1
|
Zettl I, Bauernfeind C, Kollárová J, Flicker S. Single-Domain Antibodies-Novel Tools to Study and Treat Allergies. Int J Mol Sci 2024; 25:7602. [PMID: 39062843 PMCID: PMC11277559 DOI: 10.3390/ijms25147602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
IgE-mediated allergies represent a major health problem in the modern world. Apart from allergen-specific immunotherapy (AIT), the only disease-modifying treatment, researchers focus on biologics that target different key molecules such as allergens, IgE, or type 2 cytokines to ameliorate allergic symptoms. Single-domain antibodies, or nanobodies, are the newcomers in biotherapeutics, and their huge potential is being investigated in various research fields since their discovery 30 years ago. While they are dominantly applied for theranostics of cancer and treatment of infectious diseases, nanobodies have become increasingly substantial in allergology over the last decade. In this review, we discuss the prerequisites that we consider to be important for generating useful nanobody-based drug candidates for treating allergies. We further summarize the available research data on nanobodies used as allergen monitoring and detection probes and for therapeutic approaches. We reflect on the limitations that have to be addressed during the development process, such as in vivo half-life and immunogenicity. Finally, we speculate about novel application formats for allergy treatment that might be available in the future.
Collapse
Affiliation(s)
- Ines Zettl
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Clarissa Bauernfeind
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
- Center for Cancer Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Jessica Kollárová
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Sabine Flicker
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
2
|
Sharma E, Vitte J. A systematic review of allergen cross-reactivity: Translating basic concepts into clinical relevance. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100230. [PMID: 38524786 PMCID: PMC10959674 DOI: 10.1016/j.jacig.2024.100230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/29/2023] [Accepted: 01/03/2024] [Indexed: 03/26/2024]
Abstract
Access to the molecular culprits of allergic reactions allows for the leveraging of molecular allergology as a new precision medicine approach-one built on interdisciplinary, basic, and clinical knowledge. Molecular allergology relies on the use of allergen molecules as in vitro tools for the diagnosis and management of allergic patients. It complements the conventional approach based on skin and in vitro allergen extract testing. Major applications of molecular allergology comprise accurate identification of the offending allergen thanks to discrimination between genuine sensitization and allergen cross-reactivity, evaluation of potential severity, patient-tailored choice of the adequate allergen immunotherapy, and prediction of its expected efficacy and safety. Allergen cross-reactivity, defined as the recognition of 2 or more allergen molecules by antibodies or T cells of the same specificity, frequently interferes with allergen extract testing. At the mechanistic level, allergen cross-reactivity depends on the allergen, the host's immune response, and the context of their interaction. The multiplicity of allergen molecules and families adds further difficulty. Understanding allergen cross-reactivity at the immunologic level and translating it into a daily tool for the management of allergic patients is further complicated by the ever-increasing number of characterized allergenic molecules, the lack of dedicated resources, and the need for a personalized, patient-centered approach. Conversely, knowledge sharing paves the way for improved clinical use, innovative diagnostic tools, and further interdisciplinary research. Here, we aimed to provide a comprehensive and unbiased state-of-the art systematic review on allergen cross-reactivity. To optimize learning, we enhanced the review with basic, translational, and clinical definitions, clinical vignettes, and an overview of online allergen databases.
Collapse
Affiliation(s)
| | - Joana Vitte
- Aix-Marseille University, MEPHI, IHU Méditerranée Infection, Marseille, France
- Desbrest Institute of Epidemiology and Public Health (IDESP), University of Montpellier, INSERM, Montpellier, France
- University of Reims Champagne-Ardenne, INSERM UMR-S 1250 P3CELL and University Hospital of Reims, Immunology Laboratory, Reims, France
| |
Collapse
|
3
|
Hu Y, Wang Y, Lin J, Wu S, Muyldermans S, Wang S. Versatile Application of Nanobodies for Food Allergen Detection and Allergy Immunotherapy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8901-8912. [PMID: 35820160 DOI: 10.1021/acs.jafc.2c03324] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The unique characteristics of camelid heavy-chain only antibody (HCAb) derived nanobodies (Nbs) have facilitated their employment as tools for research and application in extensive fields including food safety inspection, diagnosis and therapy of diseases, etc., to develop immune detecting techniques or alternative candidates of conventional antibodies as diagnostic and therapeutic reagents. The wide application in the fields of food allergen inspection and immunotherapy has not been addressed as not much results published in the literature. The robust properties and straightforward selecting strategy of Nbs impel the advantageous employment compared with monoclonal antibodies (mAbs) to establish immunoassay and serve as blocking antibodies to compete immunoglobulin E (IgE) binding epitopes on food allergens. More and more efforts have been invested to develop specific Nbs against food allergen proteins, such as macadamia allergen of Mac i 1, peanut allergen of Ara h 3, and lupine allergen of Lup an 1, which demonstrated the potential of Nbs for research and application in food allergen surveillance. Meanwhile, the paratopes of Nbs preferably targeting the unique epitopes of food allergens can provide more possibilities to serve as blocking antibodies to shield IgE binding epitopes for food allergy immunotherapy. Regardless, the research and application of Nbs in the field of food allergen and allergic reactions are expected to attract dramatic focus and produce promising research outputs.
