040 (Kidney Disease), Spain; IIS-Fundación Jiménez Diaz, School of Medicine, Universidad Autónoma de Madrid, Fundación Renal Iñigo Álvarez de Toledo-IRSIN, REDinREN, Instituto de Investigación Carlos III, Madrid, Spain.
| | - Patricia de Sequera
- RICORS2040 (Kidney Disease), Spain; Nephrology Department, Hospital Universitario Infanta Leonor - Universidad Complutense de Madrid, Spain
| |
Collapse
|
12
|
Escalante EJ, Rodríguez JG, Salas JDC, Castañeda Z, Conde MLM. Clinical Course, Nosocomial, and Opportunistic Infections Among Kidney Transplant Recipients with COVID-19: A Retrospective Single Center Study. Transplant Proc 2023; 55:1829-1842. [PMID: 37302863 PMCID: PMC10201330 DOI: 10.1016/j.transproceed.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023]
Abstract
BACKGROUND We report the results of an observational study, analyzing the clinical course of kidney transplant patients hospitalized for COVID-19 and comparing it with a control to determine if outcomes, nosocomial, and opportunistic infections were different between groups. METHODS An observational, retrospective, case-control, single-center study, including a group of kidney transplant adults diagnosed with COVID-19, from March 2020 to April 2022. Transplant patients hospitalized for COVID-19 comprised the cases. The control group consisted of non-transplanted adults, without immunosuppressive treatment, hospitalized for COVID-19, and matched by age, sex, and month at diagnosis of COVID-19. Study variables were collected, including demographic/clinical, epidemiologic, clinical/biological at diagnosis, evolutive, and outcome variables. RESULTS Fifty-eight kidney transplant recipients were included. Thirty required hospital admission. Ninety controls were included. Transplant recipients had a higher frequency of intensive care unit (ICU) admission, ventilatory support, and death. The relative risk for death was 2.45. When adjusted by baseline estimated glomerular filtration rate (eGFR) and comorbidity, only the risk for opportunistic infection remained high. Variables independently associated with death were dyslipidemia, eGFR at admission, MULBSTA score, and ventilatory support. Pneumonia by Klebsiella oxytoca was the most frequent nosocomial infection. Pulmonary aspergillosis was the most frequent opportunistic infection overall. Pneumocystosis and cytomegalovirus colitis were more frequent among transplant patients. The relative risk for opportunistic infection in this group was 1.88. Baseline eGFR, serum interleukin 6 level, and coinfection were independently associated with it. CONCLUSIONS Evolutive course of COVID-19 requiring hospitalization in renal transplant recipients was primarily determined by comorbidity and baseline kidney function. At equal comorbidity and renal function, there were no differences in mortality, ICU admission, nosocomial infection, and hospital stay. However, the risk for opportunistic infection remained high.
Collapse
Affiliation(s)
- Elias Jatem Escalante
- Servicio de Nefrología, Hospital Universitari Arnau de Vilanova, Lleida, Catalonia, Spain.
| | | | | | - Zaira Castañeda
- Servicio de Nefrología, Hospital Universitari Arnau de Vilanova, Lleida, Catalonia, Spain
| | | |
Collapse
|
13
|
Bell S, Perkins GB, Anandh U, Coates PT. COVID and the Kidney: An Update. Semin Nephrol 2023; 43:151471. [PMID: 38199827 DOI: 10.1016/j.semnephrol.2023.151471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Coronavirus disease-2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2, has led to a global pandemic that continues to be responsible for ongoing health issues for people worldwide. Immunocompromised individuals such as kidney transplant recipients and dialysis patients have been and continue to be among the most affected, with poorer outcomes after infection, impaired response to COVID-19 vaccines, and protracted infection. The pandemic also has had a significant impact on patients with underlying chronic kidney disease (CKD), with CKD increasing susceptibility to COVID-19, risk of hospital admission, and mortality. COVID-19 also has been shown to lead to acute kidney injury (AKI) through both direct and indirect mechanisms. The incidence of COVID-19 AKI has been decreasing as the pandemic has evolved, but continues to be associated with adverse patient outcomes correlating with the severity of AKI. There is also increasing evidence examining the longer-term effect of COVID-19 on the kidney demonstrating continued decline in kidney function several months after infection. This review summarizes the current evidence examining the impact of COVID-19 on the kidney, covering both the impact on patients with CKD, including patients receiving kidney replacement therapy, in addition to discussing COVID-19 AKI.
Collapse
Affiliation(s)
- Samira Bell
- Division of Population Health and Genomics, University of Dundee, Dundee, Scotland.
| | - Griffith B Perkins
- University of Adelaide, South Australia, 5005 Australia; Central and Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide
| | - Urmila Anandh
- Department of Nephrology, Amrita Hospitals, Faridabad, Haryana, India
| | - P Toby Coates
- University of Adelaide, South Australia, 5005 Australia; Central and Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide
| |
Collapse
|
14
|
López V, Mazuecos A, Villanego F, López-Oliva M, Alonso A, Beneyto I, Crespo M, Díaz-Corte C, Franco A, González-Roncero F, Guirado L, Jiménez C, Juega J, Llorente S, Paul J, Rodríguez-Benot A, Ruiz JC, Sánchez-Fructuoso A, Torregrosa V, Zárraga S, Rodrigo E, Hernández D. Update of the recommendations on the management of the SARS-CoV-2 coronavirus pandemic (COVID-19) in kidney transplant patients. Nefrologia 2023; 43:531-545. [PMID: 37957107 DOI: 10.1016/j.nefroe.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/15/2023] Open
Abstract
SARS-CoV-2 infection (COVID-19) has had a significant impact on transplant activity in our country. Mortality and the risk of complications associated with COVID-19 in kidney transplant recipients (KT) were expected to be higher due to their immunosuppressed condition and the frequent associated comorbidities. Since the beginning of the pandemic in March 2020 we have rapidly improved our knowledge about the epidemiology, clinical features and management of COVID-19 post-transplant, resulting in a better prognosis for our patients. KT units have been able to adapt their programs to this new reality, normalizing both donation and transplantation activity in our country. This manuscript presents a proposal to update the general recommendations for the prevention and treatment of infection in this highly vulnerable population such as KT.
Collapse
Affiliation(s)
- Verónica López
- Unidad de Gestión Clínica de Nefrología, Hospital Regional Universitario de Málaga, Universidad de Málaga, Instituto Biomédico de Investigación de Málaga (IBIMA), RICORS2040 (RD21/0005/0012), Málaga, Spain.
| | | | | | | | - Angel Alonso
- Servicio de Nefrología, Complejo Hospitalario A Coruña, A Coruña, Spain
| | - Isabel Beneyto
- Servicio de Nefrología, Hospital Universitario Politécnico La Fe, Valencia, Spain
| | - Marta Crespo
- Servicio de Nefrología, Hospital del Mar, Hospital del Mar Medical Research Institute (IMIM), RD16/0009/0013 (ISCIII FEDER REDinREN), Barcelona, Spain
| | - Carmen Díaz-Corte
- Servicio de Nefrología, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Antonio Franco
- Servicio de Nefrología, Hospital de Alicante, Alicante, Spain
| | | | - Luis Guirado
- Servicio de Nefrología, Fundación Puigvert, REDinREN RD16/0009/0019, Barcelona, Spain
| | | | - Javier Juega
- Servicio de Nefrología, Hospital Trias i Pujol, REDinREN RD16/0009/0032, Barcelona, Spain
| | - Santiago Llorente
- Servicio de Nefrología, Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Javier Paul
- Servicio de Nefrología, Hospital Miguel Servet, Zaragoza, Spain
| | - Alberto Rodríguez-Benot
- Servicio de Nefrología, Hospital Reina Sofía, Instituto Maimónides de Investigación Biomédica de Córdoba, Córdoba, Spain
| | - Juan Carlos Ruiz
- Servicio de Nefrología, Hospital Marqués de Valdecilla, IDIVAL, REDinREN RD16/0009/0027, Santander, Cantabria, Spain
| | - Ana Sánchez-Fructuoso
- Servicio de Nefrología, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | | | - Sofía Zárraga
- Servicio de Nefrología, Hospital de Cruces, Bilbao, Vizcaya, Spain
| | - Emilio Rodrigo
- Servicio de Nefrología, Hospital Marqués de Valdecilla, IDIVAL, REDinREN RD16/0009/0027, Santander, Cantabria, Spain
| | - Domingo Hernández
- Unidad de Gestión Clínica de Nefrología, Hospital Regional Universitario de Málaga, Universidad de Málaga, Instituto Biomédico de Investigación de Málaga (IBIMA), RICORS2040 (RD21/0005/0012), Málaga, Spain
| |
Collapse
|
15
|
D’Elia JA, Weinrauch LA. Hyperglycemia and Hyperlipidemia with Kidney or Liver Transplantation: A Review. BIOLOGY 2023; 12:1185. [PMID: 37759585 PMCID: PMC10525610 DOI: 10.3390/biology12091185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023]
Abstract
Although solid organ transplantation in persons with diabetes mellitus is often associated with hyperglycemia, the risk of hyperlipidemia in all organ transplant recipients is often underestimated. The diagnosis of diabetes often predates transplantation; however, in a moderate percentage of allograft recipients, perioperative hyperglycemia occurs triggered by antirejection regimens. Post-transplant prescription of glucocorticoids, calcineurin inhibitors and mTOR inhibitors are associated with increased lipid concentrations. The existence of diabetes mellitus prior to or following a liver transplant is associated with shorter times of useful allograft function. A cycle involving Smad, TGF beta, m-TOR and toll-like receptors has been identified in the contribution of rejection and aging of allografts. Glucocorticoids (prednisone) and calcineurin inhibitors (cyclosporine and tacrolimus) induce hyperglycemia associated with insulin resistance. Azathioprine, mycophenolate and prednisone are associated with lipogenesis. mTOR inhibitors (rapamycin) are used to decrease doses of atherogenic agents used for immunosuppression. Post-transplant medication management must balance immune suppression and glucose and lipid control. Concerns regarding rejection often override those relative to systemic and organ vascular aging and survival. This review focuses attention on the underlying mechanism of relationships between glycemia/lipidemia control, transplant rejection and graft aging.