Collapse
Affiliation(s)
- Yaozhong Hu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yi Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Jing Lin
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Sihao Wu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Serge Muyldermans
- Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
4
|
Zettl I, Ivanova T, Strobl MR, Weichwald C, Goryainova O, Khan E, Rutovskaya MV, Focke‐Tejkl M, Drescher A, Bohle B, Flicker S, Tillib SV. Isolation of nanobodies with potential to reduce patients' IgE binding to Bet v 1. Allergy 2022; 77:1751-1760. [PMID: 34837242 DOI: 10.1111/all.15191] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/03/2021] [Accepted: 11/18/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Recent studies showed that a single injection of human monoclonal allergen-specific IgG antibodies significantly reduced allergic symptoms in birch pollen-allergic patients. Since the production of full monoclonal antibodies in sufficient amounts is laborious and expensive, we sought to investigate if smaller recombinant allergen-specific antibody fragments, that is, nanobodies, have similar protective potential. For this purpose, nanobodies specific for Bet v 1, the major birch pollen allergen, were generated to evaluate their efficacy to inhibit IgE-mediated responses. METHODS A cDNA-VHH library was constructed from a camel immunized with Bet v 1 and screened for Bet v 1 binders encoding sequences by phage display. Selected nanobodies were expressed, purified, and analyzed in regards of epitope-specificity and affinity to Bet v 1. Furthermore, cross-reactivity to Bet v 1-homologues from alder, hazel and apple, and their usefulness to inhibit IgE binding and allergen-induced basophil activation were investigated. RESULTS We isolated three nanobodies that recognize Bet v 1 with high affinity and cross-react with Aln g 1 (alder) and Cor a 1 (hazel). Their epitopes were mapped to the alpha-helix at the C-terminus of Bet v 1. All nanobodies inhibited allergic patients' polyclonal IgE binding to Bet v 1, Aln g 1, and Cor a 1 and partially suppressed Bet v 1-induced basophil activation. CONCLUSION We identified high-affinity Bet v 1-specific nanobodies that recognize an important IgE epitope and reduce allergen-induced basophil activation revealing the first proof that allergen-specific nanobodies are useful tools for future treatment of pollen allergy.
Collapse
Affiliation(s)
- Ines Zettl
- Division of Immunopathology Institute of Pathophysiology and Allergy Research Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Tatiana Ivanova
- Institute of Gene Biology Russian Academy of Sciences Moscow Russia
| | - Maria R. Strobl
- Division of Experimental Allergology Institute of Pathophysiology and Allergy Research Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Christina Weichwald
- Division of Immunopathology Institute of Pathophysiology and Allergy Research Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | | | - Evgenia Khan
- Institute of Gene Biology Russian Academy of Sciences Moscow Russia
| | - Marina V. Rutovskaya
- Institute of Gene Biology Russian Academy of Sciences Moscow Russia
- A.N.Severtsov Institute of Ecology and Evolution Russian Academy of Sciences Moscow Russia
| | - Margarete Focke‐Tejkl
- Division of Immunopathology Institute of Pathophysiology and Allergy Research Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | | | - Barbara Bohle
- Division of Experimental Allergology Institute of Pathophysiology and Allergy Research Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Sabine Flicker
- Division of Immunopathology Institute of Pathophysiology and Allergy Research Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Sergei V. Tillib
- Institute of Gene Biology Russian Academy of Sciences Moscow Russia
| |
Collapse
|
5
|
He XR, Yang Y, Kang S, Chen YX, Zheng PY, Chen GX, Chen XM, Cao MJ, Jin T, Liu GM. Crystal Structure Analysis and IgE Epitope Mapping of Allergic Predominant Region in Scylla paramamosain Filamin C, Scy p 9. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1282-1292. [PMID: 35040643 DOI: 10.1021/acs.jafc.1c07922] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Filamin C (FLN c) is a novel allergen in shellfish. In this study, FLN c from Scylla paramamosain was divided into three regions for recombinant expression based on the number of domains and amino acids. Using dot blot and basophil activation tests, the allergic predominant region of FLN c was determined to be 336-531 amino acid positions (named FLN c-M). It was confirmed that by X-ray diffraction, the crystal structure of FLN c-M with immunoglobulin-like folding at a resolution of 1.7 Å was obtained. The monomer was a barrel structure composed of 16 β-strands and 2 α-helices. Three conformational epitopes were predicted, six linear epitopes were verified by serological test, and they were positioned on the crystal structure of FLN c-M. For the first time, the crystal structure of the allergic predominant region of FLN c was determined, and it provided an accurate template for the localization of IgE epitopes.
Collapse
Affiliation(s)
- Xin-Rong He
- College of Marine Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361000, China
| | - Yang Yang
- College of Marine Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361000, China
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian 361000, China
| | - Shuai Kang
- College of Marine Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361000, China
| | - Ye-Xin Chen
- College of Marine Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361000, China
| | - Pei-Yi Zheng
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, Anhui 230000, China
| | - Gui-Xia Chen
- Women and Children's Hospital Affiliated to Xiamen University, Xiamen, Fujian 361000, China
| | - Xiao-Mei Chen
- College of Marine Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361000, China
| | - Min-Jie Cao
- College of Marine Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361000, China
| | - Tengchuan Jin
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, Anhui 230000, China
| | - Guang-Ming Liu
- College of Marine Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361000, China
| |
Collapse
|
6
|
Chen YY, Li MS, Yun X, Xia F, Hu MJ, Jin T, Cao MJ, Lai D, Chen G, Liu GM. Site-Directed Mutations of Calcium-Binding Sites Contribute to Reducing the Immunoreactivity of the EF-Hand Sarcoplasmic Calcium-Binding Protein in Scylla paramamosain. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:428-436. [PMID: 33377774 DOI: 10.1021/acs.jafc.0c05733] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In order to reduce the immunoreactivity of sarcoplasmic calcium-binding protein (SCP), site-directed mutations were used to replace key amino acids in the conformational epitopes and calcium-binding sites. The mutant SCPs (mSCPs) were expressed in Escherichia coli, and their immunoreactivities were analyzed using iELISA and basophil activation assays. Furthermore, the structural changes of mSCPs were determined from the circular dichroism spectra. The iELISA results showed that mSCPs could effectively inhibit the binding of wild-type SCP (wtSCP) to sensitive serum, with inhibition rates that reached 90%. Moreover, mSCPs could downregulate the expression levels of CD63 and CD203c on the basophil surface. Compared with wtSCP, the peak values were significantly changed, and the calcium binding ability was impaired, which explained the decline in immunoreactivities of the mSCPs. All of the data confirmed that this approach was effective in reducing the immunoreactivity of SCP and could be applied to other shellfish allergens.
Collapse
Affiliation(s)
- Yi-Yu Chen
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Meng-Si Li
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Xiao Yun
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Fei Xia
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Meng-Jun Hu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Tengchuan Jin
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, Anhui 230026, China
| | - Min-Jie Cao
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Dong Lai
- The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian 361021, China
| | - Guixia Chen
- Women and Children's Hospital Affiliated to Xiamen University, Xiamen, Fujian 361003, China
| | - Guang-Ming Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| |
Collapse
|
7
|
Üzülmez Ö, Kalic T, Breiteneder H. Advances and novel developments in molecular allergology. Allergy 2020; 75:3027-3038. [PMID: 32882057 PMCID: PMC7756543 DOI: 10.1111/all.14579] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 12/21/2022]
Abstract
The continuous search for new allergens and the design of allergen derivatives improves the understanding of their allergenicity and aids the design of novel diagnostic and immunotherapy approaches. This article discusses the recent developments in allergen and epitope discovery, allergy diagnostics and immunotherapy. Structural information is crucial for the elucidation of cross-reactivity of marker allergens such as the walnut Jug r 6 or that of nonhomologous allergens, as shown for the peanut allergens Ara h 1 and 2. High-throughput sequencing, liposomal nanoallergen display, bead-based assays, and protein chimeras have been used in epitope discovery. The binding of natural ligands by the birch pollen allergen Bet v 1 or the mold allergen Alt a 1 increased the stability of these allergens, which is directly linked to their allergenicity. We also report recent findings on the use of component-resolved approaches, basophil activation test, and novel technologies for improvement of diagnostics. New strategies in allergen-specific immunotherapy have also emerged, such as the use of virus-like particles, biologics or novel adjuvants. The identification of dectin-1 as a key player in allergy to tropomyosins and the formyl peptide receptor 3 in allergy to lipocalins are outstanding examples of research into the mechanism of allergic sensitization.