Collapse
Affiliation(s)
| | - Larry A. Weinrauch
- Kidney and Hypertension Section, E P Joslin Research Laboratory, Joslin Diabetes Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; jd'
| |
Collapse
|
16
|
Udomkarnjananun S, Gatechompol S, Leelahavanichkul A, Kerr SJ. Cellular immune response of SARS-CoV-2 vaccination in kidney transplant recipients: a systematic review and meta-analysis. Front Immunol 2023; 14:1220148. [PMID: 37575225 PMCID: PMC10415203 DOI: 10.3389/fimmu.2023.1220148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/05/2023] [Indexed: 08/15/2023] Open
Abstract
Background Evidence has demonstrated inferior humoral immune responses after SARS-CoV-2 vaccination in kidney transplant recipients compared to the general population. However, data on cellular immune responses in this population have not been established. Methods We searched the MEDLINE, Scopus, and Cochrane databases and included studies reporting cellular immune response rates in kidney transplant recipients after receiving SARS-CoV-2 vaccines. Studies that reported factors associated with cellular immune responders or non-responders were also included (PROSPERO: CRD42022375544). Results From a total of 1,494 articles searched, 53 articles were included in the meta-analysis. In all, 21 studies assessed cellular immune response by interferon-γ enzyme-linked immunosorbent spot (IFN-γ ELISPOT), 22 studies used interferon-γ release assay (IGRA), and 10 studies used flow cytometric analysis. The pooled response rate after two doses (standard regimen) and three doses of vaccination was 47.5% (95%CI 38.4-56.7%) and 69.1% (95%CI 56.3-80.6%) from IFN-γ ELISPOT, 25.8% (95%CI 19.7-32.4%) and 14.7% (95%CI 8.5-22.2%) from IGRA, and 73.7% (95%CI 55.2-88.8%) and 86.5% (95%CI 75.3-94.9%) from flow cytometry, respectively. Recipients with seroconversion were associated with a higher chance of having cellular immune response (OR 2.58; 95%CI 1.89-3.54). Cellular immune response in kidney transplant recipients was lower than in dialysis patients (OR 0.24; 95%CI 0.16-0.34) and the general population (OR 0.10; 95%CI 0.07-0.14). Age and immunosuppressants containing tacrolimus or corticosteroid were associated with inferior cellular immune response. Conclusion Cellular immune response after SARS-CoV-2 vaccination in kidney transplant recipients was lower than in dialysis patients and the general population. Age, tacrolimus, and corticosteroid were associated with poor response. Cellular immune response should also be prioritized in vaccination studies. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42022375544.
Collapse
Affiliation(s)
- Suwasin Udomkarnjananun
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Excellence Center for Organ Transplantation (ECOT), King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Renal Immunology and Transplantation Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Asada Leelahavanichkul
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
- Immunology Unit, Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Stephen J. Kerr
- HIV-NAT, Thai Red Cross AIDS Research Centre, Bangkok, Thailand
- Biostatistics Excellence Centre, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- The Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
17
|
Gamberini MR, Zuccato C, Zurlo M, Cosenza LC, Finotti A, Gambari R. Effects of Sirolimus Treatment on Fetal Hemoglobin Production and Response to SARS-CoV-2 Vaccination: A Case Report Study. Hematol Rep 2023; 15:432-439. [PMID: 37489374 PMCID: PMC10366771 DOI: 10.3390/hematolrep15030044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023] Open
Abstract
The β-thalassemias are a group of monogenic hereditary hematological disorders caused by deletions and/or mutations of the β-globin gene, leading to low or absent production of adult hemoglobin (HbA). For β-thalassemia, sirolimus has been under clinical consideration in two trials (NCT03877809 and NCT04247750). A reduced immune response to anti-SARS-CoV-2 vaccination has been reported in organ recipient patients treated with the immunosuppressant sirolimus. Therefore, there was some concern regarding the fact that monotherapy with sirolimus would reduce the antibody response after SARS-CoV-2 vaccination. In the representative clinical case reported in this study, sirolimus treatment induced the expected increase of fetal hemoglobin (HbF) but did not prevent the production of anti-SARS-CoV-2 IgG after vaccination with mRNA-1273 (Moderna). In our opinion, this case report should stimulate further studies on β-thalassemia patients under sirolimus monotherapy in order to confirm the safety (or even the positive effects) of sirolimus with respect to the humoral response to anti-SARS-CoV-2 vaccination. In addition, considering the extensive use of sirolimus for the treatment of other human pathologies (for instance, in organ transplantation, systemic lupus erythematosus, autoimmune cytopenia, and lymphangioleiomyomatosis), this case report study might be of general interest, as large numbers of patients are currently under sirolimus treatment.
Collapse
Affiliation(s)
- Maria Rita Gamberini
- Center "Chiara Gemmo and Elio Zago" for the Research on Thalassemia, Università degli Studi di Ferrara, 44121 Ferrara, Italy
- Unità Operativa Interdipartimentale di Day Hospital della Talassemia e delle Emoglobinopatie, Arcispedale S. Anna di Ferrara, 44124 Ferrara, Italy
| | - Cristina Zuccato
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Matteo Zurlo
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Lucia Carmela Cosenza
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Alessia Finotti
- Center "Chiara Gemmo and Elio Zago" for the Research on Thalassemia, Università degli Studi di Ferrara, 44121 Ferrara, Italy
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Roberto Gambari
- Center "Chiara Gemmo and Elio Zago" for the Research on Thalassemia, Università degli Studi di Ferrara, 44121 Ferrara, Italy
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
18
|
Simone S, Pesce F, Fontò G, Pronzo V, Pontrelli P, Conserva F, Schirinzi A, Casanova A, Gallo P, Rossini M, Lucarelli G, Spilotros M, Rendina M, Stallone G, Di Serio F, Di Leo A, Tafuri S, Ditonno P, Gesualdo L. Kinetics of humoral immune response and severity of infection after three doses of SARS-CoV-2 mRNA vaccine in a large cohort of kidney transplant recipients. J Nephrol 2023; 36:1663-1671. [PMID: 37458909 PMCID: PMC10393874 DOI: 10.1007/s40620-023-01650-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 04/15/2023] [Indexed: 08/03/2023]
Abstract
BACKGROUND COVID-19 in kidney transplant recipients is associated with high morbidity and mortality. In this study we aimed to evaluate: (i) the seroconversion rate after BNT162b2 (Pfizer-BioNTech) SARS-CoV-2 vaccine, (ii) factors associated with humoral response, (iii) clinical outcome of COVID-19 in kidney transplanted patients. METHODS We enrolled a cohort of 743 kidney transplant recipients followed up from March 2020 until April 2022. A subset of 336 patients, who received three-doses of SARS-CoV-2 vaccine, was analyzed in terms of kinetics of humoral immune response and compared to a control group of 94 healthcare workers. Antibody response was tested before vaccination (T0), 15 and 90 days after the second dose (T1 and T2), on the day of the third dose (T3) and one month after the third dose (T4). RESULTS We observed that 66 out of 743 subjects had COVID-19 infection pre-vaccination: 65.2% had severe symptoms, 27.3% were hospitalized (9 deaths), none were asymptomatic. After three doses, 51 patients had COVID-19 infection, 60.8% were asymptomatic, 27.5% reported mild symptoms, 3.9% showed severe symptoms, 7.8% were hospitalized (2 deaths). In the subset of 336 vaccinated patients, an antibody level > 0.8 U/ml was detected at T1, that increased at T2 and T3, peaking at T4. Independent factors associated with a negative antibody titer at T4 were decreasing estimated glomerular filtration rate, time from transplantation, and antimetabolites (all p < 0.001) and age (p = 0.007). CONCLUSIONS The kinetics of humoral response after three doses of vaccine in kidney transplant patients is characterized by a late but effective immune response against SARS-CoV-2, reducing morbidity and mortality.
Collapse
Affiliation(s)
- Simona Simone
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Pesce
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Giulia Fontò
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Virginia Pronzo
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Paola Pontrelli
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Francesca Conserva
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | | | - Annalisa Casanova
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Pasquale Gallo
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Michele Rossini
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppe Lucarelli
- Urology, Andrology and Kidney Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, 70124, Bari, Italy
| | - Marco Spilotros
- Urology, Andrology and Kidney Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, 70124, Bari, Italy
| | - Maria Rendina
- Section of Gastroenterology, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Giovanni Stallone
- Department of Medical and Surgical Sciences, Renal Unit, University of Foggia, Foggia, Italy
| | | | - Alfredo Di Leo
- Section of Gastroenterology, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Silvio Tafuri
- Interdisciplinary Department of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Pasquale Ditonno
- Urology, Andrology and Kidney Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, 70124, Bari, Italy
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy.
| |
Collapse
|
19
|
Rossi M, Pessolano G, Gambaro G. What has vaccination against COVID-19 in CKD patients taught us? J Nephrol 2023; 36:1257-1266. [PMID: 37140817 PMCID: PMC10157569 DOI: 10.1007/s40620-023-01640-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2023] [Indexed: 05/05/2023]
Abstract
Effective vaccination strategies are of crucial importance to protecting patients who are vulnerable to infections, such as patients with chronic kidney disease. This is because the decreased efficiency of the immune system in chronic kidney disease impairs vaccine-induced immunisation. COVID-19 has prompted investigation of the immune response to SARS-CoV-2 vaccines in chronic kidney disease and in kidney transplant recipients in an effort to improve efficacy. The seroconversion rate after two vaccine doses is reduced, especially in kidney transplant recipients. Furthermore, although the seroconversion rate in chronic kidney disease patients is as high as in healthy subjects, anti-spike antibody titres are lower than in healthy vaccinated individuals, and these titres decrease rapidly. Although the vaccine-induced anti-spike antibody titre correlates with neutralising antibody levels and with protection against COVID-19, the protective prognostic significance of their titre is decreased due to the emergence of SARS-CoV-2 variants other than the Wuhan index virus against which the original vaccines were produced. Cellular immunity is also relevant, and because of cross-reactivity to the spike protein, epitopes of different viral variants confer protection against newly emerging variants of SARS-CoV-2. A multi-dose vaccination strategy is the most effective way to obtain a sufficient serological response. In kidney transplant recipients, a 5-week discontinuation period from antimetabolite drugs in concomitance with vaccine administration may also increase the vaccine's efficacy. The newly acquired knowledge obtained from COVID-19 vaccination is of general interest for the success of other vaccinations in chronic kidney disease patients.
Collapse
Affiliation(s)
- Mattia Rossi
- Division of Nephrology, Department of Medicine, University of Verona, Piazzale A. Stefani 1, 37126, Verona, Italy.
| | - Giuseppina Pessolano
- Division of Nephrology, Department of Medicine, University of Verona, Piazzale A. Stefani 1, 37126, Verona, Italy
| | - Giovanni Gambaro
- Division of Nephrology, Department of Medicine, University of Verona, Piazzale A. Stefani 1, 37126, Verona, Italy
| |
Collapse
|
20
|
Fiorentino M, Bagagli F, Deleonardis A, Stasi A, Franzin R, Conserva F, Infante B, Stallone G, Pontrelli P, Gesualdo L. Acute Kidney Injury in Kidney Transplant Patients in Intensive Care Unit: From Pathogenesis to Clinical Management. Biomedicines 2023; 11:1474. [PMID: 37239144 PMCID: PMC10216683 DOI: 10.3390/biomedicines11051474] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/05/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Kidney transplantation is the first-choice treatment for end-stage renal disease (ESRD). Kidney transplant recipients (KTRs) are at higher risk of experiencing a life-threatening event requiring intensive care unit (ICU) admission, mainly in the late post-transplant period (more than 6 months after transplantation). Urosepsis and bloodstream infections account for almost half of ICU admissions in this population; in addition, potential side effects related to immunosuppressive treatment should be accounted for cytotoxic and ischemic changes induced by calcineurin inhibitor (CNI), sirolimus/CNI-induced thrombotic microangiopathy and posterior reversible encephalopathy syndrome. Throughout the ICU stay, Acute Kidney Injury (AKI) incidence is common and ranges from 10% to 80%, and up to 40% will require renal replacement therapy. In-hospital mortality can reach 30% and correlates with acute illness severity and admission diagnosis. Graft survival is subordinated to baseline estimated glomerular filtration rate (eGFR), clinical presentation, disease severity and potential drug nephrotoxicity. The present review aims to define the impact of AKI events on short- and long-term outcomes in KTRs, focusing on the epidemiologic data regarding AKI incidence in this subpopulation; the pathophysiological mechanisms underlying AKI development and potential AKI biomarkers in kidney transplantation, graft and patients' outcomes; the current diagnostic work up and management of AKI; and the modulation of immunosuppression in ICU-admitted KTRs.
Collapse
Affiliation(s)
- Marco Fiorentino
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70121 Bari, Italy; (M.F.)
| | - Francesca Bagagli
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70121 Bari, Italy; (M.F.)
| | - Annamaria Deleonardis
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70121 Bari, Italy; (M.F.)
| | - Alessandra Stasi
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70121 Bari, Italy; (M.F.)
| | - Rossana Franzin
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70121 Bari, Italy; (M.F.)
| | - Francesca Conserva
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70121 Bari, Italy; (M.F.)
| | - Barbara Infante
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Science, University of Foggia, 71122 Foggia, Italy
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Science, University of Foggia, 71122 Foggia, Italy
| | - Paola Pontrelli
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70121 Bari, Italy; (M.F.)
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70121 Bari, Italy; (M.F.)
| |
Collapse
|
21
|
Maenaka A, Kinoshita K, Hara H, Cooper DKC. The case for the therapeutic use of mechanistic/mammalian target of rapamycin (mTOR) inhibitors in xenotransplantation. Xenotransplantation 2023; 30:e12802. [PMID: 37029499 PMCID: PMC11286223 DOI: 10.1111/xen.12802] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/23/2023] [Indexed: 04/09/2023]
Abstract
The mechanistic/mammalian target of rapamycin (mTOR) is one of the systems that are necessary to maintain cell homeostasis, such as survival, proliferation, and differentiation. mTOR inhibitors (mTOR-Is) are utilized as immunosuppressants and anti-cancer drugs. In organ allotransplantation, current regimens infrequently include an mTOR-I, which are positioned more commonly as alternative immunosuppressants. In clinical allotransplantation, long-term efficacy has been established, but there is a significant incidence of adverse events, for example, inhibition of wound healing, buccal ulceration, anemia, hyperglycemia, dyslipidemia, and thrombocytopenia, some of which are dose-dependent. mTOR-Is have properties that may be especially beneficial in xenotransplantation. These include suppression of T cell proliferation, increases in the number of T regulatory cells, inhibition of pig graft growth, and anti-inflammatory, anti-viral, and anti-cancer effects. We here review the potential benefits and risks of mTOR-Is in xenotransplantation and suggest that the benefits exceed the adverse effects.
Collapse
Affiliation(s)
- Akihiro Maenaka
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Kohei Kinoshita
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Hidetaka Hara
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, China
| | - David K. C. Cooper
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
22
|
Soegiarto G, Purnomosari D. Challenges in the Vaccination of the Elderly and Strategies for Improvement. PATHOPHYSIOLOGY 2023; 30:155-173. [PMID: 37218912 DOI: 10.3390/pathophysiology30020014] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/05/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Abstract
In recent years, the elderly has become a rapidly growing proportion of the world's population as life expectancy is extending. Immunosenescence and inflammaging contribute to the increased risk of chronic non-communicable and acute infectious diseases. Frailty is highly prevalent in the elderly and is associated with an impaired immune response, a higher propensity to infection, and a lower response to vaccines. Additionally, the presence of uncontrolled comorbid diseases in the elderly also contributes to sarcopenia and frailty. Vaccine-preventable diseases that threaten the elderly include influenza, pneumococcal infection, herpes zoster, and COVID-19, which contribute to significant disability-adjusted life years lost. Previous studies had shown that conventional vaccines only yielded suboptimal protection that wanes rapidly in a shorter time. This article reviews published papers on several vaccination strategies that were developed for the elderly to solve these problems: more immunogenic vaccine formulations using larger doses of antigen, stronger vaccine adjuvants, recombinant subunit or protein conjugated vaccines, newly developed mRNA vaccines, giving booster shots, and exploring alternative routes of administration. Included also are several publications on senolytic medications under investigation to boost the immune system and vaccine response in the elderly. With all those in regard, the currently recommended vaccines for the elderly are presented.
Collapse
Affiliation(s)
- Gatot Soegiarto
- Allergy and Clinical Immunology Division, Department of Internal Medicine, Dr. Soetomo Academic General Hospital, Faculty of Medicine, Universitas Airlangga, Surabaya 60286, Indonesia
- Master Program in Immunology, Postgraduate School, Universitas Airlangga, Surabaya 60286, Indonesia
| | - Dewajani Purnomosari
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing, Universitas Gajah Mada, Yogyakarta 55281, Indonesia
| |
Collapse
|
23
|
Vanlerberghe B, Vrij C, Bogaerts K, Vermeersch P, Lagrou K, Molenberghs G, Rega F, Ceulemans LJ, van Raemdonck D, Jochmans I, Monbaliu D, Pirenne J, Vanuytsel T, Gillard P, Schoemans H, Cleemput JV, Kuypers D, Vos R, Nevens F, Verbeek J. SARS-CoV-2 vaccine antibody response and breakthrough infections in transplant recipients. J Med Virol 2023; 95:e28736. [PMID: 37185854 DOI: 10.1002/jmv.28736] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/01/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023]
Abstract
Rates and modulators of SARS-CoV-2 vaccine nonresponse and breakthrough infections remain unclear in serially vaccinated transplant recipients. In a prospective, mono-centric, observational study, 1878 adult solid organ and hematopoietic cell transplant recipients, with prior SARS-CoV-2 vaccination, were included between March 2021 and February 2022. SARS-CoV-2 anti-spike IgG antibodies were measured at inclusion and details on SARS-CoV-2 vaccine doses and infection were collected. No life-threatening adverse events were reported after a total of 4039 vaccine doses. In transplant recipients without prior SARS-CoV-2 infection (n = 1636), antibody response rates ranged widely, from 47% in lung transplant to 90% in liver transplant and 91% in hematopoietic cell transplant recipients after third vaccine dose. Antibody positivity rate and levels increased after each vaccine dose in all types of transplant recipients. In multivariable analysis, older age, chronic kidney disease and daily dose of mycophenolate and corticosteroids were negatively associated with antibody response rate. Overall rate of breakthrough infections was 25.2% and mainly (90.2%) occurred after third and fourth vaccine dose. Lung transplant recipients had the highest rates of severe breakthrough infection (10.5%) and death (2.5%). In multivariable analysis, older age, daily dose of mycophenolate and corticosteroids were associated with severe breakthrough infection. Transplant recipients with infection before first vaccine dose (n = 160) had higher antibody response rates and levels after each vaccine dose, and a significantly lower overall rate of breakthrough infections compared to those without prior infection. Antibody response after SARS-CoV-2 vaccination and rate of severe breakthrough infections vary largely between different transplant types and are modulated by specific risk factors. The observed heterogeneity supports a tailored approach against COVID-19 in transplant recipients.