Collapse
Affiliation(s)
- Öykü Üzülmez
- Institute of Pathophysiology and Allergy Research Medical University of Vienna Vienna Austria
| | - Tanja Kalic
- Institute of Pathophysiology and Allergy Research Medical University of Vienna Vienna Austria
| | - Heimo Breiteneder
- Institute of Pathophysiology and Allergy Research Medical University of Vienna Vienna Austria
| |
Collapse
|
8
|
Kucuksezer UC, Ozdemir C, Cevhertas L, Ogulur I, Akdis M, Akdis CA. Mechanisms of allergen-specific immunotherapy and allergen tolerance. Allergol Int 2020; 69:549-560. [PMID: 32900655 DOI: 10.1016/j.alit.2020.08.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/10/2020] [Indexed: 12/28/2022] Open
Abstract
Allergen-specific immunotherapy (AIT) is the mainstay treatment for the cure of allergic disorders, with depicted efficacy and safety by several trials and meta-analysis. AIT impressively contributes to the management of allergic rhinitis, asthma and venom allergies. Food allergy is a new arena for AIT with promising results, especially via novel administration routes. Cell subsets with regulatory capacities are induced during AIT. IL-10 and transforming growth factor (TGF)-β are the main suppressor cytokines, in addition to surface molecules such as cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) and programmed cell death protein-1 (PD-1) within the micro milieu. Modified T- and B-cell responses and antibody isotypes, increased activity thresholds for eosinophils, basophils and mast cells and consequent limitation of inflammatory cascades altogether induce and maintain a state of sustained allergen-specific unresponsiveness. Established tolerance is reflected into the clinical perspectives as improvement of allergy symptoms together with reduced medication requirements and evolved disease severity. Long treatment durations, costs, reduced patient compliance and risk of severe, even life-threatening adverse reactions during treatment stand as major limiting factors for AIT. By development of purified non-allergenic, highly-immunogenic modified allergen extracts, and combinational usage of them with novel adjuvant molecules via new routes may shorten treatment durations and possibly reduce these drawbacks. AIT is the best model for custom-tailored therapy of allergic disorders. Better characterization of disease endotypes, definition of specific biomarkers for diagnosis and therapy follow-up, as well as precision medicine approaches may further contribute to success of AIT in management of allergic disorders.
Collapse
|
9
|
Flicker S, Zettl I, Tillib SV. Nanobodies-Useful Tools for Allergy Treatment? Front Immunol 2020; 11:576255. [PMID: 33117377 PMCID: PMC7561424 DOI: 10.3389/fimmu.2020.576255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/15/2020] [Indexed: 11/13/2022] Open
Abstract
In the last decade single domain antibodies (nanobodies, VHH) qualified through their unique characteristics have emerged as accepted and even advantageous alternative to conventional antibodies and have shown great potential as diagnostic and therapeutic tools. Currently nanobodies find their main medical application area in the fields of oncology and neurodegenerative diseases. According to late-breaking information, nanobodies specific for coronavirus spikes have been generated these days to test their suitability as useful therapeutics for future outbreaks. Their superior properties such as chemical stability, high affinity to a broad spectrum of epitopes, low immunogenicity, ease of their generation, selection and production proved nanobodies also to be remarkable to investigate their efficacy for passive treatment of type I allergy, an exaggerated immune reaction to foreign antigens with increasing global prevalence.