Collapse
Affiliation(s)
- Benedict Vanlerberghe
- Department of Gastroenterology and Hepatology, Laboratory of Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Casper Vrij
- Department of Gastroenterology and Hepatology, Laboratory of Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Kris Bogaerts
- Department of Public Health and Critical Care, I-BioStat, KU Leuven & University Hasselt, Leuven & Hasselt, Belgium
| | - Pieter Vermeersch
- Department of Laboratory Medicine, Department of Microbiology, Immunology and Transplantation, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Katrien Lagrou
- Department of Laboratory Medicine, Department of Microbiology, Immunology and Transplantation, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Geert Molenberghs
- Department of Public Health and Critical Care, I-BioStat, KU Leuven & University Hasselt, Leuven & Hasselt, Belgium
| | - Filip Rega
- Laboratory of Cardiovascular Sciences, Department of Cardiac Surgery, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Laurens J Ceulemans
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Thoracic Surgery, University Hospitals Leuven, CHROMETA, KU Leuven, Leuven, Belgium
| | - Dirk van Raemdonck
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Thoracic Surgery, University Hospitals Leuven, CHROMETA, KU Leuven, Leuven, Belgium
| | - Ina Jochmans
- Laboratory of Microbiology, Immunology and Transplantation, Department of Abdominal Transplant Surgery, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Diethard Monbaliu
- Laboratory of Microbiology, Immunology and Transplantation, Department of Abdominal Transplant Surgery, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Jacques Pirenne
- Laboratory of Microbiology, Immunology and Transplantation, Department of Abdominal Transplant Surgery, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Tim Vanuytsel
- Department of Gastroenterology and Hepatology, Laboratory of Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Pieter Gillard
- Laboratory of Clinical and Experimental Endocrinology, Department of Endocrinology, University Hospitals Leuven, CHROMETA, KU Leuven, Leuven, Belgium
| | - Hélène Schoemans
- Department of Public Health and Primary Care, Department of Hematology, University Hospitals Leuven, ACCENT VV, KU Leuven, Leuven, Belgium
| | - Johan Van Cleemput
- Laboratory of Cardiovascular Sciences, Department of Cardiology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Dirk Kuypers
- Laboratory of Microbiology, Immunology and Transplantation, Department of Nephrology and Renal Transplantation, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Robin Vos
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Respiratory Diseases, University Hospitals Leuven, CHROMETA, KU Leuven, Leuven, Belgium
| | - Frederik Nevens
- Department of Gastroenterology and Hepatology, Laboratory of Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Jef Verbeek
- Department of Gastroenterology and Hepatology, Laboratory of Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| |
Collapse
|
24
|
Pérez-Flores I, Juarez I, Aiffil Meneses AS, Lopez-Gomez A, Romero NC, Rodriguez-Cubillo B, Moreno de la Higuera MA, Peix-Jiménez B, Gonzalez-Garcia R, Baos-Muñoz E, Vilela AA, Gómez Del Moral M, Martínez-Naves E, Sanchez-Fructuoso AI. Role of mTOR inhibitor in the cellular and humoral immune response to a booster dose of SARS-CoV-2 mRNA-1273 vaccine in kidney transplant recipients. Front Immunol 2023; 14:1111569. [PMID: 36817489 PMCID: PMC9931894 DOI: 10.3389/fimmu.2023.1111569] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/13/2023] [Indexed: 02/05/2023] Open
Abstract
Background Immunocompromised patients have an increased risk of developing severe COVID disease, as well as a tendency to suboptimal responses to vaccines. The objective of this study was to evaluate the specific cellular and humoral adaptive immune responses of a cohort of kidney transplant recipients (KTR) after 3 doses of mRNA-1273 vaccine and to determinate the main factors involved. Methods Prospective observational study in 221 KTR (149 non infected), 55 healthy volunteers (HV) and 23 dialysis patients (DP). We evaluated anti-spike (by quantitative chemiluminescence immunoassay) and anti-nucleocapsid IgG (ELISA), percentage of TCD4+ and TCD8+ lymphocytes producing IFNγ against S-protein by intracellular flow cytometry after Spike-specific 15-mer peptide stimulation and serum neutralizing activity (competitive ELISA) at baseline and after vaccination. Results Among COVID-19 naïve KTR, 54.2% developed cellular and humoral response after the third dose (vs 100% in DP and 91.7% in HV), 18% only showed cell-mediated response, 22.2% exclusively antibody response and 5.6% none. A correlation of neutralizing activity with both the IgG titer (r=0.485, p<0.001) and the percentage of S-protein-specific IFNγ-producing CD8-T cells (r=0.198, p=0.049) was observed. Factors related to the humoral response in naïve KTR were: lymphocytes count pre-vaccination >1000/mm3 [4.68 (1.72-12.73, p=0.003], eGFR>30 mL/min [7.34(2.72-19.84), p<0.001], mTOR inhibitors [6.40 (1.37-29.86), p=0.018]. Infected KTR developed a stronger serologic response than naïve patients (96.8 vs 75.2%, p<0.001). Conclusions KTR presented poor cellular and humoral immune responses following vaccination with mRNA-1273. The immunosuppression degree and kidney function of these patients play an important role, but the only modifiable factor with a high impact on humoral immunogenicity after a booster dose was an immunosuppressive therapy including a mTOR inhibitor. Clinical trials are required to confirm these results.
Collapse
Affiliation(s)
- Isabel Pérez-Flores
- Nephrology Department, Institute San Carlos for Medical Research (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), San Carlos Clinical University Hospital, Madrid, Spain
| | - Ignacio Juarez
- Immunology Department, Complutense University School of Medicine, Madrid, Spain,*Correspondence: Ignacio Juarez,
| | - Arianne S. Aiffil Meneses
- Nephrology Department, Institute San Carlos for Medical Research (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), San Carlos Clinical University Hospital, Madrid, Spain
| | - Ana Lopez-Gomez
- Immunology Department, Complutense University School of Medicine, Madrid, Spain
| | - Natividad Calvo Romero
- Nephrology Department, Institute San Carlos for Medical Research (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), San Carlos Clinical University Hospital, Madrid, Spain
| | - Beatriz Rodriguez-Cubillo
- Nephrology Department, Institute San Carlos for Medical Research (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), San Carlos Clinical University Hospital, Madrid, Spain
| | - María Angeles Moreno de la Higuera
- Nephrology Department, Institute San Carlos for Medical Research (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), San Carlos Clinical University Hospital, Madrid, Spain
| | - Belen Peix-Jiménez
- Nephrology Department, Institute San Carlos for Medical Research (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), San Carlos Clinical University Hospital, Madrid, Spain
| | | | - Elvira Baos-Muñoz
- Microbiology Department, Institute San Carlos for Medical Research (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), San Carlos Clinical University Hospital, Madrid, Spain
| | - Ana Arribi Vilela
- Microbiology Department, Institute San Carlos for Medical Research (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), San Carlos Clinical University Hospital, Madrid, Spain
| | | | | | - Ana Isabel Sanchez-Fructuoso
- Nephrology Department, Institute San Carlos for Medical Research (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), San Carlos Clinical University Hospital, Madrid, Spain
| |
Collapse
|
25
|
Zurlo M, Nicoli F, Proietto D, Dallan B, Zuccato C, Cosenza LC, Gasparello J, Papi C, d'Aversa E, Borgatti M, Scapoli C, Finotti A, Gambari R. Effects of Sirolimus treatment on patients with β-Thalassemia: Lymphocyte immunophenotype and biological activity of memory CD4 + and CD8 + T cells. J Cell Mol Med 2023; 27:353-364. [PMID: 36625233 PMCID: PMC9889681 DOI: 10.1111/jcmm.17655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/04/2022] [Accepted: 12/10/2022] [Indexed: 01/11/2023] Open
Abstract
Inhibitors of the mammalian target of rapamycin (mTOR) have been proposed to improve vaccine responses, especially in the elderly. Accordingly, testing mTOR inhibitors (such as Sirolimus) and other geroprotective drugs might be considered a key strategy to improve overall health resilience of aged populations. In this respect, Sirolimus (also known as rapamycin) is of great interest, in consideration of the fact that it is extensively used in routine therapy and in clinical studies for the treatment of several diseases. Recently, Sirolimus has been considered in laboratory and clinical studies aimed to find novel protocols for the therapy of hemoglobinopathies (e.g. β-Thalassemia). The objective of the present study was to analyse the activity of CD4+ and CD8+ T cells in β-Thalassemia patients treated with Sirolimus, taking advantages from the availability of cellular samples of the NCT03877809 clinical trial. The approach was to verify IFN-γ releases following stimulation of peripheral blood mononuclear cells (PBMCs) to stimulatory CEF and CEFTA peptide pools, stimulatory for CD4+ and CD8+ T cells, respectively. The main results of the present study are that treatment of β-Thalassemia patients with Sirolimus has a positive impact on the biological activity and number of memory CD4+ and CD8+ T cells releasing IFN-γ following stimulation with antigenic stimuli present in immunological memory. These data are to our knowledge novel and in our opinion of interest, in consideration of the fact that β-Thalassemia patients are considered prone to immune deficiency.
Collapse
Affiliation(s)
- Matteo Zurlo
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular BiologyUniversity of FerraraFerraraItaly
| | - Francesco Nicoli
- Department of Chemistry, Pharmaceutical and Agricultural SciencesUniversity of FerraraFerraraItaly
| | - Davide Proietto
- Department of Chemistry, Pharmaceutical and Agricultural SciencesUniversity of FerraraFerraraItaly
| | - Beatrice Dallan
- Department of Chemistry, Pharmaceutical and Agricultural SciencesUniversity of FerraraFerraraItaly
| | - Cristina Zuccato
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular BiologyUniversity of FerraraFerraraItaly
| | - Lucia Carmela Cosenza
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular BiologyUniversity of FerraraFerraraItaly
| | - Jessica Gasparello
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular BiologyUniversity of FerraraFerraraItaly
| | - Chiara Papi
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular BiologyUniversity of FerraraFerraraItaly
| | - Elisabetta d'Aversa
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular BiologyUniversity of FerraraFerraraItaly
| | - Monica Borgatti
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular BiologyUniversity of FerraraFerraraItaly
| | - Chiara Scapoli
- Department of Life Sciences and Biotechnology, Section of Biology and EvolutionUniversity of FerraraFerraraItaly
| | - Alessia Finotti
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular BiologyUniversity of FerraraFerraraItaly
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular BiologyUniversity of FerraraFerraraItaly,Center Chiara Gemmo and Elio Zago for the Research on ThalassemiaUniversity of FerraraFerraraItaly
| |
Collapse
|
26
|
Quiroga B, Soler MJ, Ortiz A, Sequera PD. Lessons from SENCOVAC: A prospective study evaluating the response to SARS-CoV-2 vaccination in the CKD spectrum. Nefrologia 2022; 43:S0211-6995(22)00201-6. [PMID: 36540904 PMCID: PMC9756643 DOI: 10.1016/j.nefro.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has negatively impacted on patients of the whole CKD spectrum, causing high rates of morbi-mortality. SARS-CoV-2 vaccines opened a new era, but patients with CKD (including kidney transplant, hemodialysis and peritoneal dialysis) were systematically excluded from pivotal clinical trials. The Spanish Society of Nephrology promoted the multicentric national SENCOVAC study aimed at assessing immunological responses after vaccination in patients with CKD. During the first year after vaccination, patients with non-dialysis CKD and those on hemodialysis and peritoneal dialysis presented good anti-Spike antibody responses to vaccination, especially after receiving the third and fourth doses. However, kidney transplant recipients presented suboptimal responses after any vaccination schedule (initial, third and fourth dose). Especially worrisome is the situation of a patients with a persistently negative humoral response that do not seroconvert after boosters. In this regard, monoclonal antibodies targeting SARS-CoV-2 have been approved for high-risk patients, although they may become obsolete as the viral genome evolves. The present report reviews the current status of SARS-CoV-2 vaccination in the CKD spectrum with emphasis on lessons learned from the SENCOVAC study. Predictors of humoral response, including vaccination schedules and types of vaccines, as well as the integration of vaccines, monoclonal antibodies and antiviral agents are discussed.
Collapse
Affiliation(s)
- Borja Quiroga
- IIS-La Princesa. Nephrology Department, Hospital Universitario de la Princesa, Madrid, Spain
| | - María José Soler
- Nephrology Department, Vall d'Hebrón University Hospital, 08035 Barcelona, Spain
- RICORS2040 (Kidney Disease), Spain
| | - Alberto Ortiz
- RICORS2040 (Kidney Disease), Spain
- IIS-Fundación Jiménez Diaz, School of Medicine, Universidad Autónoma de Madrid, Fundación Renal Iñigo Álvarez de Toledo-IRSIN, REDinREN, Instituto de Investigación Carlos III, Madrid, Spain
| | - Patricia de Sequera
- RICORS2040 (Kidney Disease), Spain
- Nephrology Department, Hospital Universitario Infanta Leonor - Universidad Complutense de Madrid, Spain
| |
Collapse
|
27
|
Erratum. Am J Transplant 2022; 22:3190. [PMID: 36331094 PMCID: PMC10117587 DOI: 10.1111/ajt.17214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
28
|
Querido S, Adragão T, Pinto I, Ormonde C, Papoila AL, Pessanha MA, Gomes P, Ferreira S, Figueira JM, Cardoso C, Viana JF, Weigert A. Torquetenovirus viral load is associated with anti-spike antibody response in SARS-CoV-2 mRNA BNT162b2 vaccinated kidney transplant patients. Clin Transplant 2022; 36:e14825. [PMID: 36301197 PMCID: PMC9874652 DOI: 10.1111/ctr.14825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/30/2022] [Accepted: 09/19/2022] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Kidney transplant patients (KT) are at high risk for severe COVID-19 and presented attenuated antibody responses to vaccination when compared to immunocompetent individuals. Torquetenovirus (TTV) has recently gained attention as a potential surrogate marker of the net state of immunosuppression. We evaluated the association between pre-vaccination TTV viral load and anti-spike total antibody response to SARS-CoV-2 vaccination in KT. MATERIAL AND METHODS The 114 adult KT recipients enrolled in this prospective single-center cohort study received two doses of SARS-CoV-2 mRNA BNT162b2 vaccine. Serum samples were collected immediately before vaccination at the days when patients received both the first (T0) and the second dose (T1) and 16-45 days after the second dose (T2). Primary endpoint was the development of anti-spike total antibodies after vaccination. Demographic, clinical, and laboratorial parameters were compared between patients with and without detectable SARS-CoV-2 antibodies at T2. RESULTS Ninety-nine patients (86.8%) were naïve for SARS-CoV-2 before vaccination. Fifty-six (56.6%) patients developed anti-spike total antibodies at T2. The use of mTOR inhibitors was associated with a favorable response (p = .005); conversely, mycophenolic acid (MPA) was associated with a negative response (p = .006). In a multivariable model, the presence of TTV at T0 ≥ 3.36 log10 cp/ml was associated with unfavorable vaccine response (OR: 5.40; 95% CI: 1.47-19.80; p = .011), after adjusting for age and eGFR at T0. CONCLUSIONS Higher TTV viral loads before vaccination are associated with reduced anti-spike total antibody response in SARS-CoV-2 mRNA BNT162b2 vaccinated KT patients. The association between TTV viral load and vaccine response may be an added-value in the optimization of vaccination regimens in KT.
Collapse
Affiliation(s)
- Sara Querido
- Department of NephrologyUnit of Renal TransplantationHospital de Santa Cruz, Centro Hospitalar de Lisboa OcidentalCarnaxidePortugal
| | - Teresa Adragão
- Department of NephrologyUnit of Renal TransplantationHospital de Santa Cruz, Centro Hospitalar de Lisboa OcidentalCarnaxidePortugal
| | - Iola Pinto
- CMAFaculdade de Ciências e Tecnologia da Universidade Nova de LisboaLisboaPortugal,ISELInstituto Superior de Engenharia de LisboaLisboaPortugal
| | - Carolina Ormonde
- Department of NephrologyHospital do Divino Espírito SantoPonta DelgadaPortugal
| | - Ana Luísa Papoila
- CEAULCentro de Estatística e Aplicações da Universidade de LisboaLisboaPortugal,NOVAMedicalSchoolFaculdade de Ciências Médicas da Universidade Nova de LisboaLisboaPortugal
| | - Maria Ana Pessanha
- Department of Clinical PathologyLaboratory of Clinical Microbiology and Molecular BiologyCentro Hospitalar de Lisboa OcidentalLisboaPortugal
| | - Perpétua Gomes
- Department of Clinical PathologyLaboratory of Clinical Microbiology and Molecular BiologyCentro Hospitalar de Lisboa OcidentalLisboaPortugal,Centro de Investigação Interdisciplinar Egas Moniz (CiiEM)IUEMAlmadaPortugal
| | - Sílvia Ferreira
- Department of Clinical PathologyLaboratory of BiochemistryCentro Hospitalar de Lisboa OcidentalLisboaPortugal
| | - João Mário Figueira
- Department of Clinical PathologyLaboratory of BiochemistryCentro Hospitalar de Lisboa OcidentalLisboaPortugal
| | - Conceição Cardoso
- Department of Clinical PathologyLaboratory of BiochemistryCentro Hospitalar de Lisboa OcidentalLisboaPortugal
| | - João Faro Viana
- Department of Clinical PathologyCentro Hospitalar de Lisboa OcidentalLisboaPortugal
| | - André Weigert
- Department of NephrologyUnit of Renal TransplantationHospital de Santa Cruz, Centro Hospitalar de Lisboa OcidentalCarnaxidePortugal
| |
Collapse
|
29
|
Bae S, Alejo JL, Chiang TP, Werbel WA, Tobian AA, Moore LW, Guha A, Huang HJ, Knight RJ, Gaber AO, Ghobrial RM, McAdams-DeMarco MA, Segev DL. mTOR inhibitors, mycophenolates, and other immunosuppression regimens on antibody response to SARS-CoV-2 mRNA vaccines in solid organ transplant recipients. Am J Transplant 2022; 22:3137-3142. [PMID: 35869809 PMCID: PMC9350033 DOI: 10.1111/ajt.17158] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/24/2022] [Accepted: 07/16/2022] [Indexed: 01/25/2023]
Abstract
A recent study concluded that SARS-CoV-2 mRNA vaccine responses were improved among transplant patients taking mTOR inhibitors (mTORi). This could have profound implications for vaccine strategies in transplant patients; however, limitations in the study design raise concerns about the conclusions. To address this issue more robustly, in a large cohort with appropriate adjustment for confounders, we conducted various regression- and machine learning-based analyses to compare antibody responses by immunosuppressive agents in a national cohort (n = 1037). MMF was associated with significantly lower odds of positive antibody response (aOR = 0.09 0.130.18 ). Consistent with the recent mTORi study, the odds tended to be higher with mTORi (aOR = 1.00 1.452.13 ); however, importantly, this seemingly protective tendency disappeared (aOR = 0.47 0.731.12 ) after adjusting for MMF. We repeated this comparison by combinations of immunosuppression agents. Compared to MMF + tacrolimus, MMF-free regimens were associated with higher odds of positive antibody response (aOR = 2.39 4.267.92 for mTORi+tacrolimus; 2.34 5.5415.32 for mTORi-only; and 6.78 10.2515.93 for tacrolimus-only), whereas MMF-including regimens were not, regardless of mTORi use (aOR = 0.81 1.542.98 for MMF + mTORi; and 0.81 1.512.87 for MMF-only). We repeated these analyses in an independent cohort (n = 512) and found similar results. Our study demonstrates that the recently reported findings were confounded by MMF, and that mTORi is not independently associated with improved vaccine responses.
Collapse
Affiliation(s)
- Sunjae Bae
- Department of Surgery, NYU Grossman School of Medicine, New York, New York, USA
- Department of Population Health, NYU Grossman School of Medicine, New York, New York, USA
| | - Jennifer L. Alejo
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Teresa P.Y. Chiang
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - William A. Werbel
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aaron A.R. Tobian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Linda W. Moore
- Department of Surgery, Houston Methodist Hospital, Houston, Texas, USA
- JC Walter Jr Transplant Center, Houston Methodist Hospital, Houston, Texas, USA
| | - Ashrith Guha
- JC Walter Jr Transplant Center, Houston Methodist Hospital, Houston, Texas, USA
- Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, Texas, USA
| | - Howard J. Huang
- JC Walter Jr Transplant Center, Houston Methodist Hospital, Houston, Texas, USA
- Department of Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Richard J. Knight
- Department of Surgery, Houston Methodist Hospital, Houston, Texas, USA
- JC Walter Jr Transplant Center, Houston Methodist Hospital, Houston, Texas, USA
| | - A. Osama Gaber
- Department of Surgery, Houston Methodist Hospital, Houston, Texas, USA
- JC Walter Jr Transplant Center, Houston Methodist Hospital, Houston, Texas, USA
| | - R. Mark Ghobrial
- Department of Surgery, Houston Methodist Hospital, Houston, Texas, USA
- JC Walter Jr Transplant Center, Houston Methodist Hospital, Houston, Texas, USA
| | - Mara A. McAdams-DeMarco
- Department of Surgery, NYU Grossman School of Medicine, New York, New York, USA
- Department of Population Health, NYU Grossman School of Medicine, New York, New York, USA
| | - Dorry L. Segev
- Department of Surgery, NYU Grossman School of Medicine, New York, New York, USA
- Department of Population Health, NYU Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
30
|
Kodali L, Budhiraja P, Gea-Banacloche J. COVID-19 in kidney transplantation-implications for immunosuppression and vaccination. Front Med (Lausanne) 2022; 9:1060265. [PMID: 36507509 PMCID: PMC9727141 DOI: 10.3389/fmed.2022.1060265] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/09/2022] [Indexed: 11/24/2022] Open
Abstract
COVID-19 pandemic continues to challenge the transplant community, given increased morbidity and mortality associated with the disease and poor response to prevention measures such as vaccination. Transplant recipients have a diminished response to both mRNA and vector-based vaccines compared to dialysis and the general population. The currently available assays to measure response to vaccination includes commercially available antibody assays for anti-Spike Ab, or anti- Receptor Binding Domain Ab. Positive antibody testing on the assays does not always correlate with neutralizing antibodies unless the antibody levels are high. Vaccinations help with boosting polyfunctional CD4+ T cell response, which continues to improve with subsequent booster doses. Ongoing efforts to improve vaccine response by using additional booster doses and heterologous vaccine combinations are underway. There is improved antibody response in moderate responders; however, the ones with poor response to initial vaccination doses, continue to have a poor response to sequential boosters. Factors associated with poor vaccine response include diabetes, older age, specific immunosuppressants such as belatacept, and high dose mycophenolate. In poor responders, a decrease in immunosuppression can increase response to vaccination. COVID infection or vaccination has not been associated with an increased risk of rejection. Pre- and Post-exposure monoclonal antibodies are available to provide further protection against COVID infection, especially in poor vaccine responders. However, the efficacy is challenged by the emergence of new viral strains. A recently approved bivalent vaccine offers better protection against the Omicron variant.