Collapse
Affiliation(s)
- Sabine Flicker
- Division of Immunopathology, Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ines Zettl
- Division of Immunopathology, Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Sergei V. Tillib
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Allergen immunotherapy is the only treatment modality which alters the natural course of allergic diseases by restoring immune tolerance against allergens. Deeper understanding of tolerance mechanisms will lead to the development of new vaccines, which target immune responses and promote tolerance. RECENT FINDINGS Successful allergen immunotherapy (AIT) induces allergen-specific peripheral tolerance, characterized mainly by the generation of allergen-specific Treg cells and reduction of Th2 cells. At the early phase, AIT leads to a decrease in the activity and degranulation of mast cells and basophils and a decrease in inflammatory responses of eosinophils in inflamed tissues. Treg cells show their effects by secreting inhibitory cytokines including interleukin (IL)-10, transforming growth factor-β, interfering with cellular metabolisms, suppressing antigen presenting cells and innate lymphoid cells (ILCs) and by cytolysis. AIT induces the development of regulatory B cells producing IL-10 and B cells expressing allergen-specific IgG4. Recent investigations have demonstrated that AIT is also associated with the formation of ILC2reg and DCreg cells which contribute to tolerance induction. SUMMARY Research done so far, has shown that multiple molecular and cellular factors are dysregulated in allergic diseases and modified by AIT. Studies should now focus on finding the best target and ideal biomarkers to identify ideal candidates for AIT.
Collapse
|
11
|
Mikus M, Zandian A, Sjöberg R, Hamsten C, Forsström B, Andersson M, Greiff L, Uhlén M, Levin M, Nilsson P, van Hage M, Ohlin M. Allergome-wide peptide microarrays enable epitope deconvolution in allergen-specific immunotherapy. J Allergy Clin Immunol 2020; 147:1077-1086. [PMID: 32791163 DOI: 10.1016/j.jaci.2020.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 07/22/2020] [Accepted: 08/04/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND The interaction of allergens and allergen-specific IgE initiates the allergic cascade after crosslinking of receptors on effector cells. Antibodies of other isotypes may modulate such a reaction. Receptor crosslinking requires binding of antibodies to multiple epitopes on the allergen. Limited information is available on the complexity of the epitope structure of most allergens. OBJECTIVES We sought to allow description of the complexity of IgE, IgG4, and IgG epitope recognition at a global, allergome-wide level during allergen-specific immunotherapy (AIT). METHODS We generated an allergome-wide microarray comprising 731 allergens in the form of more than 172,000 overlapping 16-mer peptides. Allergen recognition by IgE, IgG4, and IgG was examined in serum samples collected from subjects undergoing AIT against pollen allergy. RESULTS Extensive induction of linear peptide-specific Phl p 1- and Bet v 1-specific humoral immunity was demonstrated in subjects undergoing a 3-year-long AIT against grass and birch pollen allergy, respectively. Epitope profiles differed between subjects but were largely established already after 1 year of AIT, suggesting that dominant allergen-specific antibody clones remained as important contributors to humoral immunity following their initial establishment during the early phase of AIT. Complex, subject-specific patterns of allergen isoform and group cross-reactivities in the repertoires were observed, patterns that may indicate different levels of protection against different allergen sources. CONCLUSIONS The study highlights the complexity and subject-specific nature of allergen epitopes recognized following AIT. We envisage that epitope deconvolution will be an important aspect of future efforts to describe and analyze the outcomes of AIT in a personalized manner.
Collapse
Affiliation(s)
- Maria Mikus
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology & SciLifeLab, Stockholm, Sweden; Unit of Experimental Asthma and Allergy Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Arash Zandian
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology & SciLifeLab, Stockholm, Sweden
| | - Ronald Sjöberg
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology & SciLifeLab, Stockholm, Sweden
| | - Carl Hamsten
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Björn Forsström
- Division of Systems Biology, Department of Protein Science, KTH Royal Institute of Technology & SciLifeLab, Stockholm, Sweden
| | - Morgan Andersson
- Department of Otorhinolaryngology, Head & Neck Surgery, Skåne University Hospital, Lund, Sweden
| | - Lennart Greiff
- Department of Otorhinolaryngology, Head & Neck Surgery, Skåne University Hospital, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Mathias Uhlén
- Division of Systems Biology, Department of Protein Science, KTH Royal Institute of Technology & SciLifeLab, Stockholm, Sweden
| | - Mattias Levin
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Peter Nilsson
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology & SciLifeLab, Stockholm, Sweden
| | - Marianne van Hage
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Mats Ohlin
- Department of Immunotechnology, Lund University, Lund, Sweden.
| |
Collapse
|
12
|
Köhler VK, Crescioli S, Fazekas-Singer J, Bax HJ, Hofer G, Pranger CL, Hufnagl K, Bianchini R, Flicker S, Keller W, Karagiannis SN, Jensen-Jarolim E. Filling the Antibody Pipeline in Allergy: PIPE Cloning of IgE, IgG 1 and IgG 4 against the Major Birch Pollen Allergen Bet v 1. Int J Mol Sci 2020; 21:E5693. [PMID: 32784509 PMCID: PMC7460837 DOI: 10.3390/ijms21165693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/30/2020] [Accepted: 08/06/2020] [Indexed: 01/13/2023] Open
Abstract
Birch pollen allergy is among the most prevalent pollen allergies in Northern and Central Europe. This IgE-mediated disease can be treated with allergen immunotherapy (AIT), which typically gives rise to IgG antibodies inducing tolerance. Although the main mechanisms of allergen immunotherapy (AIT) are known, questions regarding possible Fc-mediated effects of IgG antibodies remain unanswered. This can mainly be attributed to the unavailability of appropriate tools, i.e., well-characterised recombinant antibodies (rAbs). We hereby aimed at providing human rAbs of several classes for mechanistic studies and as possible candidates for passive immunotherapy. We engineered IgE, IgG1, and IgG4 sharing the same variable region against the major birch pollen allergen Bet v 1 using Polymerase Incomplete Primer Extension (PIPE) cloning. We tested IgE functionality and IgG blocking capabilities using appropriate model cell lines. In vitro studies showed IgE engagement with FcεRI and CD23 and Bet v 1-dependent degranulation. Overall, we hereby present fully functional, human IgE, IgG1, and IgG4 sharing the same variable region against Bet v 1 and showcase possible applications in first mechanistic studies. Furthermore, our IgG antibodies might be useful candidates for passive immunotherapy of birch pollen allergy.
Collapse
Affiliation(s)
- Verena K. Köhler
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (V.K.K.); (J.F.-S.); (C.L.P.); (K.H.); (R.B.)
- Institute of Pathophysiology and Allergy Research, Centre of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria;
| | - Silvia Crescioli
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, 9th Floor, Tower Wing, Guy’s Hospital, London SE1 9RT, UK; (S.C.); (H.J.B.); (S.N.K.)
- NIHR Biomedical Research Centre at Guy’s and St Thomas’s Hospitals and King’s College London, Guy’s Hospital, London SE1 9RT, UK
| | - Judit Fazekas-Singer
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (V.K.K.); (J.F.-S.); (C.L.P.); (K.H.); (R.B.)
- Institute of Pathophysiology and Allergy Research, Centre of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria;
| | - Heather J. Bax
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, 9th Floor, Tower Wing, Guy’s Hospital, London SE1 9RT, UK; (S.C.); (H.J.B.); (S.N.K.)
- School of Cancer & Pharmaceutical Sciences, King’s College London, 9th Floor, Tower Wing, Guy’s Hospital, London SE1 9RT, UK
| | - Gerhard Hofer
- Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, Humboldtstraße 50, 8010 Graz, Austria; (G.H.); (W.K.)
| | - Christina L. Pranger
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (V.K.K.); (J.F.-S.); (C.L.P.); (K.H.); (R.B.)
- Institute of Pathophysiology and Allergy Research, Centre of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria;
| | - Karin Hufnagl
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (V.K.K.); (J.F.-S.); (C.L.P.); (K.H.); (R.B.)
- Institute of Pathophysiology and Allergy Research, Centre of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria;
| | - Rodolfo Bianchini
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (V.K.K.); (J.F.-S.); (C.L.P.); (K.H.); (R.B.)
- Institute of Pathophysiology and Allergy Research, Centre of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria;
| | - Sabine Flicker
- Institute of Pathophysiology and Allergy Research, Centre of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria;
| | - Walter Keller
- Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, Humboldtstraße 50, 8010 Graz, Austria; (G.H.); (W.K.)
| | - Sophia N. Karagiannis
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, 9th Floor, Tower Wing, Guy’s Hospital, London SE1 9RT, UK; (S.C.); (H.J.B.); (S.N.K.)