Collapse
Affiliation(s)
- Lavanya Kodali
- Department of Internal Medicine, Mayo Clinic, Phoenix, AZ, United States
- Division of Nephrology, Transplant Center, Mayo Clinic, Phoenix, AZ, United States
| | - Pooja Budhiraja
- Department of Internal Medicine, Mayo Clinic, Phoenix, AZ, United States
- Division of Nephrology, Transplant Center, Mayo Clinic, Phoenix, AZ, United States
| | - Juan Gea-Banacloche
- Division of Clinical Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| |
Collapse
|
31
|
López V, Mazuecos A, Villanego F, López-Oliva M, Alonso A, Beneyto I, Crespo M, Díaz-Corte C, Franco A, González-Roncero F, Guirado L, Jiménez C, Juega J, Llorente S, Paul J, Rodríguez-Benot A, Ruiz JC, Sánchez-Fructuoso A, Torregrosa V, Zárraga S, Rodrigo E, Hernández D. [Update of the recommendations on the management of the SARS-CoV-2 coronavirus pandemic (COVID-19) in kidney transplant patients.]. Nefrologia 2022; 43:S0211-6995(22)00174-6. [PMID: 36405492 PMCID: PMC9664833 DOI: 10.1016/j.nefro.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022] Open
Abstract
SARS-CoV-2 infection (COVID-19) has had a significant impact on transplant activity in our country. Mortality and the risk of complications associated with COVID-19 in kidney transplant recipients (KT) were expected to be higher due to their immunosuppressed condition and the frequent associated comorbidities. Since the beginning of the pandemic in March 2020 we have rapidly improved our knowledge about the epidemiology, clinical features and management of COVID-19 post-transplant, resulting in a better prognosis for our patients. KT units have been able to adapt their programs to this new reality, normalizing both donation and transplantation activity in our country.This manuscript presents a proposal to update the general recommendations for the prevention and treatment of infection in this highly vulnerable population such as KT.
Collapse
Affiliation(s)
- Verónica López
- Unidad de Gestión Clínica de Nefrología. Hospital Regional Universitario de Málaga, Universidad de Málaga, Instituto Biomédico de Investigación de Málaga (IBIMA), RICORS2040 (RD21/0005/0012), Málaga, España
| | | | | | | | - Angel Alonso
- Servicio de Nefrología. Complejo Hospitalario A Coruña, España
| | - Isabel Beneyto
- Servicio de Nefrología. Hospital Universitario Politécnico La Fe, Valencia, España
| | - Marta Crespo
- Servicio de Nefrología. Hospital del Mar, Hospital del Mar Medical Research Institute (IMIM), Barcelona, España. RD16/0009/0013 (ISCIII FEDER REDinREN), España
| | - Carmen Díaz-Corte
- Servicio de Nefrología. Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, España
| | - Antonio Franco
- Servicio de Nefrología. Hospital de Alicante, Alicante, España
| | | | - Luis Guirado
- Servicio de Nefrología. Fundación Puigvert, REDinREN RD16/0009/0019, Barcelona, España
| | | | - Javier Juega
- Servicio de Nefrología. Hospital Trias i Pujol, REDinREN RD16/0009/0032, Barcelona, España
| | - Santiago Llorente
- Servicio de Nefrología. Hospital Virgen de la Arrixaca, Murcia, España
| | - Javier Paul
- Servicio de Nefrología. Hospital Miguel Servet, Zaragoza, España
| | - Alberto Rodríguez-Benot
- Servicio de Nefrología. Hospital Reina Sofía, Instituto Maimónides de Investigación Biomédica de Córdoba, Córdoba, España
| | - Juan Carlos Ruiz
- Servicio de Nefrología. Hospital Marqués de Valdecilla, IDIVAL, REDinREN RD16/0009/0027, Santander, España
| | - Ana Sánchez-Fructuoso
- Serivicio de Nefrología. Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| | | | - Sofía Zárraga
- Servicio de Nefrología. Hospital de Cruces, Bilbao, España
| | - Emilio Rodrigo
- Servicio de Nefrología. Hospital Marqués de Valdecilla, IDIVAL, REDinREN RD16/0009/0027, Santander, España
| | - Domingo Hernández
- Unidad de Gestión Clínica de Nefrología. Hospital Regional Universitario de Málaga, Universidad de Málaga, Instituto Biomédico de Investigación de Málaga (IBIMA), RICORS2040 (RD21/0005/0012), Málaga, España
| |
Collapse
|
32
|
López V, Polo C, Schuldt R, Vázquez T, Gutiérrez-Vílchez E, Moliz C, Hernández D. Humoral Response After SARS-CoV-2 Vaccination in Kidney Transplant Recipients: Role of Immunosuppression Therapy. Transplant Proc 2022; 54:2454-2456. [PMID: 36273957 PMCID: PMC9527195 DOI: 10.1016/j.transproceed.2022.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/13/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Messenger RNA vaccination against COVID-19 has been shown to produce an immune response with sufficient efficacy to prevent natural infection in immunocompetent recipients. However, the response in kidney transplant recipients is low. We aimed to evaluate the specific humoral response to SARS-CoV-2 after vaccination in a population of kidney transplant recipients and assess the main factors associated with a lack of response. METHODS We undertook a prospective study of 105 kidney transplant recipients and 11 recipients of a combined kidney-pancreas transplant. We analyzed immunoglobulin G and immunoglobulin M antibodies after the patients received their second and third doses of the messenger RNA 1273 (Moderna) or BNT162b1 (BionTECH-Pfizer) vaccinations between February and November 2021. RESULTS Mean (SD) age of the 116 patients was 50 (16) years, and 65% were men. They had their transplants for 40 months (IQR, 15-123 months), with 14% undergoing retransplant and 11% sensitized. The maintenance immunosuppression regimen was steroids + tacrolimus + mycophenolate (MMF) in 68% of the patients and any combination with mammalian target of rapamycin inhibitor (mTORi) in 28%. A humoral response developed in 40% of the patients 6 weeks (IQR, 4-10 weeks) after receiving the second dose of the vaccine. Of the 67 patients with no response to the second dose, 51 had an analysis of the humoral response after the third dose, which was positive in 16 (31%). A total of 80% received the Moderna vaccine and 20% the BionTECH-Pfizer. No patient experienced major adverse effects after the vaccination. Factors associated with a lack of humoral response to the vaccine were recipient age (odds ratio [OR], 1.02; 95% CI, 1.001-1.05; P = .04), diabetes (OR, 2.8; 95% CI, 1.2-6.9; P = .02), and treatment with MMF (OR, 2.6; 95% CI, 1.08-6.8; P = .03). Treatment with mTORi was associated with a better response to vaccination (OR, 0.3; 95% CI, 0.1-0.9; P = .04). CONCLUSIONS The humoral response to the COVID-19 vaccine in kidney transplant recipients is poor. Factors related with this lack of immunity are recipient age and diabetes, plus MMF therapy, whereas mTORi therapy was associated with a better response to vaccination.
Collapse
Affiliation(s)
- Verónica López
- Nephrology Department, Hospital Regional Universitario de Málaga, Malaga, Spain; University of Malaga, IBIMA (Malaga Institute of Biomedical Research), Malaga, Spain,.
| | - Carolina Polo
- Nephrology Department, Hospital Regional Universitario de Málaga, Malaga, Spain; University of Malaga, IBIMA (Malaga Institute of Biomedical Research), Malaga, Spain
| | - Ruben Schuldt
- Nephrology Department, Hospital Regional Universitario de Málaga, Malaga, Spain; University of Malaga, IBIMA (Malaga Institute of Biomedical Research), Malaga, Spain
| | - Teresa Vázquez
- Nephrology Department, Hospital Regional Universitario de Málaga, Malaga, Spain; University of Malaga, IBIMA (Malaga Institute of Biomedical Research), Malaga, Spain
| | - Elena Gutiérrez-Vílchez
- Nephrology Department, Hospital Regional Universitario de Málaga, Malaga, Spain; University of Malaga, IBIMA (Malaga Institute of Biomedical Research), Malaga, Spain
| | - Candela Moliz
- Nephrology Department, Hospital Regional Universitario de Málaga, Malaga, Spain; University of Malaga, IBIMA (Malaga Institute of Biomedical Research), Malaga, Spain
| | - Domingo Hernández
- Nephrology Department, Hospital Regional Universitario de Málaga, Malaga, Spain; University of Malaga, IBIMA (Malaga Institute of Biomedical Research), Malaga, Spain
| |
Collapse
|
33
|
Ponticelli C, Campise M. COVID-19 Vaccination in Kidney Transplant Candidates and Recipients. Vaccines (Basel) 2022; 10:vaccines10111808. [PMID: 36366317 PMCID: PMC9692413 DOI: 10.3390/vaccines10111808] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 12/03/2022] Open
Abstract
Kidney transplant candidates and kidney transplant recipients (KTRs) are at particular risk of severe complications of COVID-19 disease. In Western countries, mortality in affected hospitalized KTRs ranges between 19% and 50%. COVID-19 vaccination remains the most important measure to prevent the severity of infection in candidates and recipients of kidney transplant. However, the uraemic condition may affect the vaccine-induced immunity in patients with advanced chronic kidney disease (CKD) and in KTRs. Retention of uraemic toxins, dysbiosis, dysmetabolism, and dialysis can diminish the normal response to vaccination, leading to dysfunction of inflammatory and immune cells. In KTRs the efficacy of vaccines may be reduced by the immunosuppressive medications, and more than half of kidney transplant recipients are unable to build an immune response even after four administrations of anti-COVID-19 vaccines. The lack of antibody response leaves these patients at high risk for SARS-CoV-2 infection and severe COVID-19 disease. The aim of the present review is to focus on the main reasons for the impaired immunological response among candidates and kidney transplant recipients and to highlight some of the present options available to solve the problem.