- NIHR Biomedical Research Centre at Guy’s and St Thomas’s Hospitals and King’s College London, Guy’s Hospital, London SE1 9RT, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Cancer Centre, London SE1 9RT, UK
| | - Erika Jensen-Jarolim
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (V.K.K.); (J.F.-S.); (C.L.P.); (K.H.); (R.B.)
- Institute of Pathophysiology and Allergy Research, Centre of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria;
| |
Collapse
|
13
|
Li MS, Xia F, Liu M, He XR, Chen YY, Bai TL, Chen GX, Wang L, Cao MJ, Liu GM. Cloning, Expression, and Epitope Identification of Myosin Light Chain 1: An Allergen in Mud Crab. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10458-10469. [PMID: 31469568 DOI: 10.1021/acs.jafc.9b04294] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mud crab (Scylla paramamosain) is a commonly consumed seafood as a result of its high nutritional value; however, it is associated with food allergy. The current understanding of crab allergens remains insufficient. In the present study, an 18 kDa protein was purified from crab muscle and confirmed to be myosin light chain 1 (MLC1) by matrix-assisted laser desorption/ionization-tandem time-of-flight mass spectrometry. Total RNA was isolated and amplified to obtain a MLC1 open reading frame of 462 bp, encoding 154 amino acids. A structural analysis revealed that recombinant MLC1 (rMLC1) expressed in Escherichia coli contained α-helix and random coil. Moreover, rMLC1 displayed strong immunoactivity by dot blot and a basophil activation test. Furthermore, seven allergenic epitopes of MLC1 were predicted, and five critical epitope regions were identified by an inhibition enzyme-linked immunosorbent assay and human mast cell degranulation assay. This comprehensive research of an allergen helps to conduct component-resolved diagnoses and immunotherapies related to crab allergies.
Collapse
Affiliation(s)
- Meng-Si Li
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources , Jimei University , Xiamen , Fujian 361021 , People's Republic of China
| | - Fei Xia
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources , Jimei University , Xiamen , Fujian 361021 , People's Republic of China
| | - Meng Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources , Jimei University , Xiamen , Fujian 361021 , People's Republic of China
| | - Xin-Rong He
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources , Jimei University , Xiamen , Fujian 361021 , People's Republic of China
| | - Yi-Yu Chen
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources , Jimei University , Xiamen , Fujian 361021 , People's Republic of China
| | - Tian-Liang Bai
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources , Jimei University , Xiamen , Fujian 361021 , People's Republic of China
| | - Gui-Xia Chen
- Women and Children's Hospital Affiliated to Xiamen University , Xiamen , Fujian 361003 , People's Republic of China
| | - Li Wang
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources , Jimei University , Xiamen , Fujian 361021 , People's Republic of China
| | - Min-Jie Cao
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources , Jimei University , Xiamen , Fujian 361021 , People's Republic of China
| | - Guang-Ming Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources , Jimei University , Xiamen , Fujian 361021 , People's Republic of China
| |
Collapse
|
14
|
Zhang Q, Yang J, Bautista J, Badithe A, Olson W, Liu Y. Epitope Mapping by HDX-MS Elucidates the Surface Coverage of Antigens Associated with High Blocking Efficiency of Antibodies to Birch Pollen Allergen. Anal Chem 2018; 90:11315-11323. [DOI: 10.1021/acs.analchem.8b01864] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Qian Zhang
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, New York 10591, United States
| | - Janice Yang
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, New York 10591, United States
| | - Joannie Bautista
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, New York 10591, United States
| | - Ashok Badithe
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, New York 10591, United States
| | - William Olson
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, New York 10591, United States
| | - Yashu Liu
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, New York 10591, United States
| |
Collapse
|
15
|