Collapse
Affiliation(s)
| | - Mariarosaria Campise
- Department of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Correspondence:
| |
Collapse
|
34
|
Comparison of the Immune Response After an Extended Primary Series of COVID-19 Vaccination in Kidney Transplant Recipients Receiving Standard Versus Mycophenolic Acid-sparing Immunosuppressive Regimen. Transplant Direct 2022; 8:e1393. [PMID: 36312516 PMCID: PMC9605792 DOI: 10.1097/txd.0000000000001393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022] Open
Abstract
UNLABELLED Two doses of coronavirus disease 2019 vaccination provide suboptimal immune response in transplant patients. Mycophenolic acid (MPA) is one of the most important factors that blunts the immune response. We studied the immune response to the extended primary series of 2 doses of AZD1222 and a single dose of BNT162b2 in kidney transplant patients who were on the standard immunosuppressive regimen compared to those on the MPA-sparing regimen. METHODS The kidney transplant recipients who were enrolled into the study were divided into 2 groups based on their immunosuppressive regimen. Those on the standard immunosuppressive regimen received tacrolimus (TAC), MPA, and prednisolone (standard group). The patients in the MPA-sparing group received mammalian target of rapamycin inhibitors (mTORi) with low dose TAC plus prednisolone (MPA-sparing group). The vaccination consisted of 2 doses of AZD1222 and a single dose of BNT162b2. RESULTS A total of 115 patients completed the study. There were 76 (66.08%) patients in the standard group and 39 (33.91%) patients in the MPA-sparing group. The overall median anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) S antibody level at 4 wk after vaccine completion was 676.64 (interquartile range = 6.02-3644.03) BAU/mL with an 80% seroconversion rate. The MPA-sparing group achieved higher anti-SARS-CoV-2 S antibody level compared to the standard group (3060.69 and 113.91 BAU/mL, P < 0.001). The seroconversion rate of MPA-sparing and standard groups were 97.4% and 71.1%, respectively (P < 0.001). The anti-HLA antibodies did not significantly increase after vaccination. CONCLUSIONS The extended primary series of 2 doses of AZD1222 and a single dose of BNT162b2 provided significant humoral immune response. The MPA-sparing regimen with mTORi and low dose TAC had a higher ant-SARS-CoV-2 S antibody level and seroconversion rate compared to the participants in the standard regimen.
Collapse
|
35
|
Banjongjit A, Phirom S, Phannajit J, Jantarabenjakul W, Paitoonpong L, Kittanamongkolchai W, Wattanatorn S, Prasithsirikul W, Eiam-Ong S, Avihingsanon Y, Hansasuta P, Vanichanan J, Townamchai N. Benefits of Switching Mycophenolic Acid to Sirolimus on Serological Response after a SARS-CoV-2 Booster Dose among Kidney Transplant Recipients: A Pilot Study. Vaccines (Basel) 2022; 10:vaccines10101685. [PMID: 36298550 PMCID: PMC9609831 DOI: 10.3390/vaccines10101685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/28/2022] [Accepted: 10/06/2022] [Indexed: 11/08/2022] Open
Abstract
Kidney transplant recipients (KTRs) have a suboptimal immune response to COVID-19 vaccination due to the effects of immunosuppression, mostly mycophenolic acid (MPA). This study investigated the benefits of switching from the standard immunosuppressive regimen (tacrolimus (TAC), MPA, and prednisolone) to a regimen of mammalian target of rapamycin inhibitor (mTORi), TAC and prednisolone two weeks pre- and two weeks post-BNT162b2 booster vaccination. A single-center, opened-label pilot study was conducted in KTRs, who received two doses of ChAdOx-1 and a single dose of BNT162b2. The participants were randomly assigned to continue the standard regimen (control group, n = 14) or switched to a sirolimus (an mTORi), TAC, and prednisolone (switching group, n = 14) regimen two weeks before and two weeks after receiving a booster dose of BNT162b2. The anti-SARS-CoV-2 S antibody level after vaccination in the switching group was significantly greater than the control group (4051.0 [IQR 3142.0-6466.0] BAU/mL vs. 2081.0 [IQR 1077.0-3960.0] BAU/mL, respectively; p = 0.01). One participant who was initially seronegative in the control group remained seronegative after the booster dose. These findings suggest humoral immune response benefits of switching the standard immunosuppressive regimen to the regimen of mTORi, TAC, and prednisolone in KTRs during vaccination.
Collapse
Affiliation(s)
- Athiphat Banjongjit
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
| | - Supitchaya Phirom
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
| | - Jeerath Phannajit
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
- Division of Clinical Epidemiology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Watsamon Jantarabenjakul
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
- Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Leilani Paitoonpong
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wonngarm Kittanamongkolchai
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
- Mahachakri Sirindhorn Clinical Research Center, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Renal Immunology and Renal Transplant Research Unit, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Salin Wattanatorn
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
| | | | - Somchai Eiam-Ong
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
| | - Yingyos Avihingsanon
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
- Renal Immunology and Renal Transplant Research Unit, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pokrath Hansasuta
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
| | - Jakapat Vanichanan
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Natavudh Townamchai
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
- Renal Immunology and Renal Transplant Research Unit, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Excellence Center for Solid Organ Transplantation, King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
- Correspondence:
| |
Collapse
|
36
|
Impact of COVID-19 on the liver and on the care of patients with chronic liver disease, hepatobiliary cancer, and liver transplantation: An updated EASL position paper. J Hepatol 2022; 77:1161-1197. [PMID: 35868584 PMCID: PMC9296253 DOI: 10.1016/j.jhep.2022.07.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/06/2022] [Accepted: 07/06/2022] [Indexed: 02/06/2023]
Abstract
The COVID-19 pandemic has presented a serious challenge to the hepatology community, particularly healthcare professionals and patients. While the rapid development of safe and effective vaccines and treatments has improved the clinical landscape, the emergence of the omicron variant has presented new challenges. Thus, it is timely that the European Association for the Study of the Liver provides a summary of the latest data on the impact of COVID-19 on the liver and issues guidance on the care of patients with chronic liver disease, hepatobiliary cancer, and previous liver transplantation, as the world continues to deal with the consequences of the COVID-19 pandemic.
Collapse
|
37
|
Tauzin A, Beaudoin-Bussières G, Gong SY, Chatterjee D, Gendron-Lepage G, Bourassa C, Goyette G, Racine N, Khrifi Z, Turgeon J, Tremblay C, Martel-Laferrière V, Kaufmann DE, Cardinal H, Cloutier M, Bazin R, Duerr R, Dieudé M, Hébert MJ, Finzi A. Humoral immune responses against SARS-CoV-2 Spike variants after mRNA vaccination in solid organ transplant recipients. iScience 2022; 25:104990. [PMID: 36035196 PMCID: PMC9395219 DOI: 10.1016/j.isci.2022.104990] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/04/2022] [Accepted: 08/17/2022] [Indexed: 11/28/2022] Open
Abstract
Although SARS-CoV-2 mRNA vaccination has been shown to be safe and effective in the general population, immunocompromised solid organ transplant recipients (SOTRs) were reported to have impaired immune responses after one or two doses of vaccine. In this study, we examined humoral responses induced after the second and the third dose of mRNA vaccine in different SOTR (kidney, liver, lung, and heart). Compared to a cohort of SARS-CoV-2 naïve immunocompetent health care workers (HCWs), the second dose induced weak humoral responses in SOTRs, except for the liver recipients. The third dose boosted these responses but they did not reach the same level as in HCW. Interestingly, although the neutralizing activity against Delta and Omicron variants remained very low after the third dose, Fc-mediated effector functions in SOTR reached similar levels as in the HCW cohort. Whether these responses will suffice to protect SOTR from severe outcome remains to be determined.