Gadermaier E, Marth K, Lupinek C, Campana R, Hofer G, Blatt K, Smiljkovic D, Roder U, Focke‐Tejkl M, Vrtala S, Keller W, Valent P, Valenta R, Flicker S. Isolation of a high-affinity Bet v 1-specific IgG-derived ScFv from a subject vaccinated with hypoallergenic Bet v 1 fragments. Allergy 2018; 73:1425-1435. [PMID: 29315611 PMCID: PMC6032869 DOI: 10.1111/all.13394] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Recombinant hypoallergenic allergen derivatives have been used in clinical immunotherapy studies, and clinical efficacy seems to be related to the induction of blocking IgG antibodies recognizing the wild-type allergens. However, so far no treatment-induced IgG antibodies have been characterized. OBJECTIVE To clone, express, and characterize IgG antibodies induced by vaccination with two hypoallergenic recombinant fragments of the major birch pollen allergen, Bet v 1 in a nonallergic subject. METHODS A phage-displayed combinatorial single-chain fragment (ScFv) library was constructed from blood of the immunized subject and screened for Bet v 1-reactive antibody fragments. ScFvs were tested for specificity and cross-reactivity to native Bet v 1 and related pollen and food allergens, and epitope mapping was performed. Germline ancestor genes of the antibody were analyzed with the ImMunoGeneTics (IMGT) database. The affinity to Bet v 1 and cross-reactive allergens was determined by surface plasmon resonance measurements. The ability to inhibit patients' IgE binding to ELISA plate-bound allergens and allergen-induced basophil activation was assessed. RESULTS A combinatorial ScFv library was obtained from the vaccinated donor after three injections with the Bet v 1 fragments. Despite being almost in germline configuration, ScFv (clone H3-1) reacted with high affinity to native Bet v 1 and homologous allergens, inhibited allergic patients' polyclonal IgE binding to Bet v 1, and partially suppressed allergen-induced basophil activation. CONCLUSION Immunization with unfolded hypoallergenic allergen derivatives induces high-affinity antibodies even in nonallergic subjects which recognize the folded wild-type allergens and inhibit polyclonal IgE binding of allergic patients.
Collapse
Affiliation(s)
- E. Gadermaier
- Division of ImmunopathologyInstitute of Pathophysiology and Allergy ResearchCenter for Pathophysiology, Infectiology and ImmunologyVienna General HospitalMedical University of ViennaViennaAustria
| | - K. Marth
- Division of ImmunopathologyInstitute of Pathophysiology and Allergy ResearchCenter for Pathophysiology, Infectiology and ImmunologyVienna General HospitalMedical University of ViennaViennaAustria
| | - C. Lupinek
- Division of ImmunopathologyInstitute of Pathophysiology and Allergy ResearchCenter for Pathophysiology, Infectiology and ImmunologyVienna General HospitalMedical University of ViennaViennaAustria
| | - R. Campana
- Division of ImmunopathologyInstitute of Pathophysiology and Allergy ResearchCenter for Pathophysiology, Infectiology and ImmunologyVienna General HospitalMedical University of ViennaViennaAustria
| | - G. Hofer
- Institute of Molecular BiosciencesBioTechMed, University of GrazGrazAustria
| | - K. Blatt
- Division of Hematology and HemostaseologyDepartment of Internal Medicine IVienna General HospitalMedical University of ViennaViennaAustria
| | - D. Smiljkovic
- Division of Hematology and HemostaseologyDepartment of Internal Medicine IVienna General HospitalMedical University of ViennaViennaAustria
| | - U. Roder
- GE Healthcare Europe GmbHFreiburgGermany
| | - M. Focke‐Tejkl
- Division of ImmunopathologyInstitute of Pathophysiology and Allergy ResearchCenter for Pathophysiology, Infectiology and ImmunologyVienna General HospitalMedical University of ViennaViennaAustria
| | - S. Vrtala
- Division of ImmunopathologyInstitute of Pathophysiology and Allergy ResearchCenter for Pathophysiology, Infectiology and ImmunologyVienna General HospitalMedical University of ViennaViennaAustria
| | - W. Keller
- Institute of Molecular BiosciencesBioTechMed, University of GrazGrazAustria
| | - P. Valent
- Division of Hematology and HemostaseologyDepartment of Internal Medicine IVienna General HospitalMedical University of ViennaViennaAustria
| | - R. Valenta
- Division of ImmunopathologyInstitute of Pathophysiology and Allergy ResearchCenter for Pathophysiology, Infectiology and ImmunologyVienna General HospitalMedical University of ViennaViennaAustria
- NRC Institute of Immunology FMBA of RussiaMoscowRussia
| | - S. Flicker
- Division of ImmunopathologyInstitute of Pathophysiology and Allergy ResearchCenter for Pathophysiology, Infectiology and ImmunologyVienna General HospitalMedical University of ViennaViennaAustria
| |
Collapse
|