Collapse
Affiliation(s)
- Alexandra Tauzin
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Guillaume Beaudoin-Bussières
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Shang Yu Gong
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | | | | | | | | | - Normand Racine
- Institut Cardiologie de Montréal, Montreal, QC H1T 1C8, Canada
| | - Zineb Khrifi
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
| | - Julie Turgeon
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Canadian Donation and Transplantation Research Program (CDTRP), Edmonton, AL T6G 2E1, Canada
| | - Cécile Tremblay
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Valérie Martel-Laferrière
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Daniel E. Kaufmann
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Médecine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Héloïse Cardinal
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
- Canadian Donation and Transplantation Research Program (CDTRP), Edmonton, AL T6G 2E1, Canada
| | - Marc Cloutier
- Héma-Québec, Affaires Médicales et Innovation, Québec, QC G1V 5C3, Canada
| | - Renée Bazin
- Héma-Québec, Affaires Médicales et Innovation, Québec, QC G1V 5C3, Canada
| | - Ralf Duerr
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Mélanie Dieudé
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
- Canadian Donation and Transplantation Research Program (CDTRP), Edmonton, AL T6G 2E1, Canada
- Héma-Québec, Affaires Médicales et Innovation, Québec, QC G1V 5C3, Canada
| | - Marie-Josée Hébert
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Canadian Donation and Transplantation Research Program (CDTRP), Edmonton, AL T6G 2E1, Canada
- Département de Médecine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
38
|
Tunbridge M, Perkins GB, Singer J, Salehi T, Ying T, Grubor-Bauk B, Barry S, Sim B, Hissaria P, Chadban SJ, Coates PT. Rapamycin and inulin for booster vaccine response stimulation (RIVASTIM)—rapamycin: study protocol for a randomised, controlled trial of immunosuppression modification with rapamycin to improve SARS-CoV-2 vaccine response in kidney transplant recipients. Trials 2022; 23:780. [PMID: 36109788 PMCID: PMC9477178 DOI: 10.1186/s13063-022-06634-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/04/2022] [Indexed: 11/10/2022] Open
Abstract
Kidney transplant recipients are at an increased risk of severe COVID-19-associated hospitalisation and death. Vaccination has been a key public health strategy to reduce disease severity and infectivity, but the effectiveness of COVID vaccines is markedly reduced in kidney transplant recipients. Urgent strategies to enhance vaccine efficacy are needed. Methods: RIVASTIM-rapamycin is a multicentre, randomised, controlled trial examining the effect of immunosuppression modification prior to a third dose of COVID-19 vaccine in kidney transplant recipients who have failed to develop protective immunity to a 2-dose COVID-19 vaccine schedule. Participants will be randomised 1:1 to either remain on standard of care immunosuppression with tacrolimus, mycophenolate, and prednisolone (control) or cease mycophenolate and commence sirolimus (intervention) for 4 weeks prior to and following vaccination. The primary outcome is the proportion of participants in each trial arm who develop protective serological neutralisation of live SARS-CoV-2 virus at 4–6 weeks following a third COVID-19 vaccination. Secondary outcomes include SARS-CoV-receptor binding domain IgG, vaccine-specific immune cell populations and responses, and the safety and tolerability of sirolimus switch. Discussion: Immunosuppression modification strategies may improve immunological vaccine response. We hypothesise that substituting the mTOR inhibitor sirolimus for mycophenolate in a triple drug regimen will enhance humoral and cell-mediated responses to COVID vaccination for kidney transplant recipients. Trial registration: Australia New Zealand Clinical Trials Registry ACTRN12621001412820. Registered on 20 October 2021; https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=382891&isReview=true
Collapse
|
39
|
Miura M, Fukumoto M, Komatsu N, Shuto R, Harada H, Sasaki H. Temporary reduction of immunosuppression enhances production of anti-S antibody against severe acute respiratory syndrome coronavirus 2 after vaccination in kidney transplant recipients. Int J Urol 2022; 29:1505-1510. [PMID: 36070502 PMCID: PMC9538803 DOI: 10.1111/iju.15027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/07/2022] [Indexed: 12/03/2022]
Abstract
OBJECTIVES The study identified factors affecting anti-S immunoglobulin G production after vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in kidney transplant recipients. METHODS Serum samples were prospectively collected from kidney transplant recipients, live kidney donors, and healthy volunteers 1 month after receiving the second dose of SARS-CoV-2 vaccine, and anti-S immunoglobulin G titers were measured. The mycophenolate mofetil dose was reduced before vaccination in some immunologically low-risk recipients. RESULTS A total of 151 kidney transplant recipients, 74 live kidney donors, and 50 healthy volunteers were included. Kidney transplant recipients had significantly lower titers of anti-S immunoglobulin G than donors and healthy volunteers (1377 ± 246, 8310 ± 932, and 9908 ± 1040 AU/ml, respectively). Only 67.3% of kidney transplant recipients, compared to 100% of donors and healthy volunteers, were positive for anti-S immunoglobulin G. Among the kidney transplant recipients, the anti-S titer was higher in younger recipients, those with higher peripheral blood lymphocyte counts and glomerular filtration rates, those without a history of antithymocyte globulin use, and those who had discontinued or received a reduced dose of mycophenolate mofetil. Younger age, higher lymphocyte count, glomerular filtration rate, and mycophenolate reduction were significantly associated with anti-S immunoglobulin G > 1000 AU/ml in nominal logistic regression analysis. There were no rejection episodes after mycophenolate modification in kidney transplant recipients. CONCLUSIONS Anti-S immunoglobulin G production after vaccination was attenuated in kidney transplant recipients. Mycophenolate mofetil cessation or reduction is a modifiable means to enhance anti-S immunoglobulin G production in immunosuppressed kidney transplant recipients.
Collapse
Affiliation(s)
- Masayoshi Miura
- Department of Renal Transplant Surgery and UrologySapporo Hokuyu HospitalSapporoJapan
| | - Maiko Fukumoto
- Transplant Supporting OfficeSapporo Hokuyu HospitalSapporoJapan
| | - Natsumi Komatsu
- Transplant Supporting OfficeSapporo Hokuyu HospitalSapporoJapan
| | - Reimi Shuto
- Transplant Supporting OfficeSapporo Hokuyu HospitalSapporoJapan
| | | | - Hajime Sasaki
- Department of Kidney Transplant SurgerySapporo City General HospitalSapporoJapan
| |
Collapse
|
40
|
Garnica M, Aiello A, Ligotti ME, Accardi G, Arasanz H, Bocanegra A, Blanco E, Calabrò A, Chocarro L, Echaide M, Kochan G, Fernandez-Rubio L, Ramos P, Pojero F, Zareian N, Piñeiro-Hermida S, Farzaneh F, Candore G, Caruso C, Escors D. How Can We Improve the Vaccination Response in Older People? Part II: Targeting Immunosenescence of Adaptive Immunity Cells. Int J Mol Sci 2022; 23:9797. [PMID: 36077216 PMCID: PMC9456031 DOI: 10.3390/ijms23179797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
The number of people that are 65 years old or older has been increasing due to the improvement in medicine and public health. However, this trend is not accompanied by an increase in quality of life, and this population is vulnerable to most illnesses, especially to infectious diseases. Vaccination is the best strategy to prevent this fact, but older people present a less efficient response, as their immune system is weaker due mainly to a phenomenon known as immunosenescence. The adaptive immune system is constituted by two types of lymphocytes, T and B cells, and the function and fitness of these cell populations are affected during ageing. Here, we review the impact of ageing on T and B cells and discuss the approaches that have been described or proposed to modulate and reverse the decline of the ageing adaptive immune system.
Collapse
Affiliation(s)
- Maider Garnica
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Anna Aiello
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| | - Mattia Emanuela Ligotti
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| | - Giulia Accardi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| | - Hugo Arasanz
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Ana Bocanegra
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Ester Blanco
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
- Division of Gene Therapy and Regulation of Gene Expression, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Anna Calabrò
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| | - Luisa Chocarro
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Miriam Echaide
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Grazyna Kochan
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Leticia Fernandez-Rubio
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Pablo Ramos
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Fanny Pojero
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| | - Nahid Zareian
- The Rayne Institute, School of Cancer and Pharmaceutical Sciences, King’s College London, London WC2R 2LS, UK
| | - Sergio Piñeiro-Hermida
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Farzin Farzaneh
- The Rayne Institute, School of Cancer and Pharmaceutical Sciences, King’s College London, London WC2R 2LS, UK
| | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| | - Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| | - David Escors
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| |
Collapse
|
41
|
de Boer SE, Berger SP, van Leer–Buter CC, Kroesen BJ, van Baarle D, Sanders JSF. Enhanced Humoral Immune Response After COVID-19 Vaccination in Elderly Kidney Transplant Recipients on Everolimus Versus Mycophenolate Mofetil-containing Immunosuppressive Regimens. Transplantation 2022; 106:1615-1621. [PMID: 35546527 PMCID: PMC9311282 DOI: 10.1097/tp.0000000000004177] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Elderly kidney transplant recipients (KTRs) represent almost one third of the total kidney transplant population. These patients have a very high coronavirus disease 2019 (COVID-19)-related mortality, whereas their response to COVID-19 vaccination is impaired. Finding ways to improve the COVID-19 vaccination response in this vulnerable population is of uttermost importance. METHODS In the OPTIMIZE trial, we randomly assign elderly KTRs to an immunosuppressive regimen with standard-exposure calcineurin inhibitor (CNI), mycophenolate mofetil, and prednisolone or an adapted regimen with low dose CNI, everolimus, and prednisolone. In this substudy, we measured the humoral response after 2 (N = 32) and 3 (N = 22) COVID-19 mRNA vaccinations and the cellular response (N = 15) after 2 vaccinations. RESULTS . The seroconversion rates of elderly KTRs on a standard immunosuppressive regimen were only 13% and 38% after 2 and 3 vaccinations, respectively, whereas the response rates of KTRs on the everolimus regimen were significantly higher at 56% ( P = 0.009) and 100% ( P = 0.006). Levels of severe acute respiratory syndrome coronaVirus 2 IgG antibodies were significantly higher at both time points in the everolimus group ( P = 0.004 and P < 0.001). There were no differences in cellular response after vaccination. CONCLUSIONS An immunosuppressive regimen without mycophenolate mofetil, a lower CNI dose, and usage of everolimus is associated with a higher humoral response rate after COVID-19 vaccination in elderly KTRs after transplantation. This encouraging finding should be investigated in larger cohorts, including transplant recipients of all ages.
Collapse
Affiliation(s)
- Silke E. de Boer
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| | - Stefan P. Berger
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| | - Coretta C. van Leer–Buter
- Department of Medical Microbiology (Clinical Virology), University Medical Centre Groningen and University of Groningen, Groningen, The Netherlands
| | - Bart-Jan Kroesen
- Department of Laboratory Medicine, University Medical Centre Groningen and University of Groningen, Groningen, The Netherlands
| | - Debbie van Baarle
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| | - Jan-Stephan F. Sanders
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| |
Collapse
|
42
|
How Vaccinations Changed the Outcome of COVID-19 Infections in Kidney Transplant Patients: Single-Center Experience. Vaccines (Basel) 2022; 10:vaccines10070990. [PMID: 35891153 PMCID: PMC9322129 DOI: 10.3390/vaccines10070990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 12/04/2022] Open
Abstract
Kidney transplant recipients are a vulnerable population at risk of a life-threatening COVID-19 infection with an incidence of death four-times higher than in the general population. The availability of mRNA COVID-19 vaccines has dramatically changed the fate of this infection also within this fragile population. Transplanted patients have an impaired immunological response also to mRNA vaccines. In March 2021, however, we started a vaccination campaign. These preliminary results show that both the incidence of death and of hospitalization dropped from 13% to 2.4% and from 45% to 12.5% compared to the previous outbreaks reported by our group. In univariate analysis, two variables were associated with an increased risk of hospitalization: older age and dyspnea (p = 0.023, p < 0.0001, respectively). In multivariate analysis, dyspnea (p < 0.0001) and mycophenolate therapy (p = 0.003) were independently associated with the risk of hospitalization. The association was even stronger when the two variables were combined (p < 0.0001). Vaccinations did not reduce the incidence of COVID-19 infections among our transplanted patients, but provided certain protection that was associated with a significantly better outcome for this infection.
Collapse
|
43
|
COVID-19 Vaccination in Lung Transplant Recipients. Indian J Thorac Cardiovasc Surg 2022; 38:347-353. [PMID: 35600498 PMCID: PMC9112254 DOI: 10.1007/s12055-022-01364-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/07/2022] [Accepted: 04/18/2022] [Indexed: 01/06/2023] Open
|